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Abstract
Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and
droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have
enabled more realistic comparisons with observations. Here we evaluate simulations from an
ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model
Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially
distributed across eight global hydrobelts. The performance of each model and the ensemble mean is
examined with respect to their ability to replicate observed mean and extreme runoff under
human-influenced conditions. Application of a novel integrated evaluation metric to quantify the
models’ ability to simulate timeseries of monthly runoff suggests that the models generally perform
better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When
model outputs are temporally aggregated to assess mean annual and extreme runoff, the models
perform better. Nevertheless, we find a general trend in the majority of models towards the
overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The
models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while
in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is
noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any
individual model—a finding that challenges the commonly held perception that model ensemble
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estimates deliver superior performance over individual models. The study highlights the need for
continued model development and improvement. It also suggests that caution should be taken when
summarising the simulations from a model ensemble based upon its mean output.

1. Introduction

Global hydrological models (GHMs) and land surface
models (LSMs) are used for assessing the impacts of
climate change on water availability and scarcity [1–
5], droughts [6, 7], flood hazard and risk [8–11], the
response of the global hydrological cycle to climate
change mitigation [12], forecasting at short timescales
[13] and examining the role of water in assessments
of food security [14–16]. In turn, their results are used
to inform global policy decisions on climate change
[17, 18]. Therefore, it is important to understand the
strengths and limitations of these models in simulating
global hydrological variability.

The aims of this study are to: provide new under-
standing on how global-scale hydrological models
perform in different hydro-geographical locations of
the globe; to highlight the current strengths and limita-
tions of global-scale hydrological modelling; to identify
opportunities for the community to improve the mod-
els; and to explore the potential implications of our
research for future work in the field.

Previous global evaluation studies (table 1) dif-
fer from each other in several ways: in the number
of models evaluated (2–14, with a median of 6); the
number of catchments included (8–6192); the size of
catchments considered (10 km2–4 758 000 km2); the
evaluation metrics calculated; the hydrological indi-
cators evaluated; and the period of analyses. The highly
varied approaches taken in previous studies means
there remain several opportunities for improving the
way in which model evaluation studies are conducted.

Firstly, only a handful of studies [19–22] have
explored spatial patterns of model performance, all
of them by using the Köppen climate classification
system. Here, for the first time, we evaluate the per-
formance of several global-scale hydrological models
across hydrobelts [23] (figure 1 and table S2; tables
and figures in the supplementary information available
at stacks.iop.org/ERL/13/065015/mmedia, hereafter
called SI, are denoted by an S in their numbering).
This offers a more appropriate classification scheme
for catchment hydrology than the Köppen system
because it takes into account a greater number, and
diversity of, hydro-geographical factors in defining the
boundaries of the spatial units.

Secondly, almost all previous evaluation studies
compare simulations of naturalised discharge to obser-
vations. This means that the effects of human impacts
on runoff and river flows remain unaccounted for by
the models. This is despite the fact that the major-
ity of catchments across the globe have been severely

influenced by human activities [24, 25]. We capitalise
on the latest model simulations conducted as part of
the second phase of the Inter-Sectoral Impact Model
Inter-comparison Project (ISIMIP2a), which provides
a set of simulations that include time-varying human
impacts, such as water abstractions and reservoir oper-
ations by dams [26]. In so doing and in parallel with a
companion study presented in this journal issue [25],
we conduct the first multi-model evaluation of runoff
under human-impacted conditions as simulated by
global-scale hydrological models.

Thirdly, with only a very limited number of excep-
tions [20, 21, 25, 27], it is uncommon for global-scale
hydrological model evaluation studies to assess the
ability of models to simulate hydrological extremes,
particularly high and low runoff or specific return peri-
ods. We address this paucity of evidence by evaluating
indicators of hydrological extremes, including specific
return periods.

Fourthly, a multitude of different performance
metrics have been employed within and between stud-
ies. The ranking of models, by performance, changes
according to the metrics that are employed because
different metrics emphasise different characteristics of
model performance. To overcome this issue we use a
novel integrated metric [28–31].

Finally, the ensemble mean (EM) is often used to
summarise the performance of several models because
it has been shown that the EM often performs bet-
ter than the majority of the individual models from
which it is derived [32–38]. However, not all studies
have provided a comprehensive analysis of the perfor-
mance of the EM relative to individual models, at global
(table 1) and continental scales [39, 40]. Therefore, we
evaluate the performance of six models individually,
as well as the EM.

By capitalising on the five opportunities discussed
aboveweprovideadistinct contributiontounderstand-
ing how global-scale hydrological models perform in
different parts of the globe and for different hydrologi-
cal indicators, including extremes.

2. Methods

2.1. Study catchments, models and data
2.1.1. Study catchments and observed data
Forty study catchments (figure 1 and table S1) were
identified following a comprehensive set of four crite-
ria (see SI) applied to observed data from the Global
Runoff Data Centre, GRDC (available from http://
grdc.bafg.de). The catchments provide a reasonable
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Table 1. Overview of selected global-scale studies evaluating multiple models, including the present study. GHM: Global Hydrological Model, LSM: Land Surface Model, DGVM: Dynamic Global Vegetation Model, GCM: Global
Climate Model, MAR: mean annual runoff/discharge, MMR: mean monthly runoff/discharge and/or seasonality, MDR: mean daily runoff/discharge, HFP: extreme high flow percentiles (e.g. Q5), LFP: extreme low flow percentiles (e.g.
Q95), HFR: high flow return periods, LFR: low flow return periods.

