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Developing and applying a multi-purpose land cover validation dataset for Africa

Abstract
The production of global land cover products has accelerated significaetiyhe past decadleanks

to the availability of higher spatial and temporal resolution satellite data and increased computation
capabilities.The quality of these products should assessed according to internationphymoted
requirement®.g.,by theCommittee on Earth Observation Systéierking Group on Calibration and
Validation CEOSWGCYV) and updated accuracy should be provided with new releases -fStage
validation) Providing updatedaccuracies for the yearly mapsuld require considerable effdiar
collecting validatiordatasetsTo save time and effort on data collectivalidation datasetshouldbe
designedo suitmultiple map assessmertsd should beasilyadjusable for @imely validation ofnew
releases ofand cover productsThis study introduces validation datasedimed to facilitate multi
purpose assessments and its applicability is demonstrated indifiezent assessmentscusing on
validatingdiscrete and fractional land cover maps, map comparison andriesgied map assessments

The validation dataset is generated primarily to validate the newly released 100m spatial resolution land
cover product from the Copernicus Global Land Service (GBGC$00). The validation dataset
includes 387 samplesites inAfrica based on stratified samplinBach sitecorresponds tan area of
100mx100m. Within site,reference land cover informatievas collected at 100 subpixelsiifnx10m
allowingthe land coveinformationto be suitable for different resolution and legediistly, using this
dataset, we validated both the discrete and fractional land cover layers of theLC®LS product.

The CGLSLC100 discrete mapvas found to haven overallaccuracy of 74+/-2.1% (at 95%
confidence leveljor the African continent Fraction cover productaere found tdhave mean absolute
errors 0f9.3, 8.8, 162, and 65% for trees, shrubs, herbaceous vegetation and bare ground, respectively.
Secondly, 6r useroriented map assessment assessed the accuracy of the C&ILC3I00 map from
fourusergroups ' p e r ¢fgrestenonitorirey,scrop monitoring, biodiversity and climate modelling)
Overall accuraciefor theseperspectives varbetweer?3.7% +/-2.1% and935% +09%, depending on

the land cover classes of inteteghirdly, for map comparison we assessed the accuracy of the
Globeland3e2010 mapat 30mspatialresolution Using the subpixel levefalidationdata, wederived

15252 sample pixels at 30spatialresolution Basedon thesesample pixelsthe overall accuracy of the
Globeland3e2010 map was found to I6.6 +2.4% for Africa. The three assessmerggemplify the
applicability of multipurpose validation datasethich are recommendédd increasemap validation
efficiencyand consistencyAssessmestof subsequent yearly maps can be conductedigynentingr

updatingthe dataset with sample sites in identified change areas.

Keywords:Land cover validatioriyalidation data, Multipurpose assessmeniiscrete and fractional

land coverMap comparison anldser specific accuracies.
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1. Introduction
Land cover mapping at continental and global ssgleovidesvaluablei nf or mat i on on
surface and is usddr manyapplicationsaiming to understand amoadapt to thehanging environment
(Verburg et al. 2011)As such,good quality land cover maps amequiredby multiple institutions,
governments and researchers related to climate change, biodiversity and consandtencshunger

efforts(Romijn et al. 2016)

The first satellitebased global land cover map dates back to {(P8&ries and Townshend 199@ver

the past decadesimerous global land cover maps were produced using medium resolution satellite data
(Arino et al. 2007; Bartholomé and Belward 2005; Friedl! et al. 2002; Land Cover CCI. 2014; Tateishi
et al. 2011) Pioneering the productions of higihresolutionland cover mapping aiafge scalg
researchers have created global and continental scale landpcogiactsusing Landsaf{Chen et al.

2015; Gong et al. 2013; Hansen et al. 2048) SentineR data (CCI Land Cover 2017a)Our
understandingf the changing environment fsrther enhanced with theecentland cover change
productsnamelyannualLC-CCI land cover map§CCl Land Cover 2017b)Global Surface Water
Explorer(Pekel et al. 2006 Global HumanSettlementLayers(Pesaresi et al. 201&nhdGlobal Forest

Change datase{slans®n et al. 2013)

Advancements in land cover mapping at global or continental scales are being made continuossly thank
to open access higspatial and temporal resolutioemote sensinglata and increased processing
capabilities such as cloud computiridhis is evident in the acceleratiohdevelopments of new land

cover productoverthe current decad@erold et al. 2016andin the emerging high resolution land

cover productgeneratedising cloud computing facilities such as the Google Earth ErGioeelick et

al. 2017) Complementinghe higterresolution (~30m) large scale laodver mappinde.g.,CCI Land

Cover (2017apndChen et al. (201%) Copernicus Global Land Servi¢€EGLS) aims to provide an
operational global land cover mapping by focusing on yearly mapping from 2015 onwards with flexible
thematic detail. The first product wgeneratedor Africa at 100n resolutionand it includesdiscrete

(fixed legendand fractional yegetation continuous field layers providing estimates of fractions of land

t
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cover typestrees,shrubs, herbaceous vegetatand bare soilinaps(Copernicus Global Land Service

2017)

Although,thevalidation ofglobal land coveproductshas become a common activity assessg their
guality and usabilityHerold et & 2016) validation activities shoulddjust tathe emergence of new or
subsequent products without much additional effigibst global land covewalidation datasets are
collected viavisual interpretatioChen et al. 2015; Tsendbazar et al. 2015b; Xiong et al. 20lEHour
intensive task requiring efforts of multiple mapping and image interpretatjmerte(Defourny et al.
2011; Mayaux et al. 2006; Scepan et al. 1998)guarantee the indepdencefrom the training data
and the consistency of the validation results (as wetl aave time and effgrtsuchdatasets should be
designed to bsuitable for multiple map asssment&nd could be reised to provide timely quality

assessments on the new and subsequent land cover products.

However mostexistingvalidation datasetwere generated to validate a single land conapandtheir
characteristics such as sample site areas and thdeggitdsare notsuitableto be used for validating

multiple maps For example, a validation dataset (with some DB0 sample locations) for the
Globeland30 mafChen et al. 2015% limited to assessing other maps having similar resolution as the
Globeland30Similarly, the validation dataset developed for the Gler 2009 magDefourny et al.

2011)is constrained to be used for assessing maps with medium resolution j48@lnhand Cover

2017b) A recentreview of metadateon global land cover valigtion datasetfound that re-using a
validation dataseto assesamother mapusuallycomes at a coshamelyloss of spatial and thematic

detail (Tsendbazar et al. 20150)his restricts the usage of validation datasets for purposes such as
assessinfraction maps, map comparissmnd map assessments from differ
example, most validation datasets represent the reference land cover as discrete classes according to
fixed legendsTherefore they do not record land cover fraciidiormation (e.g., tree cover fractions).

As such their utility for validating land cover maps is limit€icsendazar et al. 2015b)

The call fora validation dataetsuitablefor multiple map validation was initiated by an international

community,i.e., theGlobal Observations of Forest and Land Dynanf@®FGGOLD) (Herold et al.
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2009) GOFGGOLD emphaizes the importance of inteperability and comparability of globalrd

cover maps to help map users select the most suitable maps for thei(heedd et al. 2008)A

statistical comparison akeveralandcover magrequires a validation datagbat has been acquired by

transparent means and thasistable for multiple map assessments in terms of spatial resolution and

thematic legend&=or examp|l e, dammavadiérentsdsfinitionserge>80%"or >60%

forest densityJung et al. 2006)thus the validation dataset used for comparishould be able to

accommodate such differenc@herefore, GOF&OLD and the working group on calibration and

validation of the Committee on Earth Observation Satellites (GBGEYV) proposed anulti-purpose
validation datasdHerold et al. 2009\Vhich was further detailed @lofsson et al. (2012for improved
re-usability, the datasetvas designed to béekible in terms of sample selection, sample unit area
thematic @tail (Olofsson et al. 2012Jor example, the reference land covesgample unit area Kpn
x 5km) is generated from classifications of very high resolution (2m) insmgkthis makethedataset
suitablefor assessing maps with different resolutiampsto 5km x 5km. Fractioral coverageof land

cover types within the sample unit area can also bima®ed with this dataseThe initial sample

and

comprised500 sites andcould beincreasedf required (Stehman et al. 2012Yhe dataset has been

published by the United Sts Geological SurvefPengra et al. 2015However,thematially it only

comprisedour land covercategories, i.etrees, water, bare, and other.

