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Abstract

Antibiotic resistance carried out by antibiotic degradation has been suggested

recently as a new mechanism to maintain coexistence of microbial species com-

peting on a single limiting resource, even in well-mixed homogeneous environ-

ments. Species diversity and community stability, however, critically depend

on resistance against social cheaters, mutants that do not invest in production,

but still enjoy the benefits provided by others. Here we investigate how differ-

ent mutant cheaters affect the stability of antibiotic producing and degrading

microbial communities. We consider two cheater types, production and degra-

dation cheaters. We generalize the mixed inhibition-zone and chemostat models

introduced previously (Kelsic et al., 2015) to study the population dynamics of

microbial communities in well-mixed environment, and analyze the invasion of

different cheaters in these models. We show that production cheaters, mutants

that cease producing antibiotics, always destroy coexistence whenever there is

a cost of producing these antibiotics. Degradation cheaters, mutants that loose

their function of producing extracellular antibiotic degrading molecules, induce

community collapse only if the cost of producing the degradation factors is above
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a critical level. Our analytical studies, supported by numerical simulations,

highlight the sensitivity of antibiotic producing and degrading communities to

loss-of-function mutants.

Keywords: rock-paper-scissors, social parasite, evolutionary instability,

antibiotic-mediated microbiome, degradation resistance

1. Introduction1

Unraveling mechanisms that maintain high genetic and functional diversity2

of microbial communities has become one of the most challenging problems in3

theoretical and evolutionary ecology (Costello et al., 2012; Morris et al., 2012;4

Cordero and Polz, 2014). A great variety of bacteria form stable communi-5

ties in relatively homogeneous environments, competing for only a few limiting6

resources (Hibbing et al., 2010), seemingly contradicting with the competitive7

exclusion principle, which states that the number of species cannot be higher8

than the number of limiting resources (Gause, 1934).9

In bacteria, the most common forms of interactions are carried out by10

molecules secreted into the extracellular environment, such as exoenzymes to11

digest nutrients (Arnosti, 2011), iron scavenging siderophores (Ross-Gillespie12

et al., 2009), signaling molecules (Miller and Bassler, 2001), virulence factors13

(Hacker and Carniel, 2001), antibiotics (Bernier and Surette, 2013), or antibiotic14

degrading molecules (Wright, 2005). Via these molecules, microorganisms can15

be in competitive, antagonistic, or cooperative relationships (West et al., 2001;16

Coyte et al., 2015). Interestingly, these molecules are public goods, meaning17

that not only the producers, but all nearby individuals can enjoy the benefits18

delivered by them (West et al., 2001). Cheaters, individuals that do not pro-19

duce such molecules and hence pay no cost of production, can also enjoy these20

benefits. Thus cheaters have higher fitness and can outcompete producers, lead-21

ing to the loss of the diversity by ceasing the production of the public good22

(West et al., 2001). These antagonistic interactions carried out by the extra-23

cellular antibiotics make cyclic competition dominance possible, for example,24
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among antibiotic sensitive, producer, and resistant types. Since producing of an25

antibiotic and being resistant to it are both costly, the resistant strain wins over26

the producer, similarly the sensitive wins over the resistant, and the producer27

can take over the sensitive population. This ’rock-paper-scissors’ interaction28

cycle is the simplest example of cyclical competition dominance network, where29

each species is superior to one, but inferior to another (Fig. 1.a). Coexis-30

tence of species in such cyclical interaction networks is documented in spatially31

structured environments, in which interaction and dispersion are limited to the32

immediate neighbors of the focal individual (Kerr et al., 2002; Czárán et al.,33

2002; Károlyi et al., 2005; Müller and Gallas, 2010), but coexistence is much34

less prevalent in unstructured environments where individuals mix intensively35

(Kerr et al., 2002; Károlyi et al., 2005).

23
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Figure 1: Cyclical competition dominance of three species. (a) Topology of a general ’rock-

paper-scissors’ type interaction. Here species 1 wins over species 2, species 2 wins over species

3, and species 3 wins over species 1, as indicated by the arrows. (b) The interaction topol-

ogy where each species inhibits another by producing antibiotic (solid lines) and decomposes

antibiotic produced by that species (dotted lines) according to a cyclical interaction topology.

36

Recently, Kelsic et al. (2015) (KEA) employed theoretical models to demon-37

strate that bacterial species with different antibiotic production, intrinsic re-38

sistance, and extracellular degradation factors can coexist even in well-mixed39

microbial communities competing for one common limiting factor. Including40

degradation resistance has a key role in their model, since excreting antibiotic41

degrading molecules can weaken the inhibitory interaction between other species42

thus balance the fitnesses through the community. Their study focuses mainly43
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on three species systems, in which species produce one type of antibiotics and44

reduce the effect of another type via degrading molecules (Fig. 1.b). The au-45

thors showed that coexistence of species in this system is robust to variation46

of model parameters even in well-mixed environment. They further demon-47

strated that analogous systems with four or five species producing 4-6 different48

antibiotics and degradation factors can have coexistence, although robustness49

is significantly less prevalent in these richer communities (Kelsic et al., 2015).50

However, the explanatory power and significance of degradation resistance in51

explaining microbial diversity largely depends on whether these communities52

prove to be resistant to the invasion of mutants, mainly against the invasion of53

social cheaters. A community is defined to be resistant or robust to the invasion54

of a mutant if its species composition does not change significantly after the55

invasion. That is, the mutant will be present in the community only transiently,56

and after its disappearance, the community returns to its pre-invasion state.57

In the following, we study the generalized versions of KEA’s so-called mixed58

inhibition-zone and chemostat models (Kelsic et al., 2015), and show analytically59

that bacterial communities, independently of the interaction topology, are not60

robust against the invasion of social cheaters. More precisely, we show that61

mutant cheaters, loosing the costly function of antibiotic production, destroy any62

diverse community either in one step, or following a cascade of invasion steps.63

