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ABSTRACT

This paper describes a dynamic linear programming model for
studying long-range development alternatives of forestry and
forest based industries at a national and regional level. The
Finnish forest sector is used as an object of implementation and
for numerical examples. Our model is comprised of two subsystems,
the forestry and the industrial subsystem, which are linked to
each other through the wood supply. The forestry submodel de-
scribes the development of the volume and age distribution of
different tree species within the nation or its subregions. 1In
the industrial submodel we consider various production activities,
such as saw mill industry, panel industry, pulp and paper industry,
as well as further processing of primary products. For a single
product, alternative technologies may be employed. Thus, the
production process is described by a small Leontief model with
substitution. Besides supply of wood and demand of wood products,
production is restricted through labor availability, production
capacity, and financial resources. The production activities
are grouped into financial units and the investments are made
within the financial resources of such units. Objective functions
related to GNP, balance of payments, employment, wage income,
stumpage earnings, and industrial profit have been formulated.
Terminal conditions have been proposed to be determined through
an optimal solution of a stationary model for the whole forest
sector.

The structure of the integrated forestry-forest industry
model is given in the canonical form of dynamic linear programs
for which special solution techniques may be employed. Two
versions of the Finnish forest sector models have been imple-
mented for the interactive mathematical programming system
called SESAME, and a few numerical runs have been presented to
illustrate possible use of the model.
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A MODEL FOR THE FOREST SECTOR

M. Kallio, A. Propoi, and R. Seppdla

1. INTRODUCTION

As is the case with several natural resources, many regions
of the world are now at the transition period from ample to scarce
wood resources. Because the forest sector plays an important
role in the economy of some countries, long-term policy analysis
of the forest sector, i.e., forestry and forest industries, is

becoming an important issue for these countries.

We may single out two basic approaches for analyzing long-
range development of the forest sector: simulation and optimi-
zation. Simulation techniques (e.g., system dynamics) allow
us to understand and to quantify basic relationships influencing
the development of the forest sector (see Jegr et al. 1978,
Randers 1976, Seppdla et al. forthcoming). Hence, using a simu-
lation technique we can evaluate the consequences of a specific
policy. However, using only simulation it is difficult to find
a "proper" (or in some sense optimal) policy. The reason for
this is that the forest sector is in fact a large-scale dynamic
system and, on the basis of simulation alone, it is difficult to
select an appropriate policy which should satisfy a large number
of conditions and requirements. For this we need an optimization

technique. Because of the complexity of the system in question,
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linear programming (Dantzig 1963) may be considered as the most
appropriate technique for this case. It is worthwhile to note
that the optimization technique itself should be used on some
simulation basis; i.e., different numerical runs based on dif-
ferent assumptions and objective functions should be carried
out to aid the selection of an appropriate policy. Specific
applications of such an approach for planning an integrated
system of forestry and forest industries have been presented,

for instance, by Jackson (1974) and Barros and Weintraub (1979).

Already because of the nature of growth of the forests,
the model should necessarily be dynamic. Therefore, in this
paper we consider a dynamic linear programming (DLP) model for
the forest sector. 1In this approach the planning horizon (e.q.,
a 50-year period) 1is partitioned into a (finite) number of time
periods (e.g., 5-year periods) and for each of these shorter
periods we consider a static linear programming model. A dynamic
LP is then just a linear program comprising of such static models
which are interlinked via various state variables (i.e., different
types of "inventories", such as wood in the forests, production
capacity, assets, liabilities, etc., at the end of a given period
are equal to those at the beginning of the following period).
In our forest sector model, each such static model comprises
two basic submodels: a forestry submodel, and an industrial
model of production, marketing and financing. The forestry
submodel describes also ecological and land availability con-
straints for the forest, as well as labor and machinery constraints

for harvesting and planting activities.

The industrial submodel is described by a small input-out-
put model with both mechanical (e.g., sawmill and plywood) and
chemical (e.g., pulp and paper) production activities. Also
secondary processing of the primary products will be included
in the model, in particular, because of the expected importance

of such activities in the future.

The rate of production is restricted by wood supply (which
is one of the major links between the submodels), by final demand
for wood products, by labor force supply, by production capacity

availability, and finally, by financial considerations.




The evaluation criterion in comparing alternative policies
for the forest sector is highly multiobjective: while selecting
a reasonable long-term policy, preferences of different interest
groups (such as government, industry, labor, and forest owners)
have to be taken simultaneously into account. It should also
be noted that forestry and industry submodels have different
transient times: a forest normally requires a growing period of
at least 40 to 60 years whereas a major structural change in the
industry may be carried out within a much shorter period. Because
of the complexity of the system, it is sometimes desirable to
consider the forestry and the industries on some independent
basis, each with its own objective(s), and to analyze an inte-
grated model thereafter (see Kallio et al. 1979).

The paper is divided into two parts. In the first part
(Sections 2-4) we describe the methodological approach. 1In the
second part (Section 5) a specific implementation for the Finnish
forest sector is described and illustrated with somewhat hypo-

thetical numerical examples.

2. THE FORESTRY SUBSYSTEM

Mathematical programming is a widely applied technique for
operations management and planning in forestry (e.g., Navon 1971,
Dantzig 1974, Kilkki et al. 1977, Newnham 1975, Naslund 1969,
Wardle 1965, Ware and Clutter 1971, Weintraub and Navon 1976,
Williams 1976). In this section we follow a traditional formu-
lation of the forests' tree population into a dynamic linear
programming system. We describe the forestry submodel, where
the decision variables (control activities) are harvesting and
planting activities, and where the state of the forests is
represented by the volume of trees in different species and
age groups. Because the model is formulated in the DLP frame-
work, we single out the following: (i) state equations which
describe the development of the system, (ii) constraints which
restrict feasible trajectories of the forest development, (iii)

planning horizon, and (iv) objective function(s).




2.1 State Equations

Each tree in the forest is assigned to a class of trees
specifying the age and the species of the tree. A tree belongs
to age group a (a = 1,..., N-1) if 1ts age is at least (a-1)A
but less than aA, where A 1s a given time interval (for example,
five years). 1In the highest age group a = N all trees are in-
cluded which have an age of at least (N-1)A. (Instead of age

groups, we might alternatively assign trees to size groups speci-

fied by the trees' diameter.) We denote by wsa(t) the number of
trees of species s, s = 1,2,3,..., (e.g., pine, spruce, birch,
etc.) in age group a at the beginning of time period t,

t=20,1,..., T.

