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Abstract 23 

Insufficient precipitation and continuous over-exploitation of groundwater for agricultural 24 

irrigation led to rapid drop of groundwater table in a large part of the North China Plain (NCP), 25 

the bread basket of China. It has become widely acknowledged that current practice of winter 26 

wheat-summer maize sequential cropping system (WM-S) in the NCP will have to come to an end 27 

as soon as possible. Great research efforts have been made at the local level via both field 28 

experiments and model simulations to construct groundwater neutral cropping systems but 29 

virtually all such constructs show a substantial penalty on total output per unit of land per year. In 30 

this research, we propose a strategy to meet the double challenge of maintaining regional grain 31 

production level and recovering local groundwater table: 1) Widely adopt winter fallow and early-32 

sowing summer maize monocropping (E-M) in water scarce part of the region to enable 33 

groundwater recovery; 2) replace WM-S by wheat-maize relay intercropping system (WM-R) in 34 

the water richer part of the NCP to increase grain production so as to compensate yield losses in 35 

the water scarce part of the region. Our simulations using DSSAT 4.6 at the site level show that 36 

both yield and water productivity of E-M are 33.7% and 41.8% higher than those of existing 37 

summer maize, with less than 20% of increase in water requirement. In comparison with spring 38 

maize, E-M requires 62.4% less irrigation water, with a yield penalty of only 4.52%. At the 39 

regional scale, the simulations targeting at maximizing groundwater saving in water scarce area 40 

subject to maintaining the current level of regional total output indicate that about 20.45% of the 41 

wheat planting area can be put on fallow in winter, most of which is located in the driest regions 42 

of the NCP. This can result in a large amount of groundwater saving at 5.62×109 m3 and a 43 

substitution of wheat by maize at 24.3% of the total wheat output. These findings provide new 44 

rooms for the relevant policy makers and stakeholders to address the urgent groundwater 45 

recovering issues in the northern NCP without compromising the level of food grain production 46 

of the region. 47 

 48 

Keywords: Agricultural water saving; cropping system adaptation; relay intercropping; the North 49 

China Plain   50 

  51 
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1. Introduction 52 

The North China Plain (NCP) is the bread basket of China. It produces about one-fourth of 53 

total food grains and two-thirds of total wheat output of the country. Such achievement has heavily 54 

depended on continuous overexploitation of groundwater for irrigation to meet the big water gaps 55 

between heavy water requirement of the prevailing wheat-maize cropping system and insufficient 56 

precipitation in large parts of the NCP (Fang et al., 2010a, 2010b; van Oort et al., 2016). Crop 57 

irrigation consumes about 70% of the total water use in the region. Continuous groundwater 58 

overexploitation has led to alarming drop of groundwater table during the last three decades, with 59 

many piedmont areas even suffering a drop rate of more than 1 meter per year for 40 years (Jia 60 

and Liu, 2002; Li et al., 2005; van Oort et al., 2016). The rapid drop of groundwater table also 61 

caused other environmental problems such as dried up rivers and lakes, seawater intrusion, land 62 

subsidence and ground fissures (Xue et al., 2000; Zhang et al., 2009). Health problems may 63 

increase as well when pumping reaches deep layers with water containing toxic levels of fluoride 64 

and arsenic (Currell et al., 2012). As forcefully pointed out in van Oort et al. (2016), the current 65 

practice of groundwater overexploitation in the region will have to come to an end in the 66 

foreseeable future so that groundwater extraction can be drastically reduced to conserve the 67 

aquifers.  68 

Great research efforts have been made at the local level to reduce irrigation water consumption 69 

and thus groundwater overexploitation. These efforts include both the applications of water 70 

conservation technologies and the adoptions of alternative cropping strategies, with a focus on 71 

winter wheat because of its heavy irrigation requirement (Li et al., 2005). A number of water 72 

saving measurements, such as optimizing irrigation scheduling (Yao et al., 2000; Zhang and Deng, 73 

2002), introducing limited and deficit irrigation (Wang et al., 2001; Kang et al., 2002; Li et al., 74 

2005; Mei et al., 2013), and plastic mulching (Xu et al., 2015), are carefully evaluated based on 75 

both field experiments and crop model simulations, with the objective of maximizing irrigation 76 

water savings subject to minimum yield loss. Nevertheless, because precipitation can only meet 77 

25-40% of the water requirement for achieving average wheat production in a large part of the 78 

region (Li et al., 2005), to support the prevailing winter wheat-summer maize sequential cropping 79 

system (WM-S) system, great amounts of groundwater are still needed for irrigation use even with 80 

such water saving technologies.  81 
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The adoptions of alternative cropping strategies has been characterized by replacing current 82 

WM-S with groundwater neutral cropping systems (Yang and Zehnder, 2001; Zhang et al., 2004; 83 

Yang et al., 2015; van Oot et al. 2016).1  Many field studies suggest spring maize monoculture as 84 

an alternative cropping system because it is much less irrigation demanding and has higher yield 85 

potential than the prevailing summer maize (Pei et al., 2015). Other major alternative cropping 86 

systems suggested include three harvests in two years (1st year: WM-S; 2nd year: spring maize) 87 

(Meng et al., 2012) and winter wheat-spring maize strip intercropping (Gao et al., 2009).  However, 88 

the literature shows that the adoptions of groundwater neutral cropping systems in the water deficit 89 

parts of the NCP face the substantial penalty of total grain output per unit of land per year (total 90 

grain yield, hereafter). Limiting wheat irrigation with groundwater will cause a great reduction of 91 

wheat yield potential from 9.7 t/ha to 3 t/ha (Wu et al., 2006).  Compared with WM-S under 92 

optimal irrigation strategy, total grain yield of the three harvests in two years as suggested in Meng 93 

et al. (2012) and spring maize monoculture as suggested in Pei et al. (2015) will decrease by 19.9% 94 

and 33.8% respectively.  95 

van Oort et al. (2016) evaluated the performance of 11 groundwater neutral combinations of 96 

alternative cropping systems and water saving technologies based on simulations with APSIM 97 

cropping systems model and the SOILWAT water balance module. The calibration and validation 98 

of the APSIM model was based on experiments at the university farm of the Agricultural 99 