Study (ordered by publication date)

No. of models 
evaluated

No. of catchments 
included

(area in parentheses; 
km2)

Inclusion of: Hydrological indicators Evaluation metrics

Spatial analysis 
classification

No. of years 
(year range in 
parentheses)

Mean flows Extreme events Integrated m
etric

C
E

:C
oefficient of Efficiency

PB
IA

S:Percent bias

R
M

SE
:R

oot m
ean square error

M
A

R
E

:M
ean absolute relative error

R
2:C

oefficient of determ
ination

r:Pearson correlation coefficient

Statistical tests

SD
:Standard deviation

C
V

:C
oefficient of variation

G
H

M

L
SM

D
G

V
M

G
C

M

H
um

an im
pacts

E
nsem

ble m
ean

M
A

R

M
M

R

M
D

R

H
FP

L
FP

H
FR

L
FR

[41] 11 250 (mean 157,000) Latitude, 
rainauge density 2 (87-88)

[42] 12 165 (> 50,000) 28 (28-99)

[43] 6 33 (100,000 - 4758000) 10 (86–19)

[38] 19 24 (100,000-4,640,000) Latitude 20 (81-00) 
[44] 6 80 (100,000 - 4,758,000) 10 (86–95)
[45] 2 80 (100,000 - 4,758,000) 3 (82-85)
[46] 13 30 (82,000 - 4,677,000) 10 (86–95)
[27] 4 66 (19,000 - 4,600,000) Continental 28 (79-07)
[19] 5 6 8 (650,000 - 4,600,000) Köppen 15 (85-99)
[47] 14 150 (>10,000) 10 (86-95)
[48] 5 6192 (10 - 10,000) 30 (79-08)
[20] 2 2 4079 (10 - 10,000) Köppen 31 (79–10)
[49] 1 6 16 (135,757 - 3,475,000) Latitude 30 (81–10)
[22] 1 1 644 (>2,000) Köppen 31 (80-10)
[21] 6 4 966 (1,000 - 5,000) Köppen 34 (79–12)
[50] 6 3 11 (67,490 - 2,460,000) 30 (71-00)
[25] 4 1 471 (>9,000) 40 (71-10)

This study 5 1 40 (104,000 – 4,640,300) Hydrobelts 40 (71-10)
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Figure 1. Locations of the 40 catchments across hydrobelts. Catchment details are provided in table S1. Hydrobelts are named:
BOR= boreal, NML = northern mid-latitude, NDR= northern dry, NST = northern subtropical, EQT = equatorial, SML=southern
mid-latitude, SDR = southern dry and SST = southern subtropical.

geographic coverage, however, the availability and
quality of observed data in the GRDC database led
to a selection bias that resulted in the number of boreal
and northern mid-latitude catchments being propor-
tionately high (table S2).

2.1.2. Model ensemble and forcing data
The model ensemble comprises a suite of GHMs and
LSMs that participated in the water (global) sector of
ISIMIP2a [51]. The models are DBH [52], H08 [53],
LPJmL [54], MATSIRO [55], PCR-GLOBWB [56] and
WaterGAP2 [57] (see SI for full model names and
details of the hydrological processes represented in the
models).

All of the models have been developed to represent
and account for the impacts of historical time-varying
human management such as land use, water use and
dam operation. Apart from WaterGAP2 the mod-
els were not calibrated for the ISIMIP2a simulations.
The models simulate runoff (amongst other hydro-
logical variables) across the global land surface at
0.5◦ × 0.5◦ spatial resolution. Following the method
described by [19], monthly observed and simulated
discharge data was converted to catchment-mean
monthly runoff by using the area upstream of the
gauge according to the DDM30 river network. Thus
an area correction factor is applied to the GRDC
discharge data to account for the fact that the river
network, which is at 0.5 ◦ spatial resolution, may
not perfectly overlap with the GRDC river catchment
boundaries. Output from the models is openly avail-
able from the Earth System Grid Federation (ESGF;
https://esgf-data.dkrz.de; [51]).

All models were run for the period 1971–2010 with
input climate data provided by the Global Soil Wetness
Project Phase 3, (GSWP3; [58]). GSWP3 has been used
as a forcing dataset in several other recent GHM and

LSM studies [2, 26, 57, 59, 60] (see SI, section 1.3,
for an explanation of why we used this forcing dataset
specifically).

2.2. Evaluating model performance
2.2.1. The integrated evaluation metric
Assessment of relative model performance in a
meaningful way is difficult without a transferrable
benchmark against which model performance in dif-
ferent catchments can be compared to consistently. In
addition, different metrics are more or less suited to
assessing individual characteristics of a model’s fit. To
overcome this we use a ratiometric integrated met-
ric, the ideal point error (IPE) [31], equation 1. Our
configuration of IPE has three components because
it combines three commonly used individual evalua-
tion metrics: root mean square error (RMSE), Mean
absolute relative error (MARE) and the Nash-Sutcliffe
coefficient of efficiency (CE). These are used to assess
the relative performance of each model and the EM to
replicate observed data. IPE is standardised against a
benchmarked model. The benchmark model can be
a simple statistical model, so it is sometimes called
a näıve model [61]. It can be as simple as observed
runoff shifted backwards by different time steps [61].
In our application of IPE, we adopted a naı̈ve model
benchmark such as this, where the observed runoff
is shifted backwards by one month. Hence our näıve
model benchmark assumes runoff inmonth t is equal to
runoff in month t−1 and therefore essentially assumes
persistence (IPEn, equation 1). The three IPE com-
ponents are evaluated against their benchmark model
counterparts.

The IPE equation presented in equation (1) is
adapted from the original formula by (Dawson et al
2012). The negative reciprocal of the IPE score is
used (equation 3) where the performance of a model

4
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Table 2. Indicators of mean and extreme runoff calculated in this study for model evaluation.

