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PREFACE 

Since its inception, IIASA has had a keen interest in the methods of demography. 
At present, demography lacks a method for doing general sensitivity ailalysis - a method 
that yields closed-form analytical expressions for the response of demographic indices to 
changes in age- and time-specific functions. 

This paper develops a method for sensitivity or causal-linkage analysis in demography; 
this method is then applied to several unsolved problems in the field. 
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THE ANALYSIS OF CAUSAL LINKAGES IN DEMOGRAPHIC THEORY 

W. Brian Arthur 
International Institute for Applied Systems Analysis, Laxenburg, Austria 

SUMMARY 

Many seemingly different questions that interest demographers can be phrased as 
the same technical question: how, within a given demographic model, would variable y 
change if the age- or time-specific function f were to change arbitrarily in shape and inten- 
sity? A t  present demography lacks the machinery to answer this question in analytical 
and general form. 

This paper suggests a method, based on modern functional calculus, for deriving 
closed-form expressions for the sensitivity of  demographic variables to changes in input 
functions or schedules. It uses this "causal linkageUmethod on three bodies o f  theory: stable 
population analysis, nonstable or transient population analysis, and techniques for the 
estimation of incomplete demographic data. 

In stable theory, closed-form expressions are obtained for the response of the in- 
trinsic growth rate, birth rate, and age composition to arbitrary marginal changes in the 
age patterns of  fertility and mortality. 

In nonstable theory, expressions are obtained for the transient response of the age 
composition to time-varying changes in the birth sequence, and to changing age-specific 
fertility and mortality patterns. The problem of  "bias" in period vital rates is also looked 
at. 

In incomplete-data analysis, a general format for robustness or error analysis is sug- 
gested; this is applied to a standard Brass estimation technique. 

INTRODUCTION 

Many of the questions that appear and reappear in the demographc literature of 
this century, while seemingly quite different, are but specific instances of a single and funda- 
mental question: How do the aggregate measures - numbers, rates, and distribution - of 
a population change, when its underlying behavior at the individual level changes? 

That this question should arise with regularity in various different guises is hardly 
surprising. Much of demographic theory aims to translate the events and consequences of 
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individual lives - the timing and number of children, the choice of area of residence, entry 
to the work force, time of retirement, age and cause of death - into the grand measures 
of society itself, its size and growth rate, its distribution by region, its vital rates, its pro- 
portions by age, sex, work or other category. And since human behavior over the life cycle, 
reflecting social habit and environment, is forced to change as society evolves, the demog- 
rapher in turn is forced to seek analytical ways to translate these shifts in individual be- 
havior into changes in the aggregate population measures he uses. 

Mathematical demography bridges the gap between individual behavior and aggregate 
measures by observing that human behavior and the main events in human life are closely 
tied to age. It captures and frames these events by means of demographic schedules or 
functions - statistical summaries of individual behavior along the age and time dimensions. 
It then uses these as inputs to mathematical models, sometimes simple, sometimes elaborate, 
the output or end-result being variables that represent the aggregate measures of growth, 
distribution, number, and rate. We may therefore pose the question of causal linkage be- 
tween individual behavior and aggregate measures in a more analytical and precise way: 
How, within a given demographic model, would arbitrary changes in its age- and time- 
specific schedules alter the output variables that interest us? 

Within the present body of demographic theory there is no way to answer this ques- 
tion. The obstacle is a technical one. To answer, with generality and precision, how a 
change in age or time function f would affect variable y, the demographer needs to use 
some form of sensitivity analysis. Were f a simple variable, or even a vector, the analysis 
would be straightforward. Elementary calculus could be brought to bear, the derivative 
ay/af constructed, and the differential change in y written down as a function of the 
change in f. But standard calculus allows us no way of taking derivatives with respect to 
functions, and thus we reach an impasse. Questions of key interest to demographers - 
how the age composition responds to an arbitrary change in the mortality pattern, or how 
period vital rates are affected by changes in the birth sequence -therefore remain without 
analytical solution. What is needed, for questions of causal linkage in demographic theory, 
is machinery more powerful than standard calculus. 

In the absence of such machinery, demographers have developed several ways to 
investigate the effects of changes in age schedules. None of these is entirely satisfactory. 
The simplest possibility, blunt but effective, is to calculate numerically the value of the 
variable y before and after the behavioral change in the schedule. But this gives no general 
expression for an arbitrary change: each case must be calculated separately. A second pos- 
sibility is to parameterize the age schedule in question, and try to capture changes in its 
shape by changes in the parameters. This reduces the problem to the standard-calculus 
procedure of varying parameters. But parameterization can be tedious, and again no gen- 
eral expression results. A third possibility is to look only at special cases, restricting the 
change in the age pattern to a certain simple shape - a simple increase in intensity, for 
example. But here again no general insights are guaranteed. 

This paper proposes a method of deriving the effect on demographic variables of 
arbitrary changes in age- and time-specific functions directly as closed-form expressions, 
without resorting to numerical techniques or to parameterization. It draws on concepts 
from modern functional analysis to construct a "causal linkage" method suited to demo- 
graphic problems. If it is true that many open questions in demography call for such a 
method, then we would expect this method to yield new results. This turns out to be the 
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case. Some of the results we obtain are quite general; others are for special cases. One or 
two have been obtained in the literature before; most are new. 

The paper is arranged as follows. Section 1 proposes a general linkage method, illus- 
trating it with examples. Sections 2 and 3 apply the method to stable theory, in particular 
to how arbitrary changes in the age patterns of fertility and mortality affect the intrinsic 
growth rate, birth rate, and age composition. These results show, among other things, 
why fertility has more effect on the age composition than does mortality. Section 4 takes 
up a special case as an illustration: age delays in childbearing. Section 5 turns to nonstable 
theory, investigating how the age composition responds to  changes in the birth sequence 
and in fertility and mortality patterns. Section 6 looks at the "bias" produced in vital 
rates by changes in the age composition and birth sequence, and suggests how this may be 
partially corrected. Section 7 takes up the problem of incomplete data estimation, and 
proposes a method for assessing errors in the estimates, given underlying assumptions that 
are not perfectly fulfilled. It illustrates this with an example based on a standard Brass 
estimation technique. The main sections are largely independent, but the reader is urged 
to  understand the method before turning to any applications. 

1 THE CAUSAL LINKAGE METHOD 

In this section I shall develop both the vocabulary we need and a general method 
for linkage analysis in demographic theory. I will avoid abstractions, and will assume (at 
some cost t o  full mathematical rigor) that the functions dealt with inhabit appropriate, if 
unspecified, spaces and that they are smooth enough to  allow the operations we want. I 
start by reviewing briefly the familiar standard theory of differential changes, then spend 
some time extending it to differentials with respect to functions, finally proposing a gen- 
eral method for sensitivity or linkage analysis in demographic theory. 

The Standard Theory 

Begin with y as a simple function of the variable x :  

Given that x is increased an amount h,  the familiar standard calculus tells us that a good 
approximation to  the change in y ,  when h is small, is given by the differential Gy ,defined by 

where f '  is the derivative or gradient taken at x ,  and is itself a function o f x .  (Since the 
differential, hy, is a function of the change h,  evaluated at x ,  we write it as 6y [x;h]; or. 
when x is understood, as 6y [h] ; or, when h is also understood, simply as 6y.) 

