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ABSTRACT

The purpose of the paper is to present a complete theory of
optimal control of piecewise linear and piecewise monotone pro­
cesses. The theory consists of a description of the processes,
necessary and sufficient optimality conditions and existe~ce and
uniqueness results, as well as extremal and regularity properties
of the optimal strategy. Mathematical proofs are only outlined
(they will appear elsewhere), but hints concerning efficient
determination of the optimal strategy are included.

Piecewise linear (monotone) processes are discontinuous
Markov processes whose state components stay constant or change
linearly (monotonically) between two consecutive jumps. All pro­
cesses of inventory, storage, queuing, reliability and risk
theory belong to these classes. The processes will be controlled
by feedback (Markov) strategies based on complete state obser­
vations. The expected value of a performance functional of
integral type with additional terminal costs is to be minimized.

The semigroup theory of Markov processes will be used as
the uniform mathematical tool for the whole theory, and the
control problem will be reduced to the integration of a system
of ordinary differential equations. Special emphasis will be
given to the description of the processes by their infinitesimal
characteristics which are available explicitly in applied models-­
no finite dimensional distributions are used.
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INTRODUCTION

The classical theory of risk, reliability, inventory,

queueing and storage constitute an almost unified branch of

applied (or rather, applicable) probability. They are charac­

terized by a uniform methodology which makes use of limit

theorems of probability theory-in order to arrive at explicit

formulae for one or other asymptotic characteristics of the

processes. Using these explicit expressions one can make an

appropriate choice of parameters appearing in the formulae to

achieve a reasonable limit behaviour. The processes occurring

in the above theory are very similar, they are continuous-time

random processes with step or saw-tooth shaped trajectories,

and in handling them there is a strong trend towards application

of Markov process theory. Abstracting the common properties of

these processes, Gnedenko and Kovalenko (1966) have defined the

very useful class of "piecewise linear processes" which contain

almost all processes of applied probability.

Under conditions of growing intensification of economic,

technological, etc., competition, current interest is however

declining in systems which offer only reasonable performance

after the passage of the considerable time represented by
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asymptotic results. Instead, systems are needed which them­

selves perform "optimally" in any situation. Moreover, such pro­

cesses should flexibly follow the changes of their economic,

technological, social, etc., environment. In order to be able

to design systems meeting these requirements one needs first

of all a detailed quantitative description of performance

criteria. Further, one needs the freedom to make decisions (to

change the values of the free parameters) at any time at which

the state of the system demands. One thus arrives at the

optimal dynamical control problem: in view of the current state

of the system determine the necessary decisions which result

in optimal future performance. Of course, it is too much to

require that the optimal state-decision correspondence be given

an explicit analytical expression. But it is a cardinal re­

quirement that any algorithm governing this correspondence can

be efficiently processed by the present generation of computers.

In this paper we present a complete theory of optimal

control of piecewise linear (and piecewise monotone) processes.

Piecewise linear processes (PLPs) are discontinuous stochastic

processes which have one class of state components changing

linearly between consecutive random jumps, while the remaining

state components change only by jumps--i.e. they remain constant

between two neighbouring discontinuities. Piecewise monotone

processes (PMPs) differ from PLPs only in the respect that a

single state component can change in an arbitrary monotonic way

betwe~n two consecutive jumps. For examples of PLPs we refer

to Gnedenko and Kovalenko (1966) and Kalashnikov (1978). The

performance of these processes will be characterized by a cost

functional of integral form with an additional term for the

termination costs. The aim is to find a strategy which ensures

minimal expected costs from every initial state. Decisions

will be made on the basis of complete observation of the current

state of the process, in other words one uses Markov (feedback)

control strategies. As PLPs and PMPs are Markov processes,

strategies using information about the past evolution of the

processes can be supposed not to give better results than Markov

strategies (cf. Yushkevich, 1977).
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The complete theory of optimal control includes necessary

and sufficient optimality conditions (§4), existence of the opti­

mal strategy and unique solvability of the differential equation

system appearing in the optimality condition (§5), extremal

properties of the optimal strategy and a regularity property of

its possible jumps (§6). Special emphasis is given to the des­

cription of processes by their infinitesimal characteristics

(§2) which are available explicitly in real-life problems,

Finite-dimensional distributions--which are extremely hard to

compute--are not needed.

The fundamental uniform tool of the whole theory is the

linear semigroup theory of Markov processes. The optimality

criteria will be given in terms of the infinitesimal operators

of the processes as in the author's previous papers (1973, 1974,

1980). As the infinitesimal operators of PLPs and PMPs are

first order ordinary differential operators, the determination

of the optimal strategy is reduced to the solution of a system

of nonlinear ordinary differential equations. The methods of

the paper use repeatedly the characteristic property of

continuous-time control that the value of the strategy can

change at any moment. This freedom makes the world of continuous

time processes much richer than that of their discrete-time

analogs, so that one is in a position to prove results which

have no discrete time counterparts (e.g. the whole of §6). The

author is convinced that these are precisely the results which

make the optimal strategy efficiently computable and easily

realizable. (Contrast this with the poor computational per­

formance of the backward algorithm of discrete-time dynamic

programming.)

The paper is addressed to specialists wishing to solve

concrete real-life problems using mathematical methods. There­

fore it contains a precise, compact, self-contained description

of the theoretical results with special emphasis on the deter­

mination of the optimal strategy. The results are stated in

rigorous form, but mathematical proofs are omitted--they will

appear elsewhere. Instead, explanations and app1ications­

oriented hints are included. Potential applications of the
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theory presented are dynamical problems in the classical fields

of risk, reliability, inventory, queuing and storage. But the

author hopes that the theory will also give access to such vital

modern fields as dynamic capacity expansion, control of natural

resource reserves, investment and project phasing, temporal

management of financial, manpower and natural resources, pest

management and dynamic traffic control problems.

1. PIECEWISE LINEAR PROCESSES

1.1. Defini tions

We start with a somewhat restricted definition of a piece­

wise linear process (PLP). Later we shall show that this class

of processes may be considered without loss of generality since

every PLP can be reduced to this form by a simple state-space

transformation.