Indicator abbreviation Description of indicator

MAR Mean annual runoffa

MMR Mean monthly runoffa

Q5 The magnitude of monthly runoff that is exceeded 5 % of the time in the monthly time series (indicator of

high flows)a

Q95 The magnitude of monthly runoff that is exceeded 95 % of the time in the monthly time series (indicator of

low flows)a

None The magnitude of maximum monthly runoff associated with the 2-, 5-, 10-, 20-, and 25 year return periods

respectively (see SI for calculation method)b

None The magnitude of minimum 3 month moving average of runoff associated with the 2-, 5-, 10-, 20-, and 25

year return periods respectively (see SI for calculation method)b

a For these indicators the EM is calculated as a timeseries by calculating the average across all individual models for each month, to allow

calculation of timeseries-based evaluation metrics such as the NSE and IPE.
b For the maximum and minimum return period flows the EM was calculated as the average of the maximum/minimum monthly runoff for

each return period calculated across all GHMs.

exceeds that of the benchmark to maintain propor-
tionality in comparisons between the IPE scores of
models that fail to perform as well as the benchmark
and those where performance exceeds it. The IPE scores
rangebetween−1and−∞ (performance improvement
over the benchmark model) and 1 and +∞ (perfor-
mance loss over benchmark model). The IPE score is
ratiometric—for example, a model that performs twice
as well as the benchmark model will have an IPE score
of −2 and a model that performs twice as badly will
have a score of 2. IPE would be 1 if a model performs
the same as the benchmark, whilst a model infinitely
better than the benchmark would have an IPE of −∞.

IPEn =
⎧⎪⎨⎪⎩

[0.333 ∗ ((RMSEm∕RMSEb)2+
(MAREm∕MAREb)2+
((CE𝑚 − 1)∕(CE𝑏 − 1))2)]

1
2

⎫⎪⎬⎪⎭
(1)

IPE = IPEn. (2)

If IPEn ≥1 i.e. where a model fails to outperform the
benchmark model

IPE = −1
IPEn

. (3)

If IPEn <1 i.e. where a model outperforms the bench-
mark model
where:
RMSE = root mean squared error
MARE = mean absolute relative error
CE = coefficient of efficiency (Nash-Sutcliffe Effi-
ciency)
m = model simulated data
b = benchmark (the naı̈ve model).

2.2.2. Weighted performance measures and perfor-
mance ranking
Where measures of performance are aggregated for an
entire hydrobelt we do so by calculating a weighted
mean, to resolve spatial biases introduced by having a
different number of catchments in each hydrobelt. For

each catchment, observed mean annual runoff (MAR),
representing the effect of both catchment size and flow,
is applied as the relative weight, so that any given
weighted performance metric (W𝑚) can be calculated
as:

W mHB =

n∑
c=1

MARc ∗ mc

n∑
c=1

MARc

(4)

where m denotes metric, HB and c respectively denote
hydrobelt and catchment, and n the number of catch-
ments in each hydrobelt.

Measures of performance that we calculated and
weighted in this way include IPE, percent bias (PBIAS)
and the relative difference between simulated and
observed values for the seasonal cycle (see table S4 for
formulae). The median percentage difference (MPD)
was calculated across all catchments but was not
weighted.

For consistency throughout the paper, metrics
derived for the EM are used to rank and/or facilitate
comparisons between catchments or hydrobelts. This
is not to say, however, that the EM is a reliable indicator
of overall model performance.

2.2.3. Hydrological indicators
In addition to IPE and measures described in section
2.2.2 we calculated six indicators of mean and extreme
runoff (table 2).

3. Results

3.1. Models’ ability to replicate observed monthly
runoff time series
IPE scores estimated from the monthly runoff time-
series for individual models and the EM respectively,
across hydrobelts, are presented in figure 2 (see table
S6 for individual catchments and figure S1 for the
individual metrics that comprise the IPE). Model
performance is generally better in the equatorial
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Table 3. Mean weighted IPE for each model by hydrobelt. Negative (positive) values indicate performance improvement (loss) over the näıve model benchmark. Best performing individual models for each hydrobelt are in bold.
Number of catchments in each hydrobelt are in parentheses. Hydrobelts are ranked according to the perfomance of the EM. Rows are ordered according to the mean latitude of each hydrobelt from north to south (BOR= boreal, NML=
northern mid-latitude, NDR= northern dry, NST = northern subtropical, EQT = equatorial, SML= southern mid-latitude, SDR= southern dry and SST= southern subtropical).

Model

Hydrobelt (No. of
catchments)

DBH H08 LPJmL MATSIRO PCR-GLOBWB WaterGAP2 EM Hydrobelt rank
(based on EM)

Hydrobelt rank
(based on best

individual model)

BOR (14) 25.63 5.33 8.12 2.52 3.53 1.12 2.07 2 5

NML (12) 53.08 12.76 9.87 7.20 5.87 −0.30 3.90 4 1

NDR (2) 14.53 4.09 4.71 4.32 7.46 0.95 2.96 3 3

NST (1) 12.10 12.89 12.10 1.82 5.39 1.12 4.32 5 4

EQT (3) 4.82 3.28 3.65 1.93 2.95 0.57 1.67 1 2

SST (4) 26.91 21.86 19.53 2.55 13.40 1.38 10.58 6 6

SDR (2) 5305.19 96.43 2051.53 326.04 520.61 78.19 1393.72 8 8

SML (2) 2780.76 109.56 1440.15 128.58 958.59 42.15 909.93 7 7

Median weighted IPE
across all

hydrobelts

26.27 12.82 10.99 3.44 6.67 1.12 4.11 — —

Model rank (based on
median weighted IPE
across all hydrobelts)

6 5 4 2 3 1

6
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Figure 2. Catchments ranked clockwise (starting with Mackenzie) according to the IPE score for the ensemble mean (EM, red squares).
IPE scores range between (−1, −∞] and [1, +∞). The bottom panel focuses on IPE≤10, with the range (−1,1) in grey, representing
the boundary of performance improvements (IPE ≤ −1) or loss (IPE ≥ 1) relative to the naı̈ve benchmark model. Catchment names
are colored by hydrobelts (BOR = boreal, NML = northern mid-latitude, NDR = northern dry, NST = northern subtropical, EQT =
equatorial, SML= southern mid-latitude, SDR= southern dry and SST = southern subtropical).