Map users may requirdifferent thematic classes depending on the purpose of applications using land

cover mapgTsendbazar et al. 2016&)orinstance confusion betweebarelandand natural grassland

may not be important for users who are only interested in cropland areas/eraktmap accuracef

cropland/norcropland areawould be different thathe overall accuraagported by the map producers

thatreportconfusion efors for allclasses To report map accuracy

validation dataset nestio be compatiblevith multiple legendsTsendbazar et al. (2016bjed are-
interpreted version adheGlobeCovet2005 validation datasédr validaing and compang threeglobal
land cover map$or 2005from different usersperspectiveAlthough this dataset hematic details
compatiblewith multiple maps, its only suitabldor validaing medium resolution (~360800m) global

land cover map@efourny et al. 2011Pengra et al. (2018ndTsendbazar et al. (2016&howedthat

from d
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more effortsareneededo createvalidation datasets thatatchdifferentspatial and thematic detaib

wellasdi f f erent users perspective

Subsequent releases of land cover products should be provided with updemehdentvalidation
reports according to the Stage 4 validation requirements of the @E&SV (Herold et al. 2009Most
currently availablglobal land cover productio not meethis requirementApart fromthe CCI-2015,
which was validated using the Globver2009 validation datase€Cl Land Cover 2017b), noré the
yearlyCCI-LC land cover productsas been validate@the samepplies tathe MODIS land cover maps
for which only the accuracy of the 2005 mags assesse(driedl et & 2010) Validation ofnew land
cover productsvould benet from a validation datasethat isupdatedusing less demandingfforts,
such as rénterpreting and adding additional sample locatioridéntifiedchange areaStehman et al.

(2012) recommended usistratified samplingo facilitale sample augmentation

In thiswork, we aim(i) to developa flexible validation dataset suitable for assessswmhultiple land
cover maps, and (i) to illustrate igpplicability for multiple-purposesn threedifferent assessments
namelyvalidatonof di screte and fractional | and cover
and validatinga different resolution map foa comparison purposdt builds on an independent
validation activity othe CGLSDynamic Land Cover product (CGHSC100)(Tsendbazar et al. 2017)
The CGLSLC100 is a part o frameworkfor operational implementation gearly global land cover
mapping.We describethe design and production of tiEGLSLC100 land cover validation datfmr
Africa suitable for assessing land cover maps atd@m resolutionApplicability of the validation
datasefor multiplepurposess demonstratefibr three differenassessments requiridgferent accuracy
metrics, legends and resolutionBirstly, we calculated different accuracy metrieppropriate for
assessing théiscreteversuscover fraction GLS-LC100mapsof Africa for the reference year of 2015
Secondly to comparewith the CGLSLC100 accuracywe usedthe validation dataetto assess the

accuracy o830 m resolutiorGlobeland30 2010 map for Africhastly, we assessed the accuracy of the

ma

CGLSLC100 from differentu s er s’ perspecti ves Whiethadurrentistgdy var yi

focuses on validation data at African continental scale, the dataset design can be expanded to global

scalewhich can be usetbr assessinglobal land cover maps.
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2. Methodsand materials

2.1.Validation data collection
2.1.1. Sampling design

A probability sampling schemeas used to allowesignbased inference of map accuracies. The sample

selection scheme had to be suitable for validating the GIGI0 maps and other land cover maps
Therefore, appropriate choices for saepize, sample selection scheme and sample unifsgiaéal
support) were considered given constraints imposed by allowable (Bwody 2009; Olofsson et al.

2012)

Considering the efforts required to collect the validation dataset (expert training, interpratation

guality checking: see Section 2.1&@3ample sizef 2700sites was considered feasibBuchsample

size is similar orarger than thoseused forstatisticalassessments of large scale land cover maps

(Bontemps et al. 2011; Mayx et al. 2006; Tateishi et al. 2014)

The criterion of statistical probability sampling with known and-mero inclusion probabilities was

followed. Due to its effiiency and ease of accommodating modifications such as an increase in sample

size (Olofsson et al. 2012)we used stratified random sampling. We usegdlabal stratification by

Olofsson et al. (2012ha is independent from any land cover maps. This stratificatidmaged on

Kbppen climate zones and human population density following the assumption that current land cover

is influenced by climate as natural driver and human disturbances as anthroploigen{©lofsson et
al. 2012) The stratificationaccording toOlofsson et al. (2012)originally at 5km resolution, was
resampled to 100m resolution for this stublgr Africa there ard5 stratao whicha water straturwas

addedFigurel).

The sample allocation procefxused orstratain which some land cover clasgbat are more likely
to be misclassifie@Olofsson etal. 2012) Si nce, the Sahel and dry
in Africa are known to have lower map accura¢iesendbazar et al. 2015ahore sample sites were
allocated totheseheterogeneous areas atwdthe populatedstrata(Figurel) The sample sizes per

stratum are listed in Table @upplementary Materialspt each sample site location, reference land

savan
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cover of an area of 1@8®x 100m was identified. This support size coincides whtpixel size of the

ProbaV satellite data used to generate @@LSLC100 land cover products

To increase the sample representatiomaire classes such as wetland and urban, an additional set of
sample sites was collected. For tiilee minimum requiredample size per clas&s set to 250f the

sampe size for a specific mapped class was smaller than 250, additional sample sites!ieeted to

meet the requirement. This additional collection mostly focused on urban, wetland vegetation, water and
shrubs aredsased on the CGL-BC100 discrete landower map Therefore, the augmented sample sites
were selected independnbf the initial stratification ofOlofsson et al. (2012)or each stratum,
sample sites wemandomly selected as shownRigurel. The obtained sample size amounted to 3617

sitesincluding the initial 2700 sample sites

Strata in Africa

- Tropical Rainforest

- pTropical rainforest

- Tropical Seasonal Forest
:l pTropical Seasonal forest
E Tropical Savannah

:] pTropical Savannah

\:] Temperate Evergreen Forest
l:l pTemperate Evergreen Forest

[: Steppe

:I pSteppe

|:] Desert

C] pDesert

- Mediterranean

- [: Marine West-coast
- Urban

- Water

20° S

» | 037575 15 225 30
Degrees  Projection:World_Goode_Homolosine_Land

40°

Figure 1: Spatial distribution of all validation sample sites and the stratification by Olofsson et al 2012: ‘p’
before the strata names denote populated part of climate zone.

2.1.2. Response design

To allow multipurpose assessments of landerawmaps, thepatial and thematic representations of the
validation datasearedesigned to be compatible for maps with different resolutions and legemds.
this, similar to the training data collection used for the C&C300 produc(Lesiv et al. 2016akach

sample site (108 x 100m)was divided into 1810 small blocks (1% x 10m) and reference land cover
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was collected at the subpixel level. This makes the validation dataset compatible for assessing maps

with 10-100m resolutions. For the thematic representation, we labelled the lsardrcterms of generic

elements dominating the #0x 10m subpixelsLand cover elements include trees (different leaf and

phenology types), shrubs, grass, crops, tuglareas, bare area, water body, snow &ice and regularly

flooded herbaceous area (wetls). The land cover elements were defined according to the United

Nations Land Cover Classification Syst@adN-LCCS) (Di Gregorio 2005)This allows thevalidation

dataset to be thematically compatible for multiple maps by using different combinations of the land

coverelements based on legend definition requirements of multiple maps.

To collect reference land cover dégavalidation we have developeaidedicated wemmterface through

the GeeWiki platform (Fritz et al. 2011)The interficeprovidesaccesso different remote sensing data

andallows labelling land covelHgure2). The data sources for interpretation include Google and Bing

maps as well as Sentir2l(LevellC singledate)images with acquisition dates around 20distoric

time series of NDVI profilebased on MO8, LandsaandProbaV data were useidr plant phenology

identification(Figure2).

Validation data collection for [ | v

N2

@® pon't show any overlays
+ Bioclimatic Zones
» Geocoding
» NDVI
Location: 9
Lat:41.93587790
Lon:25.73985746

Toggle NDVI Overlay

Pin current NDVI

Select secondary chart:

© none
© NDVI mean

Pixel Validation

Select tool:

[E)2]/

Transparency:

Stop validation
show all show my

Jump to point - point id:
1023131

Jump to point

# Homepage

2005 2010 2015 2020

“# Landsat 7 32-Day NDV| Composite

= MOD13Q1.005VegetationIndices16-DayGlabal
250m

NDVI Mean

“® Landsat 7 32-Day NDVI Composite

- MOD13Q1.005 16-Day

G =~ vito

Figure 2: Screen shot of Geo-Wiki based interface for land cover validation

» Logout

your submitted validations:
point id: 1023131

point lat,lon: 41.93557256,
25.73980308

bing date: 02 Jan 2011 GMT

* View in Google Earth (]
evergreen trees - needleleaf
evergreen trees - broadleaf
deciduous trees - neadleaf
deciduous trees - broadleaf

shrub

grass

crops

urban/built-up
bare
water

snow and ice

OHON NoN N NoNoN N NOM |

Wetland (herbaceous)

] [clear pixel]

Save Clear

© Next validation

Zoom to Point
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An example of labelling the land cover in a sample site is providEjure3.

