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Abstract
It is well known that habitat boundaries affect ecological dynamics, but their influence 
on evolutionary dynamics is less well understood. Here, we study the effects of different 
kinds of boundaries on evolutionary branching in clonal populations along environmen-
tal gradients by systematically analyzing individual-based stochastic models in small- and 
large-range systems, as well as their large-population-size limits through deterministic 
approximations. Specifically, we examine four prototypical kinds of boundaries: imperme-
able boundaries at which individuals stop (“stopping”), or from which they continue back 
into the interior as if bouncing back mechanically (“reflecting”), or that let them abort the 
dispersal attempt, return to their original position and try a different direction (“reprising”), 
and semipermeable boundaries that can be crossed without hindrance, but do not allow the 
crossing individual to return (“absorbing”).We find that boundary conditions shape branch-
ing patterns only in small-range systems, where stopping boundaries generate disruptive 
selection for a wide range of parameters, whereas absorbing boundaries always generate 
stabilizing selection. Reflecting and reprising boundaries generate disruptive selection at 
low individual mobilities, and stabilizing selection at high mobilities. To further analyze 
these findings, we introduce a simple approximation of the invasion fitness in a mobile 
population, which predicts the observed outcome. The effect of stochasticity on evolu-
tionary outcomes is small even in small populations: stochasticity causes random branch 
extinctions at steeper slopes and higher mobilities. In large-range systems, frequency-
dependent interactions alone induce evolutionary branching for almost all parameters and 
independent of boundary conditions.
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Introduction

All natural habitats have boundaries, which influence ecosystem dynamics (Fagan et  al. 
1999; Strayer et al. 2003). Species diversity is known often to be higher at habitat bound-
aries than in a habitat’s more homogeneous interior regions (Kunin 1998; Schilthuizen 
2000). Although such patterns have been recognized for some time, theoretical investiga-
tions often concentrate on model systems that deliberately attempt to exclude habitat edges, 
or minimize their effect. In turn, studies focusing on edge effects are mostly concerned 
with their influence on ecological dynamics (Matlack 1994; Strayer et al. 2003; Ries et al. 
2004; Babak and He 2009). To date, little work seems to have been devoted to investigating 
the evolutionary consequences of habitat boundaries.

Biodiversity affects ecosystem structure and function, and thus ecosystem services (Sala 
et al. 2000; Foley et al. 2005). A general consensus is emerging that biodiversity often has 
a positive effect on sustainability (Millennium Ecosystem Assessment 2005; Mertz et al. 
2007). A major component of biodiversity is species diversity which is generated through 
processes of extinction and speciation (Etienne and Apol 2009; Rabosky 2009; Sugden 
et  al. 2009). Here, we investigate how habitat boundaries influence speciation. We are 
interested not in the well-established allopatric speciation scenarios (Mayr 1963), but in 
scenarios in which the emerging species share the habitat and its boundaries, i.e., scenarios 
of parapatric speciation.

Speciation in parapatry may be common (Gavrilets et al. 2000; Doebeli and Dieckmann 
2003; Coyne and Orr 2004; Gavrilets 2004; Leimar et  al. 2008; Ispolatov and Doebeli 
2009), but the resulting biogeographic patterns are empirically not easily distinguishable 
from patterns resulting through divergence in allopatry and secondary contact (Endler 
1977; Futuyma and Mayer 1980; Barton and Hewitt 1985; Doebeli and Dieckmann 2003). 
A thorough theoretical understanding of the ecological determinants of parapatric specia-
tion is therefore required to correctly identify the past processes underlying extant biogeo-
graphic patterns (Doebeli and Dieckmann 2003; Dieckmann et al. 2004).

Parapatric speciation may occur as a coincidental by-product of divergent evolution 
(Darwin 1859; Fisher 1930) or genetic drift, if the gene flow between the involved demes is 
low enough (Wright 1943; Endler 1977). Parapatric speciation may also occur as an adap-
tive response to hybrid inferiority (Dobzhansky 1940). Of particular interest to us are sce-
narios in which hybrid inferiority is not caused by extrinsic factors (such as at an ecotone, a 
boundary between different habitats), but instead is the result of frequency-dependent inter-
actions within the ancestral population (Rosenzweig 1978; Slatkin 1979a, b; Seger 1987; 
Dieckmann et  al. 2004). In such scenarios of adaptive speciation, ecological differentia-
tion through evolutionary branching in an ecological trait (Metz et al. 1996; Geritz et al. 
1998; Dieckmann and Doebeli 1999; Doebeli and Dieckmann 2004; Doebeli 2011) is one 
prerequisite for speciation in sexual populations, while the other is the evolution of assorta-
tive mating (Fisher 1930; Dobzhansky 1940; Udovic 1980; Dieckmann and Doebeli 1999; 
Kirkpatrick 2000; Turelli et al. 2001; Matessi et al. 2002; Nosil et al. 2003, 2009; Doebeli 
2005, 2011). We can isolate the ecological aspects of adaptive speciation by considering 
clonal populations, in which ecological differentiation is not hindered by recombination.

While adaptive speciation can occur in homogeneous environments if interactions are 
directly frequency-dependent (that is, explicitly depend on the interacting phenotypes; Tay-
lor 1989; Christiansen 1991; Abrams et al. 1993; Dieckmann and Doebeli 1999; Dieckmann 
et  al. 2004), it can occur under more general conditions in heterogeneous environments, 
where divergent evolution may induce a correlation between phenotype and location. One 
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consequence of such a correlation is that localized interactions, even if they do not explicitly 
depend on phenotype, are effectively limited to certain phenotypes, namely, to those pheno-
types that are likely to be encountered within an individual’s interaction range. In heteroge-
neous environments, effectively frequency-dependent selection may therefore be generated 
through any kind of localized interaction if the distribution of phenotypes is not uniform.

A simple and frequently discussed example of a heterogeneous environment is a linear 
environmental gradient, which implies that the ecological trait conferring optimal adapta-
tion to the local environment changes linearly along a spatial direction (Roughgarden 1972). 
If mobility is not too high, density-dependent resource competition can stabilize phenotypic 
branches even if the strength of competition between individuals does not explicitly depend on 
their phenotypes (Doebeli and Dieckmann 2003).