If we merely want the change in y on going from x to  x + h, why bother with the 
differential, an approximation? Why not calculate y(x  + h) - y(x) directly? This, of 
course, is possible. But the differential has two advantages. First, it applies to  all x in the 
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domain of the function and to all changes h - it is more general. Second, and more im- 
portant, useful qualitative information is usually contained in the expression for f '(x); 
the connection between y and x can therefore be usefully interpreted and studied. 

One way to define the differential directly, without resorting to the gradient, is via 
the liinit 

6y [x;h] = lim 
a--0 

Thus the change in y caused by a small step in the direction of h,  divided by tile step length, 
can be shown in the limit to yield the same linear approximation as the differential in y 
given in eqn. (2). This fact will be useful below. 

Finally, recall that if y is a function of several variables y = f (x,, x, , . . . , x,) and 
if changes hi occur in the variables xi (with indices i in the set I), the others being held 
constant, the differential in y becomes the summation 

Functional Differentials 

So much for the standard theory. We now proceed to the case of interest in this paper. 
This time we begin with a function z ,  whose domain in demographic theory is usually age 
or time. 

At the outset a notational difficulty must be cleared up. Elementary textbooks often 
write the function z as z(a), where they mean the entire function over the range ofa.  Since 
this might be confused with the value of z at point a ,  I shall follow modern notation and 
reserve the label z for the function itself, using z(a) for its value at point a. 

Typically, in demographic theory, models are built out of functions (and variables), 
the simplest possible being 

Here F is a rule which assigns a real number y to a given curve z, and is called a functional. 
As examples 

F(z) = max z(t) 
O < t < l  

are functionals. The first attaches a real value to the curve z;  the second, a functional of 
two functions. assigns a real value, R,,, given the curves p and m. Demographers will 
recognize the second example as the net reproduction rate, where p and m are the age 
schedules of survival and fertility, respectively. 

Now suppose that the function z changes shape as in Figure 1 .  so that it becomes 
z + h ,  where the perturbation h,  itself a function, is small. How much will the value of y 
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a 

FIGURE 1 A small perturbation h in function z 

change? By analogy with eqn. (3), we can simply define the differential (now called a 
functional differential) t o  be 

6y [ z ; h ]  = lim 
a + o  

providing, of course, that this limit exists. Just as the simple differential approxiinates the 
change in y when x changes by an amount h ,  the functional differential approximates the 
change in y if the function z is perturbed or changed by a function h .  

As yet this gives no simple way t o  derive 6y without taking limits. Howzver, it is 
easy t o  show* that since F(z + a h )  is a simple function of the parameter a , e q n .  ( 5 )  can 
be rewritten as an ordinary derivative in a,evaluated at a =  0: 

d 
6y [ z ;  h ]  = -F(z + ah) I , = ,  

d a  

Usually this gives a convenient way t o  derive the differential 

Example 1 .  A functional form that often occurs in demography is 

Y ( z )  = soWg(wa))da 

i.e., an integral of a function g of function z  at  age a .  We may write 

*To see this, write the derivative (6) as 

F ( z  + (a + c ) h )  - F ( z  + (Yh) 
lim 
c-to C '(1.0 

This equals 

Iim ( ~ ( z  + : ) - F ( z )  
c-to 

which is the same as eqn. (5) .  



W.B. Arthur 

the last step following from standard calculus. 

Example 2. We may try this formulation on the net reproduction rate example mentioned 
above. 

Suppose that the fertility schedule m is perturbed by a function 6m, the survival schedule 
p remaining fixed; what is the differential in the variable R,? Applying the rule from Ex- 
ample 1 : 

ag  -- 
am (a) - '(a) 

whence 

6R0 [m;6m] = IW ~(a )6m(a)da  
0 (10) 

Knowing the variation in the fertility schedule, we can easily calculate 6R0. 

Functional differentials obey the same rules as normal differentials: 

(summation) 

(product) 

(composition) 
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4. y = F(z , ,  z,, x)  (where z,  and z, are functions and 
x is a variable) 

6y = 6 F [ 6 z l ]  + 6 ~ [ 6 z , ]  + 6F[6x]  

(quotient) 

Example 3. The survival schedule p is connected to the force-of-mortality schedule p by 
the equation 

The value p(a), in other words, is a functional of p. Given a change 6 p  in the function p ,  
caused, say, by a change in the incidence of a certain disease. how will the survival schedule 
p change? 

Let 

so that 

Now 

so that from the composition rule above 

This gives a rule for the differential change 6p  in the entire survival function p caused by 
an alteration 6 p  in the force-of-mortality function p. 

Each of the examples discussed so far proceeds tediously, step by step. With prac- 
tice however, as in elementary calculus, it is possible to  write down expressions for the 
differential by inspection. 

A final piece of vocabulary will be useful. In standard calculus we can write the dif- 
ferential as a product 

6y = f '(x) * 6x  
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calling the coefficient of the change in x the derivative. In our examples above we can write 
the differential in the product form: 

6y = soa F '(z, a)  . 6z(a)da (1 3) 

By analogy we may call the function F '(z), the "coefficient" of the change in z ,  the func- 
tional derivative (or FrCchet derivative) of F at function z,  understanding that the pro- 
duct here is an inner product. In Example 3 ,  the derivative of the survival schedule at age 
x ,  with respect to the force-of-mortality function p, is -p(x). 

In the functional case it is not always possible to write the differential in this pro- 
duct form, hence a derivative does not always exist. But where it does we need only retain 
the information F ': by taking the inner product of the function F '  and the change in z 
we can summon the differential when needed. 

The General Method 

We have now assembled enough machinery to  construct a fairly simple method 
for analyzing causal linkages in demographic theory. 

Assume that we have a model that expresses variable y expIicitly in terms of func- 
tions zi and variables (or parameters) xi: 

If we decide which functions zi may change, say those for i in some set I, and which 
variables xi may change, say those for j in some set J ,  we can write the differential change 
i n y a s  

We can derive each differential 6F [6zi] separately according to the rules above, and we 
can derive the differentials 6F [&xi] quite simply as (aF/axj)6xj. We now have the 
sought-for method. 

A variant of this method must be used when the variable of interest y is contained 
implicitly in the model. In this case we have the implicit functional model 

0 =HCv, z , ,  z,, . . . , zm, x , ,  x , ,  . . . , x,) (16) 

As before, we allow certain functions (zi) and variables (xi) to change. The variable y will 
respond by the change 6y. To maintain the identity at zero all changes must sum to zero. 
Hence 
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that is, 

More generally, there may be several implicit equations H for several variables y. In this 
case, we can interpret 6y to be a vector of changes, aH/ay to be the (nonsingular) 
Jacobian matrix of partial derivatives of each H wit11 respect to each y, and the differen- 
tials 6H to  be assembled in vector form. The same expression then holds. 

Example 4. To illustrate this method, let us assess the change in the intrinsic rate r when 
both the fertility and survival schedules m and p change. The characteristic equation con- 
necting r to functions m and p is: 

We calculate 

recognizing this expression as the average age of childbearing in the stable population, 
A,,, . For perturbations 6p and 6m we obtain 

Using eqn. (1 7) we may write 

We thus have a general analytical expression for the response of the intrinsic growth rate 
to arbitrary small changes in the fertility and mortality patterns. 

We now turn to specific problems in demographic theory. 