and northern hydrobelts (EQT, BOR, NML, NDR
and NST) than the southern hydrobelts (SST, SDR and
SML). When ranked by the EM, the 13 highest ranked
catchments are located in BOR and NML hydrobelts.
This is in part the result of a bias in the number of
catchments in these hydrobelts. However, weighted
IPE scores (table 3) indicate that model performance
in these two hydrobelts is particularly favourable when
compared to that of southern hemisphere hydrobelts.
The two SML catchments are ranked 38th and 40th
and the two SDR catchments are ranked 32nd and

39th. The relatively lower performance of the major-
ity of models and the EM in the SDR and SML
hydrobelts, which include seasonally dry ephemeral
rivers, is the result of the models slightly overesti-
mating low runoff values (typically less than 1 mm
month−1) during dry periods. This serves to decrease
the MARE (figure S1), which in turn delivers poor
IPE values. We considered lowering the weighting of
the MARE component of the IPE equation, since the
three components can be weighted differently [31] so
that the IPE is not disproportionally affected by the
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low MARE scores in these four catchments. How-
ever, this would be somewhat counter-intuitive to the
objectives of our assessment because the low MARE
values highlight that the models struggle to simulate
low flows in these catchments, which is an important
result of the evaluation exercise.

The EM and all individual models except Water-
GAP2 and marginally MATSIRO, deliver their best
IPE in the EQT hydrobelt. Here, the three contribut-
ing catchments cover 51% of its area; indicating that
they are representative of the hydrobelt as a whole.
However, the strong model performance is, in part,
an artefact of using the naı̈ve (t−1) model as a
benchmark for computing IPE scores. In EQT catch-
ments the month-to-month variability of hydrological
inputs and responses is low, which makes the mod-
elling challenge easier and the likelihood of significant
deviation from the naı̈ve benchmark model relatively
low.

Examining the performance of individual models,
it is evident that H08 performs relatively well (second
to WaterGAP2) in the NDR hydrobelt as well as the two
lowest ranked hydrobelts i.e. SDR and SML, suggesting
it has particular capabilities in modelling dry regions.
The calibrated WaterGAP2 outperforms the EM and
other models in all hydrobelts, however, it is not always
the best performing individual model. Indeed, MAT-
SIRO achieves the best IPE scores in six catchments
(table S6). In terms of the IPE, the EM performs bet-
ter than the best model only in two catchments, the
Amur and Mackenzie—for the other 38 catchments an
individual model performs better than the EM.

To further investigate the performance of the EM,
we calculated the EM under two different cases:

1. excluding the weakest performing model for each
catchment in turn; and

2. excluding the first and second weakest models for
each catchment in turn.

The best/weakest models that were left in the
ensemble were identified based on the models’ IPE
scores.

Under the two cases, the EM outperformed the
best individual model that was left in the ensemble in
ten and 12 catchments respectively (table S6). Thus
the relative performance of the EM, compared to the
models that are left in the ensemble, improves when the
weakest performing model(s) are removed. However,
in the majority of catchments, even when the weakest
performing model(s) are removed from the ensemble,
an individual model still performs better than the EM.

3.2. Models’ ability to reproduce key aggregated
hydrological indicators
The PBIAS and MPD across catchments indicate a gen-
eral trend towards the over-estimation of mean annual
runoff (MAR), Q5 (high runoff) and Q95 (low runoff)
amongst the models, especially for low(er) runoff val-

ues (figure 3, table 4 and table 5). In terms of individual
model performance, WaterGAP2 and MATSIRO are
ranked first or second by both MPD (table 4) and
PBIAS (table 5) for all three indicators, whereas DBH
is consistently ranked the lowest.

In terms of model performance across hydrobelts,
the three best estimates of weighted PBIAS for all three
hydrological indicators are, according to the perfor-
mance of the EM, consistently BOR, NML and EQT,
(table 5). The EQT hydrobelt is consistently highly
ranked (top 3) according to the performance of both
the EM and the best performing individual model,
whilst the SML and SDR hydrobelts are always ranked
low. The ranking of hydrobelts changes slightly when
evaluatingperformancewithMPD(table S5).Although
BOR and NML are still ranked highly (top 3 for
all three hydrological indicators) EQT is lower down
the ranking (ranked 6th for all three hydrological
indicators).

3.3. Models’ ability to estimate runoff of different
return periods
Table 6 presents the MPD between modelled and
observed runoff calculated over all catchments for
each of the five return periods (2-, 5-, 10-, 20-
and 25-year) of maximum monthly runoff and
minimum 3 month runoff respectively. For maxi-
mum runoff, PCR-GLOBWB performs particularly
well, with MATSIRO and WaterGAP2 also deliver-
ing MPD values of <25%. The remaining models
perform relatively poorly with the MPD >50%
across all return periods. For minimum runoff,
MATSIRO again performs well, with DBH also
achieving MPD values of <20%. Despite being cal-
ibrated, WaterGAP2 (and PCR-GLOBWB) struggles
to reproduce observed low runoff, with MPD values
generally >50%.

The magnitude of runoff associated with each
return period for both maximum and minimum runoff
is overestimated by the EM and by the majority of
individual models. The EM fails to perform better
than the best performing model for all maximum and
minimum flow return periods. In half of all cases,
MPD values are generally consistent across the different
return periods, while MPD decreases or increases with
higher return periods in other cases.

3.4. Models’ ability to replicate seasonal cycles
Figure 4 displays for each hydrobelt the average
weighted relative difference (using equation 4) between
the modelled and observed seasonal cycle (long-term
MMR) for all models. There is a general patternof over-
estimation of MMR across the model ensemble. The
largest relative differences occur in the months of peak
runoff. No single model performs consistently better
or worse than all other models throughout the whole
seasonal cycle, since the month in which the maximum
relative difference occurs varies across models.
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Figure 3. Simulated versus observed MAR (a); Q5 (b); and Q95, (c) for each catchment (n = 40). The numbers in parentheses
indicate the Pearson correlation coefficients between simulated and observed data (BOR= boreal, NML= northern mid-latitude,
NDR= northern dry, NST = northern subtropical, EQT = equatorial, SML = southern mid-latitude, SDR = southern dry and SST=
southern subtropical).