Polechová and Barton (2005) have argued that such speciation under the condition of gra-
dient-induced frequency-dependent selection was an artifact of habitat boundaries. Specifi-
cally, they showed that habitat boundaries alone can generate disruptive selection. This raises 
the general question of the effects of habitat boundaries on the process of adaptive specia-
tion along environmental gradients. Here, we focus on ecological differentiation as one aspect 
of adaptive speciation, and analyze the influence that various kinds of boundaries can be 
expected to exert on evolutionary branching in an ecological trait.

The overall fitness of mobile individuals depends on the fitness they experience at the vari-
ous locations visited during their lifetime. The direct effect of a boundary as understood here 
is to make certain locations (namely, those beyond the boundary) unreachable by dispersal. 
Therefore, the presence of boundaries may in principle alter the overall fitness of mobile indi-
viduals in the boundaries’ proximity, and evidently, individuals relatively close to a boundary 
are affected by its presence more than those farther away. If there exists, in addition, some cor-
relation between phenotype and location, phenotypes more commonly found in the proximity 
of a boundary therefore experience a stronger fitness effect from the boundary than pheno-
types more commonly found farther away. Hence, the mere presence of boundaries may gen-
erate selection for or against certain phenotypes (even if we do not consider that its phenotype 
may also directly affect an individual’s movement towards or its response to a boundary). This 
selection may be stabilizing or disruptive. We will show how these alternative impacts depend 
on how exactly dispersal dynamics are altered near the boundaries.

In this study, we reveal a specific consequence of spatio-phenotypic correlations by exam-
ining their impact on boundary effects. As highlighted above, such spatio-phenotypic correla-
tions have two different fundamental, evolutionarily relevant, consequences: gradient-induced 
frequency-dependent selection, and boundary-induced selection. We disentangle these effects 
by systematically comparing the branching patterns obtained with a stochastic eco-evolution-
ary model and its deterministic large-population-size approximation for four different, com-
monly used boundary conditions, and for two different system ranges: a large-range system 
where the influence of boundary-induced selection is negligible, and a small-range system 
where boundary-induced selection can be expected to strongly influence the outcome.

Methods

We begin with some qualitative reasoning about boundary-induced selection along a 
one-dimensional environmental gradient. We then describe the four boundary condi-
tions applied in the models and their effect on dispersal, and introduce the reproductive 
ratio as a fitness proxy. We finally turn to a detailed description of the models studied 
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here, which we prepend with an overview of their basic structure, and with a discussion 
of the dimensionless parameters that determine model dynamics.

Boundaries affect fitness

We consider an individual that is optimally adapted at its location along the gradient. 
After a dispersal step, it will find itself in an environment to which it is not optimally 
adapted—thus, dispersal incurs a fitness penalty, which is greater on steeper gradients 
and for larger dispersal distances. Therefore, survival becomes more difficult on steeper 
gradients, as was already pointed out by Kirkpatrick and Barton (1997). In the absence 
of boundaries, this does not imply a fitness advantage or disadvantage for specific phe-
notypes, because—if their dispersal patterns are identical—all phenotypes will suffer 
the same penalty. Different fitness penalties for different phenotypes may arise, how-
ever, when boundaries exist, since these influence dispersal in characteristic ways.

For stopping and absorbing boundaries, qualitative reasoning already allows us to 
understand the basic trends. Stopping boundaries interrupt dispersal steps, so the fit-
ness loss for individuals adapted to locations near the boundary is smaller than the fit-
ness loss for individuals adapted to locations more in the middle of the range (Fig. 1a). 
Effectively, stopping boundaries therefore produce a fitness advantage for extreme phe-
notypes—in other words, stopping boundaries generate disruptive selection. Conversely, 
absorbing boundaries always generate a fitness disadvantage for phenotypes adapted to 
locations closer to the boundaries, because of the increased probability of dying through 
dispersal (Fig.  1d). Reflecting and reprising boundaries tend to reposition individuals 
towards the interior (Fig.  1b, c), which may at higher mobilities be advantageous to 
individuals adapted near the middle. To develop a quantitative understanding, however, 
we must first formalize our description of how these boundary types influence dispersal.

a Stopping d Absorbingb Reflecting c Reprising

u

u’

u

u’

u

u’

u

†

Fig. 1  Schematic illustration of fitness losses incurred by dispersal steps. a With stopping boundaries, indi-
viduals in the middle of the spatial range on average make larger dispersal steps than individuals near the 
boundaries, and consequently suffer a larger fitness loss ( Δu > Δu

� ). Since individuals are usually located 
where they are adapted, intermediate phenotypes are thus at a disadvantage as compared to extreme phe-
notypes—stopping boundaries hence generate disruptive selection (unless mobility is excessively large; 
Fig. 3a). b, c With reflecting and reprising boundaries, individuals near the boundaries suffer smaller fit-
ness losses at lower mobilities, but higher fitness losses at higher mobilities than individuals in the middle 
(Fig.  3b, c). d With absorbing boundaries, individuals near the boundaries are lost more frequently than 
individuals in the middle of the spatial range. Extreme phenotypes are thus at a disadvantage—absorbing 
boundaries hence generate stabilizing selection (Fig. 3d)
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Dispersal kernels

We incorporate the effect of a given boundary condition into the dispersal kernel d, assum-
ing that the distribution of jump distances in the absence of boundaries would be described 
by a normalized Gaussian, i.e., d(x, x�) = Nm(x

�
− x) = exp(−(x − x�)2∕(2m2

))∕(

√
2�m) , in 

which m is the scaled mobility, x the starting location, and x′ the target location along a 
one-dimensional environmental gradient. If boundaries are considered, this expression is 
possibly augmented by a term that describes, for all locations within the range, the prob-
ability that an individual that would have left the range in the absence of boundaries, ends 
up precisely there. In other words, we construct dispersal kernels by specifying how the 
probability mass of the “tails” cut off by the boundaries (shown in Gray in Fig. 2a) is redis-
tributed, considering a certain boundary behavior.

After introducing boundaries at a and b (to keep expressions generic; we will set a = 0 
and b = L in our actual calculations), only locations x� ∈ [a, b] are valid (Fig. 2a). Gener-
ally, the expected effect of boundaries is stronger if mobility is higher, because the rate at 
which individuals jump into the boundaries, and so experience their effect, increases with 
mobility (Fig. 2b). The boundary effect is therefore expected to depend on mobility.