2 EFFECT OF THE FERTILITY PATTERN ON STABLE POPULATION 
PARAMETERS 

We begin the investigation of causal linkages in demography with stable population 
theory. How does the fertility pattern determine the growth and age composition of a 
stable population? 
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There have been several attempts to answer this question. Dublin and Lotka (1925) 
examined the response of the intrinsic growth rate in the special case where the fertility 
function is multiplied by a constant factor and shifted slightly over age. Some thirty years 
later, Code (1956) extended these results to include the effects on age composition. More 
recently, Demetrius (1 969), Goodman (1 97 I), and Keyfitz (197 1) derived formulae for 
the response of various stable parameters to an increase in fertility at a single arbitrary age 
x .  And in 1977 Keyfitz derived an approximation for the response of the intrinsic growth 
rate r to an arbitrary small perturbation in m, the fertility function, with a result similar 
to that given below. 

Fertility Change and the Intrinsic Growth Rate* 

A suitable model that connects r with the fertility function m is supplied by the 
familiar characteristic equation 

where a is age, w is an upper bound on length of life, and p is the survival function. 
Suppose that the fertility function m changes, to become m l ,  where the difference 

m1 - m = 6m is itself a function. The survival schedule p is assumed to be held fixed. 
How will r respond? 

Write eqn. (20) in the implicit form 

When m is perturbed an amount 6m, the rate r changes by 6r. To maintain the identity at 
zero these changes must offset each other. Therefore 

Evaluating the differential (as in Example 4) and the partial differential yields 

And since the second integral is A,, the average age of childbearing in the stable popula- 
tion. we obtain our first result: 

*Although we have already looked at this problem in Example 4.1 shall for completeness of this sec- 
tion rederive the result. 
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or. in demographic terms, 

Change in reproductive value at  age zero* 
Change in intrinsic growth rate = 

Average age of childbearing 

We thus have in eqn. (23) a general, closed-form expression for the response of the intrin- 
sic growth rate to  an arbitrary small change in the fertility pattern.** This result was 
arrived at  independently by Keyfitz in 1977, by an approximation argument. 

We can immediately extract a simple theorem from this result. In a growing popula- 
tion, any given pattern of marginal reduction in fertility has more effect if it is concentrated 
at younger ages. To show this, suppose we consider a certain "bite", of shape 6m,  taken 
from the fertility function. Recall that c(a), the age density at  a, is given in stable theory by 

where b is the intrinsic birth rate. Substituting this into eqn. (23) yields 

1 
6r = -- Sou c (a) 6 m (a)d a 

bAm 

a second and new form of the above result. Since c(a) must decline with age in a growing 
population, and b and Am are positive, any given pattern of reduction 6m will lower r 
inore if it occurs at earlier ages. Other things being equal, a contraceptive method is more 
effective in reducing population growth if it is adopted by younger women. 

A third, and yet more useful form of the above result is possible. The mean level of 
fertility in the population, Z, can be written as 

since c(a) describes the density of the population at  age a. Recalling that 6m = m' - m ,  
we may write eqn. (25) as 

where both means are taken with respect t o  the original age distribution c. The change in 
the intrinsic growth rate, in other words, equals the change in the mean level of fertility 
in the population, normalized appropriately. We could use this, for example, to  estimate 
how much fertility would have to change to achieve some prescribed reduction in the 
growth rate. 

*Reproductive value at  age 0 is defined as J~ e-"p (a)m (a)da. 
0 

**This exercise is one of comparative statics. We rnust interpret the change i n r  derived here as the dif- 
ferential between two stable populations that differ only in fertility function, or alternatively as the 
long-run difference in growth trends in a population with altered fertility. 
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Fertility and Other Stable Population Parameters 

One way to extend these results to the effect on the birth rate and the age distribu- 
tion is to recall that b is a function of r, and c(a) of b and r through the equations 

Thus, knowing the change in r, the changes in b and c(a) can be easily derived by ordinary 
calculus. 

A more instructive way to proceed, however, is to use the implicit functional 
method, as described in the previous section. Set up the system 

where c(x)  is the age density at specific age x .  Let y be the column vector [r, b, c(x)]  ' 
so that the Jacobian matrix aH/ay is obtained from eqn. (29) as 

where A, is the average age of the population. Given the driving change 6m, we then have 

We know that 6H0 [6m] = joW eqap(a)6m(a)da, and that the other differentials 6H1 [6m] 
and 6H2 [6m] are zero. Inverting aH/ay yields 

So that, multiplying out, we obtain the results 
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6c(x) - (An-x) - - JOu e '"p (a) 6m (a)da 
4 x 1  Am 

We now have closed-form expressions for the proportional change in the birth rate and 
the age distribution for arbitrary changes in the fertility function.* Expressions (34) and 
(35) are believed to  be new. 

Of great interest is the effect of changes in fertility behavior on the age composi- 
tion. We see from eqn. (35) that whatever the change in shape of the fertility function, it 
always has the same type of effect on the age distribution. It "pivots" the distribution 
around the average age of the population An,  a net increase in fertility increasing the pro- 
portions younger than the average age and decreasing the proportions older than the aver- 
age age. This tendency of fertility change to  pivot the age distribution has been described 
before, by Lotka (1939) and particularly by Code (1956,  1972). 

3 EFFECT OF THE MORTALITY PAITERN ON STABLE POPULATION 
PARAMETERS 

We now turn to the effect of changes in the age pattern of mortality on stable pop- 
ulation parameters. As with fertility, there have been several analyses of this problem, 
most of them of special cases. Coale (1956 .1972)  investigated the effect on stable param- 
eters when the force-of-mortality function underwent certain stylized changes close to  
those observed in real populations. He further provided some empirical results. Keyfitz 
(1971) looked at the special case of a change in the force-of-mortality function at an 
arbitrary single, specific age. And in the most general analysis to date, Preston (1974) 

derived expressions for the proportional change in r, b, and c(x) caused by arbitrary 
changes in the mortality function.* * 

Mortality Change and Stable Parameters 

Mortality change can be viewed in two different ways, depending on whether we 
take the change in the force-of-mortality function /.I or in the survival schedule p as the 

*These results have a straightforward connection with those derived by Keyfitz (1971) in his classic 
article on the effects of a change in fertility at the single age a .  To obtain Keyfitz's results from ours 
let 6m(a) be a unit increase in m, sustained over one age unit at  age a .  Ln this case eqn. (35), for ex- 
ample, would yield [(An - x)lAm] e-"p(a), as in Keyfitz. In this paper, however, we consider the 
case where fertility is changed right across the age dimension. To obtain our results from those of 
Keyfitz we would need to multiply by the change at age a ,  6m(a), and integrate over age. Stated 
another way, above we obtain the functional differential; Keyfitz, by other methods, calculates the 
functional derivative. Since we can construct the more general differential easily from the derivative, 
we could use Keyfitz's list of expressions to calculate the response for other stable-theory parameters 
not treated here. 
**Preston's expressions appear to be quite general, but they hinge partly on a parameter A that must 
be separately determined; they are therefore somewhat difficult to interpret. 
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driving change. The two are connected (see Example 3) by the following one-to-one rela- 
tion, so we may use them interchangeably: 

hp(a) = -p(a) C C(r )d r  (36) 

We now proceed as before, obtaining 6r, 6b, and 6c(x) corresponding to 6 p  (or 6p) 
by the implicit functional method. This time, keeping m fixed, we have 

and since we know ( a ~ / a y ) - '  from the previous section it remains only to evaluate 
6 H   PI . 