The other type of social cheaters considered in the model, the mutants loosing64

their functions of producing extracellular antibiotic degrading molecules have65

less dramatic effect on community stability, but species diversity still declines66

after the invasion of such mutants.67

2. Model description68

We assume that there are ns phenotypically different species and na different69

antibiotics that can be produced by these species. A phenotype (or species) is70

defined by its relation to an antibiotic: it can produce, can be resistant to, or can71

be sensitive to the given antibiotic. Naturally, a species producing an antibiotic72
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is also resistant to it, where the resistance is carried out either by removing73

antibiotic molecules from the cell via efflux mechanisms, or by neutralizing these74

molecules within the cell (Kumar and Schweizer, 2005). Accordingly, a cell75

producing an antibiotic l (Pl) is also intrinsically resistant (Rl) to this antibiotic.76

Non-producing species can have two types of resistance: intrinsic resistance (Rl)77

and degradation resistance (Dl). Bacteria with degradation resistance produce78

molecules and secrete to the extracellular matrix which diffuse and degrade the79

target antibiotic molecules in a given neighborhood of the cell (Wright, 2005;80

Bastos et al., 2015). Phenotypes which are not resistant to antibiotics l carried81

out either by intrinsic or by degradation resistance, are considered sensitive82

(Sl) and the presence of this antibiotic in the locality reduces their fitnesses.83

Thus, every species i = 1, 2, ..ns is characterized by any of the four phenotypes84

Pl, Rl, Dl, Sl for each antibiotic l = 1, 2, ..na.85

Let xi be the abundance of species i per unit area, and assume that cells are86

dispersed randomly on a two-dimensional surface. The fitness wi of species i is87

determined by its intrinsic replication rate gi and the fraction of area 1−A(kill)
i88

in which individuals of species i are not killed by antibiotics, that is89

wi = gi(1−A(kill)
i ). (1)

Antibiotic l is effective within area K
(P )
l around the cell producing it and, sim-90

ilarly, degrading molecules protect every sensitive cell within area K
(D)
l around91

a cell producing this degrading molecule. A sensitive cell is killed if there is92

at least one cell producing antibiotic l within its K
(P )
l neighborhood and there93

is no bacterium producing degrading molecules for antibiotic l within its K
(D)
l94

neighborhood. Since the aim of this model is to show that coexistence is pos-95

sible in unstructured environment, it is assumed that bacteria are dispersed96

randomly, so the number of cells follows Poisson distribution within the defined97

areas. Thus, the probability that at least one antibiotic producer cell is in the98

K
(P )
l neighborhood of a cell is 1−e−K

(P )

l
xp , where xp is the abundance of species99

producing antibiotic l. This value gives the fraction of area in which sensitive100

cells are killed except if they are protected by individuals producing degrading101
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molecules within area K
(D)
l . If the abundance of species producing degrading102

molecules is xd, then the probability of having no cells in this area is e−K
(D)

l
xd .103

So, species i is killed by antibiotic l in the fraction of area is as follows104

Ai,l(xd, xp) = e−K
(D)

l
xd

(
1− e−K

(P )

l
xp

)
. (2)

Since not only one species can produce antibiotics l or molecules degrading it,105

the total area where at least one molecule of antibiotic l kills the sensitive species106

i is written as a product of the probabilities of all possible occurrences107

Ai,l(x1, x2...xi−1, xi+1...xns
) = Ai,l(x\xi) =

ns∏
j=1

e−δjlK
(D)

l
xj

1−
ns∏
j=1

e−εijlK
(P )

l
xj

 ,

(3)

where δjl = 1 if the j-th species degrades antibiotic l, otherwise δjl = 0. Simi-108

larly, εijl = 1 if species i is sensitive to antibiotic l which is produced by species109

j, otherwise εijl = 0 (for P and D type cells). Consequently, the fraction of110

area where individuals of species i are not killed by any antibiotics of any other111

species is112

1−A(kill)
i (x \ xi) =

na∏
l=1

(1−Ai,l(x \ xi)) . (4)

Thus, the fitness of species i will be113

wi = gi

(
1−A(kill)

i (x \ xi)
)
, (5)

and the average fitness is114

w̄ =

ns∑
i=1

wixi. (6)

By knowing fitness functions for every species, the population dynamics of115

the system can be described by the following discrete-time replication dynamics:116

xi(t+ 1) =
c+ wi(t)

c+ w̄(t)
xi(t), (7)

where the c > 0 constant depends on the time unit (Weibull, 1997). For the117

continuous time counterpart of the dynamics, see Appendix A.118

We note here that KEA have pointed out previously, that the three-species119

coexistence (see Fig 1.b) is robust if the areas of chemical activities (K
(P )
l and120
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K
(D)
l ) and replication rates (gi) of all the three species are relatively similar.121

KEA have also shown that the same dynamics can be observed in the agent-122

based and the chemostat versions of the mixed inhibition-zone model (Kelsic123

et al., 2015). The detailed analyses of the generalized chemostat model can be124

found in Appendix C. They studied a system where K
(P )
l = K(P ) and125

K
(D)
l = K(D) are constants for every antibiotic which assumption does126

not have to hold in our generalized model.127

Besides the ecological stability of three species models, KEA investigated128

the invasion of ”production cheaters”, that is, the mutants which do not pro-129

duce antibiotics and ”degradation cheaters” which do not produce degrading130

molecules. Losing these functions results in fitness increase for mutants, which131

is then translated into higher replication rates. Based on numerical simulations132

including cheaters in the community, they concluded that ”These interactions133

enable coexistence that is robust to substantial differences in inherent growth134

rates and to invasion by ’cheating’ species that cease to produce or degrade135

antibiotics.” Our discussions with the authors clarified that they studied the136

evolutionary stability of this system in the spatially extended agent-based ver-137

sion of the mixed inhibition zone model, and analyzed it numerically for 3- and138