We consider four dispersal kernels, which differ with respect to how individuals cross-
ing the boundaries are handled. We implement stopping, reflecting, reprising, and absorb-
ing boundaries. Of these, stopping, reflecting, and reprising boundaries implement the 
common assumption that the boundary is impermeable, that is, a barrier to movement.

Stopping boundaries

Stopping boundaries describe the situation that individuals are forced to, or decide to, abort 
their dispersal step at the boundary, if it would lead across. Consequently, the probability 
mass contained in the cut-off tails of the unperturbed kernel (see Fig. 2a) is assigned to the 
respective end points of the habitat, a or b. The associated dispersal kernel is therefore
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Fig. 2  Boundaries affect dispersal. a Boundaries at a = 0 and b = 1 cut off the tails of the Gaussian dispersal 
kernel (shown for location x = 0.3 and mobility m = 0.4). b Probability P to jump into a boundary from a 
location x ∊  [0, 1], shown for different mobilities from m = 0.02 (lowermost line) to m = 0.98 (uppermost 
line). The filled circle in b indicates the setting (x, m) shown in a 
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in which the Dirac function δ, defined by ∫ ∞

−∞
�(y − y0)f (y) dy = f (y0) , is used to assign the 

probabilities of jumps outside the valid range, obtained by integrating the unperturbed ker-
nel from the boundary to infinity, to a and b, respectively. These integrals can be expressed 
via the so-called error function erf , as shown in the second line.

This is also a computationally simple way to implement impermeable boundaries, and 
the one chosen in Doebeli and Dieckmann (2003) for movement in direction of the gradi-
ent. Population densities at stopping boundaries tend to be higher than in the interior.

Reflecting boundaries

Reflecting boundaries describe the situation that individuals complete their dispersal step 
by changing direction, as if bouncing off a wall, if it would lead across. Consequently, 
the cut-off tails of the unperturbed kernel (see Fig.  2a) are mirrored back into the inte-
rior, mirrored again at the other boundary etc., leading to an infinite number of additive 
terms, which, however, quickly decrease in magnitude. The associated dispersal kernel is 
therefore

In practice—for reasonable mobilities—this infinite series can be truncated after only a 
few terms. This boundary condition has a certain appeal because it preserves the length of 
the dispersal step, and mostly prevents crowding at the boundary.

Reprising boundaries

Reprising boundaries describe the situation that individuals realize the futility of their 
attempt to move to a point beyond the boundary, return to their location, and try another 
direction at random until they succeed in completing a dispersal step. Consequently, the 
probability mass in the tails is equally distributed over all accessible target locations, which 
amounts to simply renormalizing the unperturbed kernel in [a, b] as

(1)

ds
�
x, x�

�
= Nm

�
x� − x

�
+ 2

⎛
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�
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�
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�
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+
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⎡
⎢⎢⎢⎣
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+
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∫ b
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The relative probabilities for jumps to valid locations remain the same as with the 
unperturbed kernel. Reprising boundaries are easily implemented by the computational 
rule: “Given a source location x, draw target locations x� ∼ Nm(x

�
− x) until x� ∈ [a, b] ”, 

but applying this method in an individual-based model is relatively costly, as it may require 
generating and testing many random numbers until a new location is accepted. Like the 
reflecting boundary condition, this boundary condition preserves the length of the dispersal 
step, and also prevents crowding of the boundary. At lower mobilities, however, it can lead 
to reduced population densities near the boundary.

Absorbing boundaries

In contrast to the impermeable boundaries introduced above, absorbing boundaries 
describe a situation where individuals can cross the boundary and do so without hesitation, 
but are then lost and never return or interact with individuals within the region under con-
sideration. Consequently, if a dispersal step would lead across the boundary, the individual 
is simply removed from the population. The associated dispersal kernel is the unperturbed 
kernel,

but defined only for locations in [a,  b]. This dispersal kernel is thus not normalized in 
[a, b], which reflects the fact that it does not preserve the total abundance. At higher dis-
persal rates, there is consequently a risk of extinction resulting from the added density-
independent mortality due to dispersal beyond boundaries. This happens almost certainly 
if the expected dispersal distance per generation is higher than the expected distance from 
the boundaries. We therefore estimate the threshold mobility in a well-mixed population as

For m > m*, rapid dispersal-induced extinction due to loss through the boundaries is 
very likely. Even when, at smaller mobilities, the population persists, population densities 
at absorbing boundaries are always smaller than in the interior.

Demographic models

To assess the robustness of our results with respect to demographic assumptions, we con-
sider two different demographic models. The first model (fecundity-regulated model) is 
based on the well-known discrete-time logistic equation, assumes non-overlapping gen-
erations, synchronized seasonal reproduction, and dispersal only at birth. Fecundities 

(4)da
(
x, x�

)
= Nm

(
x� − x

)
,

(5)m ∗=
b − a

2
.

Table 1  Demographic models Fecundity-regulated model Mortality-regulated model

Generations Non-overlapping Overlapping
Dispersal Natal Continual
Fecundity Density-dependent Constant
Mortality Constant Density-dependent
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depend on location and local competition. The second model (mortality-regulated model) 
follows previous studies of evolutionary branching on environmental gradients (e.g., Doe-
beli and Dieckmann 2003; Doebeli 2005; Leimar et al. 2008; Ispolatov and Doebeli 2009) 
and assumes overlapping generations, dispersal also outside of birth events, and density-
dependent mortalities with constant fecundities. In both models, reproduction creates off-
spring (possibly mutated) at the location of the parent, from where they immediately dis-
perse. Dispersal is equal across all individuals and independent of location.

For both demographic models, we investigate individual-based stochastic versions and 
their deterministic approximations. Their differences are summarized in Table 1.

Environmental gradient

In all models, individuals are, in addition to their location, characterized by a quantitative 
ecological character u (“phenotype”), which describes adaptation to the local environment. 
Following Roughgarden (1972), we assume a linear environmental gradient by considering a 
linear map from location to the specific phenotype locally optimally adapted to the available 
environmental resources. Phenotypes deviating from the locally optimal phenotype experience 
a diminished carrying capacity, which reduces their fecundity in a way described in detail in 
the model descriptions below. Thus, a certain range of phenotypes around the optimal pheno-
type is supported at any location, depending on how quickly the carrying capacity decreases 
with phenotypic distance from the optimal type. We call this characteristic range the resource 
width.