University of Hebei in Xinji County (37.54°N, 115.12°E), which is located in the alluvial plain of 100 

the Taihang Mountain in the northwest of the Hebei plain, an area with the most serious water 101 

shortage in the NCP. The evaluation concludes that the total grain yield of the WM-S under 102 

groundwater neutral constraint will drop by 44% in comparison with that of the WM-S under the 103 

current practice; and water conservation by plastic film could limit this reduction to 21-33% but 104 

possible environmental impacts of plastic film need additional attention.  105 

The literature suggests that the two policy goals of maintaining grain production level and 106 

recovering local groundwater table seem irreconcilable in the NCP. However, the existing studies 107 

focus on reconciling the two goals either at the site level or a locality. In this research, we promote 108 

a macro-perspective and argue that we can better utilize richer agro-climatic resources 109 

                                                 
1 Groundwater neutral cropping systems refer to cropping systems with sustainable pumping rates. The 

evapotranspiration (ET) differs between each cropping system, therefore each ground-water neutral cropping system 

has its own and different sustainable pumping rate (van Oort et al., 2016). 
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(temperature and precipitation) available in the southern NCP to reconcile the two policy goals at 110 

the regional level. In more detail, we propose a cropping system adaptation strategy across the 111 

North China Plain and evaluate the performance of this regional strategy with reference to the 112 

prevailing WM-S system. The strategy consists of (1) widely adopting winter wheat fallow and 113 

early-sowing summer maize mono-cropping (E-M) in water scarce part of the region to enable 114 

groundwater recovery, and (2) replacing WM-S by wheat-maize relay intercropping system (WM-115 

R) in the water richer part of the NCP to increase grain production and compensate yield losses in 116 

the water scarce part of the region. We employ DSSAT 4.6 to evaluate the relative performances 117 

of the prevailing WM-S system and the alternative E-M, WM-R and spring maize in terms of yield 118 

and irrigation water demand at the three sites and across all grid-cells of cropland in the NCP. 119 

Based on these results, we develop a procedure to allocate the above four cropping regimes to each 120 

grid-cell with the objective of maximizing groundwater saving in water scarce area under the 121 

constraint to maintain the current level of regional total output. A successful implementation of 122 

this procedure would demonstrate that it is feasible to reconcile the two policy goals of maintaining 123 

grain production level and recovering local groundwater table at the regional level of the NCP, 124 

thus providing a scientific basis for regional cropping system adaptation design.  125 

 126 

2. Study Area 127 

The North China Plain (112.18°E–120.25°E, 32.19°N–40.18°N), also called Huang-Huai-Hai 128 

Plain, is a large alluvial plain built up along the shore of the Yellow Sea by deposits of the Huang 129 

He (Yellow River) and the Huai, Hai, and a few other minor rivers of northern China. The plain is 130 

bordered on the north by the Yanshan Mountains, on the west by the Taihang Mountains and the 131 

Henan highlands, and on the southwest by the Tongbai and Dabie Mountains. To the south it 132 

merges into the Yangtze Plain in northern Jiangsu and Anhui provinces. From northeast to 133 

southeast it fronts the Bo Hai (Gulf of Chihli), the hills of Shandong Peninsula, and the Yellow 134 

Sea (www.britannica.com/place/North-China-Plain).  It covers a total area of 4.4×105 km2 (Fig. 135 

1), with a temperate semi-arid monsoon climate. About 60% of the precipitation occurs in summer 136 

(June to September), while less than 20% happens in winter and spring. Precipitation decreases 137 

from south to north and east to west.  138 

Local climate resources can support the cropping systems of double harvests per year or triple 139 

harvests in two sequential years. The WM-S is currently the dominant cropping system in the NCP. 140 

http://www.britannica.com/place/North-China-Plain
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Winter wheat is usually sown in early or middle October and harvested in early or middle June in 141 

the following year, while summer maize is sown right after the harvest of winter wheat and 142 

harvested in late-September. Under the WM-R, summer maize is sown in a single straight line 143 

between every two rows of wheat during mid to late May, about 7-15 days before the harvest of 144 

winter wheat. Spring maize is usually planted in late April. Please note that the Yimeng Mountain 145 

of the Shandong Province takes a large part of the central-east NCP, where the shares of both 146 

planting and irrigation areas for wheat and maize in its limited hilly and mountainous cropland are 147 

very small although annual precipitation is higher compared to the northern NCP. The far southern 148 

part of the NCP is in the transit zone between wheat-maize cropping system and wheat-rice or 149 

double rice rotations because of richer thermal and water resources. There is a tendency of 150 

increased rice planting in this part of the NCP, especially in the northern Jiangsu Province (Liu et 151 

al., 2013). Nevertheless, rainfed wheat is still the major winter crop in this part of the region, which 152 

is also confirmed by the high-resolution dataset of MIRCA 2000 on the wheat and maize harvest 153 

area (Portmann et al., 2010) (Fig. 2). In this study, we focus on maintaining the aggregate 154 

production level of wheat and maize in the NCP, discounting the contribution of rice production 155 

in the southern part of the NCP.2    156 

We select three sites – Beijing (116.35°E, 40.04°N), Jining (116.51°E, 35.34°N) and Tangyin 157 

