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Abstract

The Gravity Recovery And Climate Experiment (GRACE) satellite mission provides time-1

variable gravity fields that are commonly used to study regional and global terrestrial total2

water storage (TWS) changes. These estimates are superimposed by different error sources3

such as the north-south stripes in the spatial domain and spectral/spatial leakage errors, which4

should be reduced before use in hydrological applications. Although different filtering methods5

have been developed to mitigate these errors, their performances are known to vary between6

regions. In this study, a Kernel Fourier Integration (KeFIn) filter is proposed, which can sig-7

nificantly decrease leakage errors over (small) river basins through a two-step post-processing8

algorithm. The first step mitigates the measurement noise and the aliasing of unmodelled9

high-frequency mass variations, and the second step contains an efficient kernel to decrease the10

leakage errors. To evaluate its performance, the KeFIn filter is compared with commonly used11

filters based on (i) basin/gridded scaling factors and (ii) ordinary basin averaging kernels. Two12

test scenarios are considered that include synthetic data with properties similar to GRACE13

TWS estimates within 43 globally distributed river basins of various sizes and application of14

the filters on real GRACE data. The KeFIn filter is assessed against water flux observations15

through the water balance equations as well as in-situ measurements. Results of both tests16

indicate a remarkable improvement after applying the KeFIn filter with leakage errors reduced17

in 34 out of the 43 assessed river basins and an average improvement of about 23.38% in leakage18

error reduction compared to other filters applied in this study.19
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1. Introduction

Since 2002, the Gravity Recovery And Climate Experiment (GRACE) satellite mission21

has been providing time-variable global gravity field solutions (Tapley et al., 2004). These22

variations are primarily caused by temporal changes in the gravity field due to changes in23

hydrology, ice masses of the cryosphere, or surface deformation, e.g., glacial isostatic adjustment24

(GIA). Within a temporal and spatial resolution of respectively one day to one month and a25

few hundred kilometers, GRACE products have proved to be very useful for various geophysical26

and hydrological studies (see, e.g., Kusche et al., 2012; Wouters et al., 2014, for applications).27

In particular, the so-called level 2 (L2) time-variable gravity fields are widely used to quantify28

global (e.g., Rodell et al., 2004; Eicker et al., 2016; Kusche et al., 2016) and regional (e.g.,29

Chen et al., 2009; Awange et al., 2014; Munier et al., 2014; Khaki et al., 2017a,b) terrestrial30

total water storage (TWS) changes, i.e., the sum of changes in surface and sub-surface water31

storage compartments. GRACE products are also applied to estimate changes of the terrestrial32

water cycle (e.g., Ogawa et al., 2011; Eicker et al., 2016) or to validate the water cycle in33

atmospheric reanalyses (e.g., Springer et al., 2014; Kusche et al., 2016; Forootan et al., 2017).34

Combined with information observed from other monitoring techniques (e.g., GPS and satellite35

altimetry) or simulations by land surface models, L2 products are applied to estimate surface36

(e.g., lakes and rivers) and subsurface (e.g., soil moisture and groundwater) storage changes at37

(river) basin scales (e.g., Syed et al., 2005; Longuevergne et al., 2010; Famiglietti et al., 2013;38

Forootan et al., 2014b).39

GRACE L2 products are provided in terms of potential spherical harmonic coefficients,40

e.g., up to degree and order 60 or 90, which mainly represent the large- to medium-scale (e.g.,41

few hundred km) time-variable gravity changes. However, the L2 potential coefficients contain42

different types of errors. A part of these errors is related to colored/correlated noise due to the43

anisotropic spatial sampling of the mission, instrumental noise (K-band ranging system, GPS,44

and the accelerometer observations and star cameras), and temporal aliasing caused by the45

incomplete reduction of short-term mass variations by models (Forootan et al., 2013, 2014a;46

Dobslaw et al., 2016). These errors are manifested as north-south striping patterns in the47

spatial domain (e.g., gridded TWS products). The application of smoothing techniques with48
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the primary aim of removing the stripes can lead to spatial leakages. The spatial averaging49

introduced by the smoothing kernels such as the Gaussian Kernel in Jekeli (1981) or non-50

Gaussian Kernels in Kusche (2007), results in spatial interference of mass anomalies. These51

leakage errors do not allow for perfect separation of gravity anomalies, e.g., between land and52

oceans, and limit the detection of small-scale hydrological signals. The accuracy of GRACE53

TWS estimation is very important for hydrological applications especially at the basin scale,54

e.g., to interpret redistribution of water storage or to indicate drought and flood patterns (e.g.,55

Yeh et al., 2006; Longuevergne et al., 2010; Awange et al., 2016). Therefore, better post-56

processing of GRACE data must be applied to improve consistencies between various types of57

products that are usually used for studying the water cycle (e.g., Eicker et al., 2016).58

Different filtering methods have been proposed to reduce north-south striping errors, such59

as the isotropic Gaussian filter (Jekeli, 1981) and anisotropic filters (e.g., Swenson and Wahr,60

2006; Kusche, 2007; Klees et al., 2008). A comprehensive review on filtering techniques has61

been done e.g., by Frappart et al. (2016). The isotropic Gaussian filter Jekeli (1981) is a62

degree-dependent filter in the spectral domain and bell-shaped filter in the spatial domain.63

Anisotropic filters, on the other hand, are introduced to deal with the correlated errors between64

the coefficients of L2 products (e.g., different marginal shapes in the north-south and the east-65

west directions). In general, filtering techniques that spatially smooth the L2 signal contents66

(e.g., Wahr et al., 2006; Kusche et al., 2009) down-weight L2’s higher degree and order potential67

coefficients. Although these filters reduce noises, their main problem is that they also attenuate68

the signals. In addition, the application of filtering moves gravity anomalies from one region to69

another region. Generally speaking, after applying a smoothing kernel some parts of the signals70

inside an area of interest leak out from it or alternatively signals from outside leak into the71

area of interest (e.g., Chen et al., 2007; Baur et al., 2009). These issues become more critical72

for basin-scale studies, especially where the sizes of the basins are small in comparison to the73

spatial resolution of GRACE (e.g., Yeh et al., 2006; Longuevergne et al., 2010).74

Several methods have been put forward to mitigate spatial leakage effects in TWS estima-75

tions from L2 products. These methods can largely be categorised into the following three76

groups (i) those that numerically estimate the leakages (leakage in and out) using the averaging77

kernels (e.g., Seo and Wilson, 2005; Baur et al., 2009; Longuevergne et al., 2010), (ii) those78

that are based on scaling factors derived from synthetic data (e.g., Landerer and Swenson,79
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2012; Long et al., 2015), and (iii) those that use inversion for simultaneous signal separation80

and leakage reduction (e.g., Wouters et al., 2007; Frappart et al., 2011; Forootan et al., 2014b;81

Frappart et al., 2016). From the first group, Swenson and Wahr (2002) developed an isotropic82

kernel using a Lagrange multiplier filter to best balance signal and leakage errors over a basin of83

interest. A non-isotropic Gaussian filter proposed by Han et al. (2005) to improve spatial resolu-84

tion during the filtering process also belongs to this group. In another effort, Harig and Simons85

(2015) used Slepian-function analysis to decrease leakage effects in Antarctica by maximizing86

signal energy concentration within the area of interest. The second category uses synthetic87

data, e.g., from land surface models (LSMs) or hydrological fluxes to derive scaling factors that88

can be multiplied by GRACE filtered products to recover the lost signals. In this approach,89

efforts are focused on the application of the same filtering techniques to the synthetic data90