Figure 3: A screenshot of an example sample interpretation (green — trees, orange — shrubs, yellow —
grassland)
Land coverat each sitevas visually interpreted bg singleexpert.In total there were six experts who
contibutedremotely for different regions in Africa. All expettsiveexperiencen satellite based land
cover analysis and image interpretation. The G@FLD regional network was used for recruiting
some of the expertJable 1 provides a list of the regional expaexrho contributed to data collection.
On average, one expert interg@80-100 samplesites peday.Overall, validation data collectioand

guality control took three monthf. h e e x p e r t dinancilly Eompehsatedependirg on the

work load
Table 1: Selected regional experts for sample interpretation
Name Country Region Affiliation
1 | Andre Mazinga | DRC Centraland | horac pRreC

Western Africa

Republic of : Marien NgouabUniversity, Brazzaville,
2 | Ifo Suspence Congo Central Africa Républigue du Congo.
3 | Elias Buzayane Ethiopia Eastern Africa | HoLiN Training and Consultancy Services Pl

Southern Universidade Eduardo Mondlane and
Africa MIOMBO and GOFGGOLD network
Southern and | Institute of Experimental Ecology, University

4 | Natasha Ribeiro | Mozambique

> | MatthiasHerkt Germany Eastern Africa | of Ulm, Germany
6 Eomamksguel Amoah Ghana Western Africa| WASCAL, Accra, Ghana

Different quality control measures were applied to obtain a reliable and good quality reference dataset
for validation. Firstly, in addition to a tutorial on land cover interpretation, a training workshop was
organized for the global land regional land@omapping experts in January 2017 at IIASA, Laxenburg,

Austria. The aim of the workshop was to reduce interpretation discrepancies among the experts. The

10
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experts were asked to interpret the ea8® sample site{100m x 100m)and feedback orany
discrepang was provided upon examination by global land cover mapping experts. The global land
cover mapping experts were independent from @@L.SLC100 product generationSecondly,
depending on the available sources of information (e.g., high resolution inreyB& | profiles) and
complexity of landscapes (e.g., small holder cultivation areas), the confidence in the interpretation can
be different. Therefore, we recorded thierpretation confidence levels (i.e., unsure, bit sure, quite sure,
sure). Three peecn t of the sample sites were tagged
interpretations including these unsure interpretations weeeked by global land cover mapping
experts and feedback on each interpretation was provided to the eXpentegionalexpertseither

rebutted the feedback or corrected their interpretatidrese necessa

2.2.Land cover products
To demonstrat@pplicability of the validation datasdébr multiple applicationswe selected two land
cover m@s at different spatiakesolutions andlifferent legends(1) the CGLSLC100 V1.0 at 100m
resolution provided for the 2015 reference year over AfBeechhorn et al. 2017)2) the Globeland30

2010map(Chen et al. 2015)

The CGLSLC100V1.0 at 100m resolutioproduct,provided for the @15 reference year over Africa
(Buchhorn et al. 2017is a new product in theGLSportfolio. TheCGLS-LC100 is based otne Proba

V 100mdata archivéDierckx et al. 2014)ahigh quality land cover traing datase{Lesiv et al. 2016a)
and several aiiltary datasetsMore description of the map geration is detailed irBuchhorn et al.
(2017) Apart from adiscretdand covettype map, the product includes four vegetation continuous field
layers providhg estimatesof fractiors (0 - 100%) for the land cover typesees shrub, herbaceous

vegetation and bare ground.

Table2 lists the land cover classes and their definitituesiv et al. 2016b)

11
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Table 2: Land cover classes accounted for in CGLS dynamic land cover map

Code Land cover classes Definitions according to UN LCCS
Lands dominated by woody plants with a percent coVé6 and height exceedin
5 meters. Exception: a woody plant with a clear physiognomic aspect of trees
11 Closed Forest be classified as trees even if the height is lower than 5 m but more than 3 m.
Depending on the phenology and leaf type, forest can be divideevietgreen,
deciduous, needleleaf and broadleaf forests.
Lands dominated by woody plants with a percent covef% and height
exceeding 5 meters. Exception: a woody plant with a clear physiognomic asp
12 Open Forest trees can be classified as semven if the height is lower than 5 m but more than
m. Depending on the phenology and leaf type, forest can be divided into ever
deciduous, needleleaf and broadleaf forests.
These are woody perennial plants with persistent and watedys and without any
20 Shruts defined main stem being less tham3all. The shrub foliage can be either
evergreen or deciduous.
30 Herbaceous Plants without persistent stem or shoots above ground and lacking definite fir
vegetation structure. Tree and shrubwer is less than 10%.
Lands covered with temporary crops followed by harvest and a bare soil perig
40 Cropland (e.g., single and multiple cropping systems). Note that perennial woody crops
be classified as the appropriate forest or shrub land tgver
50 Urban/built up Land covered by buildings and other mraade structures
60 Bare/sparse Lands with exposed soil, sand, or rocks and never has more than 10% vegetg
vegetation cover during any time of the year
70 Snow and Ice Lands under snowrdce cover throughout the year.
80 Open water Oceans, seas, lakes, reservoirs, and rivers. Can be either freshnatsatiodies.
Lands that have free water at or on the surface for at least the major part of th
90 Wetland herbaceous| growing seasonVetland vegetation include open wetlands, permanent and
vegetation seasonally flooded wetland herbaceous vegeta¥lote that wetland woody
vegetation are classified ghe appropriate forest or shrub land cover type.

We alsoassessethe Globeland30 mafiChen et al. 2015pr comparisonThe GlobeAnd30 project of

C h i nvanistsy of Science and Technologyoducedglobal land covemaps for the year 2000 and
2010. The map wereproduced at 30m rekition using Landsat TM and ETM+ and the Chinese
Environmental Disaster Alleviation Satellite ()data We used the 201@apfor Africa. This map
hastenland coverclasse®f which eight occuiin Africa (cultivated land, forest, grassland, shrubland,
wetland, water bodies, artificial surfaces and lane) (Globeland30 2016)he overallmapaccuracy
has been reported to B8.26% atglobal level(Chen et al. 201%)ut noaccuracy information iavailable

for Africa.

2.3.Validationof discrete and fractional land cover map
To assess the discrete CGLE100 maptheland coverelements of 1& 10 subpixes weresummed

for each sample site to derive fractions of land cover types per validati¢a.git&0% trees and 30%

12
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grass= = 70sulpixels trees and 38ulpixels grasy This information was then translatéaithe CGLS

LC100 discrete legendsing the UNLCCS as a basig:or homogeneousamplesites land cover
fractionswere directly converted to land cover classes (e.g., 100% water proportion corresponds to water
body clas).Approximately 37% of the sample sites were homogeneous (100% coversthblekand

cover type). In heterogeneousample sitesvhere conditions can concurrently meet definitions of
multiple land cover types, a priority rule was applisdnilar to the CGLSLC100 training data
translationapproach(Lesiv et al. 2016a)in such caseghe preferential order was open water, urban,
cropland, closed forest, open forest, shrubs, wetland, herbaceous vegetation and bare/sparse vegetation,
respectively. In the legend translation; %% devations from the legend definition thresholds were
allowed. This aimed to consider the geolocation error of Google and Bing Map images which were used

for land cover interpretation.

To estimate theaccuracy ofthe land cover maps, waccountedor unequal inclusion probabilities
between different strata becausample sites were not allocated proportionally to the strats area
(Olofsson et al. 2012; Wickham et al. 201Based orPengra et al. (2015bhe inclusion probability for
stratumh is Ti=k/Kn, where k is number of sample sites in strathirand K, is the population size for
stratumh (seeTable SIfor inclusion probabilities per stratymNumber of sites is based on the 100m

x 100m units.Inclusion probability for the additional sample sites were calculated based on the
population of possibleample sites within the rare classof theCGLSLC100 map.The estimation
weight, the inverse of inclusion probability =1/ T ), wasthencalculated and used construct the
confusion matest accountindgor unequakamplanclusion probabilities fohwing the methods described

in Stehman et al. (2@) andWickham et al. (2010)We then estimated the overall and class specific
acauracies and their confidence intervéds 95% confidence levefpllowing Stehman (2014yvhich
specifically addresses estimatingap accurdaeswhen the sampling strata are different from the map
classesThus by appending three rare class strata to the original stratification, 19 strata were used in the

calculatiors.

Validation data doesot contain information on temporary waterbody areas because of limited

availability on multiple high resolution images per year for each sample locatiog.we merged the
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309

310

311

312

313

314

315

316

mapped classes of permanent and temporary waterbody for the accuracy assé€ssingrio the
limited sample size for combinations of forest density (closed and open forest) and forest phenology,
the accuracy estimation focused on generic classes withkuiy specific forest phenologynto

account

To assess thieaction covellayers, fraction information of the land cover typiesthe validation datset
was directly usedror eaclcoverfraction layer, the mean absolute error (MAE) and root mean square

error (RMSE) vere calculatedFoody 1996; Pengra et al. 2015)

Y YO BB— (Eq)

where RMSEis the root mean squared erobiclass c, s thereference fraction of clasqin percent),
pi is themapped fraction oflass ¢} representshe estimation weight for the mple siteand n is the

total number osample sites

bo0 22 S (Eq2)

where MAE is the mean absolute error of class c.

