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Infrastructure gaps in Africa

What technologies to use?
Access to wastewater treatment in 2010

How much will it cost?
Access to electricity in 2010
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Climate change and Africa’s water-energy-land nexus

@ Made for minds.
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Zambia turns to charcoal as hydroelectricity
sources drain

Zambia has long relied on rainfall to generate electricity. But with climate change rapidly
depleting water sources, people are turning to charcoal for their power needs, prompting

calls to ban the black fuel.

Sikombe, 2017
In 2016 (from Zambia Energy Regulation Board, 2016)

« Blackouts averaging eight (8) hours a day
» Power imports increased to 2,184 GWh, from 785 GWh, in 2015 (180% increase)
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Integration of regional electricity markets couples basin

adaptation planning across the African continent

Conway et al. (2017)

ARTICLES nature
https://doi.org/10.1038/541560-017-0037-4 energy

Hydropower plans in eastern and southern
Africa increase risk of concurrent climate-related

Linking of regional electricity
sharing mechanisms could
mitigate intraregional risk

electricity supply disruption

Declan Conway'™, Carole Dalin®"?, Willem A. Landman?® and Timothy J. Osborn®*

Wu et al. (2017)
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Strategic siting and regional grid interconnections key Regional

to low-carbon futures in African countries interconnections are
A phadkab, Canil 1 Korment and Duncon s callaways 112 Radofidc Jesica Raly-Momant®, crucial for realizing no-
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Research Challenge
How to balance regional opportunities with localized resource constraints?
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Hydro-economic modeling

“Hydro-economic models represent spatially distributed water resource
systems, infrastructure, management options and economic values in an
iIntegrated manner,” Harou et al. (2009).

* Most hydro-economic models focus on existing infrastructure
— Limited ability to look at long-term transformations.

* Most hyrdro-economic models focus on a single basin

Research Objectives

 Develop a new integrated hydro-economic modeling tool for
water and electricity sector expansion planning in Africa

— Spatially-distributed water and energy resources
— Long-term planning horizons (pathways to 2050)

— Flexible implementation for application in other regions



ECHO

Extended Continental-scale Hydro-economic Optimization

Infrastructure options: Water supply, wastewater
treatment, power plants, irrigation, efficiency, efc.

Transboundary spatial delineation
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Runoff, baseflow, etc.
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Kahil et al. (forthcoming)




Projecting water infrastructure demand under clean water goals
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Preliminary scenario analysis:
Focus on water infrastructure pathways to 2050

Three socio-economic and Average Annual Growth - Urban Water Withdrawals

climatic scenarios:

% per year

1/ Middle of the Road (MoR):
SSP2-RCP6.0

2/ Regional Rivalry (RR):
Water demand increases over
time in all water sectors and
water availability decreases,
compared to MoR.

3/ Sustainabllity (Sust): Water
demand decreases over time
In all water sectors and water
availability increases, parkinson et al. (2016)

compared to MoR.



Results

Balancing water supply and demand
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Africa — Water Supply & Demand
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Results

Investment requirements
By Country
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Results
Increasingly electricity-intensive water sources

Africa — Electricity Demand from Water Supply Effects of CO2 mitigation
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Ongoing and future work

 Electricity sector calibration
Planned projects

Adaptive land use
Integrated policy analysis
Application to other regions



Conclusions

Water and energy access closely interlinked in Africa over multiple
geographic scales

— Hydro-economic models need to be extended to incorporate energy
and land-use transitions

Water infrastructure costs vary considerably

— Efficiency and behavioral changes can provide significant savings,
especially in water-stressed regions

Climate change mitigation could drive up costs to supply freshwater

— Subsidies might be needed in some regions to protect low-income and
vulnerable populations

Th an k y() u | Funding and support provided by: f gNng %
gel 222 |5y
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Features of the ECHO modeling framework

Demand growth; Resource availability; Climate change;

Ui Administrative boundaries; Basin delineations; etc.

Reservoir management; Irrigation; Electricity generation; Water

Processes pumping; End-use efficiency; Wastewater treatment; etc.

Prices; Demands; Emissions; Water quality; Environmental flow;
Groundwater depletion; Resource security; etc.

Impacts

Extract resources; Operate infrastructure; Expand infrastructure;

PR Trade resources; Fulfill SDG objectives; etc.

ECHO provides an integrated platform for exploring feasible adaptation options
under human development and environmental constraints



Spatial delineation: Tracking transboundary flows

Network Identification: Nile River Basin
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Data sources: HydroBASINS (Lehner and Grill,2013); GADM, 2015
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Existing water infrastructure capacity

a. Surface Water Pumping b. Groundwater Pumping e. Energy Intensity
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Presumptive standards for environmental flow protection as
constraints on surface and groundwater withdrawals

Rivers Aquifers
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Gleeson and Richter, (2017)
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Gross Hydropower Potential [ TW ]
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Hydropower potential at the basin-county level

Gross Hydropower Potential

Africa

‘\*\  Multi-model mean from /" |
W\ van Viietetal. 2016 =" .’
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Per Capita Municipal Freshwater Withdrawal [ m° per year ]

Future municipal water demands
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Figure: Per capita GDP vs. per capita freshwater withdrawal.
[ Data from: FAO AQUASTAT ; World Bank Indicators] %°



Country-level results

Scenario - Population
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Figure: Demand curves obtained for eight countries (including technological change).
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Innovations

Water, energy and food demand modeling at the basin-scale

Electricity demand by country [ MW ]

Spatially-explicit electricity demand [ MW ]
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Existing infrastructure

Reservoir Storage Volume = 2010