As time-axis for our problems we take the non-negative

real line [0,00). The state x t of our process at time t E [0,00)

will be the two dimensional vector x t = (v t' 1;t) where the primary

(or fundamental) component v t takes its values in a finite or

infinite setL%of nonnegative integers, while 1;t is a real

variable. The range of the secondary component 1;t depends on

the actual value of the fundamental component v t . If vt=n

then 1;t lies in the internal Zn = [an, bn ]. Consequently, the

set E:= {(n, z) : Z E (an ,bn ], n E ..A'} will serve as state space

for our processes. Subsequently, we shall denote by E* the

right-side boundary E* = {(n,b ) : n Ev'Y' a I- b } of the staten n n
space, while EO:=E\E*. We assume that the state space con-

tains a terminal subset ~ with the property that the process

is killed if it reaches ~.

The dynamics of the process can be described as follows.

The primary state changes by jumps at random times. The

secondary state changes by jumps at jump-moments of v t and it

increases continuously with unit velocity between jumps. If

(v t ,1;t) ~ E*, then the jump intensity of the fundamental com­

ponent process is (V t ,1;t), Le. P(vt+hl-v t ) =h· A(v t ,1;t) +O(h).

This situation is called continuous influence of choice



- 5 -

(Gnedenko, 1966). If (vt,St) reaches the right-boundary E* then

a jump in both components occurs necessarily (this situation is

termed discrete influence of choice). If the process jumps from

the state x = (n, zn) E E, then the probability that after the jump

the evolution begins from a point of the set ACE is given by

the probability measure TI (A). We shall sometimes use the termx
jump intensity measure meaning Q (A) =.A (x) TI (A) for x E EO. Inx x
the sequel we shall always assume that our processes are regular,

i.e. that there are only finitely many jumps in finite time

intervals. Criteria for regularity can be found in Kalashnikov,

(1978) .

Other authors (Gnedenko and Kovalenko (1966) and Kalashnikov

(1978) define PLPs somewhat more generally. They do not'ex­

plicitely assume that ~ is one dimensional and that St increases

with unit velocity. Instead they suppose that for constant v

the secondary component St moves in a d-dimensional Euclidean
v . h t 1 . v ZV d vspace Z W1t constan ve OC1ty vector v . Here an v

can depend on v. But it is easy to see that if we rotate ZV

so that its first coordinate axis lies in the direction of v V

and rescale this axis appropriately, then in the new coordinate

system St will again move with unit velocity along the first

coordinate axis and the remaining dim ZV_ 1 coordinates may be

ignored. Notice that if v
V = 0 (the case of a homogenous

Markovian jump process) then ZV shrinks to a single point and

(v,Zv) does not belong to the boundary E*, i.e. no discrete

influence of choice is possible. Thus we have shown that our

simpler definition leads to no loss of generality.

By similar--but nonlinear--state space transformations,

processes for which the secondary velocity depends not only v

but also on s can be reduced to our definition. Such processes

occur, for example, in the theory of dams with controlled

release rate (cf· de Marais (1976) and Pliska (1977)). A

different approach to such problems will be given in §7.2.

1. 2 • Exa1"7p l e s

We will give three very simple examples of PLPs, which will

be used throughout the paper as illustrations of the concrete

form of the general results. Our aim in this is not to
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demonstrate here the broad applicability of the PLP concept, but

rather to present the most simple and transparent special cases.

1. Non-homogenous Markovian jump proaess. The process is

characterized by the state and time dependent jump intensity

A(n,t) and the jump measure rr t. If we include time as then,
secondary component in the state space the process will become

a homogenous PLP. Its specific property is that the secondary

component makes jumps of a saltus, i.e. it never jumps.

2. Semi-Markov proaess. It is well known that a homogenous

pure jump process is Markovian if and only if the times between

neighbouring jumps are exponentially distributed. If this is

not the case, e.g. if the interjump times have distribution

function B (t) with density b (t), then one can construct a
n n

Markovian equivalent of the original process as follows. Adjoin

the times already spent in the current state since the last

jump as secondary state component. The resulting PLP with jump

intensity A(n,s) =b (s)/[l-B (s)] will be Markovian, and its
n n

primary component coincides with the original process. Notice

that since l-B (s) can tend to zero faster than b (s), it cannotn n
be generally assumed that A is bounded.

3. Virtual waiting-time proaess. We have a non-negative

valued one-dimensional process which has positive jumps at

random times. Between the jumps the process decreases with

unit velocity if its value is not zero, and does not change

until the next jump once level zero is reached. The times

between the jumps are exponentially distributed with state

dependent intensity ~(x), and the independent magnitudes of the

jumps have a common distribution function Bx . The process is a

PLP with the special property that its state space is

E = {(O,O)} U {I} x [0,00), and from state (1,0) there is an

immediate jump to (0,0). Otherwise the jump intensity is A(X).

Such a PLP describes the virtual waiting time of a customer

arriving in an M/G/l queue. Similar processes occur in the

theory of water-reservoirs and in risk theory.
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2. MARKOV PROCESSES AND INFINITESIMAL GENERATORS

2.1 Definitions

It is not difficult to show that any PLP {x
t

} is a Mapkov

process (Dynkin, 1963; Gihman & Skorohod, 1973) and that if x t
is regular then the tpansition funation p(x,t,r) is uniquely

determined by the intensities A(X) for XEE\E* and the jump

measures 1T for x E E. On the other hand, it is not easy to
x

find an explicit expression for p(x,t,r) in terms of A and 1T

(af. Gihman & Skorohod, 1973). Therefore, we shall describe

the transition behaviour of our processes by their infinites­

imal operators, which are closely connected to the transition

probabilities but can be expressed in terms of A and 1T.