2.4.Accuracy comparison with other datasetdifierent spatial resolution
For map comparison, the validation dataset should be suitable foaffgebeing compareéd terms of
thematic legend and spatial resolutidie CGLS validation dataset can be useddsess land cover
maps with 10100m resolutiondnformation on generic land cover elemenitshis dataset also makes
it suitable for maps with different legends. To compare the accuracy of the-OGI(® discrete map,
the validation dataset was usedssess the accuracy of the Globd2k2010 magChen et al. 2015)
This map was selected because its pixel size is smaller thapati@ supporof the CGLSLC100

validation dataset.

To make the validation datasebmpatiblewith 30m resolutiorGlobeland30 map, we extracted pixel
values of the Globeland30 map owarch subixel area(10x10m) of the validation dataseUsing the

subpixel centri locatiors, we selected Globeland30 pixels tbpatially overlap with the subpixels of
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333

334

335

336

337

338

339

340

341

342

the validation datasea( leastnine subpixel centre points of the validatidataset The reference land
coverls over ninesubpixels were aggregated to derive reference land cover for 30m pixels. For
homogeneous aas, the land cover elements were directly converted to land cover classes.
heterogeneous areas that can have multiple possible land covemgpssd the dominatand cover
typeas reference land cex Sample pixels which did not i@ a clear dommiance(e.g, four subpixels

of trees, four sulpixels of shrubsaandone subpixel of wate}, totalling to 1037 casewjere excluded

from the assessmem.total of 15252 sample pixels weagailable at 30m resolution

Next, the Globeland30 mayas evaluatedusinga stratified onestage cluster approa¢Rengra et al.
2015)because multiple 30m sample pixels wittlie 100mx 100m sites were used foretlassessment.
Calculation ofinclusion probabilies accuracy estimateand confidence interval followed the

stratified onestage cluster approach describe®@ngra et al. (2018ndStehman et al. (2003)

2.5.Map validationfrom different uses perspective
We assessed the accuracy of the CGILC300productfrom the perspective dbur user groupg¢forest
monitoring, crop monitoring, biodiversity and climate modelirgser requirements in terms of map
accuracy, spatial and thematic detailsre definedfor the CGLSLC100 productby the European
Commission s Copernicus GI| obal (Ldsiaet dl. 2006\Wetadoptadtkge pr o g r
requirement specificatiorend derived ligof land cover classes thatre deemed to b&f interest to

the user groups.

Forestmonitoring

Researchers and analysisgaged in forest monitoring need information on folastl cover classes
These includeclosed forestsmixed forests or mosaics of forests with other land cover types, for

example, landscapes that are common in Savannah regions in Africa.

The currentégend of the CGLEC100 discrete map includes closed forests (>70% tree cover) and
open forests (:50% tree cover) classestree cover mosaic clag30— 70% tree covéris also widely
used in forest monitoring applications (e.g., TREES3 dat@seltard et al. 2002; Mayaux et al. 20,13)

We used the tree coviraction layer of the CGL&C100productto separate the open forests class in
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344

345

346

347

348

349

350

351

352

353

the discrete map into two different classes (tree cover mosaitO@0ree cover) and open tree cover
mosaic (1530% tree cover)¥iguredadepicts a map witeeverforestrelated classes differing in terms
of phenology and tree cover densities based on the @@IH0 discreteL,C map and tree cover

fraction layer.

A similarprocedure aspecified in Section 3, was followed to translate the reference data and to assess

the accuracy.

Crop monitoring

Cropland/norcropland maskareuseful for crop monitoringpplicationsWe created a cropland mask
based on thécroplandclass of the CGLSLC100 discrete map and assessed its accuracy from crop
monitoring perspectiveHgure4b). Area estimatesf this classvere also calculatefbr the whole of

Africa.
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I Cropland

[ |Other land cover
M Evergreen broadileaf, closed ; [ |Sea water
=] Evergreen broadieaf, tree cover mosaic
[ | Evergreen broadileaf, open tree cover mosaic

Deciduaus broadleaf, closed

Deciduous broadleaf, free cover mosaic
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[ Everoreen broadieaf closed forest
- Deciduous broadleaf closed forest [ [ Evergreen broadleaf forest
- Evergrean bioadieaf openiforest : [ Deciduous broadleaf forest
- Deciduous broadleaf open forest

[__|Bare / sparse veg.
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I Herbaceous wetland
[Eisea

Bare / sparse veg.

Permanent water bodies
- Temporary water bodies
Herbaceous wetland -
Sea i

354 Figure 4. User specific maps based on the CGLS-LC100 products for (a) forest onitoring, (b) crop
355 monitoring, (c) biodiversity and (d) climate modelling

356 Biodiversity

357 Land cover mapprovide base information for many studies involving biodiversity and conservation
358  (Tuanmu and Jetz 2014n addition to land cover classexferred toin Section 2.3, weonsidered
359  different forest type classes as useful classes for biodivarssigssmentSimilar to Section 2.3he
360 temporary waterbody class was merged wiita permanent waterbody cladsigure 4c depicts the

361 CGLSLC100 map wittelevenclasses thawere deemedseful for biodiversityassessments

362 Climate modelling
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363  According to the user requirements of @8LSLC100 productthesavannah class thigtsimilarto

364  the open forest classwt distinctivefor climate modellingpurposegLesiv et & 2016b) Thus, open

365  forest wasmerged with closed forest while only evergreen and deciduous forest types were separated
366  (Figuredd). Similar to Section 2.3hetemporary waterbody class was merged withpermanent

367  waterbody class.

368 3. Results

369 3.1.Validation ofdiscrete and fractional land cover maps
370 The CGLS-LC100 V1 product (the discrete map and four fraction layew assessed usintpe
371  validation dataset described in Secti®bh Thecountbasedconfusion matrix beforeorrecting for u-

372 equal inclusion probabilitieis providedin Table S2 (Supplementary Materials)
373  Theestimated confusion matrix incorporating unedqoelusion prdvabilities is shown in Tablg.

374  Overall map accuraoyf the CGLSLC100 discrete mapmounts t&/4.6% +2.1% (confidence irgrval

375  at 95% confidence levéable 3)

376 Table 3: Confusion matrix for the discrete CGLS-LC100 map for Africa, expressed in percentages.

Reference class (_;
(@] (=) — P >
% o g " $ S g (3
= [} (%2} o Q Q — =] =
S| s| 8| 2|8 |s|¢2|s5| || 8| 8|
o c 2 @ | 5 | 8 8 | ® = s | F P 2
Q et Q = ) o
@ g ) @ o S 4] = S L )
o =3 Qo 5 o) = ] 3 S
— O — haet (V5] =
© L g > | 8
@ o
Closed forest | 11.89 | 1.96 | 0.24 | 0.13 | 0.13 0.03]| 0.15| 730 | 145| 818 | 3.6
Open forest | 1.68 | 11.04 | 1.49 | 1.54 | 1.19 0.02 | 0.02 | 058 | 584 176 629 | 4.3
% Shrubs 0.07 | 219 | 590 | 092 | 043 | 0.03 | 0.25| 0.00 | 0.09 | 253 9.9 59.7 | 9.0
G| Herbaceousveg 0.23 | 2.07 | 2.00 | 1092 | 0.87 | 0.04 | 0.70 | 0.07 | 0.25 | 517 17.1 63.7 | 6.3
e)
g Croplands 005| 1.18| 059 | 1.39 | 548 | 0.00 | 0.07 | 0.35 | 0.10 | 412 9.2 594 | 6.5
§ Urban 0.03 | 0.00 | 0.03 | 0.00 | 0.17 | 0.00 | 0.00 250 0.2 704 | 5.7
Bare/Sparse ve( 0.02 | 0.39 | 1.27 | 0.15 28.29 | 0.28 309 30.4 93.1 3.2
Water 0.01] 0.01 | 0.01 | 0.01 0.00 | 0.87 | 0.03 | 312 0.9 933 | 238
Wetland 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.01 | 0.07 | 250 0.1 780 | 51
Sample count 695 | 645 | 292 | 554 | 383 | 180 | 284 | 343 | 241 | 3617
Total 139 | 185 | 106 | 16.2 | 8.3 03 | 293 | 1.6 1.3 100
Producer's accuracy| 854 | 59.7 | 55.6 | 674 | 66.3 | 68.8 | 964 | 53.2 5.3 74.6 2.1
Confidence interval
+- 3.4 4.9 8.4 5.8 6.2 | 294 | 25 | 200| 17
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377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Theclosed forest andare/sparse vegetation clasaesmapped withrelativelyhigh accuracy whiléhe

accuracies for open forest, herbaceoggetation and cropland classagrelatively low. Among the

naturalvegetaton classes, shrubisavethe lowes accurag. T h e

producer’s

accuracy

classis particularly low Subgantialwetland areaareomitted in the CGLS.C100map since thegre

confusedwith theopen forest and herbaceous vegetation clg3sdde 3).