Parameters and dimensional analysis

We utilize several scales naturally present in the considered models to define dimension-
less quantities, and thus reduce the number of effective parameters in the models described 
below. We apply the general convention to denote a dimensional, unscaled quantity by a 
symbol with a “hat”, e.g., â , and the corresponding scaled, dimensionless quantity by the 
same symbol without the hat, e.g., a.

A natural time scale is provided by the cyclic reproduction schedule of the population. 
All other quantities are defined with respect to this generation time.

There are three relevant length scales in the system: its spatial extent L̂ , or “range”, the 
expected dispersal distance of offspring individuals m̂ (in the absence of boundaries), and 
the average distance �̂� over which competitive interactions manifest. We use the latter to 
scale the two former, thus setting the scaled interaction distance to 1, and introducing the 
scaled mobility m = m̂∕�̂� . Without loss of generality, we then fix the system boundaries at 
x = 0 and x = L = L̂∕�̂�.

The linear environmental gradient is characterized by specifying by how many units of 
phenotype the locally optimal phenotype changes per unit of space; it is described by a cer-
tain slope ŝ . Since we assume the phenotypic resource width r̂ to be constant with respect 
to location and time, it can serve as a unit of phenotype (thus setting the scaled resource 
width to 1). We can therefore fully characterize the gradient by a single dimensionless 
quantity, the scaled slope s = ŝ�̂�∕r̂.

The dynamical behavior of the models therefore depends essentially on three dimen-
sionless parameters: the scaled slope s of the gradient, the scaled mobility m of the indi-
viduals, and the scaled system range L.
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Deterministic fecundity‑regulated model

We specify the deterministic model first, because it has the same essential structure as the 
full stochastic model, but is otherwise simpler.

Individuals are characterized by their one-dimensional location x ∊ [0, L] along the gra-
dient and their phenotype u ∊ (− ∞, ∞). Individuals sequentially disperse, reproduce, and 
die in synchrony. On this basis, we study the deterministic approximation for the popula-
tion density n(u, x, t) as a function of location, phenotype, and generation. The density in 
the next generation is given by

with an individual fecundity following the well-known discrete-time logistic-growth model 
with a low-density growth rate b,

in which the effective competition

with the competition kernel c(x��, x�) = exp(−(x�� − x�)2∕2) describing the competitive 
impact of all other individuals on the focal individual. The effective carrying capacity

in Eq. 6b accounts for local adaptation to a linear environmental gradient of slope s and 
also for the lack of competitors beyond the boundaries. The subscript (…)+ in Eq.  6b 
indicates that only positive values are taken (the fecundity cannot be smaller than 
0). The inner integral in Eq.  6a describes mutation with a Gaussian mutation kernel 
h(u�, u) = exp(−(u� − u)2∕(2�2

))∕(

√
2��) , while the outer integral describes offspring dis-

persal according to a dispersal kernel d(x, x�) (see Dispersal kernels).
We assume a cline-like initial density, that is, individuals are distributed uniformly along 

the gradient and locally optimally adapted. Given a gradient slope s, individual mobility m, 
and system range L, we numerically obtain solutions by iterating Eqs. 6 on a fine grid until 
the initial density has converged to a stationary density.

While the range of possible phenotypes is infinite, in practice only phenotypes suffi-
ciently close to the range [0, sL] can be supported by the gradient, because K(u�, x�) quickly 

(6a)n(u, x, t + 1) = ∫
L

0

d(x�, x)∫
∞

−∞

h(u�, u)f (u�, x�, t)n(u�, x�, t) du� dx�,

(6b)f (u�, x�, t) = (1 + b(1 − Neff(u
�, x�, t)∕Keff(u

�, x�))
+
,

(6c)Neff(u
�, x�, t) = ∫

∞

−∞
∫

L

0

c(x��, x�)n(u��, x��, t) dx�� du��,

(6d)Keff(u
�, x�) = K0 exp(−(u

�
− sx�)2∕2)

√
�∕2(erf(x�∕

√
2) + erf((L − x�)∕

√
2))

Table 2  Dimensionless model 
parameters

Symbol Value Description

b 1.5 Low-density growth rate
m 0–5 Mobility of individuals
s 0–2 Slope of environmental gradient
K0 200 Carrying-capacity density
L 3 or 30 System range
μ 0.01 Mutational standard deviation
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converges to zero for phenotypes farther outside this range. This makes the u′-integration in 
Eqs. 6a,c numerically feasible. All parameter values are given in Table 2.

Approximation of invasion fitness in a mobile population

We analyze the selective effects of boundary conditions in the model introduced above 
quantitatively by calculating a phenotype’s invasion fitness, that is, its long-term reproduc-
tive ratio when the phenotype is rare and the monomorphic resident background popula-
tion is at equilibrium (Metz et al. 1992; Metz 2008), neglecting further mutation after the 
appearance of the mutant. This calculation is feasible because the generational structure 
(Eq. 6a) allows us to write down the dynamics of the spatial density distribution n(u, x, t) 
of a rare variant phenotype u at time t as

in which d is a dispersal kernel and f (u, x�) the fecundity an individual of phenotype u at 
location x′ , which also depends on the stationary resident density. Note that the integration 
is taken over source locations. Denoting the total abundance of the rare phenotype u at a 
time t by Nt(u) and introducing the probability density pu,t = n(u, x, t)/Nt(u), Eq. 7 yields

where we have also reversed the order of integration. We thus see that the current repro-
ductive ratio of a rare variant phenotype in an equilibrated resident population is given by 
its expected average number of offspring after dispersal. The spatial distribution described 
by pu,t(x) is itself a target of selection; however, after an initial transient period, it will be 
unimodal with a peak at x̄ = u∕s , that is, at the location where phenotype u enjoys its maxi-
mal reproductive success (Eq. 6b). When pu,t(x) stabilizes, so does the reproductive ratio in 
Eq. 7, which then describes the long-term reproductive ratio R(u) of u, as required by the 
definition of invasion fitness. Although we generally do not know the exact shape of pu,t(x), 
and thus of pu(x) = limt→∞ pu,t(x), we can make use of the fact that it has a strong peak at 
x̂ = u∕s , to expand the outer integral in Eq. 8 via a moment expansion (Gillespie 1981), 
which yields

The piecewise-defined fecundity in Eq.  6b is not very integration-friendly; we note, 
however, that 1 + b(1 − Neff∕Keff) = c1 exp(−c2(u − xs)2∕2) + ((u∕s − x)3) with constants 
c1 and c2 suitably composed of the constants in Eq. 6b (shown by expansion with respect to 
(u/s − x) around 0), and therefore approximate f(u, x) ≈ c1 exp (− c2(u − xs)2/2), which con-
veniently also captures the property of decreasing toward 0, but not below, with increasing 
distance from the optimal location.