From eqns. (29), 

Substituting these into eqn. (37): 

1 /Am 0 [ ': ] = -b 

6 4 ~ )  c(x)(An - x)/Am -c (x) besX6p(x) 

Finally, multiplying out, 

6b  An w -- 
b -<I. esam (a) 6p(a)da - b IOU esa6p (a)da 

6c  (x) (An - - -  
IOU 

~ P ( x )  esam(a)6p(a)da - b IOU esa6p(a)da + - 
C(X) Am P (x) 

(42) 

We now have general closed-form expressions for the change in the growth rate, the birth 
rate, and the age distribution, given an arbitrary small change in the life table. These re- 
sults are believed to be new; some comments on them are in order. 

1. The effect of mortality on the growth rate is similar to the effect of fertility. 
What matters is the numerator in eqn. (40) or eqn. (23) and this is the effect of either fer- 
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tility or mortality on the reproductive value at age 0. Note that mortality improvements 
late in life, a cure for cardiovascular diseases say, would have little influence on the repro- 
ductive value because the change in survival would come largely after reproductive years 
were past. Thus r would show neghgible change. 

2. A special case of mortality change, "neutral" change, is known to have a particu- 
larly simple effect on the growth rate (Preston 1974). We can verify this easily. Suppose 

wliere k is a constant. so that 

Then 

Reducing the mortality function by a constant amount, in other words, increases the 
growth rate by the same amount. 

3. The effect of mortality change on the age distribution is straightforward to ana- 
lyze, given the above general closed-form expression (42). The first term once again 
"pivots" the age distribution about A n .  For any given mortality improvement this term is 
linear over age, and negatively sloped. The second term is constant and negative, while the 
third directly reflects the change in the survival function. For the usual pattern of mortality 
change over time, where survival chances improve significantly at ages under five and over 
forty, the change in the age distribution has the shape shown in Figure 2. 

FlGURE 2 Change in the age distribution if the probability of death declines at ages under five and 
over forty. The dotted line ( - 0 )  represents the f i s t  term in eqn. ( 4 2 ) ,  the dashed line (- - -) the second 
term in eqn. ( 4 2 ) ,  the continuous line (- ) the third term in eqn. ( 4 2 ) ,  and the bold continuous line 
(-) the resultant, G c ( x ) / c ( x ) .  
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Again, this confirms Coale's (1972) analysis of the effects of observed changes in the age 
distribution. "Usual" patterns of mortality change tend to pivot the age distribution clock- 
wise, tuward greater proportions in the younger age groups, thus lowering the average age. 

4. Survival improvements in the post-reproductive years only, however, pivot the 
age distribution the other way. The growth effect term disappears and the second term 
now lowers the age distribution uniformly across the age dimension. The third term 
again directly reflects the improveinent in survival at older ages. The age distribution now 
pivots anticlockwise, raising the average age of the population. 

5. Expressions (35) and (42), taken together, explain the empirical observation that 
fertility affects the age distribution more than mortality does. Taking fertility and mortal- 
ity changes that have an equal effect on growth (term on the right-hand side of eqn. (35) 
equals the first term in eqn. (42)), we see that in contrast to fertility, which acts only 
through the growth rate, mortality affects the age composition through two other terms. 
These, in general, tend to offset the first, so that the pivoting of the age distribution is 
not so pronounced in the mortality case. 

6. Finally, the differentials that describe the effects of mortality change and fertil- 
ity change on any of the stable parameters are additive. We could therefore combine our 
results to find the net effect of simultaneous fertility and mortality changes, or, working 
in the opposite direction, decompose a given change in a stable parameter into separate 
fertility and mortality effects. 

Example 5. A simple numerical test of the above results is easy to perform. Suppose we 
start with a stable female population with mortality corresponding to the Coale and 
Demeny (1966) Model West Level 18 schedule and with a zero growth rate. Can we use 
the above formulae to "predict" the new growth rate, birth rate, and age composition, 
if mortality were given instead by Level 20? 

The differential function 6 p  is obtained numerically from the tables; it is the differ- 
ence between survival schedules 20 and 18. The initial Level 18 growth rate and birth 
rate, the new Level 20 values calculated using eqns. (40) and (41), and the (correct) Level 
20 values obtained from the tables are compared in Table 1 .  

The value calculated for r via the differential is about 2.5% off in estimating the 
change, due to the curvature of the functional for r over its argument function p .  

The age distributions, old and new, calculated from eqn. (42) and interpolated from 
the Coale--Demeny tables, are compared in Table 2. 

There is, of course, a discrepancy since the differential is a first-order approxima- 
tion to the true response. (Part of this discrepancy may be due to the fact that c,,, used 
as the input data for c(x) in eqn, (42), is already rounded to two decimal places in the 
Coale-Demeny tables.) We can conclude that, in this case, for most purposes the differ- 
ential brings us tolerably close to the true change. If we wanted the exact response of r 

TABLE 1 Level 20 growth rate and birth rate calculated via the differential compared with the 
values taken from the Coale-Demeny tables. The initial (Level 18) values are also given. 

Growth rate Value Birth rate Value 

r18 
r20 (calc.) 
rzo (tables) 

b18 
bzo (calc.) 
bzo  (tables) 
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TABLE 2 Level 20 age distribution calculated (cia) via the differential compared with the values 
t interpolated from the ('vale Demeny tables (c2,-,). The initial (Level 18) distribution is also given. 

and c, however, for purposes of high-precision tabulation say, we would have to use a 
more complicated form of the differential - the functional line integral to be touched 
on briefly in Section 8. 17 

4 AN ILLZJSTRATION: THE EFFECT OF AN AGE SHIFT IN FERTILITY 

Thus far our stable theory results contain "6m" or "6p" in the expressions, reflecting 
the fact that we developed them for arbitrary changes inm andp.  Often. though, we would 
want to use these results by specifying 6m and 6 p  to be particular types of changes in 
the age pattern. I illustrate a case now. 

As a country develops, individual demographic behavior persists - a person marries, 
reproduces, and dies as before -- but it often takes place at different times in the life cycle. 
Thus the fertility pattern may not change greatly in shape. but may vary in its overall 
intensity and its location on the age axis. In demographic theory the consequences of 
changes in intensity (uniform proportional change over the entire age schedule ) are easy 
to analyze. But there has been no easy method to determine the consequences of a simple 
translation of the schedule along the age axis. Using the results of the previous sections, 
however, we can now analyze translations in a straightforward way. 

Translation of the Net Maternity Schedule 

We begin by looking at the simplest case: a pure shift in the net maternity schedule, 
4 = p - m ,  to the right along the age axis. This can be regarded as a rough indication of 
what happens when age at marriage is increased, and is illustrated in Figure 3.  

Confining our attention to the stable case, and working from the characteristic 
equation 
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FIGURE 3 An age shift in the pattern of childbearing. Age 

we find as before that 

Now, a pure translation of @ by T years to the right (later childbearing by T years) means 
that the change in @ is given by 

so that 

This result tells us that if r is positive, later childbearing (T > 0) necessarily decreases r.  
If r is negative, on the other hand, 6r is positive, so that later childbearing actually speeds 
population growth. The reason for this seemingly paradoxical result is that a delay in 
childbearing means that the next generation arrives later. Since this new generation is 
smaller than the last and the decline in numbers is spread over a longer time, the rate of 
decline is therefore not so rapid. 

The above result offers a useful rule of thumb for age shifts in childbearing. Dividing 
by r we have 
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and expanding the exponential term and dropping terms of second order and upward 
(permissible since r is small) we obtain 

6r -r7 - -7 - Increase in average age of clddbearing -- - - - - - - 
r rAm Am Average age of childbearing 

Thus the proportional fall in the growth rate equals the proportional rise in the mean age 
of childbearing. Since Am is usually about 27 or 28 years, or thereabouts, a year's shift in 
childbearing would cause a change in the growth rate of -(1/27.5) or about -3.6%. It 
would therefore take a delay of more than five years in childbearing to cause a 20% de- 
cline in the growth rate, or to take 8 points off a crude birth rate of 40. 