Table 4lists theMAE andRMSE for the fraction cover map

S.

Table 4. Accuracy of the cover fraction layers expressed in percentages.

Mean absolute error

Root mean square error

(MAE) (RMSE)
Tree fraction 9.32 16.75
Shrub fraction 8.83 15.09
Herbaceous vegetation 1621 2484
fraction
Bare fraction 6.56 1485

Thebare area fraction mdpasthe lowest error witla MAE of 6.5% anda RMSE of 148% while the

herbaceousegetation fractiomasthe highest error with MAE of 162% anda RMSE of 248%.

Upon visual inspectigrihe deviation from thealidationdatesettendsto be highein regionsbordering

TheSahara desefThe Congo basin an@ihe Horn of Africa.

3.2.Accuracy comparison with other datasets at different spatial resolution

Based on the 1252 sample pixels, the overall accuracy of the Globeland30 RO1A8frica was

assessed &6.8% +2.4 % (at 95% confidence level) (Tabk.
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393 Table 5: Confusion matrix for the Globeland30 2010 for Africa, expressed in percentages
Reference class o
IS
%] 0 — P E
s | = 8 | & = £ g
@© - c c ° S = B 8 = a £
- 17} © © < o = Il <%} 3 Q ]
Q o 7] o K] ° 0 T = 2 © ]
g | 9 s | 2| 2| &8 8| § z 21§
= © O 2
= o n S £ o n 2 %
Cultivated areas 384| 039| 145 0.24] 007/ 0.09] 004 0.11] 1408 6.23| 616| 6.6
Forest 0.61] 1320| 2.33| 0.86] 0.31] 0.02] 0.00/ 0.02| 3491 17.35 76.1| 3.2
[7)]
& | Grassland 2.22| 5.01| 1668| 5.16/ 0.62] 0.05] 0.05| 2.83] 4567| 32.62| 51.1| 3.8
o
o | Shrubland 0.31) 1.05| 297| 148| 0.26] 0.02] 0.00 1.3| 1114| 7.40] 200| 5.8
% Wetland 0.008| 0.913| 0.25| 0.009] 0.39| 0.155| 0| 0.025 940 1.75| 225| 96
= | Water bodies 0.004| 0.08] 0.001] 0.00| 0.04] 1.39 0| 002 1673 1.54] 903| 55
Avrtificial surfaces 0.024| 0.10| 0.12| 0.00 0| 0.001] 0.17| 0.251 712|  0.66] 259| 12.9
Bareland 0.16/ 0.006] 2.12| 0.067| 0.039] 0.59| 0.06| 29.41| 1347| 3245 90.6| 4.4
Sample count 1453| 4040 3693| 942| 1212| 1739| 534| 1639 15252
Total 7.18| 20.75| 25.91| 7.83] 1.73] 2.31| 0.32| 33.96 100
Producer's accuracy 53.4 63.6 64.4 18.9 22.8 60.2| 53.1 86.6 66.6 2.4
Confidence interval +/ 6.5 3.5 4.5 6.1 10.8)| 24.9| 235 4
394
395  Barelandhasrelatively high classaccuracy followed by the forest classThe forestclassis greatly
396  confusedvith thegrassland class and Globeland30 tdnanapsubstantiaforested areas as grassland
397 (Tableb). Cultivated areas and shrublaagalso undeestimated due toverestimation ofjrassland.
398  Theshrublandand wetlanalasshavethelowestaccuracies comparéd otherclasses.
399  The courtbased confusion matrix for the Globeland30 map can be found in Table S3 (Supplementary
400  Materials).
401 33.Map validation from different users’ per spect
402 Theaccuracy ofthe CGESEC1 00 map from di fferent uabe6.The per sp
403  detailed confusion atrices are provided ifableS4-S7.
404  Overall mapaccuracyfor forest monitoringvasestimatecat 81.3% + 1.4% (Table6). The confusion
405  matrix and class specific accures show that closed forests types (evergreerdi@afiand deciduous
406  broadleaf)aremapped with higher aaracy [Table &l). Closed evergreen broadleaf foréesmapped
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408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

with good accuracy ©0%). The accuracy of the tree cover mosaic and the open tree cover mosaic

classesrelow.

The overall accuracy of the cropland mask feasd to be93.5 +0.9%%6 (Table6). The class specific
accuraeesof the cropland clasare594 % and663% f or wuser’'s and producer s

(Table %).

Table 6 : A summary of the considered land cover classes and their accuracies for the users

User groups User specific maps and remarks Overall accuracy (area adjusted) / Estimate with
95% confidence intervals

General usefproducer) Discreteland covermap with9 general 746% +2.1%

classes
Forestmonitoring A map with 6 brest related class 81.3% + 1.4%
(Figure4a)
Crop monitoring Cropland and nowropland mask 935+0.9%
(Figure4b) Cropland class:
User ' s B&a9At6bPbracy :
Producer '663#8.2cur acy:
Biodiversity Discrete land cover map wittl clases 737 %+ 2.1%
(Figure4c)
Climate Modelling Discrete land cover map withclases  77.3% =2.1%
(Figure4d)

Fractional land cover maps for trees, MAE: 9, 88, 16, and &%, respectively
shrubs, herbaceous vegetation and b¢ RMSE: 16.7, 15, 248, and 148% , respectively
areas

The overall accuracywasassessed &3.7 %+ 2.1%for biodiversity related us@.he class accuras
and the confusion matrix are providedTiable %. The class accuraci@sesimilar to those presented
inTable3. The producer’s accuracy of idldwsincefpiselassf or e st

is mostly confused with closed forest evergreen broadleaf and open forest deciduous breadlesf cl

For climate modelling userthe map overalbccuracywasdeterminedo be77.3% + 2.1%(Table6).

The classspecificaccuracies and the confusion matrix can be fountlaile S. For the evergreen
broadleaf forestlass t he wuser’ s an credb¥ and8a.8erespestively.CThisclass c i e s
appears to be slightly undexpresentedThe deciduous broadleaf forastslightly overrepresented

with users and pe@wdandyBorrespectielylc additorcty thecatcuraty of the
discrete map from the climbe modelling perspective, the accuracy of the cover fraction layesisguio

in Table6 canbe important aslimate moddersare often interested in land cover information related
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to plant functional types and fraction information on the main land cover types are very asafdkst

this.

4. Discussion

4.1.Themulti-purposevalidation dataetdevelopment and use
We designed and developedpeotocol andvalidation datasefor independentand multipurpose
assessments d&nd cover productsand we applied ito different land coer maps (discrete and
fractional)of Africa. Particularly, the dataset can address rputipose assessments of land cover maps
namely(1) validating discrete and fractional land cover mgpsmap comparability(3) user oriented
accuracy reportingand (4) updated validation of subsequent land products and cost effectiveness for
data collectiongDefourny et al. 2011; Herold et al. 2008; Marx et al. 2006; Tsendbazar et al. 2016b)
The results obtained in this study exemplife first three purposes mentioned above. The last purpose,
updated validation of subsequent land products was not specifically demonstrated in this study.

However, the current design of the datasetuldbe suitable for this purpose as explained ingbigion.

Recording the reference land cover information atl0én subpixel level facilitatedhe following:

0] To extract class fraction information within the sample site areas;

(ii) To collect information on the land cover elements such as trees and butllingsused for
different legends; and

(i) To validateland cover maps at finer resolution (e.g. at Sentrehd Landsat scale)

These characteristics make this dataset suitable for multiple map validatiairing different legends,

resolutions andequiring different accuracy metrics.

A design of multiobjective accuracy assessment was previously introduced for National Land Cover
Data of the United Stated America(Stehman et al. 2008This design addresses different aims of
accuacy assessments such as elseific accuraciesand cover proportioaccuracies andet change
detectiornaccuracy This design is limited to one map with a fidedend and resolution and it is for the
extent of the United States of AmericBhe CGLSvalidation dataseis producedfor the African

continent andhe proposed approacian be expanded tgobal scaleapplicatiors thanks to tle global
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451  stratificationderived from Kdppen climate zones and population der@tgfsson et al. 2012)The

452  current setup for data collection the African continent (Section 2.1) can beplicated toother

453  continents to collect validation datasstglobal scalelf the similar numbers of sample sites were

454  collected for the five other continents, the total sample size woulddes thar20 000.A stratification

455  independent fronthe targ@tland cover mapallows collectingthe validation datahile the target map

456 is being produced, thus reducing the lag between map production and its accuracy assessment.
457  Regardless of the stratification chosen, the accuracy estimates will be unbiased for the true accuracy of
458  each mapHowever the precision of the accuracy estimates computed from a stratification independent

459  of the target map will be lower than if that mggelf would be used for stratification.