Let aza,(t) show the ratio of trees of species s and in age

group a that will proceed to the age group a' during time period
t. We shall consider a model formulation where the length of
each time period is A. Therefore, we may assume that aia.(t)

1s independent of t and equal to zero unless a' is equal to a+l

{or a for the highest age group). We denote then aza.(t) = az
with 0 < az < 1. The ratio 1 =~ ai may then be called the attri-

tion rate corresponding to time interval A and tree species s in
age group a. We introduce a subvector ws(t) = {wsa(t)}, speci-

fying the age distribution of trees (number of trees) for each

tree species s at the beginning of time period t. Assuming neither

harvesting nor planting, the age distribution of trees at the
beginning of the next time period t+1 will then be given by
asws(t) where a° is the square N x N growth matrix, describing
aging and death of the trees resulting from natural causes. By

our definition, it has the form

o 0 0]
S
a1 0 0
GS =10 as
s s
_0 e . QN-1 QN




Introducing a vector w(t) = {ws(t)} = {wsa(t)}, describing
tree species and age distribution and a block-diagonal matrix o
with submatrices a® on its diagonal, the species and age distri-

bution at the beginning of period t+1 will be given by aw(t).

We denote by u+(t) and u (t) the vectors of planting and har-
vesting activities at time period t. The state equation describ-

ing the development of the forest will then be
w(t+1) = aw(t) + nu(t) -wu"(t) . (1)

where matrices n and w specify planting and harvesting
activities in such a way that nu+(t) and -wu (t) are the incre-
mental change in numbers of trees resulting from planting and

harvesting activities, respectively.

A planting activity n may be specified to mean planting of
one tree of species s which enters the first age group (a = 1)
during period t. Thus, matrix n has one unit column vector
for each tree species s. The nonzero element of such a column
is on the row of the first age group for tree species s in equa-
tion (1).

A harvesting activity h is specified by variables ug(t)
which determine the level of this activity (e.g., final harvest-
ing, thinning, etc.). The coefficients w>

ah
are defined so that mzhu;(t) is the number of trees of species

of matrix w

s from age group a harvested when activity h is applied at level
u;(t). Thus, these coefficients show the age and species dis-
tribution of trees harvested when activity h is applied.

Sometimes the harvesting activities can be specified simply

by the numbers of trees of species s and age a harvested during

time period t. There is some danger in this specification, however,

because the solution of the model may suggest that only one or
very few age groups will be harvested at each time period t.

This would of course be unrealistic in practice. Therefore, it
is recommended that each harvesting activity is defined through

a tree distribution corresponding to actual operations.




2.2 Constraints

.Land. Let H(t) be the vector of total acreage of different

types d of land available for forests at time period t. A land
type d may refer, for instance, to a soil type. Let sz be the
area of land species d required by one tree of species s and age
group a. We assume that each tree species uses only one type
of land d; i.e., only one of the elements sz, d=1, 2, ...,
is nonzero. Thus, if we consider more than one land type, then
the tree species s may also refer to the soil. Defining the

matrix G = (Gid)’ we have the land availability restriction
Gw(t) < H(t) . (2)

In this formulation we assume that the land area H(t) is
exogenously given. Alternatively, we may endogenize vector H(t)
by introducing activities and a state equation for changing the
area of different types of land. Such a formulation is justi-
fied if changes in soil type over time is considered or if some
other land intensive activities, such as agriculture, are included

in the model.

Besides land availability constraints, requirements for
allocating land for certain purposes (such as preserving the
forest as a water shed or as a recreational area) may be stated
in the form of inequality (2). 1In such a case (the negative of)
a component of H(t) would define a lower bound on such an alloca-
tion, while the left hand side would yield the (negative of)

land allocated in a solution of the model.

Sometimes constraints on land availability may be given
in the form of equalities which require that all land which is
made available through harvesting at a time period should be
used in the same time period for planting new trees of the type
appropriate for the soil. Forest laws in many countries even

require following this type of pattern.

Labor and other resources. Harvesting and planting acti-

Vities require resources such as machinery and labor. Let

R;n(t) and R;h(t) be the usage of resource g at the unit level




of planting activity n and harvesting activity h, respectively.
Defining the matrices R+(t) = {R;n(t)} and R (t) = {R;h(t)} ,
and vector R(t) = {Rg(t)} of available resources during period

t, we may write the resource availability constraint as follows:

RT(t)ut(t) + R”T()u™ (£) < R(t) . (3)

Wood supply. The requirements for wood supply from forestry

to industries can be given in the form:
S(t)u (t) = y(t) , (4)

where vector y(t) = {yk(t)} specifies the requirements for dif-
ferent timber assortments k (e.g., pine log, spruce pulpwood,
etc.), and matrix S(t) transforms quantities of harvested trees
of different species and age into the volume of different timber
assortments. Note that the volume of any given tree being har-
vested is assigned in (4) to log and pulpwood in a ratio which

depends on the species and age group of the tree.

2.3 Planning Horizon

The forest as a system has a very long transient time: one
rotation of the forest may in extreme conditions require more
than one hundred years. Naturally, various uncertainties make
it difficult to plan for such a long time horizon. On the other
hand, if the planning horizon is too short we cannot take into
account all the consequences of activities implemented at the
beginning of the planning horizon. As a compromise we may think
of a planning horizon of 50 to 80 years. Thus, if one period
represents an interval of five years, the model will constitute
10 to 16 stages. It should be noted that such a planning horizon
is unnecessarily long for the industrial subsystem and too short
for the forestry subsystem. 1In order to eliminate the latter
difficulty, it is desirable to analyze a stationary regime for
the forests. In this case we set w(t+1) = w(t) = w, for all t.
Similarly planting and harvesting activities are taken indepen-
dent of time; i.e., u+(t) = ut and u"(t) = u”, for all t. The

state equation (1) can then be restated as




+
W =o0ow + nu - wu . (1a)

Imposing constraints (2) through (4) on variables w, u+,
and u , we can solve the static linear programming problem and
find an optimal stationary state w* of the forest (and corre-
sponding harvesting and planting activities). This approach
has been used, for instance, by Rorres (1978) for finding the
stationary maximum yield of a harvest. The solution of a dynamic
linear program with terminal constraints

3
w(T) = w

yields the optimal transition to this stationary state.

Another way of introducing a stationary state is to consider
an infinite period formulation and to impose constraints w(t) =
w(t+1), u (t) = u”(t+1) and u'(t) = u¥(t+1), for all t > T. If
the model parameters for period t are assumed independent of time
for all t > T, then the dynamic infinite horizon linear program-
ming model may be formulated as a T+1 period problem where the
last period represents a stationary solution for periods t > T,
and the first T periods represent the transition from the ini-

tial state to the stationary solution.