(114.24°E, 36.03°N), to represent different water and thermal resource conditions and alternative 158 

cropping systems in the region. Another important reason for selecting these three sites is because 159 

the genetic coefficients (GCs) of the DSSAT model for winter wheat, summer maize and spring 160 

maize have been well-calibrated by the existing researches (Yu et al., 2006; Binder et al., 2008; 161 

Fang et al., 2010b; Liu and Tao, 2013). Jining site experienced a cropping system shift from WM-162 

R to WM-S in 1996. Tangyin site has long records of WM-R observations. Both WM-S and spring 163 

maize monocropping are recorded in Beijing site. Average annual precipitation (1980-2010) in 164 

Jining (684 mm) is higher than Tangyin (550 mm) and Beijing (531 mm).    165 

  166 
(Figure 1 is about here) 167 

 168 

                                                 
2 Please note that adding the contribution of rice production in the southern part of the NCP would strengthen rather 

than weaken the major argument of this research.  
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3. Materials and Methods 169 
3.1 Data  170 

The data used in this research include: climate/weather data, land and soil information, crop 171 

growth and yield observations, and irrigated and rainfed area of wheat and maize (actual harvest 172 

area) in the NCP. The performance comparison across the four cropping systems of the WM-S, 173 

WM-R, E-M, and spring maize will focus on the period of 2001 to 2010, mainly because crop 174 

cultivars information are obtained using observations between 2001 and 2010, and  the maps of 175 

cropland and irrigated cropland are for year 2000.   176 

Although the GCs of the DSSAT model for winter wheat, summer maize and spring maize 177 

have been calibrated, there is no GCs available for intercropped maize in the region. We use the 178 

observations of intercropped maize at Tangyin site, including crop growth, crop management, 179 

yield and yield components, to calibrate GCs and validate DSSAT for intercropped maize. Crop 180 

management records include sowing and harvest date, application of irrigation and fertilizer. 181 

Observed crop phenology stages are sowing, emergence, shooting, flowering and maturity. Yield 182 

components include dry weight per kernel, tiller number per plant, and kernel number per tiller.  183 

Weather data for three sites include daily records over 1980-2010 from Data Center of China 184 

Meteorological Administration. This dataset reveals the observed climate change during these 31 185 

years at the site level. Historical climate/weather data for regional simulations are based on the 186 

interpolations of the observations from over 700 meteorological stations nationwide over the 187 

period of 2001-2010. These meteorological stations are much more intensively located in the areas 188 

with high population density such as the NCP. The daily solar radiation, maximum and minimum 189 

temperature, precipitation are used as weather inputs for the DSSAT model. Because solar 190 

radiation is not available in the site observations, we converted it from the recorded daily sunshine 191 

hours using the empirical global radiation model, we understand that radiation in the temperate 192 

latitude regions might be underestimated due to a seasonal dependence of the accuracy of the 193 

empirical model (Pohlert, 2004).   194 

Land-use map of year 2000 is obtained from National Land Cover database (100m×100m) 195 

provided by the Institute of Geographical Sciences & Natural Resources Research (IGSNRR) of 196 

the Chinese Academy of Sciences. Cropland is further divided, according to the slope, into four 197 

categories of plain, hilly and mountain cropland, and cropland with slope greater than 25 degrees. 198 

Soil profile attributes of the NCP are from the Harmonized World Soil Database (Nachtergaele 199 
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and Batjes, 2012) with a spatial resolution of 1 km. Because the DSSAT model requires more 200 

detailed soil properties inputs compared with the existing information in the Harmonized World 201 

Soil Database, the missing properties are calculated using method described in Tian (2014). 202 

Harvest area of winter wheat and summer maize under irrigated and rainfed conditions are 203 

obtained from the global data set of monthly irrigated and rainfed crop areas in the year 2000 204 

(MIRCA 2000) (Portmann et al., 2010) (Fig. 2). They are used to calculate the yield and water 205 

requirement of irrigated/rainfed wheat and maize under different cropping systems.  206 

For DSSAT upscaling runs at the grid-cell level, all DSSAT input data will be resampled or 207 

aggregated into 1 km resolution grid data, and the simulation results of total grain production and 208 

irrigated water consumption under the WM-S, WM-R and E-M cropping system will be 209 

aggregated to the county level for presentation convenience. 210 

 211 
(Figure 2 is about here) 212 

3.2 Sequential cropping and relay intercropping  213 

The WM-S is the dominant cropping system in the NCP, under which farmers grow wheat in 214 

early to middle October and plant maize after the harvest of wheat in June. By contrast, maize is 215 

planted into wheat field before the harvest of wheat under the WM-R. The total grain production 216 

has increased significantly under the WM-S in the NCP in the last decades due to the improvement 217 

of crop management (irrigation, fertilization and pesticide), adaptation of new early-mature high-218 

yield crop cultivars and agricultural machinery, and expansion of irrigation (Wang et al., 2010; 219 

Zhang, 2011; Chen et al., 2012; Wang et al., 2012; Yu et al., 2012; Shi et al., 2013; Tao et al., 220 

2014). It is worth highlighting that the development of compact-type early maturity summer maize 221 

enables WM-S to greatly increase maize yield under the constraint of limited thermal resources 222 

(Feike et al., 2012). 223 

Shifting maize sowing/harvest date has also been proven as an effective way to extend maize 224 

growth period and further boost yield and water productivity of maize under the WM-S, because 225 

warmer temperature favors the growth of maize (Wang et al., 2012). Spring maize is usually sown 226 

in late April in the NCP, when precipitation is still low and water deficits occur frequently during 227 

the germination and vegetative stages. A delay of spring maize sowing by 30-days may lead to a 228 

yield increase by 13% (Binder et al., 2008) because of the reduced drought risk in the sowing 229 

season. Advancing the sowing date of summer maize to mid-late May can raise maize yield up to 230 
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14 t/ha, on a par with the average total grain yield of the prevailing WM-S system (Pei et al., 2015). 231 