(that is close enough to the signal contents of GRACE products). Basin-averaged or gridded91

scale factors are usually estimated as the solution of a least squares adjustment that compares92

data before and after application of the filter. Landerer and Swenson (2012) estimated gridded93

scaling factors for GRACE TWS anomalies to restore the signals lost after applying a regular94

smoothing filter (a Gaussian smoothing kernel). A similar study that uses a different spatial95

scale (basin averages) has been performed by Long et al. (2015) who estimated scale factors96

using a global hydrological model over the Yangtze River Basin in China. A possible drawback97

of this approach is its dependency on the reliability of the hydrological model used to estimate98

the desired scale factors. The inversion techniques in (iii) also require a prior information about99

mass changes within different storage compartments. The dependency of final signal separation100

results on these information has not been reported yet.101

To address the above problems arising from the application of filtering methods, the present102

study proposes a new filtering method, Kernel Fourier Integration (KeFIn), which is designed103

to reduce both types of above-mentioned errors using a two-step algorithm. In the first step,104

the advantages of image processing techniques such as motion filters (e.g., Hichri et al., 2012;105

Zhang et al., 2009) are exploited to reduce the measurement noise and aliasing of unmodelled106

high-frequency mass variations. This attempt is designed to keep as much of the higher fre-107

quency information as possible. It should be mentioned here that, although the proposed KeFIn108

filter has less effect on high-frequency signals compared to the existing methods, some signal109

inferences still exist mainly due to the truncation of degree and order in L2 products. In the110

second step of the KeFIn filter, the leakage problem is mitigated using an anisotropic kernel to111
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isolate the signals in the basin of interest. The main idea of this step is to combine the Fourier112

transform and basin kernel functions to increase the strength of the attenuated signals. It will113

be shown in the following that the KeFIn filter is suited to deal with basins of various shapes114

and sizes.115

The primary objectives of this study is developing a filter for (i) dealing with colored/correlated116

noise of high-frequency mass variations (i.e., stripes); and (ii) reducing basin scale spatial leak-117

age errors for hydrological applications. These objectives are addressed by introducing novel118

methodologies discussed in Section 3.1.1 and 3.1.2, respectively. The performance of the intro-119

duced filtering method (KeFIn) in terms of leakage reduction is compared with commonly used120

methods that deal with leakage problem from the basin averaging kernel and the model-based121

scaling factor groups. For this purpose, both real and synthetic data sets are employed. The122

purpose of using synthetic data is to provide a more accurate evaluation of the newly proposed123

method in comparison to existing methods (e.g., Seo and Wilson, 2005; Chen et al., 2009).124

Therefore, we generate synthetic data in 43 globally distributed basins and use them to exam-125

ine the performance of the proposed KeFIn and other commonly used filters. These filters are126

further assessed using water flux observations in the context of the water balance equation (see127

Equation 1 in Section 2.3), as well as by comparisons with in-situ measurements.128

2. Data129

2.1. GRACE130

Monthly GRACE L2 products along with their full error information are computed at the131

Technical University of Graz known as the ITSG-Grace2014 gravity field models (Mayer-Gürr132

et al., 2014). We use these products and their full covariance errors up to degree and order 60133

covering the period 2002–2013 (https://www.tugraz.at/institute/ifg/downloads/gravity-field-134

models/itsg-grace2014). Degree 1 coefficients are replaced with those estimated by Swenson et135

al. (2008) to account for the movement of the Earth’s centre of mass. Degree 2 and order 0 (C20)136

coefficients are replaced by those from Satellite Laser Ranging solutions owing to unquantified137

large uncertainties in this term (e.g., Chen et al., 2007). We also account for the post glacial138

rebound by incorporating the corrections provided by Geruo et al. (2013). The L2 gravity139

fields are then converted to 1◦×1◦ TWS fields following the approach of Wahr et al. (1998).140
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To evaluate the filtering techniques, no smoothing filter is applied at this stage on GRACE L2141

products.142

2.2. Synthetic data143

In order to assess the efficiency of different filtering methods considered in this study, they144

are applied on synthetic data whose advantage is the possibility to unambiguously estimate145

leakage errors since the applied post-processing techniques must replicate the synthetic input146

data. For this purpose, the world’s 43 major river basins with diverse sizes and shapes located147

at different places around the Earth are chosen (see Figure 1). A large number of signifi-148

cantly different basins helps us to properly investigate the efficiency and reliability of the newly149

proposed KeFIn filter.150

0

1

Figure 1: Shapes, sizes and locations of the world’s 43 major river basins (red borders and green areas) used in

this study.

For synthetic TWS data, a summation of monthly (1◦×1◦) soil moisture, snow, and the151

canopy water storage from the Global Land Data Assimilation System (GLDAS) NOAH (Rodell152

et al., 2004) over 2003 - 2013 is used (http://giovanni.sci.gsfc.nasa.gov/). Following Wang et al.153

(2006), the TWS fields are converted to potential spherical harmonic coefficients up to degree154

and order 120. Only those coefficients that are up to degree and order 60 are used to generate155

similar spectral content as the real GRACE L2 products. These data are perturbed by north-156
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south striping errors using the full covariance matrix of ITSG-Grace2014 products. Using the157

Cholesky decomposition method, the monthly covariance matrices are split into their upper158

triangular and their conjugate transpose matrices. By multiplying each of the upper triangular159

matrices with a column of the unit random matrix, the GRACE-type realizations of monthly160

errors are generated (see, e.g., Forootan and Kusche, 2012; Kusche et al., 2016). GLDAS TWS161

outputs are also used to compute model-derived scale factors using forward modelling following162

Long et al. (2015). These hydrological datasets have also been used to estimate gridded gain163

factors following Landerer and Swenson (2012). Results of these filters will be compared to the164

KeFIn filtering approach (see Section 4.1).165

2.3. Auxiliary data sets166

Recently developed Mass Concentration blocks (mascons) data (http://grace.jpl.nasa.gov)167

provided by Jet Propulsion Laboratory (JPL) are used to analyze their correlation to our esti-168

mation from L2 products as shown in the Appendix. The monthly JPL RL05M Mascon solution169

is post-processed liquid water equivalent thickness data using a Coastline Resolution Improve-170

ment (CRI) filter to separate the land and ocean portions of mass (Wiese, 2015; Watkins et171

al., 2015). We apply land-grid-scaling coefficients provided with the data to water equivalent172

thicknesses in 1◦×1◦ spatial resolution. These filtered data are compared with the results of173

filters applied in this study.174

In addition, the temporal derivative of filtered GRACE data, known as total (hydrological)175

water fluxes (TWF) is compared with measured precipitation (P ), Evapotranspiration (ET ),176

and surface water discharge (or runoff, R) through the water balance equation below:177

dS/dt = TWF = P − ET −R, (1)

where the dS/dt represents TWF derived from the ITSG-Grace2014 products following the178

procedure in Eicker et al. (2016). The assessment in Equation 1 requires additional hydro-179

logical water flux measurements, which are not easily accessible globally. Eight river basins180

are selected to perform this assessment, i.e., the Amazon (South America), Mekong (Southeast181

Asia), Arkansas-White (North America), Ohio (North America), Lachlan (Australia), Namoi182

(Australia), Lower Mississippi (North America), and Macquarie-Bogan (Australia) basins. We183

use water fluxes data from both satellite remotely sensed and ground-based data. P is obtained184

from the Tropical Rainfall Measuring Mission (TRMM 3B43-v7, Huffman et al., 2007, from185
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http://pmm.nasa.gov/data-access/downloads/trmm), and ET from Moderate the Resolution186

Imaging Spectroradiometer (MODIS-MOD16; the University of Montana’s Numerical Terra-187

dynamic Simulation group). In addition, in-situ water discharge data sets are provided from188

different sources including the Global Runoff Data Centre (GRDC), the United States Geolog-189

ical Survey (USGS), hydrological and biogeochemical alteration and material transfers in the190

Amazon Basin (HYBAM, from http://www.ore-hybam.org/) that publish originally collected191

data by Brazilian Water Agency (ANA, http://www.snirh.gov.br/hidroweb/), New South Wales192

(NSW) Government for the Upper Murray river basin (from http://waterinfo.nsw.gov.au/), and193