Denote by~(E) the space of bounded measureable real-valued

functions on E. The norm in.~ is defined by II f II = sup I f (x) I •
xEE

We say that the sequence f k in ~ converges stpongly to f E 3B

if II f k -f II -+- 0, while f k converges weak ly to f E g{J if f k (x) -+- f (x)

for any x E E and the sequence is uniformly bounded, i. e.

sup II f II < K. We call two functions f and g a. e. equa l (or
n n-

equiva len t )on E if for every n, f (n, z) =g (n, z) for almost every

Z E zn (with respect to Lebesque measure). To the Markov process

x t with the transition function p(x,t,r) we adjoin the semigpoup

Tt of linear operators mappingeg into itself, with

Ttf(x) : = ff(y)P(x,t,dy)
E

(2.1 )

Corresponding to each of the different types of convergence

in ,qg we can define different "infinitesimal opepators" of the

semigroup T
t

by the formula

Af : = lim ~(Ttf-f)
t-l-O

(2 .2)

In this paper we shall say that a function f E&iJ belongs to

the domain ~(A) of the infinitesimal opepatop (or generator) A
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if the limit in (2.2) exists in the sense of weak convergence in

~. This notion of generator is somewhat weaker than the weak

infinitesimal operators (Dynkin,1963) but it is the appropriate

definition for our purposes. For the later development it will

be of fundamental importance that Dynkin's formula holds true in

the following form.
1"

Let 1" be a Markov time and f Epj) (A) such that Ex 6Af (xt ) dt

is bounded. (Here Ex denotes the expectation with respect to

the measure Px .) Then

1"
E f (x ) - f (x) = E f Af (xt) d t

x 1" X a (2.3)

Notice that the infinitesimal generator is an unbounded

linear operator, it is determined by formula (2.2) and its domain.

It can be seen from subsequent considerations, that besides the

actual expression of Af the relation f E.@ (A) also contains

essential information about the functions f and Af.

2.2. Gene~ato~s of PLPs

The fundamental method for the determination of the infini­

tesimal operator of a PLP was developed by Vermes (1974). Al­

though only PLPs which arose from semi-Markovian processes were

considered, the method of elaboration of the generator can be

applied without essential change to general PLPs. Taking into

account that--contrary to the situation for the usual definition

of the weak infinitesimal operator--for our generators no weak

contin~ity is needed, we have the following.

THEOREM 1. The domain of the infinitesimat operator

of the PLP defined in §1 consists of those functions {f}

which are uniformly Lipschitzian and right differentiabte

with respect to the secondary variable and for which, for

smatt enough t and some constant K,

sup ITtf(v,~) - f(v,~)1 < Kt
v,n

(2.4)

For these functions the generator is given by the formuta
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if (v,l',;JEE\E* .

From (2.4) it follows that for (v,r,;) EE*, the "boundary condition"

f(v,l',;) = ff(n,z) 1T ,..(dn,dz)
E \), ~

holds true for any f E~ (A) •

(2. 6)

If A is bounded on all of E, then ~(A) consists of all uni­

formly Lipschitzian right differentiable functions which satisfy

the boundary condition (2.6), and Af is given by (2.5).

If A (v,l',;)+oo as r,; +b v then (for regular processes) (2.4)

is satisfied for those functions for which the second term on

the right hand side of (2.5) remains bounded. In this case,

in addition to the boundary condition (2.6), the asymptotic

equality

If(v,l',;) - f(v,bv ) I-l/A(v,r,;)

also characterizes the relation f Efi) (A) .

(2.7)

We would like to call the attention to a property of the

generators of PLPs. Namely that g = Af always has the regularity

property

-1 h
g(n, z) = lim h fa g (n, z+t) dt

hi-a
(2.8)

if (n,z) E E\E*. Sometimes it will be convenient to make use

of formulae by which Af is determined only up to equivalence.

In such cases equality and inequality relations will be under­

stood as relations holding in every point provided that every

equivalence class of functions is represented by its regular

element, for which (2.8) holds. A typical example is formula

(2.10) •
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2.3. Examples

It is easy to see that if A(n,t) is bounded, then for the

first example of §1.2 the generator is defined for any function

having bounded right derivatives and AF is given by

+Af (n,t) = f (n,t) + A(n,t) r [ f (k,t) - f (n,t)] 'IT t(k) .
k n,

(2.9)

For the seaond example A(n,s) remains bounded if, for large
-kss, b (s) > e ,for som e k > o. In this case the generator is

n
defined for every function having bounded right-derivative and

is given by the formula

+Af (n, s) = f (n , s) + (bn (s) / [1-Bn (s) ]) r [f (k, 0 ) - f (n, s) ] 'ITn , s (k) .
k

(2.10)

If the duration time distribution is supported by an infinite

interval, i.e. if bn =+ 00 for any n, but b (s) is not minorized
. n

by an exponential function, then only functions satisfying con-

dition (2.7) are in the domain of the generator, but as no

discrete influence of choice takes place, the boundary condition

of type (2.6) is not necessary. However, if the duration time

distribution is supported by the finite interval [an,bn ] with

bn < 00 , then all functions in the domain of the generator must

satisfy conditions (2.6) and (2.7) at bn •

For the third example, if A is bounded, Af is given by

Af(x) = f+ (x) + A(x) r [f (y) -f (x)] B (dy)
o x

(2.11)

for any bounded right-differentiable function fE~.

3. OPTIMAL CONTROL OF PLPs

3.1 Controllable proaesses

Up to now we have been dealing with single processes only;

now we shall consider families of processes which contain a
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free parameter in their characteristics. By appropriate choice

of this free parameter we can single out that process from the

family which has good dynamics from some point of view. If the

choice of this parameter depends on the evolution of the process

then we term the family of PLPs a controlled process. Since

PLPs are uniquely determined by intensities>.. and jump measures

n we can control such a process by these two characteristics.

Problems in which control acts only on the jump measures

at the boundary point x E E* are essentially equivalent to the

control problem for discrete time Markov chains. The funda­

mental tool for solving such problems is dynamic programming.

Even if there are some serious computational difficulties

connected with the application of dynamic programming procedures,

the theory can be regarded as closed. The interested reader

should consult the extensive literature (Dynkin, 1963 and

Howard,1964) and references contained therein.