There is a certain difference in these twc approaches of
handling the stationary state. 1In the first approach, when (5)
is applied, we first find the optimal stationary solution in-
dependently of the transition period, and thereafter we deter-
mine the optimal transition to this stationary state. In the
latter approach we link the transition period with the period
corresponding to the stationary solution. The linkage takes
place in the stationary state variables which are determined
in an optimal way taking into account both time periods simul-

taneously.

2.4 Objective Functions

The forest management described above, has a very multi-
objective nature. For example, the following objectives have

been mentioned (Dantzig 1974, Steuer and Schuler 1978):




1) obtaining higher yields of round wood; 2) preserving the
watershed; 3) preserving the forest as a recreational area;

4) making the forest resilient to diseases, fire, droughts, etc.
Some of these objectives may be included in objective function(s),
while others can be given as constraints. 1In Section 2.2 we

considered some of these types of objectives as constraints.

A common objective which is also used as an objective
function is the discounted sum of net income in forestry. This
profit may be expressed as. a linear combination of the decision

variables:

T-1 _ _ . .
Y B(E)[T (B)u (£)- J (t)u ()1 . (6)
t=0

Here J (t) accounts for the mill price of the wood less trans-
portation and harvesting costs at unit level. Vector J+(t)
refers to planting costs at unit level and B(t) is a discounting
factor. For illustrative purposes we shall use this objective

function for forestry.

2.5 Forestry Model

In summary, our forestry model may now be stated as
follows. Given state equation (1), an initial state w(0) = w0
and a terminal state w(T) = w*, find such nonnegative controls
(W (t)} and (uT(t)} (¢ = 0,1,..., T=-1), which satisfy con-
straints (2) through (4), yield nonnegative state vectors w(t)
and maximize the aggregated profit defined in (6).

In this problem the vector y(t) of wood supply, the (vec-
tor of) available land H(t), and the availability of labor and
other resources R(t) are given exogenously. Therefore, policy
analysis for forestry on the basis of only this submodel is very
limited in its possibilities. We shall link below this submodel
with an industrial submodel describing transformation of

wood raw material into products.
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Note that our formulation may also be considered as a
regionalized forestry model. 1In this case we only have to
extend the meaning of various indices (tree species s, planting
activity n, harvesting activity h, land type d, resource g, and
timber assortment k) to refer, in addition to the above, also

to various subregions within the nation.

3. THE INDUSTRIAL SUBSYSTEM

We will now consider the industrial subsystem of the forest
sector. Again the formulation is a dynamic linear programming
model. We discuss first the section related to production and
final demend of wood products, then the financial considerations

and the complete industrial submodel thereafter.

3.1 Production and Demand

Let x(t) be the vector (levels of) of production activities
for period t, for t = 0, 1,..., T-1. Such an activity i may
include production of sawn wood, panels, pulp, paper, converted
products, etc. For each single product j, there may exist
several alternative production activities 1 which are specified
through alternative uses of raw material, technology, etc. Let
U be the matrix of wood usage per unit of production activity
so that the wood processed by industries during period t is given
by vector Ux(t). Note that matrix U has one row corresponding
to each timber assortment k (corresponding to the components
of supply vector y(t) in the forestry model). Some of the
elements in U may be negative. For instance, saw milling con-
sumes logs but produces raw material (industrial residuals) for
pulp mills. This byproduct appears as a negative component in
matrix U. We denote by r(t) = {rk(t)} the vector of wood raw
material inventories at the beginning of period t (i.e., wood
harvested but not processed by the industry). As above, let
vy (t) be the amount of wood harvested in different timber assort-
ments, and z+(t) and z (t) the (vectors of) import and export
of different assortments of wood, respectively during period t.
Then we have the following state equation for the wood raw ma-

terial inventory:
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r(e+1) = r(t) + y(t) -~ Ux(t) + z (t) - z  (t) . (7)

In other words, the wood inventory at the end of period t is

the inventory at the beginning of that period plus wood harvested

and imported less wood consumed and exported (during that period
Note that if there is no storage (change), and no import nor exp
of wood, then (7) reduces to y(t) = Ux(t); i.e., wood harvested
equals the consumption of wood. For wood import and export we

assume upper limits 27 (t) and 2z~ (t), respectively:

2tt) < zt(t) and z (t) < z7(&) . (8)

The production process may be described by a simple input-
output model with substitution. Let A(t) be an input-output
matrix having one row for each product j and one column for each
production activity 1 so that A(t)x(t) is the (vector of) net
production when production activity levels are given by x(t).
Let m(t) = {mj(t)} and e(t) = {ej(t)} be the vectors of import
from and export to the forest sector, respectively, for products
j. Then, excluding from consideration a possible change in the

product inventory, we have
A(t)x(t) + m(t) - e(t) =0 . (9)

Both for export and for import we assume externally given bounds

E(t) and M(t), respectively:
e(t) < E(t) ' (10)
m(t) < M(t) . (11)

Production activities are further restricted through labor
and mill capacities. Let L(t) be the vector of different types
of labor available for the forest industries. Labor may be
classified in different ways taking into account, for instance,
of production, and the type of responsibilities in the produc-

tion process (e.g., work force, management, etc.). Let p(t)

) .

ort

type
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be a coefficient matrix so that p(t)x(t) is the (vector of)
demand for different types of labor given production activity

levels x(t). Thus we have
p(t)x(t) < L(t) . (12)

We will consider the production (mill) capacity as an en-
dogenous state variable. Let g(t) be the vector of the amount
of different types of such capacity at the beginning of period
t. Such types may be distinguished by region (where the capac-
ity is located), by type of product for which it 'is used and by
different technologies to produce a given product. Let Q(t) be
a coefficient matrix so that Q(t)x(t) is the demand (vector)
for these types of capacity. Such a matrix has nonzero elements
only when the region-product-technology combination of a produc-
tion activity matches with that of the type of capacity. The

production capacity restriction is then given as
Q(t)x(t) < gq(t) . (13)

The development of the capacity is given by a state equa-

tion
q(t+1) = (I-d8)g(t) + v(t) , (14)

where § is a diagonal matrix accounting for (physical) depre-

cation and v(t) is a vector of investments (in physical units).
Capacity expansions are restricted through financial resources.
We do not consider possible constraints of other sectors, such
as heavy machinery or building industry, whose capacity may be

employed in investments of the forest sector.