4-species networks (Kelsic et al., 2015, 2016). They found that networks are139

resistant to both degradation and production parasites in these systems if the140

colonization radius is small enough. In the following sections, we show that141

cheater mutants crash such communities not only in the three-species ’rock-142

paper-scissors’ interaction topology in the mixed inhibition model, but in the143

generalized mixed inhibition model, and similarly in the chemostat model with144

any interaction topology. In the discussion we explain briefly why the agent-145

based model with short range colonization behaves differently from the analyt-146

ical model studied here.147
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3. Results148

3.1. Evolutionary instability in the mixed inhibition-zone model: introducing149

social cheaters150

Species having resistance Dl protect not only themselves but any other151

strains Sl in the neighborhood from the antibiotics, and similarly a strain Pl152

producing antibiotic l generates empty space by killing sensitive individuals not153

only for itself but for non-producing strains Rl as well. Therefore these de-154

grading molecules and antibiotics are public goods, so strains not producing the155

costly degradation or antibiotic molecules have advantage over producers; thus156

these are social cheaters (Hardin, 1968; Cordero et al., 2012b). We consider two157

types of mutants, ”production cheaters” that fail to produce antibiotics but re-158

tain intrinsic resistance to this antibiotic (Pl → Rl), and ”degradation cheaters”159

that lose their resistance through antibiotic degradation and become suscepti-160

ble to the antibiotics (Dl → Sl). The benefit of non-producing extracellular161

materials results in higher replication rates for cheaters, that is the growth rate162

of mutant increases with (1 + α), where α is an arbitrary, but generally small,163

positive number.164

3.1.1. Invasion of antibiotic production cheaters165

Assume that an antibiotic production cheater evolves in a community in166

which ns species are in a stable coexistence. (According to KEA, any type167

of species coexistence is possible from stable fixed points through limit cycles168

to chaotic behaviors. Our analysis remains valid for every type of dynamical169

coexistence.) Let us denote the mother species by m, and assume this species170

produces antibiotic l. The mutant m′ of the mother looses the costly production171

of antibiotic l and consequently its replication rate increases as gm′ = gm(1+α).172

It follows from the definition of the model that the fitness function of species m173

depends only on the abundances of the two types of species affecting survival:174

the species producing antibiotics for which the focal species is sensitive, and175

the species producing the molecules degrading this particular antibiotic (see176
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Eq. 3). Since m′ remains sensitive to the same antibiotic as m, its replication177

rate increases, but its fitness function does not change. Thus, the dynamics of178

mother and mutant species are179

xm(t+ 1) =
c+ wm(t)

c+ w̄′(t)
xm(t) (8)

xm′(t+ 1) =
c+ wm′(t)

c+ w̄′(t)
xm′(t), (9)

where w̄′(t) is the average fitness in the population including the mutant. Di-180

viding Eq. (8) by Eq. (9)181

xm(t+ 1)

xm′(t+ 1)
=

c+ wm
c+ (1 + α)wm

xm(t)

xm′(t)
(10)

that is182

xm(t+ 1)

xm′(t+ 1)
=

[
c+ wm(t)

c+ (1 + α)wm(t)

]t
xm(0)

xm′(0)
. (11)

Since 0 < [c+ wm(t)]/[c+ (1 + α)wm(t)] < 1 for any c ≥ 0 then183

limt→∞ ([c+ wm(t)]/[c+ (1 + α)wm(t)])
t

= 0 and consequently184

lim
t→∞

xm(t)/xm′(t) = 0. (12)

According to (12) three scenarios are possible: (i) both m and m′ are selected185

against in the community, but species m goes extinct faster than species m′; (ii)186

species m is selected against, and the invading mutant m′ is getting fixed in the187

community, but mutant m′ triggers the loss of another species besides188

the mother strain; (iii) species m is selected against, and species m′ replaces189

it in the community, so the number of coexisting species remains unchanged.190

In case of scenarios (i) and (ii), the number of coexisting species decreases after191

the invasion of the mutant. In scenario (iii) a non-producing cheater merely192

replaces a producer.193

Let us assume a sequence of production cheaters invading according to (iii).194

The number of coexisting species doesn’t change in this scenario,195

however if there were l number of different antibiotics in the commu-196

nity then the number of antibiotics decreases to zero after the l number of197

such a species replacements. As a result, neither of the coexisting species198
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produces antibiotics any more in this new community. However, survival of199

more than one species becomes impossible in this situation, since the replication200

rate will become wi = gi for every i as there are no more interactions between201

the species, and thus only the species with the highest gi will survive (survival202

of the fittest). Consequently, in any of the above mentioned possible scenarios,203

species m (and consequently the community) is not resistant against the inva-204

sion of mutant m′ that has any replication benefit (α > 0) due to its loss of205

antibiotic producing function. We show that continuous time replicator dynam-206

ics and the chemostat model lead to completely similar results (see Appendix207

A and C for details).208

3.1.2. Invasion of degradation cheaters209

The other type of social cheater is the degradation cheater m′, which ceases210

the production of degradation molecule synthesized by the mother species m211

against antibiotic l. By loosing this function, m′ becomes sensitive to antibiotic212

l if it is present in the environment but its replication rate increases as gm(1+α)213

at the same time. Thus, the equations of the mother and the mutant species214

dynamics are215

xm(t+ 1) =
c+ wm(t)

c+ w̄′(t)
xm(t) (13)

xm′(t+ 1) =
c+ (1 + α)(1−Am′,l(x \ xm′))wm(t)

c+ w̄′(t)
xm′(t). (14)