In the present paper we shall treat the polar case,

namely when the terms connected with the continuous influence

of the choice can be controlled. In other words, we shall deal

with processes for which the intensity measure Q depends not only

on x but also on a free parameter y. (Recall that Qx is defined

only for x E: EO by Q
x

= >..(x) n
x

.) More precisely, let Y be a

closed bounded subset of Rn , the so-called action space~ and

let x y be a continuous measure-valued function on EOXY. Here
x

the space~~of finite measures is endowed with its usual weak

(mere precisely w*) topology. In order to set off the charac­

teristic features of this "continuously acting" control, we

do not allow the discrete jump measures nx (xE E*) to depend on

the control parameter y.

Since a regular PLP is uniquely defined by its intensity

measures and discrete jump measures, for any fixed y E Y we get

a unique PLP on the same state space E. But we shall in fact

study a much broader class of processes, where the value of

the control parameter y can be chosen to depend on the actual

state of the process. We denote by U the set of all measurable

mappings u of E into Y, and call it the set of all feedback
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(or Markov) strategies. To every uEU there belongs an intensity

measur~ function Q~(x), which together with the discrete jump

measures determine a new PLP. We say this process is governed

by the strategy u. The transition functions, probability measures,

expectations and generators belonging to the Markov process
. u u u ugoverned by u w~ll be denoted by P (x,t,r), Px ' Ex' A respec-

tively. For random variables, as XU,T
U

, the upper index u
y

will be used only if confusion would otherwise arise.

In many problems it is not reasonable to consider all

measurable strategies, since a general measurable feedback law

can be very difficult to realize. Sometimes we wish to consider

only piecewise constant or piecewise continuous str~t~gies, or

feedback laws taking values only in a subset of Y (cf.§6J. In

order to treat this situation generally, we define a subset

U C Uo to be the set of all admissable strategies if it satisfies

the following conditions:-

a) All constant strategies are in U.

b) If u and v are in U, v is an arbitrary primary

state and Jan interval from ZV , then the strategy

defined by

={,u(n,z)
w(n,z) :

v(n,z)

is also admissable, i. e. wE U.

3.2. Cost functionals and optimality

In order to estimate the effectiveness of different control

strategies we have to specify the cost~ which arise in the course

of the evolution and termination of the process. We assume that

the whole cost is the sum of a terminal cost component p(x),

x E: 6, which depends on the state where the process is killed,

and an evolutionary component-- the expense rate--which increases

at a state and control dependent rate q(x,y) along the trajec­

tories of the process. Our aim is thus to minimize the expected

cost
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T

JX(U) =E~{P(XT) + b q(xt,u(Xt))dt} . (3 • 1)

Here p and q are assumed to be bounded continuous functions of

their arguments. (For problems with unbounded q see §7.1.)

Clearly J (u) depends also on the initiaZ state x. Wex
shall call a strategy u* optimaZ, if for every initial state

x E E it minimizes the expected cost, i. e. if J (u*) = inf J (u)x x
for every x E E. Of course the existence of a sole universal

strategy which minimizes J for all initial states is by nox
~eans a trivial matter. But in Section 5 we shall see that in

fact there ey.ists such a uniformly optimal strategy.

In many practical problems--especially in those arising in

economics-it is adequate to consider a cost structure with a

discounting factor. The disaount rate a(x) can even depend on

the states x visited by the process, i.e. we have a more general

cost functional

J (u) = E
U

x x

T

- f a (x ) dsa s
p(xT)e

t
-fa(x )ds

T a s
+ Jq(xt,u(xt))e

a
dt

(3 • 2 )

If x is a constant, we have the usual constant rate dis­

counting.

(3. 3)

Observe that such a discounted problem can be reduced to

the original undiscounted problem, we have only to kill our pro­

cess with the (variable) rate a(x). In other words the new

terminal time will be T: =min (i ,a), where a and x t have the

cornmon distribution'

It is easy to see that by killing in this manner from a process

with infinitesimal generator A we obtain a process with generator

A - a, and the domains of both operators coincide.
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Consequently the following two problems are equivalent:

a) To solve the discounted problem for processes with
ugenerators A .

b) To solve the undiscounted problem for processes
. h uW1t generators A -a.

For simplicity, we shall assume in the sequel that the cost

functional is uniformly bounded, i. e. sup JU T < /Xl. This is al-:­
x",u x

ways the case if p and q are bounded and the expected lifetimes

of the processes are bounded, i.e. sup EU
T < /Xl. This is al-

. x u x
discount rate a is strictly positive~ The assumption is not

seriously restricting since if there exists one strategy with

bounded cost, then clearly the optimal cost must remain below

this bound. Those strategies which lead to costs exceeding

the bound cannot be candidates for optimality, i.e. they can be

deleted from the set of admissible strategies. Problems with

unbounded cost rate and consequently with unbounded cost func­

tional, will be investigated in §7.l.

4. OPTIMALITY CRITERIA

In this section we state the fundamental result of the paper,

a necessary and sufficient optimality condition. In order to

include some explanations and refinements we treat sufficiency

and necessity separately.

4.1. Sufficien t op tima li ty condi tion

THEOREM 2. Suppose we have a function ~ belonging

to the intersection of the domains of the infinitesimal

generators AU for all u E U and a strategy u* E U which

satisfy the equation

u* YA ~(x) +q(x~u*(x)) = min A ~(x)+ q(x~y)

yEY

with boundary condi~ion

~(x) = p(x)

= 0 .~ E EO
1.-J X

x E 6

(4. 1 )

(4. 2)
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Then u* is optimal in U and ~ is the corresponding
*optimal cost function ~(x) = J (u ) = m&n J (u).

x u x

Notice that (4.1) can be rewritten in the form

*AU~(X) + q(x,u*(x)) = 0 (4 • 3 )

and AY~(X) + q(x,y) > 0 for any y E: Y • (4 .4)

Theorem 2 concerns the analog of the Hamilton-Jacobi suffi­

cient condition of the calculus of variations for the case of

stochastic PLPs. Being a sufficient condition it is adequate to

decide whether a strategy (found by some other method) is opti­

mal. Taking into account the actual form of the generator for

PLPs, we have only to check whether u* and ~ satisfy the differen­

tial equation (4.3), inequality (4.4) and boundary condition

(4.2).