China Hydrology Data Project (Henck et al., 2010; Schmidt et al., 2011).194

Each dataset is associated with a level of uncertainty and varies for different basins due to195

the diverse climatological condition. A number of studies has investigated the validity of above196

observations over various basins, e.g., Cai et al. (2012), Yan et al. (2014), Awange et al. (2016)197

for TRMM, as well as Velpuri et al. (2013), Ramoelo et al. (2014), and Miralles et al. (2016) for198

MODIS products. Precipitation errors highly depend on temporal and spatial resolution (Chen199

et al., 2008). Uncertainty in measuring precipitation over lands are smaller compared to oceans200

since satellite data are merged with in-situ stations that are distributed over the continents.201

The major source of uncertainty in MOD16 is the misclassification of landcover types from202

the MODIS land cover products, scaling from flux tower to landscape, and other algorithm203

limitations (Ramoelo et al., 2014). Evaluation of MODIS data in previous studies (e.g., Zhang204

et al., 2010; Mu et al., 2011) have shown a good agreement between the data and eddy flux205

tower observations. The consideration of associated errors to the observation for imbalance206

problem in water budget closure (using Equation 1) is beyond the scope of this study, and the207

post-processing is restricted to filtering out the highly noisy measurements.208

2.4. In-situ Measurements209

Groundwater in-situ measurements are used to assess filters’ results. To this end, we210

provide bore stations datasets over the Arkansas-White, Ohio, and Lower Mississippi basins211

within the Mississippi Basin from USGS and Lachlan, Namoi, and Macquarie-Bogan basins212

within the Murray-Darling Basin from New South Wales (NSW) Government. The distribu-213

tion of groundwater in-situ stations is presented in Figure 2. Monthly well measurements are214

acquired and time series of groundwater storage anomalies are generated. Generally, a specific215

yield is required to convert well-water levels to variations in groundwater storage (GWS) in216
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terms of equivalent water heights (Rodell et al., 2007; Zaitchik et al., 2008). Following Strass-217

berg et al. (2007), we use an average (0.15) of specific yields ranging from 0.1 to 0.3 (suggested218

by Gutentag et al., 1984) over the Arkansas-White, Ohio, and Lower Mississippi basins, and219

0.13 specific yield from the range between 0.115 and 0.2 (suggested by the Australian Bureau220

of Meteorology (BOM) and Seoane et al., 2013) for the Lachlan, Namoi, and Macquarie-Bogan221

basins.222

Furthermore, we use in-situ soil moisture (SM) measurements obtained from the moisture-223

monitoring network (http://www.oznet.org.au/), as well as International Soil Moisture Network224

(https://ismn.geo.tuwien.ac.at/). These data provide long-term records of measured volumetric225

soil moisture at various soil depths for distributed stations (cf. Figure 2). For each station and226

each depth, soil moisture anomalies over the study period are calculated. Following Strassberg227

et al. (2009), data for stations with shallow measurements are upscaled using soil moisture228

data from deeper stations. We then calculate average soil moisture storage anomalies from229

all stations within a 1◦×1◦ cell. The same averaging process is done for groundwater mea-230

surements. Afterwards, area-weighted anomaly of groundwater and soil moisture are used to231

achieve GWS+SM. We use these GWS+SM, following Strassberg et al. (2009) and Longuev-232

ergne et al. (2010), to evaluate the performance of different filters considered in this study. This233

method does not account for snow water equivalent, canopy, and surface water storages due234

to their small contribution in TWS over the Mississippi (less than 5%, e.g., Strassberg et al.,235

2007) and Murray-Darling (less than 6%, e.g., BOM and Burrell et al., 2015) basins. In addi-236

tion to GWS+SM, we also compare the results with only GWS by computing their correlation237

coefficients (see details in Section 4.2).238
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Figure 2: Distribution of groundwater (red crosses) and soil moisture (cyan circles) stations over the six selected

river basins of Arkansas-White, Lower Mississippi, Ohio, Macquarie-Bogan, Namoi, and Lachlan basins.

3. Methods239

In this section, first, details of the proposed KeFIn technique are discussed. Afterwards,240

the other implemented filters including four filters based on the basin averaging approach and241

two filters that use scale factors’ are presented. These techniques are chosen due to their242

popularity in hydrological studies.243

3.1. Kernel Fourier Integration (KeFIn) Filter244

3.1.1. The KeFIn Method - First Step245

The KeFIn approach follows a straight forward image processing technique, which has246

been widely applied to geophysical images to enhance their visual interpretation and geologi-247

cal understanding (Zhang al., 2005). The application of image enhancement methods is also248

beneficial for users that are less familiar with processing and filtering the standard GRACE L2249

products. The KeFIn includes two processing steps: (1) designing a 2D destriping filter in the250

spectral domain, and (2), defining an efficient averaging kernel to estimate basin average TWS251
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and at the same time decreasing the leakage-in and -out in the grid domain. A 2-D filter in the252

spectral domain (Hichri et al., 2012; Zhang et al., 2009) is defined as:253

G(u, v) = F (u, v) ·H(u, v), (2)

where G(u, v) stands for a Fourier transform of the noisy TWS fields with u and v being spatial254

frequencies, F denotes a Fourier transform of the ideal (unperturbed) signal (here the ‘signal255

part’ or the ‘true’ TWS values), H is a Fourier transform of a 2-D smoothing kernel to suppress256

the ‘noise’ part of the observations, and the dot represents the matrix multiplication. Ideally,257

F can be estimated by applying an inverse filtering if G and H are known.258

In general, however, the information on H does not exist, and its determination usually259

requires some trial-and-error procedures. Besides, noise in data sets can be amplified leading260

to the destruction of previous attempts made in reconstructing the TWSs. One solution for261

restoring F is to use the Wiener Filter (Wi) as F = Wi · G, which allows to use an averaging262

kernel as H to estimate F . Here, a motion filter is used as an averaging kernel (H) to mit-263

igate the south-north stripping problem with different smoothing lengths, which provides us264

a convolutive filter with different averaging. More detail on creating the kernel with various265

smoothing lengths can be found e.g., in Bhagat and Gour (2013) (see Equation 5). The impact266

of smoothing length on the final TWS estimations is presented in Section 4.1.267

Thereafter, F can be estimated using H and the Wiener Filter process as:268

F (u, v) =
|H(u, v)|2 ·G(u, v)

|H(u, v)|2 ·H(u, v) +K
, (3)

where K is a signal to noise ratio (Le Roux et al., 2010). A suitable estimate for K can be269

derived as:270

K = SG/SF , (4)

where SG is estimated from the power spectral density of the noisy observed signal (G), and271

SF is derived from the power spectral density of the ideal (unperturbed) signal (F ). The main272

difference between the new filter and an ordinary Gaussian filter at this stage is the inclusion273

of the parameter K, which makes Wiener filter more robust and better suited to reduce high-274

frequency spatial patterns that likely correspond to high magnitude striping patterns. Besides,275

it introduces a reasonable trade off that minimizes errors of the smoothing process. In order to276

calculate K in Equation 4, SG is derived from G. For SF , where no information of ideal signal277
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F exists, one can estimate the power spectral density of TWS estimated from a hydrological278

model and use the mean/median of the estimated powers of SF (see details in Pitas, 1993).279

Alternatively one can derive SF by trial-and-error from a range of values (here [0 10]) to control280

the smoothness of the output, e.g., when the signal is very strong relative to the noise, selecting281

K ≈ 0 yields less smoothed signals. Different values ofK and their impacts on the smoothness of282

TWS estimations are discussed in Section 4.1. Here, we also use average model TWS estimates283

from GLDAS NOAH during the study period to compare with the value of K obtained through284

trial-and-error. The proposed scheme retains most of the high-frequency (spatial) changes that285

are usually over-smoothed by an ordinary smoothing process (Sonka et al., 2001).286