3.2 Finance

We will now turn our discussion to the financial aspects.
We partition the set of production activities 1 into financial
units (so that each activity belongs uniquely to one financial

unit). Furthermore, we assume that each production capacity
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is assigned to a financial unit so that each production activity
employs only capacities assigned to the same financial unit as

the activity itself.

Production capacity in (14) is given in physical units.
For financial calculations (such as determining taxation) we
define a vector g(t) of fixed assets. Each component of this
vector determines fixed assets (in monetary units) for a finan-
cial unit related to the capacity assigned to that unit. Thus,
fixed assets are aggregated according to the grouping of pro-
duction activities into financial units, for instance, by region,

by industry, or by groups of industries.

Financial and physical depreciation may differ from each
other; for instance, when the former is defined by law. We
define a diagonal matrix (I-&§(t)) so that (I-5(t))g(t) is
the vector of ‘fixed assets left at the end of period t when
investments are not taken into account. Let K(t) be a matrix
where each component determines the increase in fixed assets
(of a certain financial unit) per (physical) unit of an invest-
ment activity. Thus the components of vector K(t)v(t) determine
the increase in fixed assets (in monetary units) for the finan-
cial units when investment activities are applied (in physical
units) at a level determined by vector v(t). Then we have the

following state equation for fixed assets:
g(t+1) = (I-8(t))g(t) + K(t)v(t) . (15)

For each financial unit we consider external financing
(long-term debt) as an endogenous state variable. Let 2(t)
be the (vector of) beginning balance of external financing for
different financial units in period t. Similarly, let 2+(t)
and 2_(t) be the (vectors of) drawings of debt and the repayments
made during period t. In this notation, the state equation for

long-term debt is as follows:

LlE+1) = 2(t) + 2T (t) - 2T (t) . (16)
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We will restrict the total amount for long-term debt through
a measure which may be considered as a realization value of a
financial unit. :This measure is a given percentage of the total
assets less short-term liabilities. Let u(t) be a diagonal
matrix of such percentages, let b(t) be the (endogenous vector
of) total stockholders equity (including cumulative profit and

stock). Then the upper limit on loans is given as

[I-p(e)1e(t) < u(t)b(t) . (17)

Alternatively, external financing may be limited, for in-
stance, to a percentage of a theoretical annual revenue (based
on available production capacity and on assumed prices of pro-
ducts). Note that no repayment schedule has been introduced in
our formulation, because an increase in repayment can always be

compensated by an increase of drawings in the state equation (16).

Next we will consider the profit (or loss) from period t.
Let p+(t) and p_(t) be vectors whose components indicate profits
and losses, respectively, for the financial units. By definition,
both profit and loss cannot be simultaneously nonzero for any
financial unit. For a solution of the model, this fact usually

results from the choice of an objective function.

Let P(t) be a matrix of prices for products (having one
column for each product and one row for each financial unit)
so that the vector of revenue (for different financial units)
from sales e(t) outside the forest industry is given by P(t)e(t).
Let C(t) be a matrix of direct unit production costs, including,
for instance, wood, energy, and direct labor costs. Each row
of C(t) refers to a financial unit and each column to a pro-
duction activity. The (vector) of direct production costs for

financial units is then given by C(t)x(t).

The fixed production costs may be assumed proportional to
the (physical) production capacity. We define a matrix F (x)
so that the vector F(t)g(t) yields the fixed costs of period t
for the financial units. According to our notation above,

(financial) depreciation is given by the vector §(t)g(t).
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We assume that interest is paid on the beginning balance of debt.
Thus, if e€(t) is the diagonal matrix of interest rates, then the
vector of interest paid (by the financial units) 1s given by
e(t)2(t). Finally, let D(t) be (a vector of) exogeneously given
cash expenditure covering all other costs. Then the profit be-

fore tax (loss) is given as follows:

pT(t) - p (t) = P(t)e(t) - C(t)x(t) - F(t)q(t)
(18)
- S(t)g(t) - e(t)2(t) = D(t)
The stockholder equity b(t), which we already employed
above, satisfies now the following state equation:
b(t+1) = b(t) + [I-T(t)Ip (t) - p (t) + B(t) , (19)

where 1(t) is a diagonal matrix for taxation and B(t) 1is the

(exogenously given) amount of stock issued during period t.

Finally, we consider cash (and receivables) for each finan-
cial unit. Let c(t) be the vector of cash at the beginning of
period t. The change of cash during period t is due to the
profit after tax (or loss), depreciation (i.e., noncash expen-
diture), drawing of debt, repayment, and investments. Thus
we assume that the possible change in cash due to changes in
accounts receivable, in inventories (wood, end products, etc.)
and in accounts payable cancel each other (or that these quan-
tities remain unchanged during the period). Alternatively, such
changes could be taken into account assuming, for instance, that
the accounts payable and receivable, and the inventories are

proportional to annual sales of each financial unit.

Using our earlier notation, the state equation for cash is

now

c(t+1) = c(t) + [I-T(t)]pT(t) - p () + T(t)g(t)
(20)
+ et (t) - 27 (t) - K(t)v(t) + B(t)
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3.3 Initial State and Terminal Conditions

In our industrial model, we now have the following state
vectors: wood raw material inventory r(t), (physical) production
capacity q(t), fixed assets g(t), long-term debt £(t), cash c(t),
and total stockholders equity b(t). For all of them we have an
initial value and possibly a limit on the terminal value. We
shall refer to the initial and terminal values by superscripts

0 and *, respectively; i.e., we have the initial state given as

0 — —0
ro) =% , q =q° , JO =g .,
(21)
p0) =20 , e =c® , b =" ,
and a terminal state restricted, for instance, as follows:
* * - %
r(tr) >»r , q(T) >a9 , q(T) >q ,
(22)
* *
Z(T) i L ’ C(T) z C .

The initial state is determined by the state of the forest in-
dustries at the beginning of the planning horizon. The terminal
state may be determined as a stationary solution similarly as we

described for the forestry model above.

If we consider the wood supply y(t) being exogenous, we
now have an industrial submodel which may be analyzed indepen-
dently from the forestry submodel. A more complete duscussion
on objectives will be given in the next section, but for illus-
trative purposes, we may choose now the discounted sum of indus-

trial profits (after tax) as an objective function:

1

§ B(t) [(I-t(t))pT(t)-p (£)] . (23)
=0

T

t

Here B(t) 1s a (row) vector where components are the discounting

factors for different financial units (for period t).




