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Abstract—Understanding the emergence of sustainable behav-
ior in dynamic models of resource consumption is essential for
control of coupled human and natural systems. In this paper we
analyze a mathematical model of resource exploitation recently
reported by the authors. The model incorporates the cognitive
decision-making process of consumers and has previously been
studied in a game-theoretic context as a static two-player game.
In this paper we extend the analysis by allowing the agents to
adapt their psychological characteristics according to simple best-
response learning dynamics. We show that, under the selected
learning scheme, the Nash Equilibrium is reachable provided cer-
tain conditions on the psychological attributes of the consumers
are fulfilled. Moreover, the Equilibrium solution obtained is found
to be sustainable in the sense that no players exhibit free-riding
behavior, a phenomenon which occurs in the original open-loop
system. In the process, via a Lyapunov-function based approach,
we also provide a proof for the asymptotic global stability of the
original system which was previously known to be only locally
stable.

Index Terms—Human-in-the-loop control, Game theory

I. INTRODUCTION

SYSTEMS such as complex Coupled Human And Natural
Systems (CHANS) pose a notable challenge in being

examined and ultimately controlled, owing to the fact that
they span across multiple disciplines such as social sciences,
engineering disciplines and the environmental sciences. The
advent of technology and the realization of new control and
sensing applications in such settings [1], [2] have especially
accentuated the technical aspect of these systems. The Cyber-
Physical Social Systems (CPSS) [3], [2] concept provides an
integrative language which not only covers the environmental
and technical aspects, but also addresses the social aspect in
CHANS. Such systems are now garnering the interest of not
only the controls community but also other communities, albeit
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under different contexts and subtle differences in ideology
[4], [5]. In this paper, we focus on the issue of sustainability
of socio-ecological systems, a particular instance of CHANS.
In particular we analyze the dynamics of a single renewable
resource harvested by multiple consumers, recently proposed
and studied by the authors in [6], [7].

Stankovic et. al. identify system identification as one of the
primary challenges for the control of CPSS [4, Section lll].
Namely, they call for an extension of system identification
techniques to adequately capture human behavior. The Human
In The Loop (HITL) concept [5] addresses this issue by
integrating human individuals as fundamental units of the
system in contrast to the conventional approach of modeling
human beings as exogenous inputs. In the same spirit, our
selected model of resource consumption [6] employs research
from social psychology [8], [9] to build a mathematical
representation of consumer behavior. The social component
of the model is dependent on psychological characteristics of
the individual consumers such as their willingness to cooperate
and the attribution of blame (nature or society) in the event
of a resource crisis. The mathematical form of the model
(see Equation (3), Section II-C) not only enables rigorous
deductions and confirmation (or refusal) of theory, but also
makes it amenable to analysis within multiple frameworks. For
instance in the original study [6], the authors focused on the
steady state properties of the model to analyze the emergence
of undesirable phenomena such as free-riding. Also in [6], the
model has been formulated as a static one-shot game in order
to investigate the characteristics of sustainable communities
under a predefined notion of sustainability. Subsequently, the
authors have extended the model in [7] to explicify the under-
lying social network and also present various block models to
simplify the analysis at various levels of abstraction.

Game theory offers a natural framework to study the strate-
gic interactions between the consuming agents of our socio-
ecological system. It not only complements the insights gained
by viewing distributed systems (both natural and man-made)
from a control theoretic perspective, but the outcomes pre-
dicted by game-theory’s underlying paradigm of rational be-
havior can also serve as a benchmark for any control strategies
that may be applied. While the Nash Equilibrium of the static
one-shot game induced by the the selected model of natural
resource consumption has already been examined in [6], the
issue of how the agents actually reach the equilibrium has not
been discussed prior to this study. This question is addressed
by the theory of learning in games where the players change