3.1.2. The KeFIn Method - Second Step287

In the second step of the KeFIn filter, we try to mitigate the problem that arose from288

the previous stage, i.e., leakage effects caused by spatial smoothing. In what follows, first,289

spatial averaging and the leakage problem are discussed, then a kernel is defined to reduce the290

leakage-in and leakage-out errors at the same time. Spatial averaging (Equation 5) is usually291

applied for improving surface mass anomalies within a specific area (Swenson and Wahr, 2002;292

Longuevergne et al., 2010; Vishwakarma et al., 2016),293

FR =
1

R

∫
F hdΩ, (5)

where,294

R =

∫
h dΩ, (6)

and FR is the change in vertically integrated water storage averaged over the region of interest,295

shown by R, with the integrals done on a sphere. In both equations, h is a basin kernel with296

values 1 inside the basin and 0 outside of it as,297

h(X) =


1 if X ∈ R

0 if X ∈ Ω−R.
(7)

X refers to the positions on the surface of the Earth and Ω refers to the entire Earth’s surface.298

Let us assume that F̄ is derived after applying a filter (that contains smoothing) in step 1. The299

smoothing moves signals both inside and outside of the basin. In the following, we start by300

separating the signal F inside and outside the basin and investigate the effects of smoothing301

leading to F̄ .302
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The whole water storage changes can be written as a summation of water storage signals303

inside and outside the basin following Vishwakarma et al. (2016) represented by the terms Fh304

and F (1− h), respectively, in Equation 8 as,305

F = F h+ F (1− h),

= FR + F1−R. (8)

This is equal to Equation 9 after applying the smoothing procedure from the first step, i.e.,306

F̄ = F̄l + F̄l
∗
, (9)

where F̄l is the smoothed signals inside the basin (with leakage out effects) and F̄l
∗

refers to307

the smoothed signals outside the basin (with leakage in effects). By multiplying both sides of308

Equation 9 by h (Equation 10) and (1−h) (Equation 11), we achieve the filtered water storage309

over the region R and outside of it (1−R).310

F̄R = F̄lR + Eleakage in, (10)

F̄1−R = F̄l
∗
1−R + Eleakage out. (11)

Considering that F̄lR and F̄l1−R are the attenuated signals of FR and F1−R, Longuevergne et311

al. (2010) showed that they are related using a scaling factor s. For signals inside the basin312

(the same approach can be used for signals outside the basin), it can be shown that,313

FR = s F̄lR, (12)

s =

∫
h dΩ∫
h h̄ dΩ

, (13)

with h̄ derived by smoothing h. Equation 10, thus, can be rewritten as,314

FR = s (F̄R − Eleakage in). (14)

To be able to estimate FR, one needs to calculate the leakage error (Eleakage in) first. To this315

end, we developed a kernel to account for both leakage in and leakage out errors. The proposed316

method looks for stronger anomalies outside the basin (for leakage in) and inside the basin317

(for leakage out). The definition starts by creating a kernel expressed in terms of spherical318

harmonics as:319 (
υclm
υslm

)
=
∑
θ

∑
φ

ψ(θ, φ)P̃lm(cos(θ))

(
cos(mφ)

sin(mφ)

)
sin(θ). (15)
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In Equation 15, P̃lm are the normalized associated Legendre functions, υclm, υslm represent the320

spherical harmonic coefficients and the summation covers the entire surface of the Earth. The321

definition of the mask filter ψ is very important and different literatures have found various322

methods to implement this. For example, Seo and Wilson (2005) use a Gaussian filter to smooth323

mentioned kernel inside a basin (for B1 and B2 in their study). Swenson and Wahr (2003)324

applied Lagrange multiplier rather than a Gaussian filter. Here, we use a different definition325

and instead of simply having a value 1 inside a basin, the method tries to maximize signals326

concentrated in different regions while decreases their effects on the surrounding signals. For327

the leakage in effect, ψ contains values outside the basin with special focus on strong anomalies328

while for the leakage out effect, it considers values inside the basin again with a concentration329

on strong anomalies. Accordingly, the mask filter ψ is defined through the following procedure.330

Note that in the following, we consider F̄ (the smoothed signal from step 1) as a 2D matrix331

and apply an image processing procedure (as follow) to extract strong signals.332

A: The calculated F̄ in the first part of the filtering process is used to create F̃ as a measure333

of spatial variability of GRACE TWS.334

F̃ = (
(F̄ −min(F̄ ))

(max(F̄ )−min(F̄ ))
). (16)

Then, the 2D intensity matrix (I),335

I =


1 if F̃ > Sb

0 if F̃ < Sb,

(17)

can be used to identify strong anomalies using the normalised F̄ (given by F̃ ). The336

threshold Sb in Equation 17 is chosen to be a value within [0 1]. Often the median337

of F̃ can be a good choice for Sb. A smaller Sb yields a smoother intensity matrix that338

controls the mass anomalies being considered in the averaging, and which is less weighted.339

Different values of Sb are tested in this study and their results are reported in Section 4.1.340

B: A high pass filter, e.g., Laplacian filter (Gonzalez and Woods, 1992, 2002) using Equa-341

tion 18, is applied to intensify strong anomalies (found in [A]) and reduce their effects on342

surrounding anomalies.343

L =
1

sinθ

∂

∂θ
(sinθ

∂I

∂θ
) +

1

sin2θ

∂2I

∂φ2
. (18)
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C: Convolving the filtered matrix L with a Gaussian filter (W in Equation 19), which can344

be applied with different averaging radii. Smoothing is applied because converting the345

basin kernel from spatial to spectral domain introduces short-wavelength errors due to the346

Gibbs effect and introduces artificial fluctuations around the high contrast edges (Zeng347

and Allred, 2009).348

L̄ =

∫
W (θ, φ, θ′, φ′)L(θ′, φ′) dΩ′, (19)

In Section 4.1, the impact of the smoothness on the final averaging values is assessed. It should349

be mentioned here that this step is not restricted to the application of a Gaussian filter, and350

one can use anisotropic filter such as the DDK smoothing filters proposed by Kusche et al.351

(2009). Nevertheless, in the following we only discuss the application of Gaussian smoothing352

for the sake of simplicity.353

(a) (b)

(c) (d)

Figure 3: A schematic view of the steps for preparing ψ in [A]-[C] described above. (a) shows the initial

unperturbed signal, (b) represents the smoothed signal from the first step of the filter (applied with the motion

length of 60), (c) is I in step [A] using Sb = 0.5, and (d) depicts the kernel ψ created by r = 300 km.

The mask filter ψ is then calculated by ψ = 1 + L̄, which can be used in Equation 15 to354

estimate υclm and υslm. Figure 3 illustrates a schematic performance of the three steps above.355
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The final form of the basin kernel (υ) is built as,356

υ(θ, φ) =
1

4π

∞∑
l=0

l∑
m=0

{υclmcos(mφ) + υslmsin(mφ)}. (20)

The created kernel is multiplied by the smoothed field from the first step to estimate FN using,357

358

FN = F̄ ◦ υ, (21)

where the operator ◦ performs a pixel-wise multiplication. Once FN is computed, it is used359

rather than F to estimate leakage in and leakage out (Equations 22 and 23). To estimate the360

leakage in, we only consider FN outside the basin and apply smoothing to capture its effect361

inside. A similar process can be done to compute the effect of leakage out by only considering362

anomalies inside the basin. The smoothing in these procedures can be done by applying either363

the same smoothing procedure as the first step of the proposed filter or using a Gaussian filter,364

e.g.,365

Eleakage in =
h(θ, φ)

4π

∫
W (θ, φ, θ′, φ′) (1− h(θ′, φ′))FN (θ′, φ′) dΩ′, (22)

Eleakage out =
1− h(θ, φ)

4π

∫
W (θ, φ, θ′, φ′)h(θ′, φ′)FN (θ′, φ′) dΩ′. (23)