460  Thanks to the flexibility of the stratified sampling, the number of sample sites could also be increased
461 if required(Stehman et al. 2012)ncreasingly, this characteristic is important to provide timely and
462  updated validation of subsequent land cover products following the neguite of the CEOSVGCV

463  State 4 validation. For subsequent maps, temporary sets of sampleasitesadded to the original

464  (permanentsampleto better repremnt modified or change recordackas. A potential strategy would

465  be to reinterpret only part ofhe permanent sample sites rather than all of thesnming no changes

466  occurred inthe sites not rnterpreted The statistical implications of these adjustments need to be

467  further addressed.

468 4.2 Validationof thediscrete and fractional land cover maps

469  We assessed the accuracy of the C&IC300 discrete and fractional land cover maps using the
470  validation d&aset described in Section12.The overall accuracy of the discrete nregs found to be

471 746% +2.1%. This overall accuracy is comparable with teeortedaccuracyfor the CCI-LC-2015

472  mapat global scal€75.3% using only homogeneous sample sitdsgnd Cover CCI. 2017)At the

473 African continental scal@sendbazar et al. (2015®undoverall correspondensef 50-63% forfour

474  global land cover maps (Gl@over 2009, CGLC 2010, MODIS2010 and Globeland 201@imilarly,

475  the overall accuracy of the Globeland3®10 map obtained ithe currenstudy wasassessedt 66.6

476  +2.%%for Africa (Tabled). These results suggest that the C&IC3 00 discrete map has higher overall
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495
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accurag compared t@slobeland30 map (Tabt andotherland cover maps for Africl sendazar et

al. 2015a)

Closed forest and bare/sparse vegetation cldssezhigher class specific accuracies followedtbg

open forest, herbaceous vegetation and cropland cl@sd#e3). Among the natural vegetation classes,
shrubsare mapped with the lowest accurac@sging tohigh confusion with opeforest and herbaceous
vegetation classe€onfusion between open forests, herbaceous vegetation and shrubs is a known
problem for land cover mapping in savannah ecosystems where diffegatation layers (woody and
herbaceous vegetation)-eaist (Huttich et al. 2011; Jung et al. 20068he CGLSLC100 mapslightly
overrepresergthe bare/sparse vegetaticiassat the cost of herbaceous and shratesas particularly

in border regions ahe Sahara and Namib desdftable 3. The aoplandclassis confugdwith open

forest and herbaceousgetatior(Table3). Thiscan be attributetb the difficulty of separating cropland

from herbaceous vegetatioand smallscale cultivationin heterogeneous landscap@§ong et al.

2017)

The pr oducer "water amd ovetlaratiagsesacef low, although 85% and 81% of the
corresponding validation sites showed agreement in the-based confusion matrix (Table S2). The
confusion was mostly with herbaceous vegetation, croplands, open forest and bare sparse vegetation.
Theverylowproduer * s accur acy iditatesomissiomoévellaadramas i thaGGLS

LC100 map. The main wetland regions such as Okavango Delta in Botswana, and the Sudd in South
Sudan are undeepresented in this map. Therefore, further improvements adedearticularly for

mappingthe wetlandandshrubsclasses

Among theland coveffraction mapsbare arehasthe lowest errorfMAE 6.5% and RMSE of 18%),
while, herbaceous vegetationdthe highest errorgd.his can beattributedto thedifficulty of separating
herbaceous vegetation from other land cover types. Thiigmedby Table 3wherethe herbaceous
vegetatiorclassis mostlyconfuedwith other classes$:orthetree cover fraction magpheaeis no direct
comparison availablior Africa. However, comparetb reported errors in other regions, the tree cover

fraction of the CGLE.C100 hassimilar or slightly lowererrors(MAE 9.3% and RMSE &.7%). For
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example,in SouthAmerica, theLandsat basettee cover 2010 product bidansen et al. (2013yas
found to havea MAE of 9.39%(Pengra et al. 2015/ Landsat based rescaled version of the MODIS
Vegetation Continuous Field perceimee cover productvas reported to havé7% RMSE when

compared again&tiDAR measurementsf four regions in North Americggexton et al. 2013)

In contrast to discretland cover maps whose accuracies are often reported using evefrallass
accuracies calculategingconfusion matricefMayaux et al. 2006; Olofsson et al. 20lehver fraction

maps (e.g., trees, shrubs and herbaceous vegetation) are assessed in terms of the deviation from the
reference fractiorcommonly represented by mean error, MAE and RMSE. Since most validation
datasets represent the reference land cover as distastegTsendbazar et al. 2015khese datasets

cannot be used for assessing cover fraction layers unless the cover fraction layers are hardened (applying
a threshold to create discrete classBgrording reference land cover at higher resolutog.,(10m)

allowed estimatindraction of main land cover typgthus making this validation dataset suitable for
assessingcover fraction layers. This way of collecting reference information cawoithplement
substantially theralidation datasets createy tassification of very high resolution imagé®ngra et

al. 2015)and LIDAR based measurements in limited locatig8exton et al. 2013)eferred in the
previousparagraphln addition to thdour land cover types assessed in this stotlyer thematic cover

fraction layers could also be assessed.

4.3.Accuracy comparison with other datasets at different spatial resolution
We alsoassessethe 30m resolutioslobelan®0 2010 map for Africaising our validation dataset
This demonstrees the suitabilityof our validationdataseffor assessing higher resolution major
comparisonBased orl5252 sample pixelderived from our validation datthe overall accuracy ahe
Globeland3@vasestimated a66.6+2.4% (Table5). This accuracy is lower than the accuracy reported
by the map producer39.26%:+ 0.2%) (Chen et al. 2015However the accuracy lhen et al. (2015)
is for the entire globandwhile the results obtained in this stuaisefor Africa, a continenthat tends
to have lower map accurattyanother continent§Tsendbazar et al. 2016&Ye usedite dominant land
cover type for validatiorhecause detisiin the legend definition of some classes were not clear for this

map. However, if more detailed information on the legend thresholds is made avedhttion could
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also be done based on the legend definition of the Globeland3 hep is &-year difference in the
reference year of the Globeland30 2010 raad this might hee aninfluence on the lower overall
accuracy fo this map.The assessment of this map serves here to demonstrate our validation data
applicability formaps havinglifferent spatial resolutiamn It should be noted that temporal discrepancies

between validation data and maps to be assatsedd be kepat aminimum.

Sincethe CGLSLC100validation citasehasreferencdand cover informatiomt 10mx10m subpixels

for aspatial support of 100x100m the validatiordatasetan be used for assessargd comparinghe
accuracy of mapsat 10-100m resolutionsincluding 10-20m resolution Sentingl based land cover
maps RecentlyLesiv et al. (2017assessed the prototype version of3batinel2 based CCI20 African

land cover magCCI Land Cover 2017a)sing the CGLS.C100training and validation datasets. In
this case, the reference land cover corresponding to the Sehfidek20mpixelswasextracted based

on 22 subpixels of the validation dataset. This furtbmphasizeshe applicability of our validation
dataset fohigher resolution map assessmethising the validationdata for higher spatial resolution
maps increasethe number of sample sites (e.g., 15252 for 30m resolution Globeland30). However, in
this situationthe accurag statisticsshould be estimated using cluster sampé#qgations (Pengra et

al. 2015; Stehman et al. 20G3hce otherwisstandard errorgould be underestimated

44 Map validation from different wusers per spect
The land coverfraction information of the validation dataset allowtbe assessment tfie CGLS

LC100 product frondifferentu s er s’ p ¥e agatedfdui maes svith different legendiggre

4) reflecting userspreferences on diérent land cover typdgtesiv et al. 2016h)and our results showed

varying overall accuracidg3.7% +2.1% for biodiversity to 9%+0.9 for crop monitoringXTable6).