their strategies dynamically according to a particular learning
scheme. A frequently studied family of learning dynamics
involves players constructing a belief of each other’s future
strategies, based on the past strategies played, and playing a
best response to the predicted strategy. This form of learning
dynamics is commonly known as fictitious play and is perhaps
one of the most extensively studied model of learning to date
[10]. Here, after defining the game for the reformulated model,
we extend the game-theoretic construction to a continuous-
time repeated game and give a simple demonstration of how
the agents can approach the Nash equilibrium by employing
basic best response dynamics [11] (an elementary version of
fictitious play). This is done by examining the stability of the
basic system coupled with the learning adjustment process. We
find that the resulting equilibrium is sustainable in the sense
that the consumers do not exhibit any free-riding behavior (the
notion of free-riding is adopted from previous studies and has
been described herein). While the primary objective of this
paper is to analyze the socio-ecological system coupled with
the learning dynamics, in the process we also provide a proof
for global stability of the original model, previously known to
be only locally stable [6].

II. THE COUPLED SOCIO-ECOLOGICAL SYSTEM

Here we describe the system depicting the coupled resource
and consumption dynamics. The basic model has originally
been presented by us to the ecological modeling community
[6], with a subsequent extension to explicitly incorporate the
underlying social network [7].

A. Ecological Sub-model

The assumed setting is that of a single renewable resource
whose stock dynamics are governed by the standard model of
logistic growth [12]. The resource quantity at time τ is given
by R(τ) > 0. In the absence of consumption, the stock grows
at an intrinsic rate r > 0 and saturates at a carrying capacity
Rmax. The society consists of 2 consumer groups, where each
group consumes the resource by exerting effort ei(τ) ∈ R
where i ∈ {1, 2} (the full n-agent model can be found in [7]).
The resource dynamics are given as follows

dR

dτ
= rR

(
1− R

Rmax

)
− (e1 + e2)R. (1)

It is important to note that the consumption efforts ei may
take on both positive and negative values. While positive
consumption corresponds to the extraction of the resource,
negative consumption refers to any measure taken to replenish
the resource base (detailed interpretations of negative effort
and its effects on the resource stock are given in [6]).

B. Social Sub-model

In his ground-breaking theory of social comparison pro-
cesses [9], Festinger posits that humans evaluate their deci-
sions on the basis of both objective and social information.
In the context of natural resource consumption, Mosler &
Brucks [8] interpret the objective information to be related

to the state of the resource (the ecological factor) and the
social information to be related to the consumption of other
agents (the social factor). Similar to Mosler & Bruck’s com-
putational model [8], we calculate the change in consumption
as a weighted sum of the ecological and social factors.
The relative weighing of these factors are modeled through
certain psychological characteristics that portray the cognitive
decision making process associated with resource usage. In
what follows, we specify both factors and the psychological
variables that determine the relative weighing of these factors
to compute the change in consumption ėi.

1) Ecological Factor: In their study [13], Rutte et. al.
find that consumers harvest more when, according to their
perception, the resource is in abundance, than when it is scarce.
We model this effect by specifying the ecological factor as
R(τ) − Ri where Ri ∈ R is the quantity of the resource
below which i considers it to be scarce and above which she
considers it to be abundant. Note that Ri can lie outside the
interval [0,Rmax] which is justified by observing that Ri exists
only in the mind of the consumer and does not represent a
physical state of the resource. A negative value of Ri simply
implies that i considers the resource to always be in abundance
no matter how low the actual stock is. Increasingly negative
values amplify this effect via the factor R(τ)− Ri (a similar
argument holds for Ri > Rmax).