The estimated Eleakage in is used in Equation 14 to obtain the averaged water storage over the366

region of interest. The example of the KeFIn filter performance in the second step is presented367

in Figure 4. Synthetic signals are produced in the spatial domain (Figure 4a) and are smoothed368

using an ordinary Gaussian filter (Figure 4b). The application of the KeFIn with two different369

sets of parameters are shown in Figures 4c and 4d. The effects of the filter are clearly visible370

from the reduction of signals interferences caused by leakage. Implementing the filter with371

various Gaussian filter sizes (r) and different Sb (as in Equation 17) yields different results.372

Detailed results that indicate the filter’s sensitivity to different parameters are presented in373

Section 4.1. Figure 5 provides a flowchart that summarizes the filter process using the KeFIn374

algorithm.375

3.2. Basin Averaging Kernel Methods376

Averaging using basin functions or basin kernels is a common approach for estimating377

basin scale TWS (see e.g., Swenson and Wahr, 2002). The kernel h (cf. Equation 7) can378

be expanded in terms of spherical harmonic coefficients and subsequently combined with L2379
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(a) (b)

(d) S  = 0.50, r = 100bS  = 0.25, r = 300b
(c)

Figure 4: Performance of the second step of the KeFIn filter based on synthetic data. (a) Initial TWS anomalies,

(b) smoothed TWS using a Gaussian filter with the half-width radius of 500 km. (c) and (d) represent the

performance of the KeFIn filter with different factors of Sb and r (half width radius in kilometre). In this figure,

we show how the KeFIn filter tries to reproduce the signals in (a) based on the smoothed signal (b), which result

in (c) and (d).

potential coefficients to obtain basin averaged GRACE TWS estimates (see e.g., Swenson and380

Wahr, 2003, and more details in Section 3.1). Different kernel averaging methods will likely381

result in different signal attenuation and displaced mass anomalies based on the shape and size382

of the basins (Werth et al., 2009). Swenson and Wahr (2002) introduced the spatial averaging383

kernel for regional studies that try to minimize leakage errors coming from outside into the area384

of interest by isolating the signals inside the area (see also Swenson and Wahr, 2003). Their385

approach reduces short wavelength effects using a smooth averaging kernel with less power on386

short wavelengths using Lagrange multiplier rather than applying a Gaussian filter. For the387

Lagrange Multiplier method, we apply a smoothing radius of 300 km. Furthermore, we use388

a time-dynamic filter proposed by Seo and Wilson (2005). Here we use filter number three389

(from four types of their filters), which can be directly applied to GRACE L2 products. This390

is a dynamic filter that scales spherical harmonic coefficients using the ratio of signal variance391
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Figure 5: Flowchart of the proposed KeFIn filtering process.

and signal plus noise variance that employs a least squares optimum approach. The method is392

based on the Lagrange Multiplier Method (Swenson and Wahr, 2003) while assuming that the393

root-mean-square (RMS) of the signal over the target basin is known from GLDAS model (for394

more details, see Seo and Wilson, 2005; Seo et al., 2006). Here we use GLDAS NOAH for this395

purpose.396
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In a different approach, Han and Simons (2008) tried to maximize the ratio of the energy397

of the function within the target region (h) by constraining regional contributions to global398

spherical harmonics spectra based on Simons and Hager (1997). They argued that the resulted399

localized coefficients increase the signal-to-noise ratio. This method is also applied in the present400

study with the spectrum band-limited to spherical harmonic degree and order of 25.We also401

use a data-driven approach recently introduced by Vishwakarma et al. (2016), where leakage in402

and out are separately solved using a catchment mask and a filter kernel. A Gaussian filter of403

half width radius of 350 km (following Vishwakarma et al., 2016) is used to suppress the noise404

before implementing this approach in the present study. The data-driven filter is sensitive to405

basin sizes in a way that noise increases as the catchment size decrease (see Vishwakarma et406

al., 2016, for more details).407

3.3. Scaling Factor Methods408

Landerer and Swenson (2012) suggested the use of a scaling (gain) factor, which can409

be multiplied with filtered GRACE TWS estimates. In this study, monthly simulations of the410

GLDAS NOAH are used as synthetic input TWS (a summation of snow water equivalent, canopy411

water storage, soil layers, and surface water) to estimate scaling factors following Landerer and412

Swenson (2012) as in Equation 24, where the goal is to find the scaling factor α by minimising413

the quadratic sum of difference M between original (4ST ) and filtered (4SF ) GLDAS TWS414

fields, i.e.,415

M =
∑

(4ST − α4 SF )2. (24)

Following Landerer and Swenson (2012) and Long et al. (2015), synthetic TWS data is416

converted to spherical harmonics and truncated at degree and order 60. We then apply the417

destriping procedure after Swenson and Wahr (2006) and a 300 km Gaussian filter to smooth418

high-degree and order noises. The model-derived TWS estimates before (4ST ) and after (4SF )419

filtering are used to calculate scaling factors. In this study, two methods of scaling factors at420

grid points and basin scale are computed and used for comparison with the newly developed421

KeFIn and other filtering techniques. All filters used in this study are presented in Table 1.422
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Table 1: A summary of the implemented GRACE leakage filtering methods, which are used in this study for

comparison with the proposed KeFIn filter.

Study Method Case Study Evaluation Method Abbreviation ∗

Swenson and

Wahr (2002)

Lagrange multiplier method Mississippi River Basin Using synthetic GRACE data F1

Han and Simons

(2008)

Localization of Global Geopotential Fields Java/Sunda trench Using seismic model based

data

F2

Seo and Wilson

(2005)

B1, B2, B3, and B4 Amazon, Mississippi, Lena,

Huang He and Oranje Basins

Using synthetic GRACE data F3

Landerer and

Swenson (2012)

Gridded gain factor 46 globally distributed basins GLDAS data F4

Landerer and

Swenson (2012)

Single gain factor 46 globally distributed basins GLDAS data F5

Vishwakarma et

al. (2016)

Data-driven approach 32 globally distributed basins Closed-loop environment us-

ing monthly GLDAS fields

F6

The present study Kernel Fourier Integration (KeFIn) 43 globally distributed basins Using synthetic data and soil

moisture + groundwater data

KeFIn

∗ In the last column, the abbreviations are assign to the filters we use in the present study.

3.3.1. Application Example of the Proposed KeFIn Filter423

First, the performance of the KeFIn filter with respect to both leakage-in and leakage-424

out errors is assessed, for which two tests are performed that correspond to each type of error425

(leakage-in and leakage-out). Setup (i), the signal is only introduced inside a basin and GRACE-426

like TWS noise is added as described in Section 2.2. A 300 km half width radius Gaussian filter427

(Jekeli, 1981) is then applied to smooth the introduced signals and noises, which causes signal428

leakage outside the basin. Setup (ii), TWS signals are introduced only outside a basin to assess429

the leakage-in effects. The KeFIn filter is applied to post process both scenarios as shown in430

Figure 6. In Figure 6a bottom, the blue line represents the introduced synthetic TWS while431

the green lines show the signal after the application of a Gaussian filter. In Figure 6a, the432

results correspond to a cross section at 3◦S that passes the Amazon basin, South America, and433

in Figure 6b, they correspond to a cross section at 41◦N crossing the Huang He Basin, China.434

The results clearly indicate that the Gaussian filter attenuates the original signal and causes435

leakage-out and leakage-in effects shown in Figures 6a and 6b, respectively. The smoothed436

signals of the KeFIn filter are shown by the red lines, which in both cases better follow the437

initial TWS (blue lines). It is worth mentioning that if there was no striping noise added to438

the signal, the red curve (KeFIn) would have closely reproduced the true signal (blue curve).439
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Therefore, we avoid showing a close-loop or a noise free assessment of the KeFIn’s performance.440
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Figure 6: Assessing the performance of two filtering techniques on synthetic GRACE-like TWS examples with

realistic noise. (a) TWS is introduced in the Amazon River Basin, South America, and (b) TWS is introduced

outside of the Huang He River Basin, China. The line plots indicate the TWS after application of Gaussian filter

with 300 km radii (green) and the KeFIn filter (red), estimated using the motion length of 60, Sb = 0.5, and r

= 300 km. Note that the line plot of kernel (black) is also shown in these figures, which are shifted for better

visual demonstration. The initial synthetic TWS is represented by the blue lines. Units are in cm.