The proof of Theorem 2 is contained in Vermes (1973) and

is based on the application of Dynkin's formula. We remark that

the proof does not use the property (a) and (b) of the set of

admissable strategies ( see §3.l), hence the theorem is valid

for any class of strategies.

4.2. Necessary optimality condition

THEOREM 3. Suppose that the domains of the

infinitesimal generators corresponding to all admissible

s-crategies u E: U coincide. If u* is an optimal strategy

and ~(x) = J (u*) is the corresponding optimal cost function~
x

then ~ is in the common domain of the generators and u*

and ~ together satisfy (4.1)-{4.2).

Moreover ~ is continuously differentiable with

respect to the secondary variable and ~n ~(v~n) is uni­

formly Lipschitzian in n on E.

The proof of Theorem 3 is accomplished along the follow­

ing lines. First we prove that ~ E.@(Au
*) and that it

satisfies (4.2), (4.3). From ~ EQJ(Au
*) it follows
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immediately that Il' E n.@(AU *) and that Il' is uniformly

Lipschitzian and right-differentiable. Next we prove

the validity of (4.4); this critical step is based on

the following lemma.

Lemma. Let G CE denote on arbitrary open set and let

0= 0G be the first exit time from G. If u(x) :: v(x)

for X E G~ and for any x E E

(4. 5)

holds~ then J (u) < J (v) for all x E E. If strict in-
x - x

equality holds in (4.5) for some xo~ then also JxO(v).

In the third and final step of the proof of Theorem 3 we

use (4.1) to prove the additional regularity property of Il'.

Theorem 3 uses only the condition that the domains of the

generators coincide. It follows from Theorem 1 that this con­

dition is automatically satisfied if A is bounded. Notice that

the discrete jump measures n describing the discrete influence
x

of choice (x E E*) do not by assumption depend on the control;

hence the same boundary condition(2.6) holds for any strategy u.

If A is singular, i.e. if A(V,~,U) ~ 00 as ~ ~ b V, then the

validity of the asymptotic equality (2.7) is also necessary for

f E Qi (Au). Consequently, in order to have '@(Au)=EnIlJ(Av ),
u U

we must additionally demand that for every y E Y the intensities

A(V,~,y) tend to the infinity with the same order, i.e. for any

pairs Yl' Y2 E Y and for any v

as (4.6)

From the theoretical point of view, Theorems 2 and 3 leave

something to be desired. Namely, since in Theorem 3 the existence

of the optimal strategy u* is explicitly assumed, the theorems

cannot be used to prove existence of the optimal strategy. At

the expense of a laborous proof, this defect can be remedied

as the following theorem shows.
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THEOREM 4. Suppose the domains of the infinitesimal

generators AU coincide for any u E U. Denote by

llJ(x) = iY!f J (u), then
u E U x

inf [AYIlJ(x) + qY(x)] = 0
yEY

(4. ? )

is valid

tiable in

satisfies

ofor any x E E • Moreover IlJ is con tinuous ly differen-

n with uniformly Lipschitzian derivative, and IlJ

(4.2) and (4.4).

The first two steps of the proof of Theorem 3 cannot be

repeated for the present context since the fundamental relation

IlJ E .@(Au *) is now meaning less. The bulk of the work needed to

prove Theorem 4 is included in the proof of the rigorous version

of the invariant imbedding theorem for our problem. As it is

interesting in itself, we formulate this result as an independent

theorem.

THEOREH 5. (Invariant imbedding). Let G CE be an

arbitary open set and let a =a G be the first exit time

from G. Then we have for every xE E

llJ(x) = inf
uE U

(4. 8)

4.3. Computation of the optimal strategy.

Besides their theoretical significance (see also §§5 and 6)

the practical value of Theorems 2 and 3 is that they give a con­

structive method for the dete~mination of the optimal strategy

Piecing together the results of Section 2.2, 4.1, and 4.2, we

see that the optional strategy u* and the optimal cost IlJ together

satisfy the difference-differential equation system

d u*(n z)
d Z

'¥ (n , z) = A (n, z , u * (n , z) ) f ['¥ (n , z ) - '¥ (\) , 1:; ) 11T ' ( dn , d z )n,z

+ q (n,z,u* (n,z))

= in f { A (n , z , y) f ['¥ (n , z ) - '¥ (\) , L; ) ] 1T Y (dn , d z) + q ( u , z , y) }
Y

n,zy€

(4 .9)
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for z E (an ,bn ) and each n E,.;y' with boundary conditions.

nIf/(n,b ) = flf/(v,z)iT n(dv,dz)
n,b

(4.10 )

and If/(n,z) = p(n,z) if (n,z) E t::. (4.11 )

Equation 4.9 is nothing but an ordinary (nonlinear) differential

equation. Notice that though the optimal strategy u* can have

jumps, the right-hand side of (4.9) remains not only continuous

but even Lipschitzian in z for u* and fixed n : consequently it

can be solved by any method of discretization and convergence

is ensured.

The value u*(x) of the optimal strategy is that control y*

which minimizes the right-hand side of (4.9) for the actual state

(n,z). Consequently, simultaneously with the solution of the

differential equation we have to carry out a minimization in y

at every step.

In many important cases, especially if the intensity

measures Q~ = A(X'Y)iT~ depend linearly (or affine linearly) on
y, the minimizing control can be expressed explicitly in terms

of If/. In such cases, we have only to determine the solution If/

of the ordinary nonlinear differential equation, which does not

contain any step by step minimization, and after that we may

elaborate u* from If/.