Since mutants will typically be very similar to the residents, they will experience 
Neff∕Keff ≈ 1 . For this case, we find c1 ≈ 1 and c2 ≈ b. For the deterministic model specified 
below, the relative success of equally lucky mutants is therefore approximately determined 
by

(7)n(u, x, t + 1) = ∫
L

0

d(x�, x)f (u, x�)n(u, x�, t) dx�,

(8)Nt+1(u)∕Nt(u) = ∫
L

0

pu,t(x
�
)∫

L

0

d(x�, x)f (u, x�) dx dx�,

(9)R(u) = �
L

0

f (u, x) d(u∕s, x) dx + (varpu).
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where the integrand is composed of two factors, of which the first describes local adapta-
tion and the second dispersal from the optimal location. Somewhat loosely, this invasion 
fitness of a phenotype can be understood as the average fitness of the offspring of locally 
very well adapted individuals, taking into account offspring dispersal into habitats of lesser 
quality.

We quantify the aforementioned considerations for all types of boundary conditions by cal-
culating the reproductive ratio in Eq. 10, which depends on mobility and boundary conditions 
via the dispersal kernel (Eqs. 1–4). The results of these calculations confirm the expectations 
from our qualitative reasoning above: selection induced by stopping boundaries is disrup-
tive unless mobilities are unrealistically high (Fig. 3a), while selection induced by absorbing 
boundaries is always stabilizing (Fig. 3d). For reflecting and reprising boundaries, there is a 
clear transition from a disruptive to a stabilizing regime at intermediate mobilities (Fig. 3b, c).

Stochastic fecundity‑regulated model

The stochastic model has the same structure as the deterministic model, but we keep track of 
a finite number of individuals with phenotypes ui at locations xi, i = 1…nt. In each generation, 
the number of offspring of each individual i is drawn from a Poisson distribution with a mean 
given by its fecundity fi = (1 + b(1 − Neff,i∕Keff(ui, xi))+ as in Eq. 6b, only that the effective 
competition is now obtained as the sum Neff,i =

∑nt
j=1

c(xj, xi) , taken over the whole population 
(this implies self-competition, which describes resource utilization by the focal individual). 
Offspring individuals have phenotypes drawn from a Gaussian distribution centered on the 
parental phenotype, uk ∼ h(ui, uk) , and disperse from the parent location according to the dis-
persal kernel, xk ∼ d(xi, xk) . The offspring generation of size nt+1 so constructed replaces the 
parent generation. See Deterministic model for a description of the functions Keff , c, h, and 
Dispersal kernels for d.

(10)R(u) = ∫
L

0

exp(−b(u − xs)2∕2)d(u∕s, x) dx,
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Fig. 3  Predicted reproductive ratio as a function of phenotype (Eq. 10; based on the deterministic fecun-
dity-regulated model) in the small-range system (L = 3), with a stopping, b reflecting, c reprising, and d 
absorbing boundaries, shown for different mobilities from m = 0.1 (uppermost line) to m = 4.9 (lowermost 
line) and for a scaled slope of s = 1. In a, the transition from disruptive (at lower mobilities) to stabiliz-
ing boundary-induced selection (at higher mobilities) occurs at m ≈ 3.5. In d, boundary-induced selection is 
stabilizing for all mobilities (although rapid dispersal-induced extinction (Eq. 6) is almost certain for higher 
mobilities, e.g., above about m = 1.5 when L = 3). In c and d, there are transitions from a disruptive to a sta-
bilizing regime at intermediate mobilities, like in a, but there transitions occur already at lower mobilities 
of m ≈ 2.5 and m ≈ 1.5, respectively
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As in the discrete model, the population is initially cline-like with individuals placed at 
random locations drawn from a uniform distribution and the locally optimal phenotype. All 
parameter values are given in Table 2.

Deterministic mortality‑regulated model

In the second demographic model, individuals are also characterized by their one-dimensional 
location x ∊ [0, L] along the gradient and their phenotype u ∊ (− ∞, ∞). Individuals disperse, 
possibly die according to a density-dependent mortality, and possibly reproduce. On this basis, 
we study the deterministic approximation for the population density n(u, x, t) as a function of 
location, phenotype, and time. The density in the next time step is given by

in which b is the low-density birth rate, q the probability per time step to reproduce (we can 
define 1/q as a “generation”) and

is the individual survival probability over one time step. Dispersal kernel d, mutation ker-
nel h, effective competition Neff and carrying capacity Keff are introduced above. Dispersal 
occurs with an adjusted mobility m�

=

√
qm2 , so that m remains the mobility per genera-

tion as before.

Stochastic mortality‑regulated model

The stochastic model has the same structure as the deterministic model, but we keep track 
of a finite number of individuals with phenotypes ui at locations xi, i = 1…nt. Each time 
step, each individual i survives with a probability si = 1∕(1 + qNeff,i∕Keff(ui, xi)) as in 
Eq. 11b, only that the effective competition is now obtained as a sum taken over the whole 
population. Surviving individuals then reproduce with a fixed probability q. Offspring indi-
viduals have phenotypes drawn from a Gaussian distribution centered on the parental phe-
notype and are inserted into the population at the parental location. All individuals then 
disperse according to the dispersal kernel with an adjusted mobility m′ (see Deterministic 
mortality-regulated model above).

This model is closely related to the model studied by Doebeli and Dieckmann (2003). 
It differs by the discrete-time updating schedule, by omitting the ecologically neutral sec-
ond spatial dimension, and by two minor modifications addressing issues that have been 
brought up on occasion: to address the issue that the Roughgarden fitness function (Rough-
garden 1972) lets solitary individuals not incur any adverse effect of maladaptation, which 
is widely considered unrealistic, we include self-competition (Eq. 6c); to address the issue 
that individuals near system boundaries experience reduced competition due to the lack of 
competitors beyond the boundary, we introduce a correction factor in the expression for the 
effective carrying capacity (Eq. 6d).