Dividing Eq. (13) by Eq. (14) we get216

xm(t+ 1)

xm′(t+ 1)
=

[
c+ wm(t)

c+ (1 + α)(1−Am′,l(x \ xm′))wm(t)

]t
xm(0)

xm′(0)
(15)

The fate of a mutant depends on the values of both α and Am′,l(x \ xm′),217

thus the advantage of the invading mutant m′ is insufficient yet. By defining218

A
(max)
m′,l = Max{Am′,l(x \ xm′) | xi ∈ [0, 1],

∑
i xi = 1} a sufficient condition for219

the invasion of mutant m′ can be set. For limt→∞ xm(t)/xm′(t) = 0 to be valid,220

the expression in the square bracket on the right hand side of (15) must be in221
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the (0, 1) interval which leads to the following sufficient condition:222

α >
A

(max)
m′,l

1−A(max)
m′,l

. (16)

Consequently, one of the above mentioned three possible scenarios describes223

the fate of mutant m′ in this case as well. However, besides the loss of species224

diversity, according to the above described three invasion scenarios, it is possible225

that the degradation-molecule producer and the sensitive mutant strains coexist.226

To prove this we show that it is possible that m′ invades the community where227

type m is resident, but m invades the community where m′ is resident. Let us228

assume first that m is resident in a stably coexisting community. For the sake of229

simplicity, we assume that coexistence is characterized by a stable fixed point,230

denoted by x̂(1). The mutant m′ emerges in small abundance, that is x′m � x̂
(1)
i231

for every i 6= m′, x̂
(1)
i > 0. Since xi(t + 1) = xi(t) for every i, x̂

(1)
i > 0 at the232

equilibrium the abundance of the rare mutant m′ increases in the community if233

(cf. Eq. (14))234

c+ (1 + α)(1−Am′,l(x̂(1) \ xm′))wm(t)

c+ w̄′(t)
> 1, (17)

which leads to the condition235

α >
Am′,l(x̂

(1) \ xm′)
1−Am′,l(x̂(1) \ xm′)

. (18)

Let us consider now m′ as the resident species of the same community but236

m is replaced by m′ and thus m is the rare mutant. Let x̂(2) denote the237

equilibrium abundances before invasion, so the rare mutant m spreads if238

c+ wm′ (t)

(1+α)(1−Am′,l(x̂
(2)\xm′ ))

c+ w̄′(t)
> 1, (19)

(cf. Eq. (14) that is if239

α <
Am′,l(x̂

(2) \ xm′)
1−Am′,l(x̂(2) \ xm)

. (20)

Consequently, if Am′,l(x̂
(2)\xm′) < Am′,l(x̂

(1)\xm′) then both (18) and (20)240

can be satisfied simultaneously, thus the rare m and m′ mutants mutually invade241
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the communities in which the other is resident, which guarantees the coexistence242

of these species. Naturally, this analysis assumes that beside species m and243

m′ there is at least one another species that produces an antibiotic lethal for244

species m′. Furthermore, it is assumed that residents m and m′ are in245

coexistence with the same species, but their densities can be different.246

Identical conditions determine the invasion of mutants in a model based on247

continuous replicator dynamics (see Appendix B for details). Thus, according to248

our analytical investigation, degradation cheaters can coexist within the resident249

community, and can degrade resident community only if their replication rate250

is above a critical level. This level can be arbitrarily low or high depending on251

the parameters. In the next section, we will test the generality of our results252

using numerical investigations.253

3.2. Numerical studies254

Next, we run numerical investigations to test the effect of social cheaters, and255

for comparison we followed the methodology and parameters used by KEA in256

their simulations. In the first series of experiments we generated a statistically257

representative sample of ecologically stable communities of 3-5 coexisting species258

producing 2-5 different antibiotics, where the initially selected five species can259

be any of the four phenotypes (Sl, Dl, Rl, Pl) for each antibiotic l = 1, 2, ..., 5260

and the intrinsic replication rate for species i is: gi = 1+(i−1) ·0.005. The area261

of chemical activities were either K
(P )
l = K(P ) = 10 and K

(D)
l = K(D) = 3 or262

K
(P )
l = K(P ) = 30 and K

(D)
l = K(D) = 10. We randomly assembled communi-263

ties with five interacting species by assigning randomly selected phenotypes for264

each antibiotic l to each of the species. The initial abundances were 1/ns for265

each species. We repeated T = 10.000 update steps according to Eq. (7) with266

c = 0 and determined the number of coexisting species and the type of equilib-267

rium at the end (fixed point, limit cycle or chaotic behavior). (We note that268

c = 0 is the standard parameter choice used by KEA as well, although c > 0269

fits the mathematical deduction of the dynamics (Weibull, 1997). However, this270

modification does not alter the qualitative behavior of the model.) A species271
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was considered to be extinct if its frequency went below 0.01/ns (Kelsic et al.,272