The advanced sowing dates of summer maize in Pei et al. (2015) are close to the field records of 232 

the WM-R system observed in Tangyin site. This discussion indicates that the potential benefit of 233 

earlier sowing summer maize (E-M) in raising yield and lowering irrigation demand can be 234 

materialized under the WM-R system in the NCP.  235 

3.3 Irrigation water requirement 236 

Irrigation Water Requirement (IWR) and total grain production of E-M, WM-S, WM-R, and 237 

spring maize in a given grid-cell are two key indicators for allocating the above four cropping 238 

regimes to each grid-cell with the target to maximize groundwater saving in water scarce area 239 

under the constraint of maintaining current regional total output level. The IWR is calculated from 240 

the annual harvest area of wheat and maize under irrigated condition in the grid-cell using Eq. 1 241 

(Yang et al., 2010).  242 

        𝐼𝐼𝐼𝐼𝐼𝐼 = ∑ 𝐷𝐷𝐼𝐼𝑖𝑖 × 𝐴𝐴𝐼𝐼𝑖𝑖 2
𝑖𝑖=1 ,                                         (1) 243 

where IWR is the irrigation water requirement for the grid cell, i is the specific crop, including 244 

wheat and maize, DR is defined as the evapotranspiration minus effective rainfall during the crop 245 

growth period, and AR is the current irrigated areas of wheat and maize in the grid cell. IWRs of 246 

all four cropping systems are simulated at daily step under the given crop calendar and irrigation 247 

condition.   248 

3.4 Cropping system adaptation strategy 249 

Our NCP-level cropping system adaptation strategy for maximizing groundwater saving in 250 

water scarce areas subject to maintaining the current level of regional total output of the NCP is 251 

established by a procedure which allocates one of the E-M, WM-S, WM-R and spring maize 252 

cropping systems to each individual grid-cell across wheat and maize area of the region. Figure 3 253 

depicts the major steps, which can be summarized as follows. (1) Estimate total grain productions 254 

and total irrigation water requirements in each grid cell of wheat and maize growing areas for all 255 

four cropping systems. (2) Sort all grids in descending order by IWR under the prevailing WM-S 256 

cropping system. (3) Start from the grid with highest IWR downwards and assign the E-M regime 257 

to these irrigation-intensive grids, start from the grid with the lowest IWR upward and assign the 258 

WM-R regime to these water-rich grids, the rest grids keep the WM-S or spring maize regime, and 259 
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then calculate the total output loss from fallowing the original wheat areas and the total output gain 260 

from adopting the WM-R, in comparison with the WM-S, respectively. (4) Continue to assign the 261 

E-M regime to the irrigation-intensive grids as specified in (3) until no irrigation water saving can 262 

be made, and continue to assign WM-R to water-rich grids until the total output loss caused by 263 

adopting the E-M can be fully compensated by the WM-R. In theory, such a procedure may not 264 

have a balanced ending position. Fortunately, our simulations across the NCP do produce such an 265 

ending position.  266 

In the above procedure, we do take consideration the potential higher irrigation demand of the 267 

WM-R system and therefore, in those rainfed grid-cells, we adopt the WM-R if the plain area ratio 268 

is greater than 25% of total cropland in the grid cell. In addition, in the hilly areas of the region, if 269 

rainfed summer maize is dominant, we assign higher yield E-M to increase maize yield. 270 

 271 
 (Figure 3 is about here) 272 

 273 

3.5 Crop water management 274 

At the site level, the following optimized irrigation schedule for winter wheat developed by 275 

Sun et al. (2011) is employed in our simulations. Irrigation is applied when the moisture of 0-100 276 

cm soil is less than 65% of the filed capacity and the irrigation reaches 80% of soil water capacity 277 

except for the grain filling stage. For summer maize, irrigation is applied at the stem elongation 278 

stage according to Fang et al., (2010b) and 50 mm water is applied in line with Binder et al. (2008).  279 

In order to quantitatively assess the water productivity of crops under different cropping systems 280 

at the site level, the indicator of water use efficiency (WUE) as specified in Eq. 2 is employed (Ali 281 

et al., 2007). 282 

                                                     𝐼𝐼𝑊𝑊𝑊𝑊 =  𝐺𝐺𝐺𝐺
𝐸𝐸𝐸𝐸

 ,                                                           (2) 283 

where ET stands for the total evapotranspiration and GY for total grain output.  284 

At the regional level, it is impossible to specify detailed water management schedule across 285 

all grid-cells owing to the lack of data, we take the simple schedule that crop on irrigated farmland 286 

is irrigated to 80% of soil water capacity when the capacity becomes less than 65%, implying that 287 

no irrigation take place on existing rainfed cropland, unless explicitly mentioned.   288 

 289 
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3.6 Intercropping shading algorithm  290 