In the same study [13], the authors find that consumer
behavior differs when they attribute resource scarcity to nature-
induced reasons as compared to society-induced reasons. To
elaborate, nature-induced reasons include natural disasters, ad-
verse weather conditions, etc, whereas society-induced reasons
include over-harvesting, pollution, wastage in consumption,
and so on. We model the attribution of i through ai > 0
where ai → 0 represents a group that attributes blame entirely
to society, with increasing values of ai reflecting increasing
attribution to nature. Rutte et. al. find that the consumers
that attribute majority of the blame to nature, tend to give
ecological information more importance and vice versa. We
thus weigh the ecological factor for a single individual as
ai(R(τ)−Ri). In [7] we show that if the consuming agent is
a group of consumers, then the ecological factor is weighed as
niai(R(τ)−Ri), where ni is the size of the group and ai & Ri

represent the group’s collective psychological characteristics.
2) Social Factor: Festinger [9] postulates that psychologi-

cally, humans find situations where others are very divergent
from them, less appealing than situations where others are
close to them (an effect that has subsequently been reiterated
in other psychological studies as well [14]). For the two-agent
case, we therefore define the social factor of i to be given by
the difference ej(τ) − ei(τ) where i, j ∈ {1, 2} and i 6= j.
The social factor is thus a measure of equality, with a lower
level of equality (higher difference in consumption) prompting
a higher change in consumption and vice versa.

The social-value orientation of group i is represented by
si > 0, where si → 0 represents an extremely non-cooperative
consumer, with increasing values of si representing increas-
ingly cooperative consumers. Social psychological studies [15]
have indicated that cooperative individuals are concerned more
with maximizing equality than non-cooperative ones, regard-



less of their own outcomes. We thus weigh the social factor,
as siωij(ej(τ) − ei(τ), where ωij ∈ [0, 1] represents the
strength of the social tie directed from j to i with the constraint
that

∑
j ωij = 1. If the consuming agent i is an individual,

then ωii = 0. However, as shown in [7], if the consuming
agent i is a group of consumers, then ωii ≥ 0 represents
the strength of social bonding, or cohesion within the group,
while 1−ωii represents the group’s bridging influence from
the other groups.

Based on the above, the final dynamics of the consumption
effort are given by
dei
dτ

= niai (R− Ri) + siωij (ej − ei) , (2)

where i ∈ {1, 2} and i 6= j. It is interesting to note that
while the dynamics have been derived from psychological first
principles, they are similar to other models used in control and
sociology such as quorum-sensing networks [16] and models
of opinion formation [14].

C. The Non-dimensionalized Socio-Ecological System
We now reformulate (1) and (2) to express the cou-

pled resource and consumption dynamics in terms of non-
dimensional states and parameters. Let x(τ) be the resource
stock relative to Rmax and yi(τ) be i’s consumption relative
to the growth rate r. The coupled socio-ecological system can
then be represented as

ẋ = (1− x)x− (y1 + y2)x,

ẏi = bi

(
(1− νi)(x− ρi)− νi (yi − yj)

)
,

(3)

where i, j ∈ {1, 2}, i 6= j, bi = (niaiRmax + rsiωij)/r
2,

is called the sensitivity of i and represents her openness to
change in her consumption. νi = rsi/(niaiRmax + rsiωij)
is the social relevance of i and represents the relevance
i places on social information relative to the relevance
placed on ecological information, which is 1 − νi (note that
νi ∈ (0, 1) ∀ i). ρi = Ri/Rmax is called the environmentalism
of i and t = τ/r is the non-dimensionalized time. In what
follows, we will work with this instance of the model given
by (3).

III. THE STATIC CONSUMPTION GAME

Here we present the strategic confrontation between two
consumer groups, previously defined in [6] as a static, one-
shot game with two players. The game is defined as a 3-tuple
G = 〈I,Si, πi〉, where I = {1, 2} denotes the set of players,
Si, i ∈ I is the indexed strategy space for group i, and πi :
Si×Sj → R, i, j ∈ I and i 6= j is the indexed payoff function
for i, defined on Si. In what follows, we define the elements
of the game.

A. Players
The players of the consumption game are assumed to be

two consuming agents I = {1, 2}. They may represent indi-
vidual consumers or groups of consumers with homogeneous
characteristics as outlined in [7]. The consumption dynamics
for the two-agent society are given by (3).