-17-

3.4 Industrial Model

We may now summarize the industrial model. Given initial
state (21), find nonnegative control vectors x(t), z+(t), z (t),
m(t), e(t), v(t), 27 (t), 27 (t) pt(t), and p~(t), and nonnegative
state vectors r(t), g(t), g(t), 2(t), c(t), and b(t), for all t
which satisfy constraints and state equations (7) ~ (20), the
terminal requirements (22), and maximize the linear functional

given in (23).

As was the case with the forestry model, our industrial
model may also be considered being regionalized. Again various
indices (such as production activities, production capacities,
etc.) should also refer to subregions within the country. Var-
ious transportation costs will then be included in direct pro-
duction costs. For instance for a given product being produced
within a given region there may be alternative production acti-
vities which differ from each other only in the source region of

raw material.

4., THE INTEGRATED SYSTEM

We will now consider the integrated forestry--forest in-
dustries model. First we have a general discussion on possible
formulations of various objective functions for such a model.
Thereafter, we summarize the model in the canonical form of
dynamic linear programming. A tableau representation of the

structure of the integrated model will also be given.

4.1 Objectives

The forest sector may be viewed as a system controlled by
several interest groups or parties. Any given party may have
several objectives which are in conflict with each other.
Obviously, the objectives of one party may be in conflict with
those of another party. For instance, the following parties
may be taken into account: representatives of industry, govern-
ment, labor, and forest owners. Objectives for industry may be
the development of profit of different financial units. Govern-

ment may be interested in the increment of the forest sector
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to the gross national product, to the balance of payments, and
to employment. The labor unions are interested in employment
and total wages earned in forestry and different industries
within the sector. Objectives for forest owners may be the
income earned from selling and harvesting wood. Such objec-
tives refer to different time periods t (of the planning horizon)
and possibly also to different product lines. We will now give
simple examples of formulating such objectives into linear

objective functions.

Industrial profit. The vector of profits for the industrial

financial units was defined above as [I-T(t)]p+(t) - p (t) for
each period t. If one wants to distinguish between different
financial units, then actually each component of such a vector
may be considered as an objective function. However, often

we aggregate such objectives for practical purposes, for instance,
summing up discounted profits over all time periods, summing

over financial units, or as in (23), summing over both time

periods and financial units.

Increment to gross national product. For the purpose of

defining the increment of the forest sector to the GNP we consi-
der the sector as a "profit center" where no wage is paid to the
employees within the sector, where no price is paid for raw
material originating from this sector, and where no taxes exist.
The increment to the GNP is then the profit for such a center.

We will now make a precise statement of such a profit which may

also be viewed as the valued added in the forest sector.

Let P'(t) be a price vector so that P'(t)e(t) is the total
revenue from selling wood products outside the forest sector.
Let C'(t) be the vector of direct production unit costs ex-
cluding direct labor cost and cost of raw material which origi-
nates from the forest sector. Let ﬁ(t) and ﬁ(t) be vectors of
unit cost of planting and harvesting activities, respectively,
excluding labor costs. For simplicity, we may assume that these
latter two cost components include both operating and capital
cost for machinery. The direct operating costs (excluding wages

and wood based raw material) is then given, for period t, by
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C'(t)x(t) + R(t)ut (t) + R(t)u (t). Also the import and export
of wood based raw material influence the GNP. Let i(t) and E(t)
be price vectors for imported and exported wood raw material,
respectively, and let M'(t) be the price vector of imported

wood based products (to be used as raw material). Thus, the
following term should be added to the GNP of period t:

E(t)z_(t) - 2(t)z+(t) - M'(t)m(t). The influence of the change
in the wood inventory may be neglected in our model. For the
fixed costs all except the labor costs will be taken into account.
Let F'(t) be the vector of such costs per unit of production
capacity, let &' (t) be the vector of depreciation factors, and

€' (t) the vector of interest rates (for various financial units).
Then the negative increment of the fixed costs, depreciation

and interest to the GNP is given by F' (t)g(t) + §'(t)g(t) +

+ g'(t)2(t). Summing up, the increment of the forest sector

to the GNP of period t is given by the following expression:

P'(t)e(t) - C'(B)x(t) - R(B)ut(t) - R(t)u™ (£) - Z(t)z" (t)

v

+ Y (eyzT (k) - M'(t)m(t) - F'()q(t) - & (£)q(t) - €' (£)2(L).

Increment to balance of payments. The increment of the

forest sector to the balance of payments has a similar expression
to the one above for the GNP. The changes to be made in this
expression are, first, to multiply the components of the price
vector P'(t) by the share of exports in the total sales e(t);
second, to multiply the components of the cost vectors C' (t),
R(t), ﬁ(t), and F'(t) by the share of imported inputs in each
cost term; third, to multiply each component of €' (t) by the
share of foreign debts (among all long-term debts) of the fi-
nancial unit; and finally, to replace the depreciation function
6'(t)§(t) by investment expenditures K' (t)v(t), where K' (t)

is a vector expressing investments in imported goods (per unit

of production capacity).

Employment. Total employment (in man-years per period) for

each time period t for different types of labor, in different

activities and regions, has already been expressed in the left
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hand side expressions of inequalities (3) and (12). The expres-
sion for forestry is given by (part of the component of) the
vector R+(t)u+(t) + R (t)u (t) and for the industry by the vec-
tor o (t)x(t).

Wage income. For each group of the work force, the wage

income for period t is obtained by multiplying the expressions

for employment above by the annual salary of each such group.

Stumpage earnings. Besides the wage income for forestry

(which we already defined above), and an aggregate profit (as
expressed in (6)), one may account for the stumpage earnings;
i.e., the income related to the wood price prior to harvesting
the tree. Such income is readily obtained by the timber assort-
ments if the components of the harvesting yield vector y(t) are

multiplied by the respective wood prices.