Because summer maize is sown before the harvest of winter wheat under the WM-R, the two 291 

crops compete for solar radiation and micro-climate during the co-growth period. We adopt the 292 

shading algorithm regards to the height of the neighboring crop as specified in Knorzer et al. (2011) 293 

and incorporate it into the DSSAT 4.6 to modify the solar radiation inputs during the co-growth 294 

period. However, we have to ignore the effects of micro-climate change to the growth and water 295 

requirements of these two co-growing crops owing to the lack of detailed micro-climate 296 

observations at the surface level.  297 

In general, summer maize is sown 7-15 days ahead of winter wheat harvest under the WM-R, 298 

in order to maximize yield by extending growth period of summer maize. In our regional level 299 

simulations, the co-growth period is set at 15 days in the WM-R system.  300 

  301 

3.7 DSSAT model calibration and validation 302 

The DSSAT model is developed by the International Benchmark Sites Network for Argo-303 

technology Transfer project (IBSNAT), it simulates the growth and development of crops within 304 

a homogeneous plot in a daily time step. Soil water balance is simulated using precipitation, 305 

infiltration, runoff, transpiration, evaporation and drainage during the crop growth period (Jones 306 

et al., 2003). It has been used to estimate the total crop irrigation requirement (Yang et al., 2010) 307 

and the impact of agriculture water requirement on groundwater table (Yang et al., 2006) in the 308 

NCP, and the irrigation management of maize in arid northwestern China (Jiang et al., 2016) and 309 

wheat in the Texas High Plains of the USA (Attia et al., 2016).   310 

The DSSAT model uses genotype coefficients (GCs) to describe the genotype-by-311 

environment interactions and simulate performance of diverse cultivars under different conditions 312 

(Penning de Vries et al., 1992). Each cultivar of a crop has specific parameters to describe the 313 

genotypic information of the cultivar within the parameter ranges of the crop.  Because there are 314 

obvious gaps of crop management between farmers practice and field experiment, the attainable 315 

yield under ideal crop management conditions (no water, nitrogen and pest stress) is adopted to 316 

calibrate and validate the GCs of the E-M system at Tangyin site in this research. The maximum 317 

attainable yield is calculated from optimum yield components, including the maximum grain 318 

number per tiller and the correspondent grain weight, maximum tiller number per plant and the 319 
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optimum plant density. Other important field observations for the calibration and validation 320 

include critical phenological information such as sowing, flowering, maturity and harvest dates. 321 

The procedure of DSSAT model calibration and validation using attainable crop yield was 322 

described in Tian et al. (2014). The procedure is based on the Generalized Likelihood Uncertainty 323 

Estimation (GLUE) Module (He et al., 2010) as built in DSSAT 4.6. In addition to the probability 324 

calculations of GLUE, conventional statistics of the root mean square error (RMSE) as specified 325 

in Eq. 3 and mean relative error (MRE) in Eq. (4) are employed to evaluate the departure between 326 

the observed (O) and the simulated (S) values. 327 

  𝐼𝐼𝑅𝑅𝑅𝑅𝑊𝑊 = �
� �𝑆𝑆𝑗𝑗−𝑂𝑂𝑗𝑗�

2𝑛𝑛

𝑗𝑗=1

𝑛𝑛
�

1/2

,                                                       (3)             328 

    𝑅𝑅𝐼𝐼𝑊𝑊 = 1
𝑛𝑛
∑ 𝑆𝑆𝑗𝑗 − 𝑂𝑂𝑗𝑗

𝑂𝑂𝑗𝑗
𝑛𝑛
𝑗𝑗=1  ,                                                                        (4)           329 

in which j refers to the j-th run of the calibration or validation. 330 

 331 

4. Results 332 

4.1 Observed precipitation change at the site level 333 

Precipitation is the most important water resource for agricultural production. Annual trend 334 

and seasonal distribution of precipitation over 1980-2010 at Jining, Tangyin and Beijing sites are 335 

shown in Figs. 4 and 5. The average annual precipitation of 684 mm at Jining site was much higher 336 

than 531 mm at Beijing and 550 mm at Tangyin over the period of 1980-2010. In terms of trend, 337 

while Beijing became significantly drier and Tangyin became moderately drier, Jining became 338 

significantly wetter. The gap of annual mean precipitation between Jining and Beijing extended to 339 

320 mm during 2001-2010, 167 mm larger than the average gap over 1980-2010. The 340 

corresponding figure between Tangyin and Beijing was 86 mm, 68 mm larger than the average 341 

gap of 1980-2010. Declining precipitation in Beijing means even more groundwater being required 342 

for supplemental irrigation for the same level of grain production, whereas more precipitation in 343 

Jining relaxes groundwater stress for the same level of grain production. The distribution of 344 

average monthly rainfall across calendar months is illustrated in Fig. 5. Most of the precipitation 345 

occurred during the summer maize growing season (June to September), which accounts for 346 
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73.1%, 78.6% and 73.0% of annual precipitation in Jining, Beijing and Tangyin sites, respectively. 347 

The average precipitation during the wheat and maize growing seasons in Jining were 70.8 mm 348 

and 82.7 mm higher than that in Beijing. Tangyin had 34.7 mm more rainfall during the wheat 349 

growing season but 15.8 mm less rainfall during the maize growing season than Beijing. Rainfall 350 

during the E-M sowing month (May) was 26.7 mm, 24.4 mm and 12.1 mm higher than that in 351 

spring maize sowing month (April) at Jining, Tangyin and Beijing sites, respectively.  352 

 353 
 (Figure 4 and 5 and Tables 1-3 are about here) 354 

 355 

4.2 Crop cultivar coefficients and model performance 356 

Tables 1 and 2 present genetic coefficients (GCs) of crop cultivars under the WM-S, WM-R, 357 

E-M, and spring wheat cropping systems. The GCs of relay-intercropped summer maize are 358 

calibrated and validated using field observations at Tangyin site (Section 3.7). The MRE and 359 

RMSE measures reported in Table 3 show that the performances of both calibration and validation 360 

are very well. All other GCs are obtained from Binder et al. (2007, 2008), Fang et al. (2010), and 361 

Liu and Tao (2013).  362 

 363 

4.3 Comparing the performances of maize in different cropping systems at the site level 364 

We compare the performance of the E-M system with that of local summer maize in the WM-365 