B. Payoffs

The game-theoretic framework, similar to other theories of
rational behavior, presumes that agents are able to construct
a complete preference ordering over all possible outcomes.
The ordering is mathematically expressed via an exogenous
objective for each player, called the utility function or payoff.
In many socio-ecological settings, it is common to assume
that agents prefer outcomes where their consumption is more,
to outcomes where they consume less [17]. In the past,
many economists have taken sustainable development to imply
infinite economic growth, which has been challenged by the
concept of a steady state economy which, regardless of its
attainability, may serve as an efficient tool to guide long-
term policy making for real-world economies [12]. This gives
special meaning to the steady state of (3). We thus define the
payoff πi that each group receives, to be equal to the quantity
of the resource that group harvests at steady state. Thus
πi = x̄ȳi where x̄ = limt→∞ x(t) and ȳi = limt→∞ yi(t). In
order to find the expressions for x̄ and ȳi, we must determine
any fixed points of (3) and investigate their stability.

1) Fixed point: It is found that system (3) has a unique
fixed point which is given by

x̄ =
(1− ν1)ν2

ν1+ν2 − 2ν1ν2
ρ1 +

(1− ν2)ν1
ν1 + ν2 − 2ν1ν2

ρ2,

ȳi =
1

2
− 1− νi

2 (νi+νj−2νiνj)
ρi+

(1−νj) (1−2νi)

2 (νi+νj−2νiνj)
ρj ,

(4)

where i, j ∈ {1, 2} and i 6= j.
2) The Free-riding Phenomenon: The free-riding phe-

nomenon [6] refers to situations where certain individuals (the
self-reliants) sacrifice their consumption for the sustenance of
the resource, while other individuals (the free-riders) continue
to enjoy the benefits of consumption. Fixed-point (4) permits
two possibilities. The “self-reliant” equilibrium consists of
both groups harvesting at a positive rate (ȳ1 > 0 and ȳ2 > 0
in (4)) and the “free-riding” equilibrium consists of one group
harvesting at a positive and the other harvesting at a negative
rate (ȳi > 0 and ȳj < 0 for some i, j ∈ {1, 2}). It can be
seen that free-riding is excluded if the environmentalisms are
equal i.e., ρ1 = ρ2. If not, then free-riding is excluded only
if the relatively environmental group has a social relevance
νi greater than a certain threshold. We interpret this threshold
as the reluctance of that group to subsidize the consumption
of the other group which, consistent with social-psychological
research, increases with an increase in cooperativeness of that
group (see detailed calculations and interpretations in [6]).

3) Stability: Here we consider the stability properties of
the fixed point (4) for system (3). We do this by transforming
the system to an appropriate form and prove the validity of
a Lyapunov function candidate. The proof is given by the
following theorem.

Theorem 1: The system (3) is globally stable with all
solutions tending to fixed point (4), if the following condition
holds true
(b1 − b2)(b1ν1 − b2ν2) + 4b1ν1b2ν2 > 0. (5)



Proof: Let us define parameters A = b1(1−ν1)+b2(1−ν2),
a = b1(1−ν1)−b2(1−ν2), B = b1ν1+b2ν2, b = −b1ν1+b2ν2,
D = b1(1−ν1)(1 − ρ1) + b2(1−ν2)(1 − ρ2), d = −b1(1−
ν1)(1−ρ1) + b2(1−ν2)(1−ρ2), z0 = ln

(
1− DB−bd

AB+ba

)
, w0 =

1
B

(
−aDB−bd

AB+ba − d
)

and u0 = DB−bd
AB+ba + b

Bw0. It is easy to
verify that |a| < A, |b| < B, and |d| < D.

Defining new state variables z = lnx − z0, u =(
1 + b

B

)
y1 +

(
1− b

B

)
y2−u0 and w = y1− y2−w0, system

(3) can be transformed as follows

ż = ez0(1−ez)−u+
b

B
w, u̇ =

(
A+

ba

B

)
ez0(ez−1),

ẇ = aez0(ez − 1)− Bw,

(6)

with the fixed point now at the origin. In order to prove the
theorem we construct a Lyapunov function of the following
form

V = (ez − z − 1) + Pu2 + Qw2,

which is positive for positive P, Q everywhere except the
origin. Thus if V̇ is shown to be negative outside the origin
for some positive P, Q, it would imply global stability of (6)
and eventually of (3). Differentiating V along the vector field
of system (6) we get

V̇ = ez ż − ż + 2Puu̇+ 2Qwẇ.