The highest magnitude differences are observed in
the SDR and SML hydrobelts. The lowest are in NML
and EQT. The models’ poor performance in simulat-
ing long-term MMR in the SDR hydrobelt confirms
their poor performance in replicating the time series
of runoff in this hydrobelt (table 3). This suggests
that timing errors may be responsible for much of
the error in simulating runoff timeseries in the SDR
hydrobelt.

Table 7 shows the duration, in months, of the
difference between simulated and observed timing of
the month of maximum/minimum runoff, i.e. tim-

ing bias, as an average for each hydrobelt (figure S2
displays the simulated and observed MMR for each
catchment). Early bias is common in all hydrobelts
and it is especially prevalent for minimum flows.
Late bias is less evident. Two potential explanations
for early bias are the models’ inability to capture
late snowmelt in snow-dominant regions [62] and
challenges in accurately representing groundwater or
baseflow [55].

Across all models and catchments, DBH shows
the least early (−0.60 months) and LPJmL the least
late (0.03 months) biases for maximum flow. For
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Figure 3. Continued.

Table 4. Median percentage difference, MPD (%) between modelled and observed runoff calculated over all catchments for MAR, Q5 and
Q95 (shaded cells denote underestimation of runoff by the model; ranking of the individual models across each indicator are in parantheses).
The best performing individual model (or EM) is in bold.

Indicator DBH H08 LPJmL MATSIRO PCR-GLOBWB WaterGAP2 EM

MAR 33.7 (6) 20.1 (5) 13.5 (4) −12.6 (3) 7.8 (2) 0.9 (1) 13.9
Q5 26.2 (6) 15.3 (5) 12.2 (4) −11.8 (3) 5.1 (2) −2.9 (1) 9.6
Q95 37.3 (6) 19.4 (5) 19.1 (4) −8.8 (2) 14.6 (3) 5.0 (1) 21.0

minimum flow, WaterGAP2 presents the least early
bias (−0.43 months) and DBH shows the least late bias
(0.28 months). Despite the good performance of DBH
and LPJmL in terms of timing, these two models do
show high relative difference values compared to other
models (figure 4).

4. Discussion

4.1. Models’ performance across hydrobelts
We found high variability between models in their
ability to simulate MAR, Q5, Q95 and the magni-
tude of return period runoff values. The majority
of models overestimate these hydrological indicators,
with positive biases particularly acute in southern
hydrobelts (SML and SDR). This can, in part, be
explained by the general overestimation of precipita-
tion values in climate forcing data in these regions
[57], which in turn means the models overestimate
runoff [21]. Nonetheless, previous studies empha-
sise that large ensemble spreads from GHMs and
LSMs are not primarily due to errors in the (com-
mon) forcing data, but instead due to model structural
uncertainty [19, 39]. Missing physical process repre-
sentations in the models such as transmission loss

[62] explain some of the differences between simulated
and observed runoff. The underestimation of runoff
by certain models, particularly in the NDR hydro-
belt, may be a result of excessive evapotranspiration (as
reported for MATSIRO by [19]). Moreover, the sim-
ulation of evapotranspiration has been shown to vary
widely between the ISIMIP2a global-scale hydrological
models [63].

Several models struggle to accurately simulate the
timingandmagnitudeof long-termMMRinallmonths
of the year in NDR and the first and/or last months in
other hydrobelts. The relatively low levels of season-to-
season variability in tropical and equatorial catchments
EQT, SST and NST (i.e. the absence of a strong,
predictable signal that can be modelled) may explain
the weak performance in these hydrobelts. Additional
factors may include the ability of models to suffi-
ciently represent the range of soil properties influencing
the generation and timing of runoff [64], as well as
human-induced factors such as the operation of dif-
ferent reservoir management schemes [25]. In the
BOR hydrobelt, the simulation and representation of
snowmelt is likely to be the main cause of the early
bias we reported. Temporal bias in snow-dominant
regions (observed in [20, 21, 27, 40, 43, 65]) has pre-
viously been related to general errors in forcing data
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Table 5. Mean weighted PBIAS (%) for MAR, Q5 and Q95, across hydrobelts. The best performing model (or EM) according to weighted PBIAS for each hydrobelt is in bold. Shaded cells denote where the runoff indiciator is
underestimated by the model or EM. Hydrobelts are ranked according to the perfomance of the EM. Rows are ordered according to the mean latitude of each hydrobelt from north to south (BOR = boreal, NML = northern mid-latitude,
NDR = northern dry, NST = northern subtropical, EQT = equatorial, SML = southern mid-latitude, SDR = southern dry and SST = southern subtropical).

Indicator

Hydrobelt(N
o. 

of catchm
ents)

Mean weighted PBIAS (%) Rank (based 
on EM

)

Rank (based 
on best
individual 
m

odel)

DBH

H08

LPJm
L

M
ATSIRO

PCR-
G

LO
BW

B

W
aterG

AP2

EM

MAR

BOR (14) 69 29 12 -3 -8 3 17 3 5
NML (12) 61 16 4 -17 8 1 12 1 2
NDR (2) 246 95 88 -84 191 -18 87 5 7
NST (1) 242 237 204 -41 166 43 142 6 8
EQT (3) 37 27 19 2 -10 0 13 2 1
SST (4) 156 85 98 20 75 2 73 4 4
SDR (2) 1964 166 1168 50 566 9 654 8 6
SML (2) 936 100 603 -21 301 -1 320 7 3

Median over
all catchments 214 85 111 -11 103 2 79

Model rank 6 3 5 2 4 1

Q5

BOR (14) 47 14 -1 -9 -13 -7 3 1 1
NML (12) 52 16 3 -15 9 -1 8 2 2
NDR (2) 153 70 59 -85 97 -21 43 4 6
NST (1) 236 213 182 -33 142 44 127 7 8
EQT (3) 32 25 17 2 -9 -2 10 3 3
SST (4) 114 87 78 -6 23 -3 47 5 4
SDR (2) 631 132 501 -27 186 -31 229 8 7
SML (2) 338 61 235 -40 97 -12 110 6 5