2015).273

In agreement with Kelsic et al. (2015, Extended data Figure 8), we experi-274

enced that only an extremely small fraction of possible interaction topologies275

were suitable to maintain complex communities. While three species remain276

in coexistence from the the initial five species networks in 1 out of 102 − 103277

randomly selected networks, five species could coexist only in 1 out of 104− 106278

randomly selected networks on average (depending on the K(P ) and K(D) pa-279

rameters). That is, in line with the Extended Data Figure 8 of Kelsic et al.280

(2015), we found that the fraction of stable communities decreases dramatically281

as the number of coexisting species increases.282

After generating the sample of ecologically stable 3-5 species communities283

we tested the resistance of these communities against the production and degra-284

dation cheaters but only one function and only in one species could be lost at285

a time, thus either P→ R or D → S mutants could emerge in the community286

for each possible case. The mutants with fitness of (1 + α)gi were introduced287

at the 10.000th time step with density of 10−3, and the density of the corre-288

sponding mother species was decreased by the same amount. After subsequent289

10.000 update steps the coexistence was monitored again, and we recorded the290

communities that could not resist invasion and hence diversity declined. We291

declared communities not being resistant to the invasion of mutants if at least292

one mutant type caused the number of coexisting species (with frequency higher293

than 0.01) to be smaller after T time steps compared to the number of species294

before the invasion. That is, we consider only the cases when the invasion of295

mutants decreases the number of coexisting species within one step (scenarios296

(i) and (ii)).297

We tested the resistance of three, four, and five-species communities against298

the cheater mutants as the function of the α growth-rate advantage of the mu-299

tants. There is a critical α above which the fraction of unstable communities300

increases abruptly in a sigmoid manner (Fig. 2a). Species diversity declines301

dramatically in the majority of these communities even at as little as 0.1% rela-302
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tive growth-rate advantage of mutants α∗ = α/ḡi where ḡi is the average growth303

rate in the community. The rapid decline of diversity results in the exclusion304

of all but one species in most of the cases (around 70% of the outcomes in the305

case of five species communities in Fig 1a). Production cheaters are responsible306

for the decline of diversity in more than 99% of the cases.
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Figure 2: Measures of community instability fostered by cheater mutants. (a) The fraction of

unstable communities increases in a sigmoid manner (depicted by colored lines) as the relative

growth-rate advantage of cheater mutants increases. At 0.1% growth-rate advantage, the

majority of the modeled communities become unstable. Statistics are based on 103 randomly

selected communities composed of three (green circles), four (blue rectangles), and five (red

diamonds) species. (b) The critical level of relative growth-rate advantage of mutants (where

at least 99% of communities are not resistant to the invasion of at least one mutant type)

decreases as the duration of simulations (T ) increases for 103 randomly selected interaction

network topologies composed of 5 species. Parameters are: gi = 1 + (i − 1) · 0.05, K
(P )
j =

K(P ) = 30, K
(D)
j = K(D) = 10.

307

In our second analysis, we studied the dependence of community resistance308

on simulation time. According to Eq. (11), it is straightforward to assume309

that it takes more time to observe competitive exclusion if fitness differences310

are smaller. To test this hypothesis, we repeated the numerical experiments311

in five-species communities with parameters used in Figure 2a but for differ-312

ent simulation times (T ), and measured the critical α∗c , that is the α∗ value313

for which at least 99% of the communities proved to be unstable. As Figure314

2b demonstrates, α∗c decreases continuously as the duration of the simulations315

increases according to α∗c ∝ T−1.05±0.01. This relation is in concordance with316
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our analytical results, since the necessary condition to detect collapse of com-317

munity is that xm(t)/xm′(t) ≤ xc where xc is a critical frequency below which318

the species is selected out by definition. It follows from Eq. (11) that319

ln(xc) = T ln

(
1

1 + α

)
. (21)

For α� 1 ln[1/(1+α)] ≈ −α, consequently α ∝ 1/T determines the relationship320

between these two variables in the extinction dynamics.321

To investigate the different invasion scenarios discussed previously, we nu-322

merically analyzed the invasion dynamics of different production and degrada-323

tion cheaters in a community with the topology shown in Figure 3a. Note that324

in this case antibiotic production—sensitivity combinations are not cyclic as in325

Figure 1, but still each antibiotic is degraded by one of the species. This topol-326

ogy enables us to demonstrate all possible invasion events starting from the same327

community. We iterated the dynamics for 1000 time steps and then introduced328

mutants into the system. The number of coexisting species was monitored until329

t = 2000 (except in Fig. 4d in which case due to slow invasion dynamics the330

mutant was added at t = 2000 and the simulation was terminated at t = 4000).331

Investigating the three invasion scenarios in the numerical model discussed332

previously (see Eq. (12) and afterwards) confirms that the invasion of mutants333

can (i) result in the extinction of both the mutant and the mother species (Fig.334

3b); (ii) result in the exclusion of mother species leading to a decrease in species335

diversity (Fig. 3c); and (iii) exclude the mother species but the mutant remains336

in coexistence with the other species (Fig. 3d).337

Figure 3b shows the effect of the invasion of production cheater mutant338

for species 2 (mutant ceases producing the antibiotic that inhibits species 5).339

Although the invasion of this mutant is unsuccessful it triggers a community340

collapse and only one resident species (species 5 in this case) remains in the end.341

In Figure 3c the other possible production cheater mutant of species 2 (mutant342

ceases producing the antibiotic that inhibits species 4) invades the system and343

reduces the number of coexisting species (to an odd number smaller than the344

original number of species; in our case to one). Finally, in Figure 3d the same345
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type of mutant with lower fitness advantage invades the community and replaces346

the mother species preserving the number of coexisting species but reducing the347

number of interactions by one. In accordance with Eq. (12) and discussions348

afterwards, these results suggest that the invasion of cheater mutants can result349

in the loss of species diversity, antibiotic diversity, or both.350
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Figure 3: Invasion dynamics of different production cheaters in a model community. (a) The

interaction topology of the model community. Each species produces different antibiotics, and

species numbering represents the increments in reproduction rates as described in Methods.