If no explicit formula is available for u* in terms of If/

then the minimization at every step over the whole action space

can considerably increase the computational effort. There

arises the danger that plagues discrete time dynamic programming;

namely, that we have a general method--theoretically applicable

for all complicated processes arising in applications--but the

necessary computational effort increases so rapidly with the

complexity of the system that it restricts the applicability of

the method to the most simple problems only. Further theoretical

work is necessary to show that this is not the case. In Section

6 we shall show that one need not carry out the minimization at

every step over the whole state space. We shall see that only

a very few distinguished actions determine the optimal strategy,

and even switching between these distinguished actions cannot

be arbitrary.
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5. EXISTENCE AND UNIQUENESS

Recall that according to §3.2 we call a strategy u* optimal

if it minimizes the expected cost J (u) for any initital statex
x E E. It could occur that for different starting points x

different strategies are optimal. This would mean that our de­

clared task, to find one universal strategy which is optimal

for any initial state, is impossible. In this case all results

of Section 4 would remain formally correct, but they would be

practically useless(i.e. involve empty conditions). Even if

there were a universal optimal strategy, it is not sure that

it could be chosen from the relatively simple class Ua of

Markovian feedback strategies. It is possible that it might

also depend on the past of the process and not only on the

current state. The following theorem shows that the problem

formulated in Section 3 is solvable, and the class Ua of

~1arkovian feedback strategies is broad enough to contain an

optimum.

THEOREM 6. There exists an optimal strategy in

the cI,ass UO.

This result can be deduced from Theorem 4 by the measurable

choice theorem.

In the last section we have seen that an optimal cost

function ~ satisfies the differential system (4.9) with boundary

conditions (4.10)-(4.11). But there arises the question of

whether this is the only solution. Is it possible that we might

find another solution of (4.9)-(4.11) which differs from J x ?

This case would be dangerous--even from the point of view of

numerical methods, since different approximating sequences might

converge to different solutions depending on the choice of dis­

cretizing points. Notice that because of the nonstandard boundary

conditions and the possible discontinuities of the right hand

side, the classical uniqueness theorems from the theory of dif­

ferential equations cannot be used. However, from Theorem 3 we

can deduce the following.

THEORE!1 7. The differen tia l equa tion sy stem (4. 9)

has only one bounded solution with boundary conditions

(4.10)~ (4.11).
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Notice that Theorem 7 states only the uniqueness of the

optimal cost function, but does not exclude the possibility

that several alternative strategies might result in the same cost.

Recall that according to §3. we seek the optimum in some

class U of admissible strategies satisfying condition (a) and

(b). One might expect that in different classes of admissible

strategies there are different optima, especially since a

strategy which is optimal in a small strategy class is not

necessarily the best which can be found in a broad class. But

this is not true. Our uniqueness result shows that if we find

a strategy optimal in some class satisfying (a) and (b), then

the same strategy is optimal even in the broadest class UO•

6. ~XTREMAL PROPERTIES OF THE OPTI~~ STRATEGY

6.1. Bang-bang principle.

As we saw in §4.3, in order to determine the optimal

strategy we must solve a differential equation system and

simultaneously in any state carry out a minimization over the

whole space. The integration of a differential equation is

a standard numerical procedure, which even for large systems

can be accomplished in reasonable time. But the necessary

minimizations are extremely time-consuming, since generally

the action space consists of infinitely many points.

One of the fundamental results of the control theory of

linear deterministic systems is the bang-bang principle. It

states that any admissible strategy can be substituted by

another which ·takes values only from the extremal points of

the action space and which is equivalent to the original

strategy from the point of view of time optimality. This means,

seeking for the time-optimal strategy one needs to take into

account only the extremal points of the action space. For

example, if Y is the unit square, then one has to minimize

only amongst its four vertices instead of the infinitely many

points of the square. The result is an essential saving of

computational effort. Unfortunately, the bang-bang principle

is not valid for nonlinear systems or for discrete time
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deterministic processes in general.

In the present section we shall see that the analog of the

bang-bang principle holds true for PLPs. First we state the

result for PLPs depending in some sense linearly on the control

and for a time optimality criterion, then we state the best

result for general PLPs and performance criteria.

Suppose that the intensities are of the following form:

A(x,y) = AO(x) + y Al(x) and that the jump measures ~x do not

depend on y. Further let the criterion functions be q :: 1 and

p :: 0, i. e. \'le look for the strategy which controls the process

to reach the target set ~ in the shortest possible time. Then

we have the following result.

THEOREM 8. (Linear bang-bang principle). The values

of the optimal strategy can always be chosen from the ex­

tremal points of the action set.

The benefits arising from Theorem 8 are obvious. In equation

(4.9) we can write inf E yinstead of inf EY' and since gener-. y ex y
ally there are only a few extremal points, we can save a large

amount of computational effort. Also the realization of the

control strategy will be much simpler. We need not memorize a

complicated function, only the points where we have to switch

over from one extremal point to another.

Contrary to the deterministic case, this result can be

generalized to nonlinear systems and to general performance

functionals as well. For this we have to introduce an auxiliary

notion. The set of all possible pairs of intensity measures

and cost rates .;r(x) : = { (QY ,q (x,y»: y E y} is called the indicatrixx
of the problem at the point x E E. .;r(x) is a compact subset of

the cartesian product .4'fxR
l , where ~d"denotes the set of all

bounded measures with the weak* topology induced from C(E). It

is easy to see that in the linear case, the indicatrix is iso­

morphic with the action space (since q :: 1)--that is why in that

case this extra notion is superfluous. We can formulate the

general bang-bang principle for controlled PLPs in terms of the

indicatrix.
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THEOREM 9. (Nonlinear bang-bang principle). The

value u*(x) of the optimal strategy at the state x can

always be ahosen from the extremal points of the in­

dicatrix S(x) at x.

Thus a strategy cannot be optimal if its values lie in the

interior of the convex hull of the indicatrix on a subset EIC E

of nonzero measure.

The proof of Theorem 8 and 9 use a balayage technique com­

bined with a sharpened version of the measurable choice theorem

(see Vermes 1980).

Our results show that in Markovian continuous time stochastic

control problems the optimal strategy is much simpler than a

general nonoptimal strategy. Therefore, we cannot share the

views of those authors who suggest finding a nearly optimal solu­

tion in lieu of the true optimum in order to simplify algorithms

for construction and realization of the strategy. In our view,

an optimal bang-bang strategy is much simpler than a nearly opti­

mal continuous one--even if the continuity assumption is comfort­

able for the theory.