S system at Jining and Beijing sites over the period of 2001-2010. Table 4 shows the results. At 366 

Jining site, the average yield of the E-M system is 33.7% higher than that of local summer maize 367 

in the WM-S system, with a relatively moderate increase of total evapotranspiration by 19.5%. 368 

This makes water productivity of the E-M 12.6% higher than local summer maize. More striking 369 

improvements happen at Beijing site where maize yield and total evapotranspiration of the E-M 370 

increase by 41.8% and 17.5%, respectively, implying a rise of water productivity by 21.2%. 371 

Many studies have suggested spring maize monoculture as an alternative cropping system to 372 

reduce agricultural irrigation water consumption in the water deficit regions of the NCP. We also 373 

compare the performance of the E-M system with the results of spring maize field experiment 374 

conducted in 2005 and 2006 at Dong Bei Wang experimental site (116.3°E, 40.0°N), which is 375 

nearby our Beijing site, as reported in Sun et al. (2011). The last column in Table 4 shows the 376 

comparative results. It can be seen that spring maize and the E-M produce a similar level of yield 377 
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but the water productivity of the E-M is 21.6% higher. It is because spring maize typically requires 378 

more water in its early growing period. Another set of experiments presented in Pei et al. (2015, 379 

Table S1) at a nearby site (Luancheng) shows that yield of the E-M system can reach up to 12.4 380 

t/ha with two irrigations at 60 mm each, indicating even greater potential of the E-M in keeping 381 

high level of yield with less irrigation water requirement. These findings indicate that the E-M 382 

system is more suitable than spring maize to be an alternative cropping system for reducing 383 

irrigation water demand while keeping the high level of grain production in the region.  384 

 385 

(Tables 4 and 5 and Figure 6 are about here) 386 

 387 

4.4 Performance of the regional cropping system adaptation strategy  388 

We run the procedure as specified in Section 3.4 to establish our NCP-level cropping system 389 

adaptation strategy with the objective to maximize groundwater saving in water scarce areas under 390 

the constraint of maintaining the current level of regional total output. The procedure is 391 

implemented using DSSAT up-scaling method as detailed in Tian et al. (2012). The sowing dates 392 

of local summer maize in the WM-S system are obtained from Figure 2 in Binder et al. (2008), 393 

which are based on observations from 14 agro-meteorological stations in the region.  394 

Table 5 reports changes in wheat areas, total grain production, and irrigation water 395 

consumption once the balanced allocation of alternative cropping system being reached under our 396 

procedure. Figure 6 depicts the spatial pattern of the location at the county level. It can be seen 397 

from Table 5 that about 2.5 million hectares (20.45%) of the existing wheat area will become 398 

fallowed under the adaptation strategy. The left map in Figure 6 shows that most of the fallowed 399 

areas are located in Hebei, Tianjin, and Beijing, the driest areas of the region heavily depending 400 

on underground water irrigation for wheat production. Such extent of fallow leads to a total loss 401 

of wheat production by 15.4 million tons, accounting for about 24.3% of total wheat production 402 

under the current WM-S system. On the other hand, because of the adoption of E-M following the 403 

winter fallow, total maize production will increase significantly and its share in total grain 404 

production will increase from 35.1% to 50.9%.  405 

 It is worth highlighting that the resultant reduction in total irrigation water requirement will be 406 

5.62 billion m3 and Hebei Province alone will take 78.6% (4.37 billion m3) of this saving. Yang et 407 

al. (2010) estimated the irrigation water requirement of the prevailing WM-S system in Hebei Plain 408 



 15 

over the period of 1986–2006 and their research is based on agronomic, hydrologic and climate 409 

data collected from 43 well-distributed stations across the plain. The average irrigation water 410 

requirement over 1986-2006 in their estimation was 6.16 billion m3 (4.82 billion m3 for wheat and 411 

1.34 billion m3 for maize). This comparison indicates that about 71% of irrigation water 412 

requirement can be saved in Hebei with the cropping system adaptation strategy we suggested and 413 

the saving comes from fallowing the winter wheat field. This means that our strategy would be 414 

able to zero groundwater withdrawal for growing winter wheat in vast majority areas of Hebei 415 

Province, thus forcefully promoting the recovery of local groundwater table.  416 

 On the contrary to the widespread winter fallow in Hebei, Tianjin and Beijing, there is no 417 

need for fallowing winter wheat areas in southern Henan, southern and eastern Shandong, and 418 

Jiangsu and Anhui provinces, where precipitation during the winter wheat growing season is much 419 

higher. The popular adoption of the WM-R system in the southern and eastern NCP will lead to 420 

significant increase in maize production with ignorable amount of increase in irrigation water 421 

demand. The increase in maize production can fully compensate the lost quantity of grain output 422 

caused by winter fallow in the northern NCP.  423 

 424 

5. Discussion and Conclusion 425 

It is well-acknowledged that groundwater overexploitation in the NCP has caused devastate 426 

ecological consequences and would result in vast scale hazard to the NCP ecosystem if without 427 

immediate actions. For example, groundwater depression cone recently covers about 5×104 km2 428 

of land in the piedmont of Hebei Plain, and severe land subsidence happened in many regions with 429 

a maximum of 3.1 m in some locations in Tianjin (Zhang et al., 2009). Groundwater recharge has 430 

shifted from surface runoff to irrigation returns owing to the constructions of numerous reservoirs 431 

upstream. Groundwater contamination from rapid increase of nitrate concentrations and 432 

mineralization has expanded from shallow to deep groundwater and such expansion will pose 433 

greater challengers to the freshwater supply in the NCP (Currell et al., 2012). Dried out rivers and 434 

lakes not only damage the surface ecosystem but also reduced the freshwater recharge in the 435 