Species 2 is not affected by any antibiotic, species 5 is inhibited by antibiotic produced by

species 2, and species 4 is inhibited by two different antibiotics produced by species 2 and

5. Three different scenarios of production cheater mutant invasions: (b) both the introduced

mutant and the corresponding mother species go extinct after the invasion of production

cheater mutant for species 2, (c) the invasion of production cheater mutant of species 2 that

ceases producing the antibiotic that inhibits species 4 results in the exclusion of the mother

type and triggers further species loss, and finally (d) the production cheater mutant of species 2

that ceases producing the antibiotic that inhibits species 4, similar as in the previous numerical

experiment, but with lower fitness advantage, replaces the mother lineage. Parameters are the

same as in Fig. 2, α = 0.05 for (b,d), α = 0.1 for (c). Red, green, blue solid lines correspond

to species 5, 2, 4, respectively. Dashed line denotes the actual mutant.

In case of degradation cheater invasion experiments (in model community351
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with the same topology as in Fig. 3a) we found the four different outcomes in352

line with expectations from Eq. (16) and the discussion afterwards. In contrast353

to production cheater mutants, degradation cheaters cannot always invade the354

system, thus the community structure can remain intact, or the mutants can355

coexist with the original coalition (Fig. 4). In line with the first scenario of the356

production mutants, the degradation cheater (mutant of species 5) can destroy357

the coexistence and one of the original species survives (Fig. 4c), or the cheater358

(mutant of species 2) survives only after the community collapses (Fig. 4d).359
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Figure 4: Four different scenarios for the invasion of degradation cheater mutants in model

communities depicted by Figure 3a. (a) Unsuccessful invasion of the degradation mutant of

species 2, where the resident community remains unchanged after the invasion attempt. (b)

Successful invasion of degradation mutant of species 5 leading to the coexistence of all species,

the residents and the mutant. (c) The invasion of degradation mutant of species 5 fails, but

triggers species extinctions in the community, and one resident species survives in the end.

(d) The mutant of species 2 successfully invades a stable community and excludes all other

species. Parameters and color coding are the same as in Figure 3, α = 0.05 for a and b,

α = 0.08 for c, and α = 0.1 for d.

17



4. Discussion360

Our results imply that the counteraction of antibiotic production by ex-361

tracellular antibiotic degradation does not in itself guarantee high diversity in362

antibiotic producing microbial communities. In particular, we pointed out that363

production cheaters with increased reproduction rate demolish the coexistence364

of interacting species in well-mixed models. According to our studies, three365

scenarios are possible: in two cases (scenarios (i) and (ii)) the invasion of pro-366

duction cheaters causes immediate decrease of the number of coexisting species.367

In scenario (iii) it takes more than one invasion events to decrease the number368

of coexisting species, but eventually a sequence of invasion events also leads to369

the decrease of species diversity. The intutitive explanation is that when370

non-producing mutants invade no cell produces any antibiotics in the371

end, and their competitive interactions are now driven only by their372

reproduction rates. Unless these reproduction rates are identical,373

eventually only one will survive (surivical of the fittest). These results374

are valid for the mixed inhibition-zone model and the chemostat model with375

any interaction topology and even if the different antibiotics and degradation376

molecules have different diffusion abilities (different K
(D)
l and K

(P )
l parame-377

ters). It follows that the invasion success of production cheaters is independent378

of the model details. Our conclusions remain valid for any other systems where379

the fitness of phenotype i is described by gifi(x1(t), x2(t), xi−1(t), xi+1(t), ..),380

where fi(x \ xi) is an arbitrary continuous function and the replicator dynamic381

describes the selection among the different phenotypes (see Eqs. (9-12)). We382

found that the emergence of degradation cheaters causes less dramatic changes383

in the community; they are able to invade a stable community only if their fit-384

ness benefit is above a critical level, and in some cases the coexistence of mutant385

and resident types is possible after invasion.386

Our numerical simulations show (in line with Kelsic et al. (2015) Extended387

Data Figure 8.) that the proportion of ecologically stable communities among388

randomly selected interaction topologies becomes negligibly low as the number389
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of coexisting species increases to five or more. As in the current study the390

focus was on the evolutionary stability of microbial communities against invasion391

by cheaters, this aspect of ecological stability received less attention in our392

analyses. Similarly, in the study of KEA this behavior of the system did not393

receive sufficient attention. However, we would like to emphasize that it becomes394

increasingly unlikely that stable communities can emerge when the number of395

species increases. That is, besides the evolutionary instability, the robustness396

of ecological stability of these communities is also problematic in well-mixed397

models without additional mechanisms promoting diversity.398

A more recent investigation by (Kelsic et al., 2016) pointed out that the399

spatially extended agent-based version of the mixed inhibition model exhibits400

resistance to invasion of cheaters. The crucial difference is that in this spatial401

extended model empty sites are colonized from a finite distance. A producer402

cell creates empty sites by killing sensitive cells in its neighborhood. Such cells403

have a greater chance for colonizing these empty sites than the non-producing404

cheaters being in the vicinity of the empty site. Thus producer cells have higher405

replication success than non-producers which can balance the higher per-capita406

replication rate of non-producer ones. The smaller the colonization distance407

the higher the benefit of producers compared to non-producers, and since the408

colonization distance tends to be infinite in the well-mixed models studied here409

this effect disappears.410

We assumed in the analysis that the production of antibiotics and molecules411

degrading antibiotics is costly for the cells. In line with this assumption, there412

are numerous experiments demonstrating that the inactivation or loss of such413

genes have a significant positive effect on the fitness of such mutant types in a414

given environment (Lee and Marx, 2012; Koskiniemi et al., 2012; D’Souza et al.,415