We would like to emphasize that the bang-bang principle is

an essentially continuous-time result. It is closely connected

with the notion of intensity and intensity measures which cannot

even be defined in discrete time. For the validity of the bang­

bang principle it is essential that the controller is in the

posi1 ion to switch at the correct instant (af. Property (b) of

3 ..1). If this freedom is restricted--e.g. by requiring that

switchings are allowed only at some fixed moments (e.g. points

of discrete time scale}--then the optimal strategy looses its

bang-bang property.

Translating this property to the language of the realization

of the strategy, we could say that a continuous time process

model is justified if the technological or organizational struc­

ture of the process enables its controller to intervene

operationally in its evolution at any moment when the necessity

arises. For example, if a manager can change the production
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structure only at the beginning of a year, then the continuous

time process model is inadequate even if production itself runs

continuously. According to the bang-bang principle, the

optimal process runs in some sense with extremaZ veZocity; con­

sequently relatively small errors in the choice of the points

when we change its direction can have disasterous consequences.

6.2. Randomized Strategies.

Up to now we have treated only pure feedback strategies.

We controlled the process on the basis of its (current) states,

and our aim was to find the best such strategy. One might

expect that in a larger strategy class one can find a better

optimum.

A pure feedback strategy means that if we observe that our

system is in state x then we necessarily apply control u(x). One

could control in such a way that if we are in state x then with

some probability we apply action Yl' with some other probability

Y2' etc. In.other words, to every state x there corresponds a

probability measure ~ on the action space and we control thex
process by an action chosen randomly according to the measure

~x·

These form the class of so called randomized strategies.

Of course, this class is much larger than the class of pure

strategies and the question arises whether randomized strategies

are more effective. The answer is negative and follows from the

bang-bang principle.

THEOREM 10. To every randomized strategy corresponds

a pure one which yieZds a criterion vaZue not worse than

the originaZ one.

This means that randomized strategies have no advantage over

pure feedback strategies; hence it is enough to deal with the

latter simpler class.

6.3. Jump conditions

The optimal strategy and optimal cost function together
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satisfy the fundamental differential equation (4.9). We already

know that it is enough to take into consideration only the ex­

tremal points of the indicatrix. But there arises the question

whether or not the optimal strategy can jump arbitrarily between

the extremal points or if there is some further regularity in

its evolution.

Suppose first that the intensity measures depend linearly

on the control and that the action space is an n-dimensional

cube. We call two vertices (extreme points) neighbouring if

they lie on a common edge. Then we have the following result.

THEOREM 11. The optimal strategy can always be

chosen so that depending on the secondary variable,

with the primary variable held fixed, its value jumps

between neighbouring extremal points of the action

space.

This result further simplifies the solution algorithm of

(4.9)-(4.11). Equation (4.9) is a differential equation in the

secondary variable with the primary variable held fixed.

Numerically, we must solve it forward or backward along the z

axis. Theorem 11 says that in order to determine the value of

the optimal strategy u*(n,zO+~z) we need not minimize over all

extremal points of Y, but only over those which are neighbouring

to u*(n,zO)' Since the discretizing points an+k~z are much more

dense along the z axis than the jumps ofu*, in fact no stepwise

minimization is necessary. We solve the differential equation

(4.9) without "inf", with the value of u* from the last step.

Simultaneously we also compute the value of the right-hand side

for the neighbouring extremal y values and check whether they

are still larger than the right-hand side for u.(n,zO+~z). We

have to carry out the minimization only in the case when the

latter condition is not satisfied. Otherwise we go on with the

integration without any change.

Theorem 11 can be generalized to nonlinear problems as well,

we have only to define what we mean by neighbouring points. If

the indicatrix is finite dimensional, then two extremal points

are called neighbouring if they have a common supporting
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hyperplane. That means there exists a hyperplane such that

the whole indicatrix lies on one side of it and both extremal

points are on this plane. If the indicatrix does not vary with

z, more precisely if all 5(n, z) are isomorphic for z E (an, bn ) ,

then Theorem 11 remains valid; one has only to write neigh­

bouring points of the indicatrix instead those of the action

space.

In the general case theindicatrix is not finite dimen­

sional, consequently we have to use linear functionals instead

of hyperplanes. Moreover, if the indicatrix varies with z,

then it can occur that points which are neighbouring for one

z are not neighbours for another z. To be precise, we can say

in this case that in any state (n,zO) there is a hyperplane

in vlx R
1 such that all limit p6ints of the sequence

(Qu*(n,z), q(n,z,u*(n,z)))
n,z

lie on it as z + zo' and in a neighbourhood

tri~es lie on one side of the hyperplane.

have the following result.

of Zo all indica­

In other words we

THEOREM 12. For any pair (nJz O) there exists a

continuous linear functional onAf and a constant c

such that for some E: > 0

£ (QY ) + q (n , z , y) > Cn,z

for any yEY and Iz--zol < E:. Moreover if (zk) is an arbitrary

sequence tending to zo' then

Theorems 11 and 12 have important implications regarding

the continuity properties of the optimal strategy. If the

optimal strategy is unique, then it necessarily has the bang­

bang property and satisfies the jump condition. Suppose that

we have a linear system, then if the action space is a cube

or a polyhedron, the optimal strategy is a pure jump function.

If on the other hand the action space has no neighbouring
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extremal points, then the optimal strategy aannot have jumps

and must be continuous. This, for example, is the case if the

indicatrix is a disc. Then all points of the boundary circle

are extre~al, but there are no two points with common tangent.

Consequently the value of the optimal strategy can only vary

continuously along the circle. Analogous results can be formu­

lated for nonlinear systems in ter~s of the indicatrix.

The information that the optimal strategy is continuous

also simplifies the computations, since in this case it is

enough to seek for the minimum in a small neighbourhood.

7. EXTENSIONS

7.1. Unbounded expense rates

In §3.2 the expense rate q and the terminal cost p were

assumed to be bounded. There are several real-life applications

in which these functions are finite but not bounded. In this

subsection we investigate the changes in the theory which are

necessary if we want tq include discounted problems with finite

but unbounded expense rate.