Choose P = e−z0/(2 (A + ba/B)). Due to the definition of
a, A, b and B, P > 0 so it does not violate the status of V
as a Lyapunov function candidate. Substituting this and (6) in
the above equation gives us

V̇ = −ez0(ez − 1)
2
+w(ez − 1)

(
b

B
+ 2Qaez0

)
−2QBw2.

Completing squares, we get

V̇ =−
(
ez0/2(ez − 1)− we−z0/2

2

(
b

B
+ 2Qaez0

))2

−

(
2QB− e−z0

4

(
b

B
+ 2Qaez0

)2
)
w2.

Now the condition 2QB − e−z0

4

(
b

B
+ 2Qaez0

)2

> 0 gives

the derivative V̇ < 0 outside the u-axis, and on this axis the
vector field of (6) has value (−u, 0, 0), which is not tangent
to the axis. Hence we get the desired global stability if this
condition takes place, i.e., the above inequality is true for some
positive Q, B. This condition can be expressed as

p (ez0Q) := 4a2(ez0Q)
2
+

(
−8B+4

ab

B

)
(ez0Q)+

b2

B2
< 0.

Now, if a = 0, the inequality holds for any B > 0 by choosing
Q to be sufficiently large. However if a 6= 0 then due to
4a2 > 0 and b2/B2 ≥ 0, the inequality holds true for some
positive Q, B only if the vertex of the respective parabola
belongs to the fourth quadrant, i.e.,

− 1

8a2

(
−8B + 4

ab

B

)
> 0, and − ∆

16a2
< 0,

where ∆ is the discriminant of p (ez0Q). This translates to
the following two conditions: 1) −2B2 + ab < 0, and 2)
B2−ab > 0. Substituting the values of a, b & B, and realizing
that b1, b2, ν1 and ν2 are all positive numbers, a sufficient
condition for the condition B2 > ab (which enforces both 1)
and 2) above) to hold is

(b1 − b2)(b1ν1 − b2ν2) + 4b1ν1b2ν2 > 0.

which completes the proof.
Theorem 1 thus shows that if condition (5) holds, then the
payoff functions πi are well defined and equal to the limit of
i’s consumption as t→∞.

C. Strategies

It is assumed that each group is free to choose its level of
environmentalism, represented by ρi ∈ R. Thus the strategy
set for each group i is given as Si = {ρi}, which constitutes
a game with continuous strategy space. Thus the payoffs πi
are given by

πi(ρi, ρj) = x̄(ρi, ρj) ȳi(ρi, ρj),

where i, j ∈ {1, 2}, i 6= j and x̄, ȳi are given by (4). Note that
the strategy set does not include the variables νi. The reason
being that including νi as a second strategy variable along
with ρi results in the same Nash equilibrium as when ρi is
considered as the only strategy variable (see [6, Appendix A]
for detailed calculations). Thus we treat νi as an exogenous
parameter as this simplifies the analysis and does not effect
the results.

D. Best Response and Nash Equilibrium

The best response of player i is the strategy ρ#i that
maximizes πi for a fixed strategy of the other player j 6= i.
This is given as ρ#i = BRi(ρj) such that πi(ρ

#
i , ρj) =

max
ρi

πi(ρi, ρj). Solving this maximization problem yields the

best response for i, which is given by

BRi(ρj) =
(νi−νj) ρj+

(
2νiν

2
j−νiνj−ν2j

)
(1−ρj)

2νj(νi − 1)
. (7)

The Nash equilibrium (ρ∗1, ρ
∗
2) consists of all possible out-

comes such that each strategy is a best response of the
other. Thus this includes all such points (ρ1, ρ2) where
ρ1 = BR1(ρ2) and ρ2 = BR2(ρ1). Solving this condition
algebraically gives us the following description for the Nash
equilibrium.