4.2 The Integrated Model

We will now summarize the integrated forestry-industry model
in the canonical form of dynamic linear programming (Propoi and
Krivonozhko 1978). Denote by X(t) the vector of all state vari-
ables (defined above) at the beginning of period t. 1Its compo-
nents include the trees in the forest, different types of
production capacity in the industry, wood inventories, exter-
nal financing, etc. Let Y(t) be the nonnegative vector of
all controls for period t, that is, the vector of all decision
variables, such as levels of harvesting or production activities.
An upper bound vector for Y(t) is denoted by §(t) (some of whose
components may be infinite). We assume that the objective func-
tion to be maximized is a linear function of the state vectors
X(t) and the control vectors Y(t), and we denote by y(t) and
A(t) the coefficient vectors for X(t) and Y(t), respectively,
for such an objective function. This function may be, for
instance, a linear combination of the objectives defined above.
The initial state X(0) is denoted by XO, and the terminal re-
guirement for X(T) by X*. Let T(t) and A(t) be the coefficient
matrices for X(t) and Y(t), respectively, and let £(t) be the
exogenous right hand side vector in the state equation for X(t).
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Let &(t), Q(t), and y(t) be the corresponding matrices and the
right hand side vector for the constraints. Then the integrated

model can be stated in the canonical form of DLP as follows:

find Y(t), for O <t <T-1, and X(t), for 1 <t <T, to

-1
maximize ) (y(£)X(t)+A(t)Y(t)) + y(T)X(T) ,
t=0
subject to
X(t+1) = T(t)X(t) + A(E)Y(t) + £(t) , for 0 < t < T-1 ,
S(E)X(t) + Q(E)Y(t) = v(t) , for 0 < t < T-1 ,
0 < X(t) , 0<Y(t) <¥(t) |, for all t

with the initial state

x(0) = x0

and with terminal regquirement

The notation = for the constraints and terminal requirement
refers either to =, to < or to >, separately for each constraint.
The coefficient matrix (corresponding to variables X(t), Y(t),
and X(t+1)) and the right hand side vector of the integrated

forestry-industry submodel of period t are given as

-r(t) =-A(t) I £ (t)
and ’
¢ (t) Q(t) 0O Y (t)
respectively. Their structure has been illustrated in Figure 1

using the notation introduced in Sections 2 and 3.
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5. APPLICATION TO THE FINNISH FOREST SECTOR

5.1 Implementation

Two versions of the integrated model were implemented for
the SESAME system (Orchard-Hays 1978) (a large interactive mathe-
matical programming system designed for an IBM/370 and operating
under VM/CMS). The model generators are written using SESAME's
data management extension, called DATAMAT. An actual model 1is

specified by the data tableaux of the generator programs.

Our two versions have been designed for the Finnish forest
sector. Both of them may have at most ten time periods each of
which is a five year interval. 1In each case, the country is
considered as a single region. The main differences between
our small and large version are in the number of products,
financial units, and the tree species considered in the forest.

Table 1 shows the dimensions of the two models.

For the small version, the seven product groups in consider-
ation are sawn goods, panels, further processed mechanical wood
products, mechanical pulp, chemical pulp, paper and board, and
converted paper products. For each group we consider a separate
type of production capacity and labor force. In this small
version, we have aggregated all production into one financial
unit. Only one type of tree represents all tree species in the
forests. The trees are classified into 21 age groups. Thus,
the interval being five years, the oldest group contains trees
older than 100 years. Two harvesting activities were made avail-
able: thinning and final harvesting. The main timber assort-

ments in consideration are log and pulpwood.

The larger version has the following 17 product groups:
sawn goods, plywood, particle board, fiberboard, three types of
further processed mechanical products, mechanical pulp, Si-pulp,
Sa-pulp, newsprint, printing and writing paper, other papers,
paperboard, and three types of converted paper products. Again
for each such group we have a separate type of production capacity

as well as labor force. The production is aggregated into seven
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Table 1. Characteristic dimensions of the small and the large
versions of the Finnish forest sector model.

Smal} Largg

version version
Number of time periods * 10 10
Length of one period in years* 5 5
Number of regions 1 1
Number of tree species 1 3
Number of age groups for trees® 21 21
Harvesting activities® 2 6
Soil types 1 1
Harvesting and planting resources 1 1
Timber assortments 2 6
Production activities 7 17
Types of labor in the industry 7 17
Types of production capacity 7 17
Number of financial units 1 7
Number of rows in a ten period LP 520 2320
Number of columns in a ten period LP 612 3188

*
The value may be specified arbitrarily by the model data. The
numbers show the actual values being used.



financial units: saw mills, panels production (plywood, particle
board, and fiberboard), further processing of primary mechanical
wood products, mechanical pulp mills, chemical pulp mills, paper

and board mills, and production of converted paper goods.

Three species of trees appear in the larger version: pine,
spruce, and birch. For each of these we apply the same 21 age
groups as in the small version. The two harvesting activities
(thinning and terminal harvesting) and the two main timber
assortments (log and pulpwood) are now considered separately

for each of the three tree species.

The data for both of the versions of the Finnish model was
provided by the Finnish Forest Research Institute. It is par-
tially based on the official forest statistics (Yearbook of
Forest Statistics 1977/1978) published by the same institute.
Validation runs (which eventually resulted in our current formu-
lation) were carried out by contrasting the model solutions
with the experience gained in the preceeding simulation study
of the Finnish forest sector by Seppald, Kuuluvainen and Seppala

(forthcoming) .

5.2 Numerical Examples

For illustrative purposes we will now describe a few test
runs: two with the small version and one with the larger one.
Most of the data being used in these experiments corresponds
approximately to the Finnish forest sector. This is the case,
for instance, with the initial state; i.e., trees in the forests,
different types of production capacity, etc. Somewhat hypo-
thetical scenarios have been used for certain key gquantities,
such as final demand, and price and cost development. Thus,
the results obtained do not necessarily reflect reality. They
have been presented only to illustrate a few possible uses of
the model.

For each test run a ten (five year) period model was con-
structed. Labor constraints both for indsutry and for forestry
were temporarily relaxed. At this stage, no further processing

activity for mechanical wood products but one activity for
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converted paper products was considered. Both wood import and
export were excluded, and pulp import to be used for paper pro-
duction was allowed only in the larger version of the model.

The assumed demand of wood products is given in Table 2. At

the end of the planning horizon, we require that in each age
group there is at least 80 percent of the number of trees ini-
tially in those groups. For production capacity a similar
terminal requirement is 50 percent. Initial production capacity
is given in Table 3 and the initial age distribution of trees

in Figure 8 below.