2014). Moreover, other investigations reveal that such antibiotic resistance fac-416

tors can be the by-products of the general metabolism and thus the production417

costs are practically negligible (Melnyk et al., 2014). In some cases, switching418

off such gene can even be beneficial for the cell due to pleiotropic effects of the419

regulating genes (Dandekar et al., 2012; Mitri and Foster, 2016). However, the420
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high population size which is typical in bacterial communities enhances selection421

and thus it can dominate over genetic drift even for small fitness differences.422

The mixed inhibition-zone and chemostat models consider the dynamics of423

well-mixed individuals producing diffusive antibiotics and degrading molecules.424

The assumptions behind these models enable us to handle the problem analyt-425

ically, however, these assumptions oversimplify some aspects of the dynamics.426

First and foremost a more realistic diffusion dynamics and chemical interactions427

among the dispersed molecules and cells are not taken into account. It is known428

from other studies that even minor modifications in the dynamics describing429

diffusion of public goods molecules, interaction of these molecules with cells,430

the non-linear relation between the molecule concentration and the fitness, and431

even timing of death and birth events in population dynamics can have signifi-432

cant effect on selection between producers and non-producers (Borenstein et al.,433

2013; Scheuring, 2014; Archetti, 2014).434

Recent studies pointed out that the secreted extracellular molecules are not435

completely mixing public goods, because due to the restricted motion of cells and436

of molecules in real bacterial communities, only the immediate neighborhood of437

the producer is able to enjoy the benefits (Morris, 2015). As the close neighbors438

of the producer are most probably the clones of the producer, non-producers439

further away from the source can benefit much less. According to the exper-440

iments, these definite spatial effects establish density-dependent and negative441

frequency-dependent selection which stabilizes the coexistence of the producers442

and social cheaters (Kerr et al., 2002; Cordero et al., 2012a; Drescher et al., 2014;443

Kümmerli et al., 2014; Morris, 2015). In addition, our results highlight that in-444

teractions of antibiotic production and attenuation are insufficient in effectively445

stabilizing bacterial communities in well-mixed environments. Presumably mi-446

croscale spacial structure of the habitat, negative frequency-dependent selection,447

pleiotropy, auxotrophy, and top down control by phages play more significant448

role in maintaining microbiome diversity (Cordero and Polz, 2014; Morris et al.,449

2012, 2014; Morris, 2015; Koskiniemi et al., 2012; D’Souza et al., 2014; Velend,450

2010; Ross-Gillespie et al., 2007, 2009; Dandekar et al., 2012; Mitri and Foster,451
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2016; Kelsic et al., 2016).452
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Appendix A. Continuous replicator dynamics: invasion of produc-458

tion cheaters459

The continuous replication dynamics of bacterial strains is generally written460

as461

ẋi(t) = (wi(t)− w̄(t))xi(t), (A.1)

where wi(t) and w̄(t) are the fitness values of individuals and the population462

average as defined in the main text. Let us denote the mother and production463

cheater mutant with m and m′, respectively. Thus, the dynamics of these two464

types are465

ẋm(t) = (wm(t)− w̄′(t))xm(t) (A.2)

ẋm′(t) = ((1 + α)wm(t)− w̄′(t))xm′(t). (A.3)

Dividing the two equations by xm(t) and xm′(t), respectively, and subtracting466

Eq. (A.3) from Eq. (A.2), after some rearrangement we get467

ẋm(t)

xm(t)
− ẋm′(t)

xm′(t)
= −αwm(t), (A.4)

which leads to468

xm(t)

xm′(t)
= e
−α
∫ t

0
wm(τ)dτ

. (A.5)

Since wm(t) > wmin > 0, where wmin is a constant, we have limt→∞
∫ t
0
wm(τ)dτ =469

∞. Therefore, equation (12), and consequently the three scenarios described in470

the main text remain valid in continuous time dynamical systems as well.471
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Appendix B. Continuous replicator dynamics: invasion of degrada-472

tion cheaters473

In case of continuous replicator dynamics, the time evolution of m and m′474

species is475

ẋm = (wm(t)− w̄(t))xm (B.1)

ẋm′ = ((1 + α)wm(t)(1−Am′,l(x \ xm′))− w̄′(t))xm′ , (B.2)

where m′ denotes the degradation cheater. Following the algebraic steps de-476

scribed in the previous subsection, we get477

ẋm(t)

xm(t)
− ẋm′(t)

xm′(t)
= [1− (1 + α)(1−Am′,l(x \ xm′)]wm(t). (B.3)

The sign of the right hand side of (B.3) depends on α and Am′,l(x\xm′). As be-478

fore, a sufficient condition for the invasion of mutant m′ can be determined with479

the help of the maximum value of Am′,l(x\xm′) : if
[
1− (1 + α)(1−A(max)

m′,l )
]
<480

0, that is if481

α >
A

(max)
m′,l

1−A(max)
m′,l

. (B.4)

To determine the criterion of mutual invasibility, let us assume first that482

type m is the resident species and type m′ invades the community. For sake483

of simplicity (as in the discrete model presented in the main text), we assume484

that the dynamics of the resident population is in fixed point, the abundances485

before invasion are denoted by x(1). Mutant m′ spreads if486

ẋm′(t) =
(

(1 + α)(1−Am′,l(x̂(1) \ xm′))wm(t)− w̄(t)
)
xm′(t) > 0 (B.5)

which leads to487

α >
Am′,l(x̂

(1) \ xm′)
1−Am′,l(x̂(1) \ xm′)

. (B.6)

Let us consider now m′ as the resident species in a community and m as the488

rare mutant. Let x̂(2) denote the equilibrium abundances before invasion, so489

the rare mutant m spreads if490

ẋm(t) =

(
wm′(t)

(1 + α)(1−Am′,l(x̂(2) \ xm′))
− w̄′(t)

)
xm(t) > 0, (B.7)
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which leads to the condition491