Median over
all catchments 134 66 68 -21 60 -5 45

Model rank 6 4 5 2 3 1

Q95

BOR (14) 134 55 54 10 6 21 50 3 3
NML (12) 72 8 5 -20 12 0 14 1 1
NDR (2) 734 241 262 -76 715 27 315 5 4
NST (1) 321 304 271 -55 270 65 202 4 6
EQT (3) 46 31 22 2 -10 3 17 2 2
SST (4) 1108 64 696 86 317 52 432 6 5
SDR (2) 25356 704 10547 794 4695 440 7432 8 8
SML (2) 15396 918 7814 309 5200 125 5026 7 7

Median over
all catchments 528 153 266 6 293 40 258

Model rank 6 3 4 1 5 2
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Table 6. Median percentage difference, MPD (%) between modelled and observed runoff calculated over all catchments for different return
periods (shaded cells denote underestimation of runoff by the model). The best performing model (or EM) is in bold.

Extreme
flow

Return 
period DBH H08 LPJmL MATSIRO PCR-

GLOBWB WaterGAP2 EM

Maximum 
flow

2 122.7 52.4 75.9 -22.1 19.2 -14.0 39.5
5 94.6 62.5 76.9 -20.8 13.2 -12.8 41.5

10 90.0 68.4 77.5 -19.0 6.8 -12.3 38.9
20 86.7 73.8 74.3 -18.1 4.8 -13.3 39.0
25 85.9 75.4 73.3 -18.0 4.3 -13.6 39.3

Minimum 
flow

2 20.8 17.1 -10.8 -2.9 48.4 36.8 33.1
5 12.6 15.6 -20.4 -1.5 58.7 54.6 39.1

10 5.9 19.6 -25.5 1.3 53.7 57.8 43.5
20 7.1 28.1 -17.8 4.5 50.1 59.8 45.0
25 9.7 30.9 -18.4 3.4 51.1 61.4 47.5

Figure 4. Mean weighted relative difference between simulated and observed MMR (seasonal cycle) for each hydrobelt (note that
vertical scales differ) (BOR = boreal, NML = northern mid-latitude, NDR = northern dry, NST = northern subtropical, EQT =
equatorial, SML= southern mid-latitude, SDR = southern dry and SST= southern subtropical).

(especially the underestimation of precipitation) or
the absence/misrepresentation of processes that delay
snowmelt in models. Some of these processes include
the infiltration of meltwater into soils, the refreezing of
meltwater over cold periods in the diurnal cycle, and
ice-jams in rivers [21].

The higher timing bias we found for minimum
runoff is related to the observed data’s higher sensi-

tivity to the timing of water abstractions and reservoir
operation during low flow periods [25]. Nonetheless,
it should be emphasised that the degree to which
monthly flow is influenced by reservoirs depends on
the ratio of reservoir storage and the annual flow. With
large reservoirs, any model’s ability to simulate stor-
age and release of water can be more important than,
for example, the timing of snowmelt.
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Table 7. Hydrobelt mean (not weighted) early and late runoff timing bias (units are number of months). Negative (positive) values denote an early (late) bias. Values calculated over all catchments across each hydrobelt, or globally. The
number of catchments affected by timing bias is in parantheses. Rows are ordered according to the mean latitude of each hydrobelt from north to south (BOR = boreal, NML = northern mid-latitude, NDR = northern dry, NST =
northern subtropical, EQT = equatorial, SML = southern mid-latitude, SDR = southern dry and SST = southern subtropical).

Maximum flow Minimum flow

Tim
ing bias

Hydrobelt  (N
o. 

Catchm
ents)

DBH

H08

LPJm
L

M
ATSIRO

PCR- G
LO

BW
B

W
aterG

AP2

EM DBH

H08

LPJm
L

M
ATSIRO

PCR-G
LO

BW
B

W
aterG

AP2

EM

Early 
bias

BOR (14)
-0.14 -0.21 -1.00 -0.43 -0.21 -1.00 -0.21 -1.86 -0.71 -2.07 -2.07 -1.36 -0.29 -1.57

(2) (2) (12) (3) (3) (4) (3) (9) (2) (12) (11) (4) (2) (7)

NML (12)
-0.08 -1.25 -1.67 -0.67 -0.58 -0.75 -0.75 -2.42 -0.08 -0.33 -0.17 -1.33 -0.67 -0.67

(1) (7) (9) (6) (7) (7) (8) (4) (1) (4) (2) (2) (1) (1)

NDR (2)
0.00 -2.00 -1.50 0.00 -1.00 -1.00 -1.00 -4.00 -1.50 -2.00 -4.00 -4.00 -0.50 -4.00
(0) (1) (2) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

NST (1)
0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 0.00
(0) (0) (0) (0) (0) (0) (0) (1) (0) (1) (0) (1) (0) (0)

EQT (3)
-3.67 -0.67 -1.67 -2.67 -4.00 -0.67 -0.67 -1.33 -0.33 -1.00 0.00 -0.33 -0.33 -0.33

(3) (2) (3) (2) (3) (2) (2) (2) (1) (3) (0) (1) (1) (1)

SST (4)
-1.50 -1.00 -1.50 -0.75 -1.25 -1.00 -1.00 -1.50 -0.75 -2.00 -0.25 -1.25 -0.75 -1.00

(1) (1) (1) (1) (2) (1) (1) (2) (1) (2) (1) (2) (1) (2)

SDR (2) -0.50 0.00 0.00 -0.50 0.00 -0.50 0.00 0.00 0.00 -1.00 -7.00 0.00 0.00 0.00
(1) (0) (0) (1) (0) (1) (0) (0) (0) (2) (2) (0) (0) (0)