(11a)

n(u, x, t + 1) = ∫
L

0

d(x�, x)

[
s(u, x�, t)n(u, x�, t) + bq∫

∞

−∞

h(u�, u)s(u�, x�, t)n(u�, x�, t) du�
]
dx�

(11b)s(u�, x�, t) = 1∕(1 + qNeff(u
�, x�, t)∕Keff(u

�, x�)),
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Rationale for choice of parameters and initial conditions

To maximize conceptual simplicity, we have specified our models in scaled, dimension-
less parameters (Table 2). Of these, the small system range has been chosen so that two 
branches located near the two boundaries can avoid competition with each other (three 
times the width of the interaction kernel). The carrying capacity has been chosen so as to 
have a similar number of individuals in the stochastic model as Doebeli and Dieckmann 
(2003). Our mutability has been chosen higher by a factor of 3, which reduces the wait-
ing time to branching, but still avoids the “mutation catastrophe” scenario, where branches 
become blurry and unstable due to high mutation. The low-density growth rate has been 
chosen to be as high as possible without coming too close to the value of b = 2 where 
the discrete-time logistic growth equation is known to become unstable (although these 
troubles should be already averted by forcing the fecundity to be positive-semidefinite in 
Eq. 6b). The influence of the remaining three parameters is the focus of this study.

Our models follow the eco-evolutionary dynamics from an initial state to the evolution-
arily stable state. For the initial state, we choose the so-called cline-like distribution, which 
is sometimes considered the natural equilibrium for evolution along an environmental gra-
dient (Kirkpatrick and Barton 1997; Polechová and Barton 2005). The same results can be 
achieved by starting with monomorphic populations, at the cost of increased waiting times.

Branching analysis

A question of major importance in this study is whether, for any given set of parameters, 
evolutionary branching occurs; that is, whether a clear, evolutionarily stable bi-or multimo-
dality can be seen in the distribution of phenotypes.

For the deterministic model, we look at the marginal phenotypic stationary density. 
Since there is no noise and the density is always symmetric around the center, it is easy to 
detect branches algorithmically. We convolve the histogram with the inverse of the muta-
tion kernel (because the last step was a mutation step), remove densities smaller than 5% 
of the maximum, and require a separation > 0.1 (ten times the width of the mutation ker-
nel) between remaining contiguous clusters. This is a relatively strong criterion and rejects 
many cases that already appear clearly bi- or multimodal to the human observer, but lack 
the deep density minimum between them.

For the stochastic model, we look at the histogram of phenotypes accumulated every 
10 generations over a period of 500 generations to ascertain evolutionary stability. These 
histograms are similar in appearance to the marginal densities produced by the determin-
istic model, but unequal branch heights and noise spikes in general make automatic detec-
tion unfeasible. Histograms were therefore classified manually, requiring essentially the 
same separation and minima between peaks, but allowing for noise spikes. We were not 
quite sure about our judgement in less than 2% of the cases, which turn out to lie exactly 
along the borders of the branching regions reported here. We classify them here as “not 
branched”, but classifying them otherwise leaves the appearance of the branching regions 
virtually unchanged.
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Results

For all models, outcomes depend significantly on the scaled slope s and the scaled mobil-
ity m. We investigate the parameter space (s,  m)  ∊  [0,  2] × [0,  5], which corresponds to 
the range of slopes and mobilities also studied by Doebeli and Dieckmann (2003). Cal-
culations are done for 25 × 25 different combinations (s, m) chosen on a regular grid on 
[0, 2] × [0, 5]. For the discrete models, we analyze the stationary state; for the stochastic 
models, we evolve the system for 5000 generations and base our analysis on the average 
pattern of the last 500 generations (see Methods: Branching analysis). Other parameters 
are given in Table 2.
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Boundary conditions shape branching patterns only in small‑range systems

As a first step, we investigate the hypothesis that the effect of boundary conditions becomes 
less pronounced as the system range increases, and that it should therefore be possible 
to identify a system range where boundary-induced selection can be neglected. Figure 4 
shows an illustrative example of stationary population densities in the fecundity-regu-
lated models as a function of location and phenotype (for the deterministic models), and 
spatio-phenotypic distributions after 5000 generations (for the stochastic models) for all 
four boundary conditions and large and small system ranges. A ten-fold increase in system 
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range suffices to achieve practically the same branching patterns irrespective of boundary 
condition. This is similarly true for all other combinations of slope and mobility. We con-
clude that the role of boundary-induced selection is negligible in the large-range system.

Frequency‑dependent interactions alone induce evolutionary branching

To identify the general conditions that promote evolutionary branching, we show in Fig. 5 
the evolutionarily stable branching status (Methods: Branching analysis) over the entire 
slope–mobility range for all model versions, boundary conditions, and both the small-range 
and the large-range system. It turns out that in the absence of boundary-induced selec-
tion and other small-range effects, branching occurs nearly everywhere (Fig. 5a–h), with 

m

1

2
3

0 0.5 1 1.5 2
0

1

2

3

4

5 n

1

2
3

0 0.5 1 1.5 2

o

1

2
3

0 0.5 1 1.5 2

p

1

2
3

0 0.5 1 1.5 2

D
eterm

inistic, L
=

5

i

1

2
3

0

1

2

3

4

5 j

1

2
3

k

1

2
3

l

1

2
3

S
tochastic, L

=
5

e

1

2
3

0

1

2

3

4

5 f

1

2
3

g

1

2
3

h

1

2
3

S
tochastic, L

=
30

a

1

2
3

Stopping

0

1

2

3

4

5 b

1

2
3

Reflecti
c

1

2
3

Reprising
d

1

2
3

Absorbing

D
eterm

inistic, L
=

30

Scaled slope, s

S
ca

le
d 

m
ob

ili
ty

, m

Fig. 6  Increased stochasticity causes random branch extinction and so suppresses branching at steeper 
slopes and higher mobility. Population sizes predicted by the mortality-regulated model are lower than 
those predicted by the fecundity-regulated model at intermediate-to-steep slopes and intermediate-to-high 
mobilities (compare Fig.  5). The stochastic model shows no branching in region 3 even with stopping 
boundaries. Parameters as in Table 2, except b = 1 and K0 = 100



Evolutionary Ecology 

1 3

the sole exception of a small region at shallow slopes and low mobilities (labeled as 1 
in Fig. 5; this region, as regions 2 and 3 introduced below, is not sharply delineated, but 
roughly indicates areas where certain effects become prominent, see Discussion).