downstream plain of the NCP. Overexploitation of limited freshwater resources in the deep 436 

aquifers has caused seawater intrusion and soil salinization in the coastal plain, where salinized 437 

cropland has harmed crop growth and led to reduced crop production. 438 
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To address the severe issue of groundwater overexploitation, cropping system adaptation has 439 

already happened. It is reported that farmers have taken wheat fallow in the driest parts of the NCP 440 

based on their own cost-benefit calculations. Policy initiatives aiming to encourage winter fallow 441 

have added momentum to farmers’ own initiatives. In these initiatives, winter wheat was 442 

abandoned and “spring maize planting belt” was established to replace the wheat-maize double 443 

cropping (Feng et al., 2007; Meng et al., 2012; Wang et al., 2016). Although such initiatives would 444 

be able to result in significant groundwater saving if they were widely implemented, a great 445 

concern is about the losses in total grain production. Our research has designed a regional cropping 446 

system adaptation strategy and demonstrated that this adaptation strategy is capable of reconciling 447 

the two policy goals of maintaining current grain production level and recovering local 448 

groundwater table in the North China Plain (NCP).  449 

Under our adaptation strategy, the winter fallow and early sowing summer maize (E-M) 450 

monoculture system is adopted to replace the existing winter wheat-summer maize sequential 451 

cropping (WM-S) system for saving irrigation water in the northern NCP, and the wheat-maize 452 

relay intercropping (WM-R) system is adopted to increase grain production in the southern and 453 

eastern NCP. We have employed DSSAT 4.6 model to evaluate the performances of the E-M, 454 

WM-R, WM-S, and spring maize, in terms of yield and water productivity, based on agro-455 

meteorological observation data at Beijing, Jining and Tangyin sites. We have successfully run a 456 

procedure to allocate one of the E-M, WM-R, WM-S, and spring maize cropping systems to 457 

individual grid-cells across wheat and maize areas of the NCP, with the objective to maximize 458 

groundwater saving in water scarce areas under the constraint of maintaining the current level of 459 

total grain output of the region.  The allocation procedure achieves a position in which the above 460 

two policy goals are reconciled. This reconcilability finding enriches the existing literature and 461 

reveals new rooms for policy makers and stakeholders to address the urgent groundwater 462 

recovering issues in the northern NCP.  463 

Two obstacles must be overcome for our adaption strategy to be practical in the NCP. The 464 

first is mechanization of relay intercropping. Despite of obvious advantage of the WM-R system 465 

in boosting total grain output per unit of land, the lack of progress in mechanization has led to 466 

reduced adoption of the WM-R in last two decades in the NCP (Feike et al., 2012; Zhang et al., 467 

2007; Spiertz, 2010). Fortunately, the “interseeder” machine has been successful developed and 468 

applied for the row relay intercropping of wheat-soybean (Feike et al., 2012), which can also be 469 
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adapted for the wheat-miaze relay intercropping in the NCP. In addition, strip relay intercropping, 470 

which plant different crops in strip instead of row, has been recommended because of its high 471 

cropping efficiency with existing farming machines (Feike et al., 2012). The second obstacle is 472 

that giving up winter wheat production in water scarce areas will cause income loss of the local 473 

farmers involved. However, given the fact that the current practice of groundwater 474 

overexploitation in these areas has to come to an end as soon as possible to avoid irreversible 475 

environmental disaster, active policy efforts are needed to encourage outmigration of cropping 476 

labor force to the non-agricultural sectors, and to promote significant increase in farm scale so as 477 

to raise labor productivity. In the short-run, subside policies can be adopted to encourage farmers 478 

in the water scarce areas to abandon wheat cropping for groundwater recovery (Wang et al., 2016). 479 

Another challenge is that although the existing level of total regional grain production can be 480 

maintained and great amount of water can be saved for groundwater recovery, the reduction of 481 

wheat area in the NCP as suggested by our adaptation strategy will lead to a significant reduction 482 

in total wheat production. To compensate this loss, more wheat needs to be produced in other parts 483 

of the NCP and this is possible as indicated by the observed north-south shift of the winter wheat 484 

growing area in the NCP (Wang et al., 2015). Figure 2 shows that in the southern NCP, irrigation 485 

ratio is much lower than in the northern counterpart. Given the higher rainfall condition and more 486 

available surface water for irrigation, to expand wheat irrigation area in the southern NCP will be 487 

able to increase wheat production without putting pressure to groundwater table. In addition, 488 

winter fallow area can be further reduced in areas with mild water deficit by adopting field water-489 

saving technologies such as deficit irrigation, plastic mulching (Xu et al., 2015; van Oort et 490 

al.,2016) and no-tillage direct broadcasting (Liu et al., 2010). Of course, further study is needed to 491 

accurately quantify the potential benefits of the above-listed measures.  492 

Two limitations of this research are worth mentioning. First, the simulation of relay 493 

intercropping system with crop process models has been severely constrained by data availability. 494 

In our case, due to the lack of field observations of soil temperature and surface wind speed change 495 

during the co-growth period of wheat and maize, the effects of such micro weather conditions on 496 

crop inspiration, soil evaporation, crop growth and yield of wheat and maize are not considered. 497 

For the regional simulations, it is impossible to fully meet the heavy input requirement of the 498 

DSSAT model without some simple assumptions in management practices and such simplification 499 

may limit the regional performance of up-scaled DSSAT model and introduce bias in to the 500 
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estimations of regional irrigation water demand and crop production. Second, existing studies 501 

suggest that the soil water balance simulation method in the DSSAT model needs to be improved 502 

by employing more mechanistic approaches (Soldevilla-Martinez et al., 2014). While potential 503 

water-saving benefit can be estimated from cropping system adaptation using the DSSAT crop 504 

model as we have done in the research, the effects of such water-saving benefits to the groundwater 505 

recharge and local water resources need to be further studied by coupling the DSSAT with regional 506 

hydrological models, which in turn needs more detailed and spatially explicit information on 507 

irrigation sources from surface water and groundwater (Negm et al., 2014; McNider et al., 2015). 508 