α <
Am′,l(x̂

(2) \ xm′)
1−Am′,l(x̂(2) \ xm′)

. (B.8)

Again, as in the discrete time dynamics, if Am′,l(x̂
(2) \ xm′) < Am′,l(x̂

(1) \ xm′)492

then both (B.6 ) and (B.8) can be satisfied simultaneously, thus the rare m493

and m′ mutants mutually invade each other which guarantees the coexistence494

of these species. (Naturally, this analysis assumes that beside species m and495

m′ at least one similar a species is present in the community which produces496

antibiotic affecting species m′.)497

Appendix C. Invasion of production cheaters in the chemostat model498

Here we review the chemostat model version of microbial community with499

interference competition. Following Kelsic et al. (2015), it is assumed that500

bacteria compete for a common limiting resource z and there is a constant501

dilution d from the chemostat. The dynamics of the resource is502

ż(t) = (z0 − z(t)) d−
∑ns

i=1 wi(t)xi(t)

µ
, (C.1)

where z0d is the constant inflow into the chemostat, wi(t) is the actual growth503

rate of species i with concentration xi and µ is a conversion factor between504

resource and species concentration. The species concentrations change according505

to506

ẋi(t) = (wi(t)− d)xi(t), (C.2)

with507

wi(t) = gi
z(t)

kz + z(t)

na∏
j=1

e−σi,jK
(P )
j

cj(t), (C.3)

that is the growth rate wi(t) is determined by the intrinsic growth rate gi, the508

concentrations of the resource and the antibiotics z(t) and cj(t), respectively.509

The effect of z is saturated in line with the standard Michaelis-Menten kinetics510

with half saturation constant kz and the antibiotics cause exponential decay on511

total growth rate, σi,j = 1 if species i is sensitive to antibiotic j otherwise σi,j =512
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0. The concentration of the antibiotics changes because of the production, the513

degradation, and the dilution of antibiotics, thus the dynamics can be written514

as515

ċj(t) = ρ

ns∑
i=1

ηi,jwi(t)xi(t)−K(D)
j cj(t)

ns∑
i=1

δi,jxi(t)− dcj(t), (C.4)

where ρ is the amount of antibiotics produced by unit concentration of cells,516

ηi,j = 1 if antibiotic j produced by species i, otherwise ηi,j = 0. Similarly517

δi,j = 1 if species i produces degradation molecules for antibiotic j, otherwise518

δi,j = 0. It follows from (C.1) and (C.2) that519

d

dt

(
ns∑
i=1

xi(t)

µ
+ z(t)− z0

)
= −d

(
ns∑
i=1

xi(t)

µ
+ z(t)− z0

)
, (C.5)

thus after a transient time520

z(t) = z0 −
∑
i

xi(t)

µ
. (C.6)

Therefore (C.1) can be eliminated when we study the stationary solutions of521

the system by substituting (C.6) into (C.3) (Kelsic et al., 2015).522

Let us assume that dynamics of a bacterial community is described by (C.1-523

C.4), and a species m is a member of a community (x̄m > 0 in the stationary524

state), and produces at least one type of antibiotic. The mutant m′ species525

looses the production of this antibiotic, thus it has an increased growth rate526

(gm′ = (1 +α)gm, α > 1) as above. Thus, the difference of relative growth rates527

of m and m′ species is528

ẋm(t)

xm(t)
− ẋm′(t)

xm′(t)
= wm(t)− wm′(t) = −α z(t)

kz + z(t)

na∏
j=1

e−σm,jK
(P )
j

cj(t). (C.7)

Our aim here is to show that z(t)/(kz + z(t))
∏
j e
−σm,jK

(P )
j

cj(t) > W0 > 0 if529

t > tc which guarantees that limt→∞ xm(t)/xm′(t) = 0. It follows from (C.2)530

that xi(t) ≥ 0 if xi(0) > 0 and thus because of (C.6) z(t) ≤ z0 and xi < µz0 for531

every i. Therefore, wi(t) < giz0/(kz + z0) and the right hand side of (C.4) can532

be estimated above with533

ċj(t) < ρµ
z20

kz + z20
nsgmax −

(
K(D)µz0ns + d

)
cj(t) = α1 − α2cj(t) (C.8)
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where gmax = max{gi, i = 1, ..ns},
∑ns

i=1 ηi,j and
∑ns

i=1 ηi,j can be estimated534

above by ns. Here α1, α2 are positive constants. By introducing function C(t)535

in such a way that its derivative estimates over ċ(t), we get536

ċj(t) < Ċj(t) = α1 − α2C(t) (C.9)

This estimation is valid as the ordering between derivatives guarantees C(t) >537

c(t) if t > t∗. It is easy to show that limt→∞ Ci(t) = C∗ where C is a finite538

positive constant, thus limt→∞ ci(t) ≤ C∗ for every i. Similarly, knowing that539 ∑ns

i=1 xi/µ ≤ z0 and using the estimation introduced above Eq. (C.1) can be540

estimated below with541

ż(t) ≥ Ż(t) = (z0 − Z(t))d− gmax
z0

µ(kz + z0)
Z(t), (C.10)

Since limt→∞ Z(t) = Z∗ > 0, thus limt→∞ z(t) ≥ Z∗. That is, z/(kz +542

z)Πje
−σi,jK

(P )
i

cj(t) > Z∗/(kz +Z∗)Πje
−σi,jK

(P )
i

C∗ = W0 > 0 for every t greater543

than a critical time tc. Thus544

lim
t→∞

xm(t)/xm′(t) = 0 (C.11)

as in the mixed inhibition model. We note here that the calculation remains545

valid if we use any monotonously decreasing function to model the effect of the546

antibiotic.547
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