Interestingly, branching in the large-range system occurs also in the region 2 at shallow 
slopes and higher mobilities, where branching is never observed in small-range systems. 
There is nearly no difference in branching patterns between deterministic and stochastic 
models, indicating that stochastic effects play a minor role even at the relatively small pop-
ulation sizes occurring here (< 600 individuals in the small-range system, < 6000 individu-
als in the large-range system). The exception is region 3, where branching is sometimes 
not observed in stochastic models when it does occur in the corresponding deterministic 
models (Fig. 5k, o).

We conclude that frequency-dependent interactions nearly always induce branching, 
unless small-range effects interfere.

Increased stochasticity suppresses branching

Branching patterns obtained from the mortality-regulated model (Fig. 6) are overall similar 
to the patterns obtained from the fecundity-regulated model (Fig. 5). However, the higher 
number of dispersal steps per generation (at the same mobility) increases overall mortal-
ity, resulting in significantly lower abundances on intermediate-to-steep gradients and thus 
favoring random branch extinction. Therefore, with the stochastic mortality-regulated mod-
els, branching is generally not observed in region 3 in small-range systems.

Robustness

Except for the stochasticity effects in small-range systems, the outcomes of all mod-
els investigated here are remarkably similar (compare Figs. 5 and 6). This highlights the 
robustness of our results.

Discussion

To investigate how boundaries influence evolutionary branching along an environmen-
tal gradient, we have constructed a class of models that allow disentangling the effects of 
boundary-induced selection from other effects. We discuss our main results below.

Boundary conditions shape branching patterns only in small‑range systems

Our first result is that, while there is a marked effect of boundary conditions on evolution-
ary branching in small-range systems, the influence of boundary conditions disappears as 
system range increases. The small system range has been chosen so that the effect of com-
petitive interactions across the whole range is negligible, which allows two branches to just 
barely evade competition with each other. Here, we have shown that a further increase of 
the range by a factor of 10 suffices to remove the influence of boundary conditions almost 
completely (Fig. 4), which provides the basis for investigating evolutionary branching in 
the absence of boundary-induced selection.
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Frequency‑dependent interactions alone induce evolutionary branching

Our main result is that in the absence of boundary-induced selection, that is, in large-range 
systems, evolutionary branching is the default outcome for nearly all parameter combina-
tions (Figs.  5a–h and 6a–h). The sole exception is a small region at shallow slopes and 
small mobilities (region 1 in Figs. 5 and 6), where phenotypic clusters form along the gra-
dient like pearls on a string, as they can achieve the spatial separation, but not enough phe-
notypic separation to be considered separate. This changes as mobilities increase, because 
increased mobilities increase the spatial extent, and therefore overlap, of these clusters and 
so force competition, which removes intermediates and leaves a few remaining, clearly sep-
arated clusters.

Branching at shallow slopes and higher mobilities does not occur in small-range sys-
tems, because there is simply not enough heterogeneity to sustain two separate branches 
(region 2 in Figs. 5 and 6). While at small mobilities a strongly platykurtic peak in the phe-
notype histogram hints at the presence of two or more clusters, at higher mobilities with 
increased competition, only one remains and the peak loses its platykurtic shape (compare 
also Sasaki and Dieckmann 2011). At intermediate and higher slopes, there is enough het-
erogeneity to sustain separated branches, and consequently this is also the region where 
branching is observed in small-range systems. Sufficient separation generally occurs at 
slightly lower slopes in the mortality-regulated model, which is due to the increased selec-
tion via dispersal-induced mortality (which at steeper slopes has the opposite effect, see 
Increased stochasticity suppresses branching below). At higher mobilities, dispersive over-
lap again suppresses branches and only one branch remains.

The disappearance of branching at higher mobilities is a general small-range effect, 
but not sufficient to explain all observed patterns, specifically, the differences among the 
boundary conditions. In contrast to what the small-range effect predicts, branching is 
observed also at high mobilities with stopping boundaries. Conversely, branching is notice-
ably suppressed already for intermediate mobilities with absorbing boundaries. This leads 
us to the notion of boundary-induced selection.

Boundary‑induced selection

The results for the small-range system (Figs.  5i–p and 6i–p) show that boundary condi-
tions influence selection. These results show good agreement with the predictions concern-
ing boundary-induced selection resulting from the invasion fitness approximation (Fig. 3): 
stopping boundaries generate disruptive selection for a wide range of mobilities and slopes 
(Figs.  5i, m and 6i, m), while absorbing boundaries generate stabilizing or no selection 
everywhere (Fig. 5l, p and 6l, p). Reflecting and reprising boundaries generate disruptive 
selection at lower and stabilizing selection at higher mobilities (Figs. 5j, k, n, o and 6j, k, 
n, o).

Our calculation of the reproductive ratio as shown in Fig.  3 serves to illustrate the 
main mechanism behind the phenomenon of boundary-induced selection, but should 
still be understood as a mostly qualitative argument. In mobile populations, individuals 
are found not only at locations where they are optimally adapted. The overall success of 
a phenotype is mostly dependent on the success of the relatively well-adapted individu-
als expressing this phenotype, rather than on the success of the poorly-adapted ones (or, 
to put it more succinctly: evolution is driven by the winners, not the losers), but the extent 
to which poorly-adapted individuals also contribute to the overall evolutionary success of 
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a phenotype is a priori not clear. This suggests an interesting target for future theoretical 
research.

Increased stochasticity suppresses branching

In the small-range system, branching is sometimes not observed in the stochastic models, 
although it is observed in the deterministic models (region 3 in Fig. 5k, o). This always 
occurs at high slopes and higher mobility. Population sizes there are very low, because 
only at the optimal location can substantial reproduction be achieved, and dispersal from 
there offers no advantage. As branches consist of so few individuals, they are prone to 
random extinctions, which destroy the multimodality predicted by the deterministic model. 
In the fecundity-regulated models, this happens only for reprising boundaries, while in 
the mortality-regulated models it is also observed for stopping and reflecting boundaries 
(Fig. 6i, j, m, n; Doebeli and Dieckmann 2003), where increased mortalities reduce abun-
dances and make random branch extinctions more likely. This disappearance of branches at 
higher slopes and intermediate to high mobilities gives rise to the notion that intermediate 
slopes are most favorable to evolutionary branching (Doebeli and Dieckmann 2003; Doe-
beli 2005; Leimar et al. 2008; Ispolatov and Doebeli 2009), with random branch extinction 
at higher slopes and lack of heterogeneity and boundary-induced selection at lower slopes 
shaping the observed branching regions.

