Sources and export of nutrients in the Zambezi River basin
Status and future trend

Ting Tang*, Maryna Strokal, Yoshihide Wada, Peter Burek, Barbara Willaarts, Carolien Kroeze, Michelle T.H. van Vliet, Simon Langan

*tangt@iiasa.ac.at
Nutrient enrichment has been on the rise in African water bodies

Water bodies currently suffer from
 – eutrophication at some locations
 – water hyacinth invasion

High population growth, increasing demand for food & water

How will water quality change in future?
Objective: to analyze the status and future (2050) trends of river export of nitrogen (N)

MARINA model (Strokal et al., 2016)

Estimate annual river exports of nutrients by source at the sub-basin scale

Zambezi river basin
1.4 million km²
Transboundary (8 countries)
Inh: 40 mil (2010) → 87 mil (2050)
Linking IIASA models to build up MARINA

Integrated Modeling Framework in IS-WEL project

2010
2050

BAU: SSP2&RCP6.0
RS1:
BAU + sustainability
RS2:
BAU + economy

Stakeholder engagement

RCP & SSP

Other data
GDP, Population, Sewer connection
N deposition, N fixation (nat)

RCP

Community Water Model

Hydrology
Burek et al., 2017

Land use & Diffuse sources
(Valin et al., 2013; Byers et al., 2018)

GLOBIOM.org

EPIC
Environmental Policy Integrated Climate model
Gassman et al., 2005

Gassman et al., 2005

Integrated Modeling Framework in IS-WEL project
Zambezi is delineated into 13 sub-basins.

Population growth between 2010 and 2050 (SSP2)
Total dissolved N (TDN) export to sea and its future changes are highly variable in space.

TDN export to sea by the sub-basins differs by a factor of 11.
Total dissolved N (TDN) export to sea and its future changes are highly variable in space.

TDN export to sea by the sub-basins differs by a factor of 37-40.
N export is dominated by natural sources with increasing contribution from human activities.

Dissolved inorganic nitrogen (DIN)

Dissolved organic nitrogen (DON)

Dominate sources

Fixation

Leaching

25-50% increase of TDN export

Mainly due to human activities

Wetting climate projection also plays a role.
Inter-annual variabilities of rainfall and discharge are very high in the basin.

Discharge plots from CWATM by Burek P.

Yearly discharge of 1979-2013
Influence of **climate variability** on N export is at similar level to that of increasing human activities.

-60% -30% 0% 30% 60%

<table>
<thead>
<tr>
<th>Year</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>BAU: SSP2</td>
</tr>
<tr>
<td>2050</td>
<td>RS2: economy</td>
</tr>
<tr>
<td>2050</td>
<td>RS1: sustainability</td>
</tr>
</tbody>
</table>

Relative increase of N export @ wettest year 25-50%

Relative decrease of N export @ driest year
Take home messages

N export is dominated by **natural sources** with increasing contribution from **human activities** in Zambezi.

Climate variability is an important factor in N export.

N export in the Zambezi basin is **highly variable in space**.
Sources and export of nutrients in the Zambezi River basin

Status and future trend

Ting Tang*, Maryna Strokal, Yoshihide Wada, Peter Burek, Barbara Willaarts, Carolien Kroeze, Michelle T.H. van Vliet, Simon Langan

The study is funded by the Global Environment Facility (GEF, Contract No. 6993) as part of the Integrated Solutions for Water, Energy, and Land (IS-WEL) project, and supported by the United Nations Industrial Development Organization (UNIDO).

*Contact: tangt@iiasa.ac.at
References

Gassman P, Williams J, Benson V: Historical development and applications of the EPIC and APEX models. Center for Agricultural and Rural Development, Iowa State University; 2005.