For simplicity, we assume a constant discount rate and zero

terminal costs. In this case our cost function will be of the

form

(7 • 1 )

The inclusion of an arbitrary stopping ti~e T and a bounded

terminal cost co~ponent would make no difference.

The fundamental difficulty is cased by the fact that for

unbounded q the equation (af. §4.3)

Af - af + q = 0 (7.2)

has in general no bounded solution although it has several

different solutions in the class of finite but not necessarily

bounded functions. Even for bounded q such extra finite but

unbounded solutions exist, but J is the unique bounded solutionx
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of (7.2). Consequently for unbounded q one must determine a

class of unbounded functions in which the cost J is the onlyx
solution of (7.2).

Let A
a

and A
O

denote the generators of the discounted

(killed) and of the undiscounted (permanent) processes respec­

tively. They are defined for all finite functions such that

the respective lir.1its t(T~ f-f) exist as t.j. O. Then we have the

obvious relation Aaf = AOf-af. We are ready to state the

fundamental result of this subsection.

THEOREM 13.

aJ Equation Aaf + q = 0 has at most one solution

f such that AOf remains bounded.

bJ If II Tt q - q II remains bounded on some finite inter­

val t E [0., tOJ., then there exists a function f

such that AOf is bounded and Aaf + q = o.

The condition in part (b) means that sup[E q(xt)-q(x) I mayx x
not be infinite for arbitrary small t. It is interesting to

note that this condition is equivalent to the seemingly more

stringent assumption

(7.3)

holding for all t where c
O

,c
1

are constants.

By Theorem 13 we can extend the whole control theory of

PLPs developed in §§3-6 to unbounded expense rates q with the

property (7.3), provided that the discount rate is bounded away

from zero. The only necessary changes are that in the conditions

of Theorem 2-12 we must use the domains of operators A~ while in

Equation (4.1) one has to consider AU and AY instead of AU anda a
AY respectively. Here we give only the reformulation of

Theorem 7 in which the largest number of changes are necessary.

THEOREM 7'. Suppose the domains of the operators

AU coincide and thato
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u u dfor some constants cO~cl~ an every t. Then the equation

inf [A~'¥(X) - CL'¥(X)+q(x~y)] = 0 xEE\E*
yEY

has exactZy one soZution '¥ E G.@(A~). This soZution is

7.2. Piecewise monotone processes

(7. 4)

As we saw in §1.1 the assumption that the secondary com­

ponent increases with unit velocity results in no loss of generality

compared with the original definitions of Gnedenko and Kovalenko

(1966) and Kalashnikov (1978), where the velocity may depend on

the primary component.

But there are other problems where the velocity of the

secondary component depends not only on the primary component

but on the secondary component as well. A typical example is

the control of a storage system with content dependent release

rate, where the secondary component is the dam-content itself

(cf. de Marais~1976). If the secondary velocity is bounded

and has constant sign, then we arrive at piecewise monotone

processes (PMPs) to which our theory has a straightforward

extension.

Suppose we are given the control problem defined in §§1-3

with only the change that the secondary component increases

with velocity v(n,z,y) >0 depending continuously on both state

components as well as on the control variable y.

If v is not zero then Theorem 1 remains valid with the

only change that in the expression of the generator (2.5) the

first term is v(n,z)df+(n,z)/dz instead of df+(n,z)/dz. All

further expressions can be divided by v I:- 0 and the entire theory

remains valid. In other words the control problem for a PMP with

velocity v> 0 is equivalent to the control of a PLP with ex­

pense rate q(x,u(x)/v(x,u(x».
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If v(x,y) = 0 for some xEE, yEY, then the situation is

complicated by the following two facts:-

1. The domain of the generators AU do not coincide for

all uEU
O

' as at points where x(x,u(x)) =0 the functions

f E~(Au) need not be differentiable.

2. The velocity function v(x,u(x))does not uniquely

determine the path of the secondary component between two jumps,

as vU(x) = v(x,u(x)) is in general not then Lipschitzian.

Observe that the coincidence of the domains was needed

only to ensure that If = inf J (u) as in ~(Au) for all u, and that
u

If is absolutely continuous. Thus the first difficulty can be

resolved by substituting for d+If/dz a regularized version of

the Radon-Nikodym derivative If'RN'

The second difficulty is caused by the fact that while

PLPs can be uniquely defined by infinitesmal characteristics,

when zero velocities are allowed, the infinitesmal generator

does not determine a unique PMP. We have to specify which

points (n,z) with vU(n,z) = v(n,z,u(n,z)) are instantaneous~

i.e. from which the process XU exits continuously, and which

ones are stable in the sense that the process exits from them

only by jumps. ~iJe define

and Vr(u):= E\Vs(U)' and supplement the definition of the process

XU by the requirement that the points (n,z) EVr(U) are exactly

those where the state of the process remains unchanged until the

next jump.

In order to promote an easier formulation of the conditions

and results in the sequel we assume that there exists a yo E Y

such that v(n,z,yO):: 0 and for all other, Le. yEY\{yO}, we

have that v(n,z,y»O for all (n,z) EE.

THEOREM 14. The statements of Theorems 2-13 remain

valid with the following changes.
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1. We require only the coincidence of the domains

~(AY) for y~YO'

2. ~ does not necessarily belong to the common domain

of the generators~ it is generally not continuously

right differentiable.

3. In each formula d+~/dz is to be substituted by

1 h ,
lim h- f

O
~RN(n,z+t)dt

h1-0
(7.5)

(At th08e points where d+~/dz exi8t8~ in coincides
~

with d+~/dz.)

4. In Theorem 2 the condition that ~ belongs to the joint

domain is meaningless. Instead we have to require that

~ is uniformly Lipschitzian with respect to the

secondary variable and that it satisfies such boundary

condi tions (2. 6) - (2. 7) as aris e from the domains £i)( AY ) ~

Y ~ YO'

5. The statements of Theorems 11-12 do not hold in so far

as jumps to 01' from Yo are concerned.
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