Differences can partly battributedto the number of land cover classes considered in the assessment

but also the class combinations used matecuracy for the biodiversity usevgs lower due tohe

number ofclassesisedin the assessmenthe higher overall accuracy for crop monitorir(gropland

and norcropland mapjvas to be expectesince internal confusions among rompland classesre

discarded in tis assessmenfThus, the cropland class accuracies @ importantmap quality

measures in this cas&he overallaccuracyof the CGLSLC100 cropland maslis similar, but the
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cropland class accuracies are lower comptrétke Landsat based nominal cropland m@skng et al.
2017) In the foresimonitoring applicationsa map with more forest classgas createthy combining
the discete and tree cover fractiomap of the CGLS.C100 product. Thidurther illustrates the
suitability of the CGLSLC100 product towards creating ug¢aned mapsNote that the users of land
cover maps areot restricted to the user groups identified in this sty the overall map accuracies

will differ for differentapplicatiors, i.e.,different classsof interestarecorsidered

4.5.Lessons learnt on thaulti-purposevalidation data development

Although the validation dataset was successfully developed and utilizegdessingnultiple land

cover mapsthe dataset alsbassome limitations to be fullgompatiblefor other map assessments.
Sample stratifiation is focused on the heterogeneity of landscapes (hatural and human influenced)
(Olofsson et al. 20123ndit was not specifically desigrdto validate changes in the land cawshich

may be a prominent issue whiire aim is to estimate change areas for each land coveiFgypthis,
additional stra (e.g.,changeareador the correspondingeriod need tobe added to better represent
changed areaand the inclusion probability of the augmented sample sites need to be calculated

accordingly(Stehman et al. 2012)

Furthermore, th€ GLSLC100validation dataset is based thre ProbaV grid at100mand thiscould

be problematic for validating another map at 100m resolution in which the pixel alig(gridhtnay
mismatchthe ProbaV one In contrastfor higher resolution mapesg.,20-30m,the full coverage of the
reference land cover over the target pisah be calculated and used as referelroe10m resolution
map assessmentseaocation errors may have a bigger impdai. reduce impact of such errors,
assessment units ok2 or 33 pixels can beused after resampling the map to 20m or 30m resolution.
This alsoimpliesaccuracy is evaluated at 20m or 30m resolution ratherattae original 1:0mSuch

approach has been usedMgyaux et al. (2006andLand Cover CCI. (2014)

To support the use of this validation data for other map assessments, future work can focus on
developing a service to provide instantly validated aigeed land cover maps of the CGLE100

productsThe validation results could also be provided when otherdamer maps are uploaded to the
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service.This ensures the validation dataset is used for validation purpose rather than training or

calibration purposes.

5. Summary
This study desiged and developd a multi-purposevalidation dataset that ago beapplicablefor
multiple map assessments. eTtataset was developed as partaofindependent assessmentthus
CGLSLC100 land cover produbr Africa. We demonstrated the applicability of the validation dataset
for multi-purpose assessments requiringedtdnt legends and spatial resolution and requiring different

accuracy metrics.

We collected a validation dataset consisting 617 samplesitesfor Africa using aglobal stratification
independent from any land cover m#&eference land cover of the sample s(#gm x 100m area)
wasrecorded at 1 x 10m subpixed by visual interpretation on a dedicatednch of the GedViki
platformwith contributions from several regional experts from AfriBaveral quality measures were
appliedto ensure data qualit The response design of this validation dataset fac#itgsibility
towards multipurpose applications. For example, the ability to assess maps of different resolution (10
100m) is gained bgubpixel level reference land cover informatidine validation data also supports
assessment of maps with different legerdsopposedo creating legend categories by merging certain
classes, subpixel level reference land cover data apmeificallytargeting classes defined by user
specific composition thresholdfurthermore, the sitified sampling scheme enablesample

augmentation for classes of interéStehman et al. 2012)

Theapplicability of thevalidation dataset watemonstratefbr (1) validation ofdiscrete and fractional
land cover mapsQGLSLC100 product: overallaccuracy 74% +2.1% for the discrete and MAE
6.15%16% for the fraction cover laydrs(2) map compason (Globeland3&2010 map overall
accuracy66.6 +2.40); and (3) user oriented accuracy reporti@§s(.S-LC100 product useroverall

accuracy: 73.7% +2.1% to 81.3% +/1.4%)

In addition, he validation dataséts compati bl e with CGLS s focus

cover withyearly releases ofjylobal maps. e global stratification used in the sampliiagilitates

28



609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

expanding to global scaldy replicatingthe currentsetupfor data collection in Africa continentfor
other continents to collect validation dataset at global sedth, additional resources and expert
involvements.The flexibility of stratified samplingallows augmentinghe validation datasefor
validatingsubsequerntewmapsto meet the updated validation requirement ofBBEOSWGCV Stage

4 validation For the latter purpose, sampling needs to be densified in change aremteypreting
additionalsample sitesOn the contraryyalidation sites in n@hange areasan be rausedwith little

effort by reiinterpretingonly a part of sample sites in4sbhange areas

Although the validation dataset wadamonstrated to be suitable for multiple purposes of land cover map
assessmentshere are remainingspectghat requirefurther attentionThe validation dataset was not
specifically designed to validate changes in the land cover. Thus, if the aiestintate change areas

for each land cover type, additional strata (dikely change areas) need to be added to better represent
thoseareas. Furthermores aalidation data collection is a collectiwerk, significant effort is needed

to maintain a datet up-to-date. Tlerefore to maintain a full utility ofa validationdataset,the

importance of updating should be recogniz€do bet t er under stand the i mg

contribution, interpretation variability and its cause are currently heirggtigated in separate study.

Finally, to provide timely assessments of new and yearly global land cover products, map producers are
encouraged to improve the efficiency of validation datasets gihaavailableresources. In thiespect

the proposedesign of the validation dataset can serve as a basis to improve upon.

Acknowledgments

This work was supported by tEeiropean CommissiorCopernicus programmé&he authors thank the
regional experts from AfricagAndre Mazinga, Ifo Suspence, Ell@aszayane, Natasha Ribeiro, Matthias
Herkt, and Emmanuel Amoah Boakigr their contributions in collecting the validation dataséte

thank the anonymous reviewers for thenstructive comments that helpedmgrovethe manuscript.

29



632

633
634

635
636

637
638

639
640

641
642
643

644
645

646
647

648
649

650
651

652
653
654
655

656
657

658
659

660
661

662
663

664
665

666
667

668
669

670
671

672

673
674
675
676
677

678
679

6. References

Achard, F., Eva, H.D., Stibig, H.J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.P. (2002). Determinatioest&tieforates of

the world's humid tropical forestScience, 2979991002

Arino, O., Leroy, M., Ranera, F., @ss, D., Bicheron, P., Nino, F., Brockman, C., Defourny, P., Vancutsem, C., & Achard, F. (2007).
GLOBCOVERA Global Land Cover Service with MERIS. [Bnvisat Symposium 20Q@p. 2327). Montreux, Switzerland

Bartholomé, E., & Belward, A. (2005). GLC20G9new approach to global land cover mapping from Earth observationndetaational

Journal of Remote Sensing,, 20591977

Bontemps, S., Defourny, P., Van Bogaert, E., Kalogirou, V., & Arino, O. GUPBCOVER 2009: Products Description and Validat

Report UCLouvain and ESA

Buchhorn, M., Bertels, L., Smets, B., Lesiv, M., & Tsendbazar, N. (2@l@)p er ni cu s
Algorithm Theoretical Basis Document for Moderate Dynamic Land
Coverhttps://land.copernicus.eu/global/sites/cgls.vito.be/files/products/ CGLOPS1 ATBD_LEI00M.00.pdf

Gl obal

CCl Land Cover. (2017aLCl LAND COVER S2 prototype Land Cover 20m map of Africa 2016

http://2016africalandcover20m.esrin.esa.int/viewer.php

Land

Operations

CCI Land Cover. (2017bRelease of a 1992015 time series of annual global landver maps at 300 fhttps://www.esdandcover

cci.org/index.php?q=webfm_send/88

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., & LulBj. G6bal land cover mapping at 30m

resolution: A POKbased operational approat¢8PRS Journal of Photogrammetry and Remote Sensing7-P03

Copernicus Global Land Service. (201€ppernicus Global Land Servickand Cover VITO.2018,March

12 https://land.copernicus.eu/global/products/Ic

Defourny, P., Bontemps, S., Schouten, L., Bartalev, S., Cacetta, P., de Wit, A., di Bella, C., Gérard, B., Giri, C., Gazdu\G.,
Heinimann, A., Heold, M., Jaffrain, G., Latifovic, R., Lin, H., Mayaux, P., Miucher, S., Nonguierma, A., Stibig, H., Y. Shimabakuro, Van
Bogaert, E., Vancutsem, C., Bicheron, P., Leroy, M., & Arino, O. (2011). GLOBCOVER 2005 and GLOBCOVER 2009 validation : learn

lessonsn, GOFG-GOLD Global Land Cover & Change Validation Workshbaxenburg, Austria

DeFries, R., & Townshend, J. (1994). ND¥érived land cover classifications at a global sdaternational Journal of Remote Sensing,

15, 35673586

Di Gregorio, A. (2005)Land cover classification system: classification concepts and user manual: Ro€@, Italy: Food and

Agriculture Organization of the United Nations

Dierckx, W., Sterckx, S., Benhadj, I, Livens, S., Duhoux, G., Van Achteren, T., Francois, M., Mellal§dint, G. (2014). PROBA/
mission for global vegetation monitoring: standard products and image glraétynational Journal of Remote Sensing, 35892614

Foody, G.M. (1996). Approaches for the production and evaluation of fuzzy land cover @dtesiifrom remotehsensed data.