The Fertility Schedule: Age Shift and Increase in Intensity 

We now look at a slightly more difficult case, assuming that the fertility function 
shifts by 7 years, and also increases by a factor 1 + k in intensity. Since differentials are 
additive we can treat the two changes separately. 

Here I make an approximation. Assume that, over the childbearing years, the survival 
curve declines linearly with slope p. That is, 

P@:+ t) = (1 - pt)p(a) (47) 

From eqn. (23), with the differential 6m = m(a - 7) - m(a) 

So that, using eqn. (43) 

Neglecting terms of order r2 and upward, we obtain 

6 r  = 
-T(P + r) 

Am 
(49) 

Equation (49) summarizes the effect of the age shift on the growth rate.* Now we analyze 

*Equations (48) and (49) may be contrasted with the approximation of Dublin and Lotka (1925): 

Where 7 is small, Dublin and Lotka's expression coincides with these results. 
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the effect of the second change, 6m = km(a). Substitution into eqn. (44) shows that this 
time 

Adding the two differentials, we obtain 

This tells us how much the intrinsic growth rate changes if fertility increases by a factor 
1 + k, and is shifted along the age axis by T years, as may happen in the course of devel- 
opment. From eqns. (33) and (35) we can easily write the change in the age distributionas 

Example 6. In a well-known paper, Coale and Tye (1961) present an example where the 
1956-1958 fertility patterns of two ethnic groups in Singapore, the Malays and the 
Chinese, resemble each other closely in shape. The mean age of childbearing for the 
Chinese is 29.1 years, about 3 years higher than that for the Malays, 26.4. On the other 
hand the survival schedules and overall fertility levels differ only slightly between the two 
groups. The Chinese intrinsic growth rate is 8.3% lower than the Malaysian rate. How much 
difference does the age shift in childbearing make, compared to the other factors? Using 
eqn. (49), with the Malaysian figures as a base, where p = 0.001 3 and r = 0.040, we find 

The higher age of childbearing of the Chinese lowers their growth rate by 10.5%. The 
Chinese have higher fertility, however, and a slightly different survival schedule, so that 
the real difference is not quite so great - it is 8.3%. The age shift difference of 10.5% (or 
10.15% if we include second-order terms in the approximation) agrees well with Coale 
and Tye, who calculate 10% due to this effect. 

5 CAUSAL LINKAGES IN NONSTABLE THEORY 

In the previous sections we looked at the response of the age composition and of 
intrinsic rates to life-cycle changes withln a stable-population model. For nonstable 
populations the theory is no more difficult. But the nonstable case, being more general, 
has less mathematical structure than the stable case, and for this reason it is not always 
possible to obtain closed-form mathematical solutions. 

This section takes up two problems. It derives the transient response of the age 
composition to underlying changes in the birth sequence and to temporal changes in the 
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fertility pattern. And it examines the more difficult problem of the transient response of 
the age composition to temporal changes in mortality. 

Response of the Age Composition to Changes in the Birth Sequence 

The age composition of the population, c(a, t) ,  is given in the general, nonstable 
case by 

where N(a, t) is the population density at  age a at time t, N(t) is the total population at 
time t ,  and p(a, t) is the probability that a person (born at t -a) survives to be aged a at 
time t. 

Suppose there is a given nominal birth sequence, B(t), which may be an arbitrary 
function of time, or may follow some particular form, such as exponential growth. How 
will the age composition respond, over time, to an arbitrary change in this function - a 
baby boom, for example, or a deviation from exponential growth? 

Let 6B(t) be the given perturbation in the birth sequence (see Figure 4). The re- 
sponse of c(a, t) to the alteration in the birth sequence 6B is obtained from eqn. (52) by 
the quotient rule: 

6c(a, t) = (6B(t - a)p(a, t) - c(a, t) soU 6B(t - a)p (a, t)d a)/N(t) 

Dividing through by c(a, t), this becomes our first nonstable-theory result: 

Thus the proportional change in the age composition at time t equals the proportional 
change in the cohort aged a ,  less the proportional change in the total population. We thus 
see the transient response of the age composition to a sequence of cohorts larger than 
normal as a bulge that passes through the age composition over time. 

The response of the age composition to temporal changes in fertility behavior is 
now easy to obtain. The standard Lotka equation links the birth sequence B with the fer- 
tility function m: 
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Time 

t'lGUKE 4 A perturbation 6 B ( t )  in the birth sequence over time. 

with the initial birth sequence given. For a temporal change in the fertility pattern, 6m(a, t), 
the birth sequence is therefore perturbed by an amount 6B(r), where 

with the initial sequence 6 B  zero before the change occurs. Changes in fertility behavior 
thus affect the birth sequence both directly (second term on the right) and indirectly, 
through the "echo effect" of the change itself (first term on the right). The perturbation 
6 B  is thus given by a Lotka-type renewal equation with a nonhomogeneous or forcing 
term.* 

Temporal changes in the age pattern of fertility, we can conclude, change the age 
composition in two stages. They alter first the birth sequence, according t o  eqn. (57); 
this then alters the age composition, as in eqns. (54) and (55). 

Response of the Age Composition t o  Changes in Mortality Rates 

Temporal changes in the age pattern of  mortality affect the age composition through 
a more complex mechanism: they alter both the birth sequence B and the survival func- 
tion p in eqn. (52). Here I take the force-of-mortality function p as the first link in the 
causal chain; improvements in public health, the incidence of epidemics, of wars and 
natural disasters, the eradication of certain diseases and the shift between one cause of 
death and another are most directly seen as acting either temporarily or permanently on 
p, the probability of death a t  a given age in a given year. I split the analysis into two ques- 
tions: first, how does a temporal change in the force-of-mortality function p affect the 
survival function p over time? Second, how does the resulting transient change in p affect 
the age composition over time? 

*Here we run up against an inherent limitation of differential analysis. The term 6 B  is a firstarder 
approximation to the actual change in the birth sequence, and since it also appears on  the right-hand 
side of the equation any error compounds over time. Hence we may think of eqn. (57) as being "valid" 
only over the space of two or three generations. 
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The force-of-nlortality, or probability of death per unit time (conditioned on sur- 
vival until that time), for the cohort aged x at time to is denoted by p(x,  to). It determines 
the probability of survival p(a, t) to  age a at time t ,  for the cohort born at time t - a ,  
through the relation 

The survival probability p ,  in other words, is a function of the cohort's force-of-mortality 
history at previous times r over its life span up t o  age a.  

Let us now suppose that the force of mortality is altered over the age and time di- 
mensions by an amount 6p(x, r), at age x and time 7. Then, as in Example 3, the transient 
response in the survival function p is obtained as 

The survival probability is therefore altered over time to a degree proportional to  itself 
multiplied by the sum of all the force-of-mortality changes experienced by the cohort in 
question in all its previous years from birth onward. To gain some insight into how this 
linkage works, consider a change in p for one year only at some past time r, for the 
cohort then aged a,. At future time t this cohort will be aged a = a, + (t - 7,) and from 
eqn. (58) we obtain the alteration in its survival probability as 

other changes in the survival function being zero. Thus the one-year alteration in the 
force of mortality affects one cohort only and it ripples along the survival function with 
this cohort as it ages. More generally, the effect of a temporary or sustained change over 
the entire age dimension in the force of mortality on the survival function is the sum of 
such cohort ripple effects. 