ρ∗i =
νi(3νj − νi − 2νiνj)

(1− νi)(νi + νj + 2νiνj)
, (8)

where i, j ∈ {1, 2} and i 6= j.

IV. FICTITIOUS PLAY LEARNING IN THE DYNAMIC
CONSUMPTION GAME

After previously defining the consumption game and deriv-
ing the Nash equilibrium we consider here how the players
are able to achieve that equilibrium. We do this by allowing
the players to adjust their strategies under fictitious play



learning [10]. We employ fictitious play in its most basic
form, commonly known as Best-response Dynamics, the Best-
reply Process or Cournot Adjustment. While best-response
learning is known to encounter some issues when applied as
a model of learning in real-world scenarios [18] we select
it here due to its relative simplicity and its ability to reveal
certain dynamic aspects of system behavior that may recur
when more sophisticated models of learning are applied. In
particular, there exist various learning mechanisms for social
beings that use prior distributions from past observations for
the evolution of behavior [19], an effect that lies at the core
of all fictitious play learning schemes in general.

A. Learning Through Best-response Dynamics

Here we observe the dynamics of the two-community sys-
tem under best-response dynamics and discover that it indeed
results in the actions converging to the Nash equilibrium
in a distributed manner. Under these dynamics, the system
propagates as follows.

ẋ = (1− x)x− (y1 + y2)x,

ẏi = bi(1− νi)(x− ρi)− biνi(yi − yj),
(9a)

ρ̇i = BRi(ρj)− ρi, (9b)

where i, j ∈ {1, 2}, i 6= j and BRi is given by (7). Under the
dynamics given by (9b), the groups’ strategies ρi are updated
in direction of the best-response to each other’s actions. Thus
by definition, if an equilibrium (x̄, ȳ1, ȳ2, ρ̄1, ρ̄2) of the above
system exists it must be the Nash equilibrium, since at steady
state ρ̄1 = BR1(ρ̄2) and ρ̄2 = BR2(ρ̄1). We find upon solving
(9) for the equilibrium, that it is given by

x̄=
2ν1ν2

ν1+ν2+2ν1ν2
, ȳi=

νi

νi+νj+2νiνj
,

ρ̄i=
νi(3νj−νi−2νiνj)

(1−νi)(νi+νj+2νiνj)
,

(10)

where ρ̄i indeed constitutes the Nash equilibrium as given
in (8). Note that in (10) both consumptions are positive i.e.,
ȳ1 > 0, ȳ2 > 0 which constitutes a self-reliant equilibrium
as per the notion defined in [6]. This is in contrast to the
equilibrium (4) of the open-loop system, which permits the
qualitatively different steady state ȳi > 0, ȳj < 0 (the free-
riding phenomenon [6]). Thus in a society following best-
response dynamics, the consuming groups do not exhibit free-
riding behavior as opposed to the open-loop system (3) where
the strategies are specified as exogenous parameters.

B. Convergence to the Nash Equilibrium

In order to find whether the Nash equilibrium is reachable or
not, we need to explore the stability properties of system (9).
The global stability of (9a) has already been discussed above
for constant ρi’s. Since the subsystem (9b) does not depend on
(9a), the stability of the overall system (9) can then be deduced
by analyzing (9b) separately. More precisely, if ρ1 and ρ2 are
guaranteed to reach a fixed point, then they may be treated
as constants in (9a) which is known to be globally stable if
inequality (5) holds. Thus, once (9b) reaches its steady-state,

(9a) will also converge to its equilibrium (provided (5) holds)
regardless of where the system was when that steady-state was
achieved. Since (9b) is linear in ρ1 and ρ2, the stability can
be deduced by analyzing the eigenvalues, which are given as

λ1,2 = −1±

√
(ν1 − ν2)