  509 
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Table 1. Cultivar coefficients of maize in Sequential double cropping and Relay intercropping 640 

 Sequential double cropping  Relay intercropping  

Parameters 
Beijing 

(CF 024) 
Jining 

(Nongda 108)  
Tangyin 

(Zhengdan 958)  

P1 180 230  277  
P2 0.3 0.4  1.05  
P5 685 830  787  
G2 730 760  711  
G3 8.0 6.0  10.0  

PHINT 44 39  48  

Note: P1: duration of the juvenile phase; P2: photoperiod sensitivity; P5: duration of the reproductive phase; G2: 641 
kernel number; G3: kernel growth rate; PHINT: phyllochron interval. See Jones et al. (2003) for technical details.  642 

Source: Binder et al. (2008), Fang et al. (2010) and our calibration.  643 

 644 

Table 2. Cultivar coefficients of winter wheat 645 

Parameters 
Beijing 

(Jindong 8) 
Jining 

(cv. 93-52) 
Tangyin 

(Zhengzhou 761) 

P1V 35 50 40 
P1D 50 60 40 
P5 500 440 450 
G1 20 27 26 
G2 36 25 40 
G3 1.8 1.5 1.55 

PHINT 95 80 85 

Note: P1V: vernalization; P1D: photoperiod sensitivity; P5: grain filling duration; G1: kernel number; G2: kernel 646 
weight; G3: spike number; PHINT: phyllochron interval. See Jones et al. (2003) for technical details.  647 

Source: Binder et al. (2007), Fang et al. (2010 b), Liu and Tao (2013) 648 
 649 
 650 

  651 
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Table 3. Calibration and validation of relay-intercropped maize at Tangyin site 652 

 
Anthesis day 

(DAP) 
 

Maturity day 
(DAP) 

 
Production 

(kg/ha) 
 

Year Sim Obs MRE  Sim Obs MRE  Sim Att MRE RMSE 

Calibrations  65 68 4.41%  112.5 114 1.32%  9098.5 9190 -0.99% 464.6 

Validations  68 68.5 0.73%  113 117 3.42%  9024.5 9190 -1.80% 282.14 

Note: Calibrations are based on observations in 2002 and 2005. Validations are based on observations of 2006 and 653 
2008. Sim is simulation, Obs is observation, Att is attainable yield, MRE is relative error, RMSE is root mean square 654 
error, DAP is days after planting. 655 

 656 

Table 4. Comparison of the E-M with summer maize under the WM-S regime at Jining and 657 

Beijing sites (2001-2010) 658 

 Jining  Beijing 

 E-M 
(a) 

Summer 
Maize (b) 

Change (%) 
(c = a/b – 1)  E-M 

(d) 
Summer 
maize (e) 

Change 
(f = d/e –1) 

Spring 
maize (g) 

Change (%) 
(h = d/g – 1) 

Yield (kg/ha) 8409.5 6287.5 33.7%  8593.5 6058.6 41.8% 9000 –4.52% 

ET (mm) 390.4 326.7 19.5%  364.4 311.3 17.5% 463.9 –21.5% 

Irrigation 
(mm) 50 50 --  50 50 -- 133 -- 

WUE 
(kg/mm) 20.54 18.24 12.6%  23.58 19.46 21.2% 19.4 21.6% 

Source: Site experiment observations of spring maize are for 2005 and 2006, and reported in Sun et al. (2011). 659 

 660 

  661 
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Table 5. Changes in wheat areas, total grain output, and irrigation water consumption (IWC) 662 

under the regional cropping system adaptation strategy 663 

 Winter fallow area Change in total grain output Change in IWC 

 103 ha 
% of existing 

wheat area 103 ton 
% of existing total 

output 106 m3 
% of existing 

IWC 

Beijing 47.21 22.45 98.5 4.47 -114.04 -18.15 

Tianjin 95.99 48.81 -238.3 -10.91 -251.07 -42.88 

Hebei 1749.26 68.98 -6400.8 -19.80 -4373.02 -57.84 

Jiangsu 0.00 0.00 581.9 13.41 11.59 2.09 

Anhui 0.00 0.00 802.1 13.60 10.96 2.30 

Shandong 336.81 9.30 3364.4 11.18 -572.55 -7.35 

Henan 233.30 7.34 1792.1 8.78 -330.64 -6.11 

NCP total 2462.57 20.45 0.0 0.00 -5618.77 -24.42 

Note: The increased irrigation water consumption by the E-M in comparison with local summer maize leads to the 664 
departure between the percentage change of IWC and that of wheat fallow area. 665 
  666 
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 667 

Figure 1. The North China Plain and observation sites 668 
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 669 
Figure 2. Area ratio of irrigated and rainfed wheat and maize to the total cropland at the county 670 

level in the NCP in year 2000 671 
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 673 

Figure 3. Flow chart for establishing the regional cropping systems adaptation strategy 674 

  675 
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 676 
Figure 4. Observed annual precipitation at Jining, Tangyin and Beijing sites in 1980-2010 677 

 678 

 679 
Figure 5. Average monthly precipitation at Beijing, Tangyin and Jining sites over 1980-2010 680 
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 681 
Figure 6. Area ratio of winter fallow (Left), change of water requirement (Central) and changes in total grain production (Right) at the 682 

county level (2001-2010)  683 

 684 

 685 
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