Further, to better demonstrate how the proposed KeFIn filter operates, the results of its441

application over two basins with different shape and sizes (e.g. Colorado, USA, basin number442

34 and Congo, Africa, basin number 5) out of the 43 basins in Figure 1 are shown in Figure 7. In443

this figure, each row of a and b corresponds to one specific basin, where the first column is the444

initial unperturbed signals (before applying the Gaussian filter), the second column represents445

the perturbed signals (after applying the Gaussian filter) using the synthetic data sets (see446

Section 2.2), and the third column contains the filtered signals. The Root-Mean-Square-Errors447

(RMSE) time series of the filters performances using the synthetic data over the basins is448
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calculated and their averages are shown in Figure 7c. This is done to compare the results of449

the KeFIn filter with other methods (F1 to F6 in Table 1). It is clearly visible in Figure 7 that450

the KeFIn filter works properly in both basins. RMSE values over the Colorado Basin (Figure451

7c) suggest that the application of the KeFIn filter (i) successfully decreases leakage error, and452

(ii) improved results in relation to other filters. We find approximately 34% RMSE reduction453

compared to the unperturbed signals by implementing the KeFIn filter. By comparing RMSE454

values in the Congo basin, again, smaller errors are found for those associated with the KeFIn455

filter compared to the other six filters applied in this study. This indicates that the KeFIn filter456

successfully decreased leakage effects based on the GRACE-like artificial data, especially over457

smaller basins.458
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Figure 7: The KeFIn filter operation over the Colorado (a) and Congo (b) basins using synthetic GRACE-

like TWS signals and noise. In column (1), the unperturbed water storages are shown; in column (2), the

corresponding perturbed water storages are shown, and the results of the KeFIn filtered TWS estimates are

presented in column (3). Panel (c) shows the average RMSE results within both basins for the filters listed in

Table 1.

4. Results459

In Section 4.1, various filtering techniques (cf. Table 1) are tested on the synthetic TWS460

data while in Section 4.2, the results from filtering the real GRACE data are assessed against461

direct observations of water fluxes through the water balance equation (Equation 1), as well as462

in-situ groundwater measurements.463
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4.1. Filter Results Based on Synthetic Data464

There are two effective factors in each step of the proposed KeFIn filter, which potentially465

change the final filtering outcomes. The main aim here is to find out which choice yields an466

optimum performance of the filter in terms of leakage error reduction. Figure 8a contains467

the results of applying the first step of KeFIn while considering different sizes for the motion468

filter (controlling the smoothing of north-south stripping error) and K to mitigate the signal469

attenuation. Each scenario (using Equations 3 and 4) is applied separately to the basins and470

the average errors for all basins and are represented in Figure 8a. From our investigations,471

using K from GLDAS provides the best results with ∼14.76% higher leakage error reduction472

with different filter lengths. Considering K as a constant can lead to a promising result with473

the value of 1 with 58 mm average error. On the other hand, motion filters with bigger windows474

better decrease errors, where the optimum value in this study is derived from the 75 degree475

motion filter size. As mentioned, the first part of the filter deals with colored/correlated noise476

of high-frequency mass variations (i.e., stripes). In order to investigate the performance of this477

step of the filter, we compare its results with the widely used destriping algorithm by Swenson478

and Wahr (2006) and DDK smoothing filter following Kusche (2007) and Kusche et al. (2009).479

We apply these filters over all basins and illustrate the average results in Table 2. Note that we480

apply the KeFIn method with best cases of K and motion filter for the comparison presented481

in Table 2. Based on these results, the first step of the KeFIn filter performs comparable to482

other filters in terms of RMSE reduction. The level of RMSE reduction, as well as correlation483

improvements for the KeFIn filter are larger in most of the cases, particularly compared to484

Gaussian with 250 km radii and DDK3.485

Table 2: Average statistics derived after applying different filtering methods over the world’s 43 major river

basins using synthetic data (after removing seasonal effects) in comparison with the unperturbed synthetic data

(F0). Note that the first step of the KeFIn filter is used in this table.

Gauss (250 km) Gauss (350 km) Gauss (500 km) DDK1 DDK2 DDK3 KeFIn

RMSE (mm) 78.54 54.13 60.91 57.87 53.19 62.67 52.73

Correlation 0.73 0.81 0.78 0.83 0.80 0.76 0.81
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In addition, we used the same experiment this time for the second part of the filter (cf.486

Equations 6 and 8) while applying diverse values of Sb and selecting various smoothing radii487

(half-width radius, r) for the Gaussian filter. Using the best cases of K and motion filter length,488

we analyze the effects of different Sb and r on errors (Figure 8b). In general, results indicate489

that a higher Sb needs lower r to derive better results. Nevertheless, applying the second part490

of the KeFIn filter with Sb = 0.5 and r = 300 km performed better in most of the cases.491

⠀戀⤀

Figure 8: Average error (mm) derived after applying the KeFIn filter with different values of K and the motion

filter length (a) for the first step of the filter as well as different scenarios that contain Sb and r for the second

step of the filter (b). (a) indicates that the filter length of larger than 30 km and K between 0 to 2 yield smaller

errors, while (b) indicates Sb of 0.5 and r = 300 km yield the smallest errors.

For comparison, all the filters of F1, F2, F3, F4, F5, and F6 (cf. Table 1) as well as the492

KeFIn filter are then applied on the GRACE-like synthetic TWS fields. A summary of these493

results is presented in Table 3. For every basin, we estimate FR (averaged signals inside the494
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basin) and F1−R (averaged signals outside the basin) using each filter and compare the results495

to initial unperturbed TWS values inside and outside the basins by calculating the RMSE and496

correlation coefficients. Note that for a better assessment, seasonal variations are removed from497

time series. The average results for the study period, i.e. 2002–2013, and for all the 43 basins498

(cf. Figure 1) is given in Table 3. Note that detailed RMSE values for each individual basin499

can be found in the Appendix. From Table 3, it can be seen that higher correlations, both500

inside and outside the basin, can be found by applying the KeFIn filter. Estimated measures501

indicate that the KeFIn filter is more successful in recovering the spatial distribution of the502

synthetic TWS estimates. Overall, the KeFIn filter performs better both inside and outside the503

basins with an average of 73.6% TWS recovery from the perturbed synthetic data (cf. Table 3).504

Our results further indicate that the KeFIn filter works well over smaller river basins such as505

the Colorado, Ohio, Lachlan, and the Namoi basins, showing maximum ∼81% TWS recovery506

from noisy data. We also found that in 35 out of the 43 basins, the proposed filter provides507

the lowest RMSE (cf. Appendix). Nevertheless, in the other 8 cases, the KeFIn approach still508

demonstrates a promising performance in terms of RMSE reduction. Overall, Table 3 suggests509

that the proposed filter performs better in more than 80% of the basins.510

Table 3: Average statistics derived after applying different filtering methods over the world’s 43 major river

basins using synthetic data in comparison with the unperturbed synthetic data (F0). Averaged signals inside

and outside of the basins are calculated using CR =
∫
F0 h dΩ and C1−R =

∫
F0 (1 − h) dΩ, respectively.