We now take the alteration in the survival function over time, 6p(a, t), as given or 
determined. This change affects the birth sequence over time as follows: 

with 6B zero before the change in survival happens. It also alters the total population, 

over time by an amount 

Finally, using the quotient rule, we obtain the change in the age composition as 



W.B. Arthur 

Dividing through by c(a, t), we have the result: 

Thus the proportional change in the age composition at age a and time t equals the pro- 
portional change in the survival function at that age and time, plus the proportional change, 
if any, in the numbers at birth of the cohort aged a at time t ,  less an adjustment term for 
the proportional change in the total population. To sum up the causal sequence, changes 
in death rates, seen as changes in I.(, affect the survival function through eqn. (58). This 
in turn affects both the birth sequence through eqn. (60) and the total population size 
through eqn. (61). The response of the age composition is given in eqn. (62) as the sum 
of these effects. 

Mortality changes that affect only post-reproductive ages allow a closed-form result. 
In this case the change in the birth sequence, 6B,  is zero and eqn. (62) reduces to 

Thus at time t the proportional change in the age composition equals the accumulated net 
mortality improvements for the cohort aged a at that time, less the accumulated mortal- 
ity improvements averaged over the population as a whole. Since the second term is con- 
stant with respect to  age and mortality improvements build up with cohort exposure and 
hence with age, the usual effect of lower mortality in post-reproductive years is to pivot 
t l ~ z  age composition anticlockwise over time (cf. the analogous stable population case dis- 
cussed on p. 16 of this paper). 

Example 7. To illustrate the transient response of the age composition to a change in 
mortality probabilities, suppose that cardiovascular diseases had been abruptly eliminated 
as a cause of death in the United States in 1966, and that this improvement in mortality 
was sustained in all subsequent years (see Table 3).* Using the Keyfitz and Flieger (1971) 
US 1966 male life table and population projections, how would the survival function 
and age composition respond over time to this sudden but sustained improvement in mor- 
tality? 

We can compute the response in the survival function using eqn. (58); the results 
are shown in Table 4. The projected age compositions, without the mortality improve- 
ment, are obtained from Keyfitz and Flieger (p. 335) and listed in Table 5. From eqn. 

*This change in p is obtained from Preston et al. (1972, p. 768) by eliminating cardiovascular diseases 
as a cause of death in the US 1964 male tables and making corrections for the effect of competing risks. 
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(63) and the initial (unchanged) age compositions in Table 5, we can compute the changes 
in these projections due to the mortality improvement. These results are also given in 
Table 5. 

TABLE 3 llifferential due to eliminating cardiovascular diseases 
as a cause of death among U S  males in 1966. 

TABLE 4 Response of the survival function to the elimination of cardiovascular diseases as a cause 
of death among US males in 1966. 

Survival function 

1966 1971 1976 1981 

0.89404 0.9095 1 0.9 1778 0.92162 
0.86081 0.88689 0.90178 0.90975 
0.80954 0.85018 0.8747 1 0.88871 
0.73493 0.79170 0.82860 0.85087 
0.63747 0.71540 0.76468 0.79665 
0.51314 0.60458 0.66731 0.70695 
0.37576 0.47447 0.54143 0.58737 
0.24400 0.34399 0.40809 0.45 157 

TABLE 5 Projected age composition (assuming no improvement in mortality) and change in this 
projection if cardiovascular diseases were eliminated as a cause of death among US males in 1966. 

Age group Age composition (%) Change in age composition 

1971 1976 1981 1971 1976 1981 

Notice that the influence on the age composition grows through time, as cohorts 
are exposed to the mortality improvement over progressively longer periods of their life 
span. The response would stabilize about forty years or so after the onset of the improve- 
ment: all cohorts in this case would be subject to the entire new mortality function over 
their life history. 17 

6 DEMOGRAPHIC CHANGE AND VITAL RATES 

The easiest demographic measures to obtain for a population are its vital rates - the 
number of occurrences of a vital phenomenon in year t ,  divided by the total population. 
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Standard measures of this type are the crude death rate, DR, and crude birth rate, BR: 

D  ( t )  DH ( t )  = -- B ( t )  BR ( t )  = -- 
N O )  N ( t )  

where D(t )  and B ( t )  are the total number of deaths and births, respectively, in year t .  
Other behavioral rates, such as the crime rate in the population, may be similarly defined 
and measured. 

In general we consider some age- and time-related phenomenon, with an age-specific 
rate g(a, t )  for the cohort aged a  at time t .  Summing over all cohorts we obtain the vital 
rate for this phenomenon at the benchmark time, t o ,  as 

If we measure this rate again at some later time, t ,  we obtain 

The rate will have changed on two counts: first the function g  itself will have changed 
with time and this is what we hope to measure, and second the age composition c will 
have changed. Ideally we would like to measure the overall change in G  without the bias 
introduced by underlying changes in the age composition. 

Suppose that we know the change in the age composition between to and t ,  either 
directly, or by evaluating it as in the previous section from changes in the birth sequence 
or from changes in fertility or mortality behavior. Expanding G ( t )  about t o ,  to first 
order, by Taylor series we obtain 

The second integral on the right is what we seek: it is the change in the phenomenon itself, 
averaged over the population. Denoting this by AG, we can write it as 

We have now obtained the result we need. The "true" change in the vital phenomenon is 
given by the measured change in the rate less a correction for the change in the age com- 
position. This correction factor in general may not be easy to compute; some knowledge 
of the age-specific phenomenon and the change in the age composition is necessary. One 
or both of these may have to be approximated on an incomplete data basis: this however 
is a standard task in demographic work. 

Example 8. We can use a similar type of analysis to find how period rates differ from the 
"correct" cohort rates, given fluctuations in the birth sequence.* To look at the question 

*Preston (1972) analyzed a related special case: the response of the crude death rate to exponential 
growth in the birth sequence. 
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with precision, suppose (i) a stationary population, with N(t) = N a n d  B(t) = B, and (ii) 
mortality functions p and p that are constant over time. By virtue of (ii), all birth cohorts 
face the same life table, the same mortality experience, regardless of the birth sequence. 
And by virtue of (i), in the absence of perturbations in B,  the crude death rate DR will 
equal the "correct" cohort rate d ;  it will show no bias. 

Now. the crude death rate 

responds to an arbitrary perturbation 6B in the birth sequence by a change 6DR (t) ,  where 

This expression gives the deviation of DR from the cohort rate d ,  given a fluctuation in 
the birth sequence. We can gain further insight by specifying the perturbation 6B to  be a 
single-year "boom" in the birth sequence, such that the cohort born in year to is larger by 
6B than the usual birth sequence B.* We now have 

6B(t) = 
t, < K t o  + 1 

otherwise 

And for this particular change, eqn. (69), on integrating out, becomes 

Writing 6B/B as P, and BIN as b ,  we find 

6DR (t) = bpp(t - to)(p(t - to) - d) (70) 

We have thus found an expression for the bias in the crude death rate caused by an addi- 
tional "pulse" of births at to ;  these changes are illustrated in Figure 5. The bias in the 
crude death rate is strongly positive just after to ,  then negative as time progresses further, 
becoming positive again at about to + 60, and finally fading to  zero. The short pulse 
of births, in other words, causes the crude death rate to  be more positive than the cohort 
rate just after to due to high mortality in the infant years. Then, in its middle years, 
it swells population numbers but shows few deaths and the crude death rate falls below 
the "true" cohort rate. Finally, the crude death rate is biased positively again as the "pulse" 
reaches the older, high-mortality years, the effect fading as the cohort passes out of the 
population. 