2
+ 4ν21ν

2
2

4ν1ν2
. (11)

It is obvious from (11), that both λ1 and λ2 are real. However,
λ1 may be positive which corresponds to unstable learning
dynamics. It can be seen from Figure 1a that the learning
dynamics are stable in a major area of the parameter space.
Combining this information with the stability condition for
(3), the overall criterion for stability of (9), in addition to (5),
is given by

(ν1 − ν2)
2

+ 4ν21ν
2
2 − 4ν1ν2 < 0. (12)

This shows that the Nash Equilibrium is reachable via best-
response dynamics, if (5) and (12) hold collectively.

C. Simulation Results: Overcoming Free-riding Behavior

Figures 1b and 1c illustrate the learning process for two
different points in the parameter space. Due to (10), when
ν1 = ν2 (Figure 1b) then the resource at steady state x̄ equals
ρ̄1 = ρ̄2. However when ν1 6= ν2 (Figure 1c), the resource x
follows the group with lower social relevance νi. The case
depicted in Figure 1c is particularly interesting and merits
additional interpretation. As seen from the long-term behavior
of the graphs, and from the mathematical form of the equilib-
rium (10), higher social-relevance νi implies a lower level of
environmentalism ρi and a higher steady state consumption ȳi.
This is in contrast to what the steady-state of the open-loop
system (3) predicts i.e., cooperative individuals are usually
associated with higher levels of environmental concern, and
also consume less than non-cooperative individuals on average.
Indeed this is what has been observed through different social-
psychological studies as well [6]. The closed-loop system
(9) however predicts the behavior of the consumers if they
act rationally according to the game defined in Section III.
As mentioned in Section I, this highlights the relevance of
game theory to distributed control problems, whereby the
selected payoffs and learning scheme may be treated as design
principles in the bigger problem of social control [11], [20]
in order to obtain desired behavior. Indeed as we find here,
the selected scheme eliminates the phenomenon of free-riding,
which poses a significant challenge in the effective governance
of natural resources [17].

V. DISCUSSION

This paper uses the construct of a two-community so-
ciety consuming a single natural resource, to formulate a
continuous-time repeated game, in a cognitive model of
consumer behavior. We demonstrate how the selected utility
functions and learning scheme, converge to a steady state
that eradicates free-riding behavior on part of the consumers.
We also provide rigorous conditions on the psychological
characteristics of the consumers that are required to reach this



(a) The positivity of λ1 from (11). (b) Learning process for ν1 = ν2 = 0.5. (c) Learning process for ν1 = 0.75, ν2 = 0.25.

Figure 1: left: The region of stability for (9b). The cross-hairs correspond to points selected for the subsequent simulations.
center: The learning process for identical νi’s. right: The learning process for different νi’s. In both simulations b1 = b2 = 1,
x(0) = 0.5, y1(0) = y2(0) = 0, ρ1(0) = 0.8 and ρ2(0) = 0.2. Note that since b1 = b2, (5) holds true for all ν1.ν2.

steady state. These findings may potentially be used to inform
policy making for natural resource management, especially
since the study is based on one of the few fully justified
mathematical models (at least to our knowledge) of socio-
ecological couplings. We also hope that this study serves to
instigate inquiry into other complex learning schemes that may
enable convergence to equilibria with similar socially desirable
features.

We now mention various shortcomings of the model which
are important to note. Firstly, the assumptions made on in-
formation available to the consumers. In particular the basic
model assumes that the consumers have perfect knowledge
of the resource, each others’ consumption and psychological
characteristics. This is obviously a strict assumption and must
be dealt with in future studies. Secondly, this paper has
considered the time-variation of the environmental concerns
of the consumers via a selected learning scheme. There also
exist other psychological parameters in the model which are in
a constant state of change in the real world. This offers another
possible extension of the model. Finally, the current study
considers a society with just two consumer groups. Whether
or not the conclusions drawn here for the two-player game
will also hold for an arbitrary number of players is definitely
a compelling question for further investigation.
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