Method Inside the Basin Outside the Basin TWS improvement (%)

Correlation RMSE (mm) Correlation RMSE (mm) (FR−F̄R)/CR
(F1−R−F̄1−R)/C1−R

F1 0.77 32.02 0.68 49.52 19.25 11.32

F2 0.83 28.71 0.77 44.08 21.14 13.81

F3 0.79 31.03 0.72 47.84 20.13 12.44

F4 0.88 29.12 0.87 37.26 22.67 19.53

F5 0.82 30.86 0.84 39.95 19.09 18.20

F6 0.85 28.17 0.83 41.30 21.18 16.79

KeFIn 0.91 27.25 0.89 34.65 24.41 22.36
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4.2. Filter Results Based on GRACE Data511

4.2.1. Comparisons with Hydrological Total Water Flux512

We further assess the performance of the filters, using independent data sets such as513

water fluxes. Therefore, TWS changes are evaluated through the water balance equation (cf.514

Equation 1) using TRMM 3B43-v7 precipitation, AVHRR data to account for evaporation515

products, and in-situ discharge data over the Amazon, Mekong, Arkansas-White (basins 1 and516

31 in Figure 1, respectively), Ohio, Lachlan, Namoi, Lower Mississippi, and Macquarie-Bogan517

basins (cf. Figure 2).518

䬀攀䘀䤀渀

Figure 9: Comparison between the derivative of filtered TWS (red) and TWF from observations (blue) within

the Namoi Basin. Each sub-figure corresponds to one filter and also contains error bars that is computed as the

absolute value of difference between GRACE derivatives and the observed TWF.
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To this end, we calculate TWF (from Equation 1) over each basin (see Section 2.3). Figure519

9, for example, shows the results of this comparison within the Namoi Basin. The figure also520

contains error bars for every filter representing the differences between the observed TWF and521

those derived by estimating the temporal derivative of filtered TWS change. It can be seen that522

the results of the KeFIn filter are much closer to the observed TWF with the smallest average523

error of 11.13 mm and overall 13% higher correlation in comparison with the other filters.524

Average error estimates within different basins corresponding to each filter are illustrated525

in Figure 10. Errors after applying the KeFIn filter are found to be the smallest in all the526

assessed basins. We find F2, F4, and to a lesser degree F6 to be efficient in most of the cases,527

especially over the Ohio Basin. More details on results can be found in Table 4, in which528

correlations between the TWFs (estimated as precipitation minus evaporation minus runoff)529

and the derivatives of TWS changes that are filtered by all implemented filtering methods are530

represented. Maximum correlations are calculated for the proposed filter with 0.89 average531

correlation. A higher correlation is achieved from all the filters over the Amazon and Mekong532

basins, which can be due to their stronger signals compared to other basins. Results from F2,533

F3, and F6 are found to have larger correlations to TWFs than those from F1 and F5.534
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Figure 10: The temporal average of errors defined as derivative of filtered TWS minus observed TWF. Each

error bar is estimated after applying the F1 to F6 and KeFIn filters over 8 selected river basins (units are mm).

Table 4: Correlations between the TWFs as precipitation minus evaporation minus runoff, and the derivatives

of TWS changes from each applied filter. The correlation coefficients have been computed at the 95% confidence

level.

Basin F1 F2 F3 F4 F5 F6 KeFIn

Amazon 0.92 0.93 0.94 0.92 0.91 0.95 0.95

Mekong 0.85 0.92 0.88 0.88 0.89 0.91 0.93

Arkansas-White 0.78 0.82 0.81 0.75 0.73 0.75 0.88

Ohio 0.76 0.82 0.74 0.82 0.81 0.78 0.85

Lachlan 0.80 0.86 0.82 0.73 0.75 0.84 0.89

Namoi 0.72 0.87 0.78 0.80 0.82 0.81 0.91

Lower Mississippi 0.77 0.78 0.79 0.81 0.80 0.78 0.84

Macquarie-Bogan 0.79 0.85 0.81 0.78 0.74 0.69 0.92

4.2.2. Comparisons with Groundwater and Soil Moisture535

We further assess the results of the different filters against groundwater measurements536

as mentioned in Section 2.4. TWS estimates after implementing each filter and a summation537
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of groundwater storage (GWS) and soil moisture contents (GWS+SM) are compared in the538

following basins: Arkansas-White, Ohio, Lachlan, Namoi, Lower Mississippi, and Macquarie-539

Bogan (cf. Figure 2), where access to in-situ data is provided. For each basin and each540

filtering method, basin averaged values are compared with GWS+SM. For this purpose, absolute541

differences between the filtered results and in-situ measurements are illustrated in Figure 11.542

Similar to the previous section, the minimum errors are found after using the KeFIn filter for543

these basins. It can be seen from the distribution of error points that the KeFIn results obtain544

errors with less magnitudes and variances. This indicates the smaller deviations of these results545

compared to in-situ measurements. Among the other filters, in general, smaller errors are found546

for F2 and F6. F2 and F5 depict less errors over the Ohio Basin and Lachlan Basin. In summary,547

the KeFIn filter and F2 better decrease errors over these basins, respectively 38% and 22% (on548

average) better than the other filters. These show the higher capability of the two filters for549

reducing errors within smaller basins. For a better comparison, the average errors in Figure 11550

for all the basins are shown in Figure 12.551
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Figure 11: Errors estimated at each epoch after applying the assessed filters F1–F6 and KeFIn on the Ohio

(basin number 35, with blue circles) and Lachlan (basin number 41, with red triangles) basins. These values

are calculated as differences between in-situ measurements (GWS+SM) and filtered TWS before (E1) and after

(E2) removing seasonal effects. The average absolute error is indicated in each sub-figure and for each basin.

Figure 12 illustrates that the proposed KeFIn filter in all the cases has the minimum error552

(24.13 mm on average). Similar to the two basins discussed earlier in this section, using F2,553

F3 and to a lesser degree F3 lead to a higher agreement with observations compared to the554

other methods (except the KeFIn filter). The results of these filters are much closer to those555

of the proposed filter in Arkansas–White and Macquarie–Bogan Basins. F4 seems to have an556

approximately constant effect on different basins (37.58 mm on average) except for the Ohio557

Basin. The summary of comparisons between different filtered TWS and in-situ groundwater558

time series measurements are presented in Table 5. This is performed to show each filter’s559

performance independent against direct observations without incorporating model estimates.560

Higher correlations are reported between the KeFIn filter results and in-situ data, which indi-561

cates 19.31%, 6.67%, 10.57%, 8.41%, 18.52%, and 6.33% improvements in comparison to F1,562

F2, F3, F4, F5, and F6, respectively. F3, F6, and F4 results are also in good agreement with the563
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in-situ groundwater data.564

Figure 12: Average differences between GRACE TWS and observed groundwater plus soil moisture content

within 6 river basins. GRACE data are processed using 7 filtering techniques (F1 to F6 and KeFIn filters) over

6 selected river basins (units are mm).

Table 5: Correlations between the filtered results and in-situ measured groundwater time series.

Basin F1 F2 F3 F4 F5 F6 KeFIn

Arkansas-White 0.78 0.76 0.73 0.69 0.63 0.75 0.81

Ohio 0.76 0.82 0.73 0.63 0.69 0.84 0.85

Lachlan 0.69 0.71 0.75 0.67 0.68 0.78 0.83

Namoi 0.59 0.74 0.64 0.75 0.58 0.66 0.80

Lower Mississippi 0.54 0.78 0.73 0.66 0.67 0.72 0.78

Macquarie-Bogan 0.77 0.85 0.81 0.76 0.73 0.82 0.88

5. Discussion565

Evaluation of the proposed KeFIn filter against common techniques (cf. Table 1) using566

different datasets suggests that this filter successfully removes striping and reduces leakage er-567

rors over basins of different shapes and sizes. Other filters show a different level of improvements568

within the world’s major 43 basins (Figures 9, 11, and 12). We find here that those filters based569
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on the averaging kernel, especially F2 (Han and Simons, 2008) and F3 (Seo and Wilson, 2005),570

deal better with leakage errors over smaller basins compared to those based on scaling factor571

(F4 and F5; Landerer and Swenson, 2012). Nevertheless, in general, F2, F6 (Vishwakarma et572

al., 2016), F3, and F4 perform better than F1 and F5 in most of the cases. The grid-based F4 is573

found to better reduce leakage errors in comparison to the single gain factor F5. Between basin574

average kernel methods, in general, F6 and F2 perform better compared to F1. The results575

confirm that F6 reduces leakage errors better than other basin average techniques when it is576

applied over larger basins as mentioned in Vishwakarma et al. (2016). This approach is, how-577

ever, found to be sensitive to the basin size in a way that noise increases when the catchment578

size decreases.579

Over smaller basins (e.g., Lachlan and Namoi basins), F2 works significantly better than580