SML (2) -1.50 -0.50 -1.50 -1.50 -1.50 -0.50 -1.50 -0.50 0.00 -0.50 -1.00 -0.50 0.00 -0.50
(2) (1) (2) (2) (2) (1) (2) (1) (0) (1) (2) (1) (0) (1)

Mean of all 
catchments

-0.60 -0.73 -1.28 -0.73 -0.80 -0.83 -0.58 -1.88 -0.45 -1.30 -1.40 -1.28 -0.43 -1.10
(10) (14) (29) (15) (18) (17) (17) (19) (6) (26) (19) (12) (6) (13)

Late 
bias

BOR (14)
1.07 0.36 0.00 0.07 1.14 0.50 0.21 0.07 0.93 0.07 0.50 0.64 1.71 0.07
(10) (4) (0) (1) (7) (2) (2) (1) (6) (1) (2) (3) (6) (1)

NML (12)
0.92 0.42 0.08 0.75 0.25 0.25 0.33 0.67 3.75 2.67 1.75 2.00 2.67 2.25
(5) (3) (1) (5) (3) (2) (4) (6) (9) (6) (7) (6) (5) (7)

NDR (2)
1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.50 0.50 1.00 0.00 0.50 0.50
(1) (0) (0) (2) (0) (0) (0) (0) (1) (1) (1) (0) (1) (1)

NST (1) 0.00 1.00 0.00 2.00 0.00 0.00 0.00 0.00 1.00 0.00 5.00 0.00 1.00 0.00
(0) (1) (0) (1) (0) (0) (0) (0) (1) (0) (0) (1) (0)

EQT (3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 2.00 0.00 0.00 0.00
(0) (0) (0) (0) (0) (0) (0) (0) (1) (0) (3) (0) (0) (0)

SST (4)
0.00 0.00 0.00 0.25 0.00 0.25 0.00 0.25 0.50 0.00 0.50 0.50 1.50 0.50
(0) (0) (0) (1) (0) (1) (0) (1) (2) (0) (1) (2) (2) (2)

SDR (2)
0.00 0.50 0.00 0.00 0.50 0.00 0.00 0.50 2.00 0.00 0.00 1.00 1.00 0.50
(0) (1) (0) (0) (1) (0) (0) (1) (2) (0) (0) (2) (1) (1)

SML (2)
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 0.00 0.00 0.00 2.00 0.00
(0) (0) (0) (0) (0) (0) (0) (0) (2) (0) (0) (0) (2) (0)

Mean of all 
catchments

0.70 0.30 0.03 0.38 0.50 0.28 0.18 0.28 1.80 0.85 1.08 0.93 1.75 0.80
(16) (9) (1) (10) (11) (5) (6) (9) (24) (8) (15) (13) (18) (12)

5.04.03.02.01.00.0-1.0-2.0-3.0-4.0-5.0-6.0-7.0

(1)
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Whilst when aggregating across catchments Water-
GAP2 is consistently the best performing model in
terms of overall fit (assessed by mean weighted IPE,
table 3), consistently the best for MAR, Q5 and
Q95 when assessed by MPD (table 4), and almost
always the best model for MAR, Q5 and Q95 when
assessed by mean weighted PBIAS (table 5), it is not
the best model for the magnitude of flows associ-
ated with different return periods (table 6) nor for
the timing of seasonal flows (table 7). For these lat-
ter two hydrological indicators, the best performing
models include MATSIRO, H08 and PCR-GLOBWB.
This is in part due to the global-scale models hav-
ing spatially generalised parameters. Thus they may
perform differently in different locations and for dif-
ferent indicators. In addition, although they all use the
same forcing data, differences in model structure and
parameterisation (table S3) lead to different perfor-
mances across different indicators [64, 66, 67]. Thus
caution should be applied in presenting the results
from only one model (including the ensemble mean)
in future model applications, where changes in mul-
tiple hydrological indicators are presented. Instead,
we recommend the ensemble spread is presented
and/or models are weighted according to their per-
formance for each hydrological indicator respectively
[68].

Generally, the superior performance of Water-
GAP2 can be attributed to its calibration with long term
annual average river discharge. However, our results
show that this approach does not necessarily guarantee
optimal performance for all hydrological indicators,
e.g. high and low flows. Moreover, due to limita-
tions associated with the quality, length and global
coverage of observed discharge data, WaterGAP2 was
only calibrated for 1319 catchments, covering 54% of
the global land area except Antarctica and Greenland
[57]. Thus the model is unlikely to achieve optimal
performance globally, for all hydrological indicators.
The physically-based snow and soil scheme in MAT-
SIRO may be the reason for its superior performance
in snow-dominated areas. DBH and PCR-GLOBWB
presented higher skill in simulating maximum
runoff of higher return periods. DBH also achieved
good performance in simulating the timing of the
seasonal cycle.

4.2. Opportunities for model improvement
WaterGAP2, the only calibrated model in the ensem-
ble, presents the greatest overall model skill. However,
WaterGAP2 is not the best-performing model (with
respect to IPE) in 13 of the 40 catchments—ten of
these are in the BOR hydrobelt. The result arises
from the calibration of WaterGAP2 to match observed
long-term annual river discharge, meaning that the
model is prone to timing errors in snow dominant
regions [69].Conversely, the superior, physically-based
snow and soil scheme in (uncalibrated) MATSIRO is
likely to be a key reason for its good performance

in snow-dominated hydrobelts. That said, H08 uses
a similar snow modelling scheme to MATSIRO and
does not attain a similar level of performance in the
BOR hydrobelt. This suggests that H08’s vegetation,
evapotranspiration and soil representation schemes
(all of which are different to MATSIRO) may be
limiting its performance.