In the stochastic models, there is even a risk of complete extinction. This mani-
fests mostly for absorbing boundaries at higher mobilities, where significant population 
loss through the boundaries occurs (Figs.  5l and 6l; Eq.  5), but may also occur for the 
other models, when none of the few remaining individuals happens to produce offspring 
(Figs. 5f–h and 6e–k).

Except for the aforementioned effects, the branching patterns predicted by stochastic 
and deterministic models are remarkably similar. Insofar minor differences in the onset of 
branching are even visible, they can probably be attributed to uncertainties in the branching 
analysis (Methods: Branching analysis).

Spatial patterns

Mimicking current practices of taxonomic classification, we have focused our analysis of 
branching patterns on the marginal phenotype distribution, and so far not considered the 
spatial configurations in which phenotypic clusters appear. Processes of spatial redistribu-
tion and diversification patterns interact and do not play out at very different and “inde-
pendent” spatial scales, but spatial patterns emerge together with the phenotypic patterns.

In our small-range systems (which are so small that individuals located near either 
boundary barely escape competition with individuals near the other) branches are gener-
ally located near the boundaries. In our large-range systems (which may approximate many 
real-world systems better) branching is generally more pronounced near the boundaries, 
while the bulk region may often show only spatially anchored polymorphisms, but no 
branching in our stricter sense. This is probably due to the absence of competing clus-
ters beyond the boundaries (the correction factor Eq. 6d only accounts for the competitive 
effect of the cline-like equilibrium distribution), which creates an advantage for individuals 
adapted there, which then exert strong competitive pressure in their neighborhood, remov-
ing individuals adapted there and so on, propagating a weakening boundary effect inward 
further and further.
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Suggestions for empirical tests

Designing empirical or experimental tests of the branching patterns predicted here will 
require mapping some key ingredients of our models.

We have specified our models in terms of populations densities, dispersal patterns, and 
phenotypes. While population densities and their relation to environmental carrying capac-
ity are widely understood, dispersal patterns must be explained though individual traits and 
extrinsic constraints, which allows the assignment of mobilities and the identification of 
boundary conditions, respectively. The phenotypes of interest are those that confer adapta-
tion to the extrinsic environment. We elaborate on these points below. Firstly, there must 
be identifiable system boundaries of a kind that relates to the types discussed here. Passive 
dispersal as common, for example, in plants and sessile maritime organisms, can prob-
ably often be linked to absorbing boundaries (when they delineate a habitable region, but 
do not hinder dispersal as such) or stopping boundaries (when they hinder dispersal so 
that dispersers collect at the boundary). Active dispersal as common in animals can be 
linked to one of the impermeable boundary types if organisms possess behavioral traits that 
allow them to recognize or avoid the limits of their habitable region. In the absence of such 
traits, absorbing boundaries may again approximate the situation. Dispersal must be uncon-
ditional (i.e., not evaluate local conditions unrelated to habitat boundaries) and not evolve 
together with the ecological trait with respect to which branching is studied, although our 
models could be extended to these cases with moderate effort (Heinz et al. 2009; Payne 
et al. 2011).

Secondly, there must be a quantifiable gradient in an environmental character to which 
a quantitative trait confers adaptation. Environmental gradients are common, and only 
approximate linearity is probably good enough for comparison with our results (see Haller 
et al. 2013 for more complex scenarios). Also taking into account the requirement of rela-
tively small spatial habitat ranges as compared to dispersal and interaction distances, tem-
perature gradients across elevations may be one of the most obvious candidates in terres-
trial systems, while in aquatic systems the benthic zone offers also, e.g., gradients in light 
intensity as interesting candidate gradients.

Thirdly, we have presented results for asexual reproduction, although the extension to 
sexual reproduction is straight-forward (Doebeli and Dieckmann 2003).

Together this would suggest that likely candidates for empirical tests could be found 
among terrestrial plants and maybe insects with habitats on mountain slopes, as well as in 
the sea among benthos dwellers. In the laboratory, bacterial systems would probably make 
good candidates for branching experiments.

The main phenomenon predicted by our models is that habitat boundaries on environ-
mental gradients should generally be “speciation-prone” even in the absence of other eco-
logical effects, in the sense that there should be different morphs (if not complete sister 
species) found at habitat boundaries than in the interior. The practical challenge will be to 
disentangle this predicted effect from other ecological effects (e.g., species richness due to 
richer environments at boundaries, as is often the case).
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Conclusions

Boundaries influence selection. Boundary-induced selection is mostly disruptive for stop-
ping boundaries and stabilizing or absent for absorbing boundaries. For reflecting and 
reprising boundaries, it is slightly disruptive at low mobilities, and stabilizing at high 
mobilities. Boundary-induced selection influences evolutionary branching and may, when 
disruptive, mask the effects of frequency-dependent selection. All this is, however, only 
relevant for small-range systems. For large-range systems, evolutionary branching occurs 
without being promoted by boundary effects for a wide range of parameters and all types of 
boundary conditions, clearly highlighting the potential of frequency-dependent interactions 
to generate evolutionary branches through disruptive selection whenever environmental 
heterogeneity can support them.

Finally, we highlight that boundaries, whether spatial or phenotypic, are a ubiquitous 
feature of natural systems. Evolutionary branching at realistic slopes and mobilities has 
now been found in several studies with different boundary conditions (Doebeli and Dieck-
mann 2003; Leimar et  al. 2008; Ispolatov and Doebeli 2009) using very different meth-
ods: Doebeli and Dieckmann (2003) investigated an individual-based model, Leimar et al. 
(2008) analyzed the stability of homogeneous solutions to a partial differential equation 
against perturbations, and Ispolatov and Doebeli (2009) numerically studied a partial dif-
ferential equation, examining non-abrupt boundaries. Together with these studies, our 
results confirm that, while boundary conditions have significant effects in small-range sys-
tems, evolutionary branching can occur for all salient types of boundaries.
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