F3 and F4. This confirms the findings of Han and Simons (2008) that this filter is designed581

to address leakage errors over basins with a small area (cf. Table 4). In summary, our results582

indicate that the KeFIn filter and F2 are likely better suited to deal with the leakage in small583

river basins. F3, designed by Seo and Wilson (2005) and tested over the Mississippi Basin,584

shows reliable results over this basin with fewer similar performance in other basins. This likely585

indicates that filters must be extensively tested over different basins that are of different shapes586

and sizes with different magnitude and distribution of TWS signals.587

We find that the proposed KeFIn filter reduces the leakage errors over ∼82% of the basins588

with an area less than 1 million km2, thus, we conclude it is suitable for leakage error reduction589

over basins with various sizes and shapes. Comparison with water flux observations indicates590

that in addition to the KeFIn filter, the recently developed F6 and F4 that use a hydrologi-591

cal model to recover GRACE smoothed signals (on a gridded basis), better approximate the592

derivatives of TWS changes than the other filters. Over the larger basins (e.g., Amazon and593

Mekong basins), the results of the F1 and F5 filters are found to be better than those in the594

smaller basins. Overall, more consistent leakage reduction within different basins is achieved595

by the KeFIn filter, F2, F6, and F4 considering the results of Figure 10 and Figure 12, as well596

as Table 3.597
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6. Conclusion598

In this study, a new GRACE post-processing technique, the so-called KeFIn filtering599

method, is proposed and its performance in reducing GRACE TWS errors in higher spatial600

frequencies as well as leakage (in/out) errors is investigated. The KeFIn filtering method suc-601

cessfully mitigates the existing problems with other leakage filtering methods, e.g., the high602

sensitivity of them to prior models in the scale factor approaches. To demonstrate the benefit603

of using the KeFln filtering method, two different test scenarios are considered over the 43 river604

basins of different shapes and sizes. First, all the filtering methods are compared using gener-605

ated synthetic data with properties similar to real GRACE TWS data within the 43 globally606

distributed river basins. In addition, we assessed the performance of the filters against water607

storage changes from water fluxes observation, as well as a summation of observed groundwater608

storage and soil moisture content over the selected basins. The results show that the KeFIn609

filter successfully (i) mitigates the amplitude damping caused by smoothing, and (ii) increases610

flexibility towards a variety of basins (shapes and sizes of basins as well as the magnitude of611

TWS). It is worth mentioning here that we do not claim that the KeFIn method is able to re-612

duce all possible artificial features appearing in the two steps of the post processing algorithm.613

Therefore, further investigations will be done to optimize parameters that are used to define614

the shape of the KeFIn filter.615
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8. Appendix625

The following table shows the basin averaged RMSE values calculated by each filtering626

technique. The results in the table are temporally averaged (between 2002 and 2013), and627

indicate that the KeFIn filtering method works better compared to other filters in 35 out of the628

43 basins, especially over smaller basins.629
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Table A1: Summary of RMSE (mm) estimated using the unperturbed basin averaged synthetic TWS and the

perturbed TWS after using different filtering methods over the 43 river basins. Note that the basins are sorted

according to their area.

Basin Area (million km2) F1 F2 F3 F4 F5 F6 KeFIn

1 (Amazon) 6.97 31.25 31.83 31.19 30.98 30.88 31.06 30.69

2 (Ob) 4.40 26.64 24.25 28.77 27.64 28.55 22.93 23.79

3 (Yenisey) 4.09 29.76 23.17 26.10 21.94 21.11 19.44 17.63

4 (Lena) 3.99 31.94 36.15 27.56 32.99 33.70 30.71 29.57

5 (Congo) 3.81 25.24 23.52 24.96 24.19 25.60 21.59 20.47

6 (Mackenzie) 2.88 24.60 29.23 31.42 26.63 28.56 23.86 22.18

7 (Parana) 2.64 37.97 31.83 38.18 30.27 32.71 26.97 26.68

8 (Nile) 2.48 34.17 34.01 33.86 34.15 33.45 37.36 32.79

9 (Mississippi) 2.35 42.93 38.52 37.51 38.22 43.37 39.83 37.20

10 (Niger) 2.11 34.56 33.01 29.34 34.93 33.38 27.84 27.78

11 (Amur) 1.85 52.03 49.35 46.19 50.33 50.24 47.73 48.52

12 (Yangtze) 1.81 39.90 36.93 38.56 40.20 41.81 36.68 35.75

13 (Yukon) 1.58 37.91 40.27 38.63 38.10 39.67 37.14 36.69

14 (Nelson) 1.43 31.50 24.22 30.43 22.99 26.21 24.12 21.41

15 (Volga) 1.38 30.00 34.84 31.33 32.01 33.71 28.22 28.93

16 (St. Lawrence) 1.27 39.53 39.97 33.82 36.02 37.68 34.14 32.65

17 (Lake Eyre) 1.12 24.10 26.49 24.94 17.51 29.60 19.45 16.45

18 (Zambezi) 1.12 29.54 28.10 31.67 34.98 33.10 29.05 27.67

19 (Murray Darling) 1.01 46.66 41.51 38.89 40.94 43.42 38.72 37.84

20 (Danube) 0.93 36.67 35.97 37.39 39.31 41.72 31.40 29.20

21 (Ganges, Brahmaputra) 0.92 28.92 17.77 33.88 26.03 25.19 29.75 28.25

22 (Indus) 0.91 41.31 33.39 36.57 32.04 34.04 35.50 33.69

23 (Orange) 0.90 18.71 14.96 21.82 13.01 16.08 11.67 7.94

24 (North West Coast) 0.80 16.85 17.97 18.81 22.10 17.58 19.39 16.39

25 (Huang He) 0.78 33.86 28.70 30.77 23.09 27.11 24.98 23.30

26 (Sumatra) 0.76 32.46 27.08 28.43 34.61 34.38 28.03 26.19

27 (Euphrates and Tigris) 0.74 35.91 22.20 19.75 22.00 24.36 19.08 17.53

28 (Orinoco) 0.73 42.57 35.90 34.65 38.94 35.99 32.69 32.42

29 (Tocantins) 0.71 25.32 15.02 16.05 18.99 20.29 22.72 20.65

30 (Ayeyarwady) 0.69 34.75 38.21 36.09 34.17 35.64 35.74 33.97

31 (Mekong) 0.68 34.46 35.78 32.27 33.06 36.82 38.03 31.78

32 (Kalahari Stampriet) 0.67 36.01 34.75 37.51 32.32 39.25 35.16 34.29

33 (Dnieper) 0.65 24.25 23.18 29.80 25.14 25.59 24.09 22.84

34 (Colorado) 0.63 23.12 19.32 23.05 22.95 23.87 21.79 18.05

35 (Ohio) 0.52 23.31 22.54 25.06 21.82 26.96 23.38 20.46

36 (Sirdaryo) 0.51 32.56 27.98 30.35 25.47 25.63 29.40 24.74

37 (Central East Coast) 0.49 40.21 42.51 37.21 38.64 39.23 41.20 36.31

38 (Western Mediterranean) 0.45 31.64 28.42 28.59 32.44 36.54 37.91 27.06

39 (Namoi) 0.43 21.80 12.80 14.33 17.09 25.31 19.53 12.43

40 (Kamchatka) 0.40 43.06 33.69 33.62 40.80 37.73 38.89 32.90

41 (Lachlan) 0.08 34.05 32.42 28.11 25.79 32.05 28.41 24.46

42 (Yalu) 0.03 13.07 12.33 11.40 12.76 18.40 14.73 8.82

43 (Lower Mississippi) 0.01 23.94 18.79 20.24 25.13 28.42 21.13 18.4936
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