*Since we are free to examine the response to any perturbation in B as an analytical experiment, we 
shall simplify the example by ignoring echo effects. 
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FIGURE 5 Bias in the crude death rate caused by a single-year "baby boom" a t  time to .  

7 TOWARD A THEORY OF ROBUSTNESS FOR DEMOGRAPHIC ESTIMATES* 

In the last fifteen years or so, since the seminal work of Brass and Code (1968), 
demographers have become highly skilled at estimating vital rates from census data that 
are fragmentary or incomplete. It is normally impossible to base an estimation technique 
on data that are largely missing, but in demography a fortuitous circumstance makes this 
possible. By and large, demographic behavior follows hghly regular age patterns. The 
demographer need only use the available data to  select an approximate age pattern from 
a standard and known family of such patterns. Knowing the approximate pattern he can 
then fill in the blanks, as it were, and calculate the desired rates or parameters. 

It is useful to view this procedure in the abstract. The demographer begins with a 
standard schedule, of mortality or fertility say, which can be varied by one or two param- 
eters to create a family of model schedules. His observed data tell him how to adjust these 
parameters to transform the standard schedule into one that approximates the "true" but 
unknown schedule in the population under study. Thus any particular estimation pro- 
cedure may be viewed as mapping certain observations, plus one or more standard schedules, 
into the real numbers to  produce the desired estimate. More precisely, then, the estimate 
can be viewed as a functional of the standard schedules and a function of the observed 
data: 

where q is the parameter to  be estimated, $ the estimate, 0 the observed data, and LS  the 
standard age schedules. The particular functional form of F of course depends on the 
demographic identities on which the estimation procedure is based, and these in turn 
depend on the demographic assumptions that underlie the procedure. 

The statistician interested in such estimation procedures might well ask two ques- 
tions. First, how robust is the estimation procedure, given that not all the necessary 

*llere I thank Griffith Feeney, who suggested that causal linkage analysis might be used to estimate 
errors in these techniques. Collaborative work with Michael Stoto has also helped clarify my thinking 
in this section. A more complete and precise account of the notions explored here appears in a paper 
by Arthur and Stoto (1981). 
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assumptions can be perfectly fulfilled? Second, how might we "correct" the estimate, 
given different and known sources of error in the technique? Mathematically, a theory of 
error or of robustness for demographic estimates can be based on analysis of the linkages 
between the estimate q^ and the standard functions on which it depends. To illustrate th s ,  
I carry out such an analysis on a well-known incomplete-data technique - the Brass child 
survivorship technique. I choose this technique because it uses a minimum of notation. 
Other Brass techniques are much the same in structure - -  the type of analysis applied here 
and some of the general conclusions would just as well apply to them. 

The Brass Child Survivorship Technique 

Suppose that we want to estimate the mortality parameter q(M), the probability 
of death between birth and age M. In many countries where births and childhood deaths 
are poorly recorded it is not possible to evaluate q(M) by direct counting. To overcome 
this problem, Brass (1975) suggests the following estimation technique: 

1. Question mothers, aged x ,  on the proportion of their children who have failed 
to survive, D,. This is the only observation used; but notice that it is already 
a rough indicator of mortality in the childhood years. 

2 .  Choose model schedules of mortality q *  and fertility m*, and estimate q(M), 
the probability of death before age M, using the expression 

There are several ways of explaining why this procedure should work. One way is 
to suppose we have chosen the model schedule q *  fairly well as regards its shape, but are 
unsure as to what level to set it at to read off q(M). Now, D,,  the proportion of children 
dead for mothers aged x ,  is given by 

where m(y) is the true fertility rate for mothers aged y ,  and q(x - y )  is the true probabil- 
ity that a child will die during the interval x - y ,  between the mother's age y when it was 
born and her age x at the time of the interview. The estimation procedure given in eqn. 
(7 1) therefore corrects the guessed or model level q*(M) by a factor 

Dx m * b ) d y  - Observed proportion dead 
- 

iX m*O.)q*(x - - Y ) ~ Y  
Model proportion dead 

which, if the model schedules m* and q*  have the correct shape, equals the observed or 
actual mortality divided by the model mortality. The estimation therefore "adjusts" 
q*(M) to a level that corresponds with the observed mortality. 
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Before proceeding further, it would help to normalize the estimation formula. Let 
m*(j)/Lx m*(j)dy be f*(j), the (model) probability density of childbearing at age y ,  
less than age x. Similarly, defme f(j) as the true density of childbearing at age y ,  less than 
age x. We may then write the estimate as 

where, if the observation D, has been measured correctly, we have 

Finally, following Brass (1 9 7 9 ,  we can express eqn. (74) in a useful approximate form as 

where A is the average age of childbearing up to agex for mothers aged x, that is, the average 
age of childbearing under the density function f? Thus Dx approximately measures the 
probability of death at the average age, x - A ,  of the children being indirectly sampled. 
(Age here means time elapsed since birth and is unaffected by the death of the child.) 

Error Theory 

Where the model schedules q* and f * coincide with the true functions q and f, and 
where Dx has been measured correctly so that it conforms with eqn. (74), <(M) estimates 
q (M) exactly: 

Errors can arise from three and only three sources. First, and most likely, the observation 
Dx will be in error, due to sampling bias, age misreporting, and underreporting of deaths. 
These errors have a directly proportional effect on the estimate and we have no need t o  
consider them here. We will assume that Dx has been correctly measured. Second, the 
model schedule f *, which must be guessed, will be in error. It will deviate from the true 
function f by the function 6f = f * - f. And third, the model schedule q*, which must 
also be guessed, will be in error. It will deviate from the true function q by the function 
6q = q* - q .  We may take these last two sources of error separately, for they are additive 
in differential form. 

 TO see this, expand q(x  - y )  by Taylor series around q(x  - A ) :  q(x - y )  = q(x - A )  + 01 - A )  X 
q'cx - A )  + 0 ' .  This gives u s J f @ ) q ( x  - y ) d y  = q ( x - A ) J f , ( y ) d y  + q'(x - A ) J C v  - ~ ) f @ ) d y  + 
JO' d y  = q(x - A ) ,  since the second term is zero. Whereq isrelatlvely linear, thisapproximatlon isgood. 
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Error in f 
Assume for the moment that the mortality function has been chosen correctly, that 

is, that q* = q .  I f f  * deviates from the true fertility function f  by 6 f ,  then the deviation 
in the estimate, i ( M )  - q(M),  may be approximated by the differential 6<(M)[6 f l ,  
evaluated at the function f. Applying the quotient rule to eqn. (73) ,  we can write the dif- 
ferential, at f ,  as 

Writing ailq, the relative error, as err q^(M), we have the result: 

LX 6f (v )q (x  - Y M Y  
err i (M) = - 

J~ f ( v )q (x  - y ) d y  

Knowing the form of 6 f ,  as we would in a given application, we could use eqn. (78 )  to 
calculate error bounds on the estimate. 

