Future exposure and vulnerability to multi-sector hotspots

Edward Byers, Matthew Gidden, Peter Burek, David LeClere, Amanda Palazzo, Joeri Rogelj, Yusuke Satoh, Yoshi Wada, Petr Havlik, Volker Krey, Simon Langan, Barbara Willaarts, Keywan Riahi

International Institute for Applied Systems Analysis, Laxenburg, Austria
edward.byers@iiasa.ac.at

Impacts World 2017
C8: Socio-economic consequences of climate extremes and compound impacts
11th October 2017
Global mapping of multi-sector climate and vulnerability hotspots

Multiple Indicators (~12) across 3 sectors

Regions with multi-sector climate hotspots and vulnerable populations
Downscaling future scenarios of socioeconomic change

- **Shared Socioeconomic Pathways (SSPs)**
 - SSP 5: (Mit. Challenges Dominate)
 - Fossil-fueled Development
 - Taking the Highway
 - SSP 3: (High Challenges)
 - Regional Rivalry
 - A Rocky Road
 - SSP 2: (Intermediate Challenges)
 - Middle of the Road
 - SSP 1: (Low Challenges)
 - Sustainability
 - Taking the Green Road
 - SSP 4: (Adapt. Challenges Dominate)
 - Inequality
 - A Road Divided

- **Population**
- **Urbanization**
- **GDP**
- **GINI (inequality)**
 - Gridded to 0.125° (1/8th °)

- **Income**

Who is vulnerable to poverty (<$10/day)?

O’Neill et al. (2014)

Jones & O’Neill (2016)
Jiang & O’Neill (2017)
Dellink et al. (2017)

Gidden et al. (…, forthcoming)
Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water stress index</td>
<td>Water stress index: as a proportion of human demands divided by renewable surface water resources</td>
<td>5 GCMs, 3 GHMs</td>
</tr>
<tr>
<td>Non-renewable GW abstraction index</td>
<td>Fraction of groundwater abstraction that is non-renewable</td>
<td>HadGEM2-ES + PCR- GLOBWB</td>
</tr>
<tr>
<td>Drought intensity</td>
<td>% change in drought intensity (deficit / duration)</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Peak flows risk</td>
<td>High fraction of ensemble agreement where substantial change in flood risk (doubling) is expected</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Seasonality</td>
<td>% change for the index of mean seasonality</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Inter-annual variability</td>
<td>% change for the index of mean inter-annual variability</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to clean cooking</td>
<td>Fraction of population with access to clean cooking</td>
<td>MESSAGE + SSPs</td>
</tr>
<tr>
<td>Heatwave event exposure</td>
<td>Total days experienced as 5-day events above hist. p99 for locations where Tmean p99>26°C.</td>
<td>5 GCMs</td>
</tr>
<tr>
<td>Cooling demand growth</td>
<td>Measure absolute change in CDD>26°C.</td>
<td>5 GCMs</td>
</tr>
<tr>
<td>Hydroclimate risk to power production</td>
<td>Combined thermal and hydropower capacity impacted by changes in low flows, peak flows and variability</td>
<td>5 GCMs, 4 GHMs</td>
</tr>
<tr>
<td>Land</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop yield</td>
<td>Mean change in crop yield as basket of staple crops</td>
<td>GLOBIOM</td>
</tr>
<tr>
<td>Water exploitation index</td>
<td>Identify major changes of agriculturally driven water exploitation</td>
<td>GLOBIOM + LPJmL</td>
</tr>
<tr>
<td>Habitat degradation</td>
<td>Change from non-ag to agricultural land use</td>
<td>GLOBIOM</td>
</tr>
<tr>
<td>Nitrogen leaching</td>
<td>Measurement of excess nitrogen leaching due to intensive agriculture</td>
<td>GLOBIOM</td>
</tr>
</tbody>
</table>
Climate change index scoring under uncertainty

Continuous scale (0 to 3) with intermediate ranges determined
0. Negligible risk
1. Low risk
2. Moderate risk
3. High risk

2.0°C climate example: Drought intensity change
Sectoral aggregation

Combine average scores with ‘hotspot points’
- Scores are averaged within sectors and indicators can be weighted
- Hotspots:
 - Min. score 2 if 2 sectors > 2.5
 - Min. score 2 in 1 sector == 3.0
Hotspot areas

- Growing in area
- Growing in intensity
Regionalised impacts

- Northern hemisphere regions have better than average impacts
- Most Asian and southern regions are on/worse than average
Exposure & vulnerability

SSP3 2050 3.0°
10.0bi total, 7.2bi exp, 1.83bi E&V
NORTH AMERICA
LATIN AMERICA
EUROPE
ASIA
SE ASIA & AUSTRALASIA
AFRICA

3.0°
20 40 60 80 100 %
Exposure & vulnerability

<table>
<thead>
<tr>
<th>2050</th>
<th>1.5°C / SSP1</th>
<th>2.0°C / SSP2</th>
<th>3.0°C / SSP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>8.5 bi</td>
<td>9.2 bi</td>
<td>10.0 bi</td>
</tr>
<tr>
<td>E</td>
<td>2.3 bi x2</td>
<td>4.9 bi</td>
<td>x1.5 7.2 bi</td>
</tr>
<tr>
<td>V</td>
<td>1.1 bi</td>
<td>1.3 bi</td>
<td>2.7 bi</td>
</tr>
<tr>
<td>E&V</td>
<td>0.3 bi x2</td>
<td>0.7 bi</td>
<td>x2.5 1.8 bi</td>
</tr>
</tbody>
</table>

Diagram 1: SSP1 2050 1.5°C
- 8.5bi total, 2.3bi exp, 0.3bi E&V
- North America, Europe, Asia, South Asia & Australasia

Diagram 2: SSP2 2050 2.0°C
- 9.2bi total, 4.9bi exp, 0.72bi E&V
- North America, Europe, Asia, South Asia & Australasia

Diagram 3: SSP3 2050 3.0°C
- 10.0bi total, 7.2bi exp, 1.83bi E&V
- North America, Europe, Asia, South Asia & Australasia
Importance of reducing inequality

- Difference: SSP1/2 to SSP3 is factor of ~ 2
- Holds true for range of thresholds and across GMTs
Conclusions

Water and hydroclimate

- Water stress indices are spatially concentrated and driven by socioeconomic drivers
- Large areas of land impacted by increases in drought intensity and variability

Overall

- Overall multi-sector exposure depends most on GMT
- Reducing inequality and poverty is key to reducing the Exposed & Vulnerable population, regardless of GMT