Exposure and Vulnerability to Energy, Water, and Land Hotspots under Different Climate Futures

A Spatially-Explicit, Global Assessment of Vulnerable Populations and Hydroclimatic Impacts

1 International Institute for Applied Systems Analysis, Laxenburg, Austria
2 University of Washington, Seattle, WA, US
3 Global Environment Facility, Washington DC, US
4 United Nations Industrial Development Organization, Vienna, Austria

gidden@iiasa.ac.at

10th Integrated Assessment Modelling Consortium Meeting
December 6, 2017
Most of the material in these slides is undergoing peer review for publishing. Please do not publish or distribute publicly.
Multi-sectoral risk

- Many studies on climate impacts
- Increased attention on multiple sectors

Risk aggregation in climate impacts research

1. Temporal: “compound events” ... two or more simultaneous events, e.g. drought + heatwave, with impacts often more severe than their sum
2. Spatial: “hotspots”... locations exposed to risks in multiple sectors, although not necessarily at the same time
Global mapping of multi-sector climate and vulnerability hotspots

Multiple indicators (14) across 3 sectors

Hotspots of significant nexus vulnerabilities and impacts

Byers et al. (2017, in review)
Projecting Subnational Income and Inequality

BRT Machine Learning

NLP Projection

\[\min_{r, \tau} \left(\sum_{j \in J} n_j \Omega \left(\frac{1}{4} I^r_i, I^r_i, T^r_i \right) - \sum_{j \in J} n_j \Omega \left(\frac{1}{4} I^r_i, i^r_j, t^r_j \right) \right)^2 \]

\[\text{s.t. } \sum_{j \in J} n_j \Omega \left(\frac{1}{4} I^r_i, i^r_j, t^r_j \right) = N^r_i \]

\[i^r_j - i^{r-1}_j \leq 1.65 \frac{I^r_i - I^{r-1}_i}{\Delta \tau} \]

\[1 - \frac{i^r_j}{i^{r-1}_j} \leq 0.05 \Delta \tau \]

\[1 - \sum_{j \in J} n_j i^r_j - \sum_{j \in J} n_j \ln i^r_j \leq 0.05 \]

\[\forall j \in J \]

\[i^r_j \in [t_{\text{min}}, t_{\text{max}}] \]

\[i^r_j \in [0, \infty) \]

Indicators

Urban and Rural Income and Inequality

Scenarios

All 5 SSPs

Resolution

Global, States, 0.125 Grids

Gidden et al. (2017, in review)
Populations Vulnerable to Poverty

Gidden et al. (2017, in review)
Multi-sector risk indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water stress index</td>
<td>Water stress index: as a proportion of human demands divided by renewable surface water resources</td>
<td>5 GCMs, 3 GHMs</td>
</tr>
<tr>
<td>Non-renewable GW abstraction index</td>
<td>Fraction of groundwater abstraction that is non-renewable</td>
<td>HadGEM2-ES + PCR-GLOBWB</td>
</tr>
<tr>
<td>Drought intensity</td>
<td>% change in drought intensity (deficit / duration)</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Peak flows risk</td>
<td>Substantial change in flood risk (doubling) is expected</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Seasonality</td>
<td>% change for the index of mean seasonality</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Inter-annual variability</td>
<td>% change for the index of mean inter-annual variability</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to clean cooking</td>
<td>Fraction of population with access to clean cooking</td>
<td>MESSAGE + SSPs</td>
</tr>
<tr>
<td>Heat event exposure</td>
<td>Total days experienced as 3-day events above hist. p95 for wet bulb temperature</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Cooling demand</td>
<td>Measure absolute change in cooling degree days >26°C.</td>
<td>5 GCMs</td>
</tr>
<tr>
<td>Hydroclimate risk to power production</td>
<td>Thermal and hydropower capacity impacted by changes in low flows, peak flows and variability</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Land</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop yield</td>
<td>Mean change in crop yield as basket of staple crops</td>
<td>GLOBIOM</td>
</tr>
<tr>
<td>Environmental flow exploitation index</td>
<td>Agriculturally driven exploitation of environmental flows</td>
<td>GLOBIOM + LPJmL</td>
</tr>
<tr>
<td>Habitat degradation</td>
<td>Change from non-agricultural to agricultural land use</td>
<td>GLOBIOM</td>
</tr>
<tr>
<td>Nitrogen leaching</td>
<td>Measurement of excess nitrogen leaching due to intensive agriculture</td>
<td>GLOBIOM</td>
</tr>
</tbody>
</table>
w1: Water stress index

w2: Non-renew GW abstr.

w3: Drought intensity

w6: Inter-annual variability

Water impacts: 2.0° SSP2
Energy impacts: 2.0° SSP2
Global hotspot exposure

Byers et al. (2017, in review)
Hot and vulnerable

3.0 °C

Byers et al. (2017, in review)

MSR >4.0, income < $10 /day
Regionalised impacts – SSP2, 2050

- Northern hemisphere regions have better than average impacts
- Most Asian and southern regions are on/worse than average

Byers et al. (2017, in review)
Impacted Populations

Exposed

Exposed & Vulnerable

Byers et al. (2017, in review)

Sustainability
Middle of the road
Rocky road
Conclusions and findings

- More than double exposure between 1.5-3.0°C
- Asia already faces severe exposure and vulnerability at 1.5°C
- African exposure emerges intensely at 2-3°C
- As many E&V in SSP3 as today, but more concentrated in Asia and Africa
- Difference in SSPs results in order of magnitude reductions in E&V
Thank you very much for your attention!

Dr. Matthew Gidden
Research Scholar – Energy Program
International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria

gidden@iiasa.ac.at
www.iiasa.ac.at
www.mattgidden.com
Backup Slides
Climate change index scoring under uncertainty

Continuous scale (0 to 3) with intermediate ranges determined
0. Negligible risk
1. Low risk
2. Moderate risk
3. High risk

2.0°C climate example: Drought intensity change

Original indicator

 SSP2 2050

- 3.0°C
- 2.0°C
- 1.5°C

% Population exposure

Multi-sector impact score

Indicator value

Indicator score