For the first run the discounted sum of industrial profits
(after tax) was chosen as an objective function. Such an ob-
jective may reflect the industry's behavior given the cost
structure, price development, and other parameters. The results
have been illustrated in Figures 2 through 7. The mechanical
processing activities are limited almost exclusively by the
assumed demand of sawn goods and panels. The same is true for
converted paper products. However, both mechanical and chemical
pulp produced is almost entirely used in paper mills, and there-
fore, the potential demand for export has not been exploited.
Neither have the possibilities for exporting paper been used
fully. As shown in Figure 5, paper export is declining sharply
from the level of 5 million ton/year, approaching zero towards
the end of the planning horizon. This is due to the stongly
increasing production of converted paper products. The corre-
sponding structural change of the production capacity of the
forest industry over the 30 year period from 1980 to 2010 is
given in Table 3. (The sudden decrease in production of panels
and converted paper products is a "planning horizon effect"
which often appears in dynamic LP solutions. Usually it is due
to inappropriate accounting for the future in terminal conditions.
For instance, in our case only a reasonable state was required

at the end of the planning horizon, while an optimal stationary
state might have been more appropriate.)
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Table 2. Assumed annual demand of wood products in Runs 1 - 3.

Period Sawn Panels Mech. Chem. Paper and Converted

wogd pulp pulp board paper prod.

Mm®/y Mm3/y  Mton/y Mton/y Mton/y Mton/y
1980-84 7.0 1.7 .02 1.2 4.8 0.5
1985-89 7.5 2.0 .01 1.1 5.8 0.7
1990-94 8.0 2.2 .01 1.0 7.0 0.9
1995-99 8.8 2.5 .01 0.9 8.3 1.2
2000-04 9.3 2.8 .01 0.8 9.8 1.6
2005-09 9.7 3.2 .01 0.7 11.6 2.1
2010-14 10.2 3.6 .01 0.7 13.2 2.9
2015-19 10.7 4.1 .01 0.6 15.1 3.8
2020-24 11.2 4.6 .01 0.6 17.1 5.1
2025-29 11.6 5.2 .01 0.6 19.2 6.9
Table 3. Production capacity initially and in 2010 according

to Runs 1 - 3.
Production capacity
L. Year 2010
Product Initial Unit
Run 1 Run 2 Run 3

Sawn wood 7.0 10.2 10.2 10.2 M m3/year
Panels 1.7 3.6 3.6 3.6 M m3/year
Mechanical pulp 2.2 1.9 2.2 0.5 M ton/year
Chemical pulp 4.0 4.3 5.8 5.0 M ton/year
Paper (and board) 6.2 6.2 7.3 8.7 M ton/year
Converted paper 0.5 2.9 2.9 2.9 M ton/year

and board products
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The use of wood has been shown in Figure 7. At the be-
ginning the industrial use of wood increases from about 40
million m3/year to the level of 45 million m3/year and stays
rather steadily there. According to Figure 6, the industrial
profit increases from the annual level of .2 billion dollars
towards the end of the planning horizon to around .5 billion

dollars per year.

For the second run we have chosen the discounted sum of the
increments of the forest sector to gross national product as an
objective function. The results have been illustrated using

dotted lines in the same Figures 2 through 7.

Compared with the previous case, there is no significant
difference in the production of sawn goods, panels and converted
paper products for which export demand again limits the produc-
tion. However, there is a significant difference in pulp and
paper production. Pulp (both mechanical and chemical) is now
produced to satisfy fully the demand for export. Paper produc-
tion is now steadily increasing from 5 million ton/year to nearly
9 million ton/year. Paper export is still declining again due
to increasing use for the converting processes of paper products.

Therefore, the export demand for paper is not fully exploited.

The bottleneck for paper production now is the biological
capacity of the forests to supply wood. The use of round wood
increases from about 40 million m3/year to the level of 65
million m3/year. The increase in the yield of the forests may
be explained by the change in the age structure of the forests
during the planning horizon. Such change over the period 1980-

2010 has been illustrated in Figure 8.

We notice a significant difference in the wood use between
these first two runs. We may conclude that in the first run
(the profit maximization) the national wood resources are being
used in an inefficient way; i.e., under the assumed price and
cost structure the poor profitability of the forest industry
results in an investment behavior which does not make full use

of the forest resources.
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The third run is the same as the first one except that the
larger version of the model was used and pulp import was allowed
to be used in paper mills. The production of sawn goods and con-
verted paper products, as described by broken lines in Figure 2,
still meet the export demand. However, panel production is
declining and it fallswell below the level of the previous runs.
The reason is that panel production is now considered as a sepa-
rate financial unit which cannot afford to keep up its production
capacity. Thus, an increase in panels production appears to be
possible only if it is supported from other product lines.
Similarly, the use of spruce for mechanical pulp appears unprofit-
able so that its~production is declining. Production of Si-pulp
(for which spruce pulpwood is used) grows steadily from 5 million
ton/year to about 10 million ton/year. No spruce is used for
Sa-pulp but both the use of pine and birch for Sa-pulp increase
over time so that the total production of chemical pulp increases
from about 3.5 million ton/year to the level of 7 million ton/
year during the planning horizon. Thus chemical pulp production

somewhat exceeds the amount produced in the first run.

Paper production in this third run exceeds the level ob-
tained in both previous runs. The reason is that imported
pulp is now allowed to be used in paper mills. (Note that in
the second run, the raw wood supply was the limiting factor for
paper production.) As a consequence, total paper production
increased from 5 million ton/year to above 11 million ton/year.
The share of newsprint is about one fifth and the share of
printing paper one quarter. Only paperboard production appears

to decline.

From the production curves of the primary uses of wood,
i.e., sawn goods, panels and pulp, we may conclude (comparing
with the second run) that wood resources are again being used
inefficiently. It appears that, under the assumed price and
cost structure, fiber (pulp in particular) import to be used
as raw material in paper mills is more profitable than the use

of domestic wood raw material.




-36-

6. SUMMARY AND POSSIBLE FURTHER RESEARCH

We have formulated a dynamic linear programming model of
a forest sector. Such a model may be used for studying long-
range development alternatives of forestry and forest based
industries at a national and regional level. Our model comprises
of two subsystems, the forestry and industrial subsystem, which
are linked to each other through the raw wood supply from forest-
ry to the industries. We may also single out static temporal
submodels of forestry and industries for each interval (e.g.,
for each five year period) considered for the planning horizon.
The dynamic model then comprises of these static submodels
which are coupled with each other through inventory-type of

variables; i.e., through state variables.

The forestry submodel describes the development of the
volume and the age distribution of different tree species within
the nation or its subregions. Among others, we account for the
land available for timber production and the labor available
for harvesting and planting activities. Also ecological con-
straints, such as preserving land as a watershed may be taken

into account.