Error in q 
Now assume that the model fertility schedule has been guessed correctly, so that 

f  * = f ,  but that the model mortality schedule q* deviates from the true schedule q by 
6 q .  Applying the quotient rule to  eqn. (73)  once again, we obtain the differential change 
in the estimate, Gi(M)[Gq] , as 

sothat ,  in this case 

a q ( W  i X f ( v ) 6 q ( x - y ) d ~  
err i (M)  = - - 

q(M)  C f ( Y ) q ( x - y ) d y  

Using the average age approximation: 

64(M) W x - A )  err i (M) - - 
4(M) q ( x - A )  

We can draw some general conclusions from this error analysis. Taking the estima- 
tion error caused by imperfect choice of the model mortality schedule q* first, we see 
from eqn. (80)  that it is to some extent self-cancelling: the two terms in the error expres- 
sion offset each other to  some degree. From eqns. (80) and (81)  we can conclude that the 
technique is robust against errors in the choice of model mortality schedule to the extent 
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that (i) the model mortality schedule q* and the true mortality schedule q have the same 
shape, or that (ii) the estimation age M does not differ significantly from the average age, 
x - A ,  of the children being "sampled". 

Error caused by imperfect choice of the model density ft (or the model fertility 
function m*) is more problematical. Equation (78) shows that such error is not self- 
cancelling as in the mortality case, and there is no parameter such as M which can be ad- 
justed to minimize the error. All that can be done is to  fit ft as accurately as possible. For 
this reason ft (or m*) is usually selected on the basis of ancillary information from parity 
ratios - this information greatly improves the closeness of fit. 

We can go much further with this type of analysis. The Brass technique rests on 
several specific assumptions - for example, that the true mortality and fertility experience 
of the population has not changed significantly in the years preceding the survey. Viola- 
tion of implicit assumptions such as this causes characteristic errors in the choice of model 
schedules ft and q* - in other words, it causes 6f and 6q to assume specific forms. 
Analytical expressions can thus be found for the error due to violated assumptions (see 
Arthur and Stoto 1981) using the error formulae derived in this section. 

8 THREE FORMS OF LINKAGE ANALYSIS: SOME FURTHER REMARKS 

Throughout this paper I have deliberately presented the various linkage expres- 
sions in the form of functional differentials. This is not the usual practice in sensitivity 
analysis and I owe the reader some explanation for this. There are three forms in which 
one can write the response to  a change in a function, each with a different purpose: the 
derivative, the differential, and the line integral. 

For the models that interest us in demography, recall from eqn. (13) that the dif- 
ferential can usually be written as an inner product of some expression ~ ' ( z )  with the 
driving perturbation 6z: 

To be truly parsimonious, we need therefore only present and preserve the derivative F ' ,  
it being a trivial matter to recover the differential by taking the inner product. This, in 
fact, is how linkages are usually presented in physics or economics, at least when the 
driving change occurs in a single or vector variable. The differential, though, gives a 
clearer view of the linkage between the- output variable and the function that alters 
it. It emphasizes that the change in y depends not only on the properties of F', but in 
this functional case also on the shape and character of the driving perturbation 6z in the 
age or time pattern. This is why I have used the differential form here. 

The differential has one major disadvantage though. It is a first-order approxima- 
tion, and thus is valid only to  the extent that the functional in question remains linear 
over the schedule or function being perturbed. The differential is perfectly serviceable 
for many numerical applications and it shows the structure of the linkage clearly and 
correctly; but it is not always suitable for high-precision arithmetic. 

There is a closely connected form, the functional line integral, that is exact for 
large perturbations. 1 shall not describe it in detail, but it works roughly as follows. 
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Suppose that instead of calculating the differential response t o  a full perturbation 6 z ,  we 
first allow only a scaled-down perturbation, ( I /  10)6z,  and calculate the response t o  this. 
Now we update all parameters and functions, so that  the initial function z, becomes z, + 
(1 /10)6z ,  and calculate the response to  the next (1/10)6z,  updating again. We repeat 
this until we have arrived at  the tenth and last (1/10)6z. As output  we have ten smaller 
differentials in y, which we can add together t o  form a total differential 6y. This new dif- 
ferential will be a more accurate measure of the total change, since we have continually 
followed changes in the function and parameters as the function is perturbed. If we make 
the step size As smaller, 1/100 instead of 1/10,  then 1/1000 instead of 1/100, the sum 
of the resulting small differentials will (under certain conditions) tend t o  a limit, which 
we can call, by analogy with standard calculus, an integral. This limit measures the exact 
change in y .  For the case y = F(z), with ~ ' ( z )  known, with initial input function z, and 
f i a l  function z , ,  and the difference z ,  - z, = h ,  we can, following this procedure, 
write the exact change in F as 

where 

At the cost of a more complicated expression - involving a double integral - the response 
t o  large changes in argument function is now exact. 

As an illustration, consider a not necessarily small change in the fertility schedule 
m,, with a new schedule m ,  and a difference m ,  - m,. Then, using eqns. (23) and (82), 
the difference in intrinsic growth rates is 

we+(m(s))ap(a)(m, (a) - m, (a))da d s  

Am(m (s), r(m (s))) 

where 

This result, not an approximation, could be used t o  update the intrinsic growth rate in a 
precise numerical calculation, given any arbitrary change in the fertility schedule. 

In sum, for efficient storage of information all we need is the functional derivative. 
For insight into the linkage mechanism itself the differential is clearest. And for high- 
precision numerical work or for large changes in the input schedules we require the more 
complicated line integral. All three forms are related and, for small changes, are equivalent. 

9 CONCLUSION 

In this paper I have attempted to show that several classes of problems in mathe- 
matical demography fall into a common forinat - that of estimating or analyzing the 
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linkage between certain aggregate variables of interest and changes in the age schedules or 
time sequences that describe individual demographic behavior. 1 have also attempted to  
provide a method that obtains closed-form expressions for such linkages and illustrated it 
with several examples: the linkage of stable parameters to general changes in fertility and 
mortality schedules and to an age shift in fertility; the transient response of the age com- 
position a d  of vital rates to short-run changes in demographic behavior; and the analysis 
of errors in demographic estimation techniques. While much is known qualitatively about 
these linkages, in some instances with considerable analysis of special cases, the results in 
this paper apply more generally than before, and most of them are believed to  be new. 

There are several uses for linkage analysis. Not only do closed-form expressions for 
demographic linkages allow the analyst to compute changes (e.g., a change in the growth 
rate caused by a new contraceptive), but they also afford him considerable qualitative 
insight into the mechanisms at work. In some cases these closed-form expressions are also 
useful numerically; they offer a direct computational method for updating parameters 
without the repeated numerical solution of implicit equations. In other cases these expres- 
sions lead to  general statements, or theorems, on the response to change. 

Throughout this paper I have presented the various linkage mechanisms in the forin 
of functional differentials. These, while they show the linkage clearly and are perfectly 
serviceable for many numerical purposes, are still, of course, first-order approximations 
to the true response, and hold best for marginal changes. Should we require the exact 
response to  large changes in age or time schedules, though, the line-integral form is avail- 
able, albeit at extra computational and notational expense. 

For the most part, in this exploratory paper I have chosen problems for analysis 
about which much is already known; this allowed us to  compare our results with previous 
experience in these problems. Several other problems could have been as easily looked 
at. For example, given an appropriate economic-demographic model it is possible t o  
analyze the economic consequences of arbitrary changes in mortality risks (see Arthur 
1981). It would also be possible to look at the spatial consequences of changing migra- 
tion patterns, or the economic consequences of changing labor-participation patterns. 
And, given appropriate biological theory, it might be possible to investigate why the 
mortality and reproductive age patterns of a given species should provide for evolutionary 
success. 
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