Our results imply that robust calibration methods
may improve model performance. However, a smaller
error in runoff estimates for a present-day hydrolog-
ical simulation (from an uncalibrated or calibrated
model) does not necessarily mean that projections
for the future from that model will be more cer-
tain than projections from a model with larger error.
Whilst the calibration procedure for WaterGAP2 does
lead to better performance for present-day hydrol-
ogy in many cases, we note that the calibration of
any hydrological model can encourage over-fitting
and so act to compensate for structural errors and
errors in atmospheric forcing data [69]. This could
pose a problem if the models were used within a
climate modelling framework. Therefore, whilst this
study highlights the benefits of model calibration
for improving simulations of present-day runoff, we
also urge caution towards interpreting it as a defini-
tive route to higher model certainty; especially when
the models are used for delivering future projections
[70].

DBH and PCR-GLOBWB were able to achieve a
reduction in the magnitude of error in simulated maxi-
mum runoff with increasing return period. It was more
common for the other models to show little difference
in error across return periods. This suggests that these
two models may include process representations that
work better towards achieving very extreme high flows,
compared with other models.

Our results show that even when including human
impacts, there remain challenges with the accurate
simulation of low runoff magnitudes and long term
MMR. Therefore we recommend a comprehensive and
systematic evaluation of the specific methods used
to represent human impacts in models, for multiple
rivers across the globe and at different locations along
the river network, including: irrigation; dam operation
rules [26]; the representation of reservoirs; the way
in which withdrawn water is returned to the river net-
work (including groundwater, surface water bodies and
soils); and the sources where water is withdrawn from
to meet water needs (i.e. groundwater, surface water,
and desalinisation).

4.3. Performance of the EM and implications for
future applications
In climate modelling and meteorological forecasting,
the ensemble mean is often reported as outperform-
ing individual models [34–36]. Our analysis shows
that this is not the case with global-scale hydrological
models. Even when excluding the weakest performing
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model(s) from the ensemble an individual model still
outperforms the EM in the majority of catchments. We
only excluded up to two weakest performing mod-
els when computing the EM under different cases,
so the generally consistent weak performance of the
EM may be the result of other outlying models
(in terms of their performance) having a large dispro-
portionate influence on the EM.

Certain models may be consistently poor perform-
ers in certain climatic or physiographic settings, or
over certain hydrological response ranges, and their
inclusion in a model ensemble may act to limit the
performance of the EM [71]. However, totally exclud-
ing the weakest model might be at the risk of missing
other skills of that model. For example, whilst DBH
performed poorly for some hydrological indicators,
it performed well in simulating timing of the sea-
sonal cycle. The approach of including/excluding the
best/weakest performing models to calculate the EM
could be extended to weighting methods [68, 72–74].
This, however, raises difficult questions about how the
‘best’ weighting strategy and combination of weights
can be determined a priori.

The variable performance of the EM that we report
here means that a decision should not be taken a priori
to use the EM as the basis of model evaluation and/or
climate change impact assessments [1, 21, 39, 75]
without considering its performance relative to the
models it is summarising, because an individual model
may perform significantly better.

5. Conclusion and recommendations

Wehavepresentedaworldwidecomparativeevaluation
of the performance of six global-scale hydrologi-
cal models to simulate mean and extreme monthly
runoff. In parallel with a companion study pre-
sented in this journal issue [25], it is the first such
evaluation to use models run with human impacts
and it is also the most comprehensive evaluation
of extreme runoff (table 1). Our adoption of the
hydrobelt classification system provided a feasible
means of aggregating catchment-scale results around
the axis of hydro-geographical similarities, as well
as facilitating a comparison of model performance
spatially worldwide.

We found a tendency for the majority of models
to overestimate MAR and all indicators of upper
and lower extreme runoff. The models overestimate
low flows (Q95) considerably more than they over-
estimate high flows (Q5) but on the other hand,
the models overestimate minimum flow return peri-
ods to a lesser degree than they do for maximum
flows. Either way, the overestimation of runoff is a
key issue that we recommend is addressed by the
global-scale hydrological modelling community. Whilst
the incorporation of human activities into global-
scale hydrological models has been shown to enhance

model simulation capabilities [25], our evaluation
leads us to recommend that the global-scale hydro-
logical modelling community pursue efforts to improve
the representation of low runoff and the models’ abil-
ity to predict the magnitude and timing of seasonal
cycles.

We have highlighted which models perform par-
ticularly well for certain hydrological indicators, and
in which hydrobelts, and discussed potential solutions
to improving model performance. Whilst calibration
can deliver some improvements it is particularly chal-
lenging for global-scale models due to the paucity of
global coverage of long-term and complete observed
runoff records. Therefore we recommend that efforts
are made towards improving the quality [76, 77]
and global coverage of observed runoff records and
in turn technical approaches to model calibration are
explored.

Other model improvements can be achieved
through better quality input and evaluation datasets,
the inclusion of missing physical processes, and bet-
ter representation of existing processes in the models.
We recommend that the global-scale hydrological mod-
elling community explore the process parametrisations
within their models to help inform their decisions
on future model development and that they con-
sider running perturbed parameter ensembles [78]
to explore the uncertainties associated with those
parametrisations.

While the EM is a straightforward, widely used
means of summarising the performance of an ensem-
ble of hydrological models, our results highlight the
limitations of this approach. Therefore we recom-
mend the exploration of alternatives to the EM such as
weighting models based upon their performance [68].
Nevertheless, the models that comprise the ensemble
we evaluated here, represent the state-of-the-art, and
multi-model ensembles may well be the best way to
capture some of the existing uncertainties in represent-
ing the hydrological cycle at the global scale. Therefore
we recommend that future studies adopt an ensem-
ble approach so that the spread of possible outcomes,
based upon current scientific modelling state-of-the-
art, is known. The value of ensembles lie in their
offering of a suite of models that can be evaluated with
respect to a specific question that might need address-
ing. For example, if droughts were of interest, then
one may possibly select a subset of models that is dif-
ferent from a subset that might be used if peak flows
were of interest. Such a procedure can of course only
be undertaken if the full range of model simulations
are available in the first place.

The models evaluated here are under continuous
development and we expect that their performance
will improve as developers address known shortcom-
ings and as observed data improves in quality. Model
improvements will then in turn lead to more precise
and accurate representation of hydrological patterns
across the globe.
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