In the industrial submodel we consider various production
activities, such as saw milling, panel production, pulp and paper
milling, as well as further processing of primary products. For
a single product, alternative production activities employing,
for instance, different technologies, may be included. Thus, the
production process is described by a small Leontief model with
substitution. For the end product demand an exogenously given
upper limit is assumed. Some products, such as pulp, may also
be imported into the forest sector for further processing. Be-
sides biological supply of wood and demand for wood based pro-
ducts, production is restricted through labor availability, pro-
duction capacity, and financial resources. Availability of
different types of labor (by region) is assumed to be given.

The development of different types of production capacity depends
on the initial situation in the country and on the investments

which are endogeneous decisions in the model. The production
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activities are grouped into financial units to which the respec-
tive production capacities belong. The investments are made

within the financial resources of such units. External financing
is made available to each unit up to a limit which is determined

by the realization value of that unit. Income tax is assumed
proportional to the net income of each financial unit.

The structure of the integrated forestry-forest industry
model is given in the canonical form of dynamic linear programs
for which special solution techniques may be employed. (See,
for instance, Kallio and Orchard-Hays 1979, Propoil and Krivonozhko
1978). Objectives related to gross national product, employment
and profit for industry as well as for forestry have been formu-
lated. Terminal conditions {(i.e., values for the state variables
at the end of the planning horizon) have been proposed to be
determined through an optimal solution of a stationary model

for the forest sector.

Two verisons of the Finnish forest sector model have been
implemented for the interactive mathematical programming system
called SESAME (Orchard-Hays 1978). Both versions are ten period
models with each period five years in length. 1In neither case
has the country been divided into subregions. The main differ-
ence between these versions are in the number of production
activities and in the number of financial units. No distinction
has been made between the tree species in the smaller version
whereas pine, spruce, and birch are considered explicitly in
the larger one. The complete model amounts to 520 rows and 612

columns in the smaller case, and to 2320 rows and 3188 columns
for the larger model.

A few numerical runs have been presented to illustrate
possible use of the model. Both the discounted industrial
profit and the discounted increment to the GNP were used as
objective functions. The results obtained illustrate a case
where the internal wood price and wage structure results in
a rather poor profitability for the forest industries. This
in turn amounts to an investment behavior which provides insuf-

ficient capacity for making full use of the wood resources.



-38-

However, because of somewhat hypothetical data used for some
key parameters, no conclusions based on these runs should be

made on the Finnish case.

The purpose of this work has been the formulation, imple-
mentation and validation of the Finnish forest sector model.
Natural continuation of this research is to use the model for
studying some important aspects in the forest sector. For in-
stance, the influence of alternative scenarios of the energy
price and the world market prices for wood products would be of
interest. Furthermore, the studies could concentrate on employ-
ment and wage rate questions, on labor availability restrictions
and productivity, on new technology for harvesting and wood
processing, on the influence of inflation and alternative tax-
ation schemes, on land use between forestry and agriculture,
on site improvement, on ecological constraints, on the use of
wood as a source of energy, etc. Given the required data, such

studies can be carried out relatively easily.

Further research requiring a larger modeling effort may con-
centrate on regional economic aspects, on linking the forest
sector model for consistency to the national economic model, and
on studying the inherent group decision problem for controlling
the development of the forest sector. The first of these three
topics requires a complete revision of our model generating pro-
gram and, of course, the regionalized data. The second task
may be carried out either by building in the model a simple input-
output model for the whole economy where the non-forest sectors
are aggregated up to ten sectors. Alternatively, our current
model may be linked for consistency to an existing national
economic model. The group decision problem has been proposed
to be analyzed, for instance, using a multicriteria optimization
apprcocach (Kallio, Lewandowski, and Orchard-Hays forthcoming)
which 1s based on the use of reference point optimization
(Wierzbicki 1979).




APPENDIX:

Indices

a, a'

t 0w B &~ 4P o a o

NOTATION

age group of trees (range 1,..., N)

type of forest land

type of resource for forestry activities
harvesting activity

production activity (of the forest industries)
industrial product

timber assortment

planting activity

tree species

time period (range 1,..., T)

State and control variables

b(t)
b0 = b(0)
c(t)

= o)

C*

e(t) = {ej(t)}

stockholders equity at the beginning of period t
initial level of stockholders equity

cash (and receivables)at the beginning of
period t

initial amount of cash
terminal requirement for cash

export (and sales outside the forest sector) of
forest products during period t
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y(t) = {y, (£)}

Y(t)
z+(t)
2z~ (t)

Parameters

B(t)
Y(t)

I(t)

A(t)

A(t)

Q(t)

p(t)

T(t)
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level of production activities during period t
state vector at the beginning of period t
initial state

requirement for terminal state

supply of timber assortments during period t
level of control activities during period t
import of timber assortments during period t

export of timber assortments during period t

ratio of trees of species s and in age group
a that will proceed to age group a' during
period t

S
aa'

matrices of coefficients a (t)
discounting factor

objective function coefficients for the state
vector X(t)

coefficient matrix for the state vector X(t)
in the state equation

physical depreciation rates
financial depreciation rates

age interval in an age group of trees (e.g.,
five years)

interest rates for external financing

right hand side vector of constraints for
period t

coefficient matrix for the state vector X(t)
in constraints for period t

matrix relating planting activities to the
increase in the number of trees

objective function coefficients for the con-
trol vector Y (t)

coefficient matrix for the control vector Y (t)
in the state equation

matrix relating harvesting activities to the
decrease in the number of trees

coefficient matrix for the control vector Y (t)
in constraints for period t

labor requirement for different production
activities

tax factors for the industries during period t




u(t)

£(t)

A(t)
B (t)
c(t)
D (t)
E(t)
F(t)
G = (Gyy)

H(t)
J (t)
J+(t)

K(t)
L(t)
M(t)

P(t)
Q(t)

R(t) = {R_(t)}
R* (t) {§+ (t) }

gn
R™(t) {R;h(t)}
S(t)
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upper limit to external financing as a
percentage of total assets less short term
liabilities

right hand side vector for the state equation
of period t

input-output matrix for the forest industries
stock issued during period t

direct unit production costs

exogeneously given costs

upper bound on demand of forest products
fixed costs (per unit of production capacity)

land requirement of the species in various
age groups

land available for forests
identity matrix

objective function coefficients for harvesting
activities (an example)

objective function coefficients for planting
activities (an example)

investment costs per capacity unit

labor available for forest industries
upper limit on import of forest products
number of age groups for trees

prices of forest products

matrix of capacity requirements for production
activities

resources available for forestry activities
resource usage of planting activities
resource usage of harvesting activities

matrix transforming the trees harvested into
volumes of timber assortments

number of time periods

" usage of timber assortments by various pro-

duction activities
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