International Journal of Remote Sensing, 13171340

Foody, G.M. (2009). Sample size determination for image classification accuracy assessment and colmtgariatonal Journal of

Remote Sensing, 362735291

Fried, M.A., Mclver, D.K., Hodges, J.C.F., Zhang, X.Y., Muchoney, D., Strahler, A.H., Woodcock, C.E., Gopal, S., Schneider, A., &
Cooper, A. (2002). Global land cover mapping from MODIS: algorithms and early réseste Sensing of Environment, 387302

Friedl, M.A., SullaMenashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X.M. (2010). MODIS Collection 5 global

land cover: Algorithm refinements and characterization of new dat&stmote Sensing of Environment, 1168182

Fritz, S., McCallum, 1., Schill, C., Perger, C., See, L., Schepaschenko, D., van der Velde, M., Kraxner, F., & Obersteiner)./3e@011
Wiki: An online platform for improving global land covetnvironmental Modelling & Software, 313

Globeland30. (2016)5lobeland30 product introductiobO Nov 201 http://www.globeland30.org/home/Enbackground.aspx

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liui, &.,LLi, X., Fu, W., Liu, C., Xu, Y., Wang,
X., Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, H., Zheng, Y., Ji, L., Zhang, Y., Chen, H., Yan, A, YGud.,
Wang, L., Liu, X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P.,XuGiri, C., Clinton, N., Zhu, Z., Chen, J., & Chen, J. (2013). Finer
resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETNhtetattional Journal of

Remote Sensing, 326072654

Gorelick, N., Hacher, M., Dixon, M., llyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Plzstetiergeospatial

analysis for everyon&emote Sensing of Environment, 20227

30

i\


https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_LC100m-V1_I1.00.pdf
http://2016africalandcover20m.esrin.esa.int/viewer.php
https://www.esa-landcover-cci.org/index.php?q=webfm_send/88
https://www.esa-landcover-cci.org/index.php?q=webfm_send/88
https://land.copernicus.eu/global/products/lc
http://www.globeland30.org/home/Enbackground.aspx

680
681
682

683
684

685
686

687
688

689
690
691

692
693

694

695

696
697

698
699

700
701

702
703
704

705
706
707

708
709

710
711

712
713

714
715
716

717
718
719

720
721
722

723
724

725
726
727

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.Aaviya, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland,
T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., & Townshend, J.R.G. (2013)Reagiution Global Maps of 21&entury
Forest Cover Chang8cience, 342850853

Herold, M., Mayaux, R Woodcock, C.E., Baccini, A., & Schmullius, C. (2008). Some challenges in global land cover mapping: An
assessment of agreement and accuracy in exiskngdatasetdRemote Sensing of Environment, 122382556

Herold, M., See, L., TsendbazarEL, & Fritz, S. (2016). Towards an Integrated Global Land Cover Monitoring and Mapping System.
Remote Sensing, 8036

Herold, M., Woodcock, C.E., Stehman, S.V., Nightingale, J., Friedl, M.A., & Schmullius, C. (2009). The GOHWCEOS land cover
harmonizatio and validation initiative: technical design and implementatior83rd ISRSEStresa, ltaly

Huttich, C., Herold, M., Wegmann, M., Cord, A., Strohbach, B., Schmullius, C., & Dech, S. (2011). Assessing effects aff tempor
compositing and varying obseria periods for larg@rea lanecover mapping in sendrid ecosystems: Implications for global monitoring.
Remote Sensing of Environment, 148452459

Jung, M., Henkel, K., Herold, M., & Churkina, G. (2006). Exploiting synergies of global land covercfgdar carbon cycle modeling.
Remote Sensing of Environment, 1834553

Land Cover CClI. (2014CCI-LC Product User GuideLouvainla-Neuve , Belgium: UCtGeomatics
Land Cover CCI. (2017 CI-LC Product User Guide V2.Qouvairtla-Neuve , BelgiumUCL-Geomatics

Lesiv, M., Fritz, S., McCallum, I., Tsendbazar, N., Herold, M., Pekél,,Buchhorn, M., Smets, B., & Van De Kerchove, R. (2017).
Evaluation of ESA CClI prototype land cover map at 20ASA Working Papaer, W24-021

Lesiv, M., Fritz, S.Moorthy, I., Tsendbazar, N., Herold, M., Van De Kerchove, R., & Smets, B. (2@@640DPS1: Report describing the
training dataset used for Dynamic Land Cover 100m product

Lesiv, M., Moorthy, I., Fritz, S., Herold, M., Tsendbazar, N.E., Smets, B., & \@Kddchove, R. (2016b§5CLOPS: User requirement
document Dynamic Land Cover.

Mayaux, P., Eva, H., Gallego, J., Strahler, A.H., Herold, M., Agrawal, S., Naumov, S., De Miranda, E.E., Di Bella, C yvh¢ (Zdo
Kopin, Y., & Roy, P.S. (2006)/alidation of the global land cover 2000 mapeoscience and Remote Sensing, IEEE Transactions on, 44
17281739

Mayaux, P., Pekel,-F., Desclée, B., Donnay, F., Lupi, A., Achard, F., Clerici, M., Bodart, C., Brink, A., Nasi, R., & Belward, A. (2013).
State and eslution of the African rainforests between 1990 and 2@hllosophical Transactions of the Royal Society B: Biological
Sciences, 368

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., & Wulder, M.A. (2014). Good practices for estieetingl
assessing accuracy of land charigemote Sensing of Environment, 14857

Olofsson, P., Stehman, S.V., Woodcock, C.E., Sdkmashe, D., Sibley, A.M., Newell, J.D., Friedl, M.A., & Herold, M. (2012). A global
land-cover validation data setapt I: fundamental design principldaternational Journal of Remote Sensing, 33685788

Pekel, JF., Cottam, A., Gorelick, N., & Belward, A.S. (2016). Higtsolution mapping of global surface water and its ‘@ changes.
Nature, 540418422

Pergra, B., Long, J., Dahal, D., Stehman, S.V., & Loveland, T.R. (2015). A global reference database from very high resolagotial
satellite data and methodology for application to Landsat derived 30m continuous field tree corerdata. Sensing Bhvironment, 165
234248

Pesaresi, M., Ehrlich, D., Ferri, S., Florczyk, A., Freire, S., Halkia, M., Julea, A., Kemper, T., Soille, P., & Sy&@4,6). Operating
procedure for the production of the Global Human Settlement Layer from Landsat thet@pbchs 1975, 1990, 2000, and 2¢ubl. Off.
Eur. Union

Romijn, E., Herold, M., Mora, B., Briggs, S., Seifert, F.M., & Paganini, M. (2Qd6hitoring progress towards: Sustainable Development
Goals The role of land monitoringVageningen,
Netherlandghttp://www.gofcgold.wur.nl/documents/newsletter/Sustainable Development -iBfudisief. pdf

Scepan, J., Menz, G., & Hansen, M.C. (1999). The Di®€wealidation image interpretation proceBhotogrammetric Engineering and
Remote Sensing, 650751081

Sexton, J.O., Song, »R., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim}D, Collins, K.M., Channan, S., DiMiceli, C., &
Townshend, J.R. (A3). Global, 30m resolution continuous fields of tree cover: Landssged rescaling of MODIS vegetation continuous
fields with lidarbased estimates of errémternational Journal of Digital Earth, 8427448

31


http://www.gofcgold.wur.nl/documents/newsletter/Sustainable_Development_Goals-infobrief.pdf

728
729

730
731

732
733

734
735
736

737
738

739
740
741

742
743

744
745

746
747

748
749

750
751

752
753

754
755

756
757

758
759
760

761

Stehman, S.V. (2014). Estimating area ang mecuracy for stratified random sampling when the strata are different from the map classes.
International Journal of Remote Sensing, 39234939

Stehman, S.V., Olofsson, P., Woodcock, C.E., Herold, M., & Friedl, M.A. (2012). A globattved validaibn data set, II: augmenting a
stratified sampling design to estimate accuracy by region anettarat classinternational Journal of Remote Sensing, 83756993

Stehman, S.V., Wickham, J., Smith, J., & Yang, L. (2003). Thematic accuracy of the 1t89#aNaandCover Data for the eastern United
States: Statistical methodology and regional resRitsnote Sensing of Environment, 860516

Stehman, S.V., Wickham, J.D., Wade, T.G., & Smith, J.H. (2008). Designing aahjeltitive, multisupport accuy assessment of the
2001 National Land Cover Data (NLCD 2001) of the conterminous United Sfietmigrammetric Engineering & Remote Sensing, 74
15611571

Tateishi, R., Hoan, N.T., Kobayashi, T., Alsaaideh, B., Tana, G., & Phong, D.X. (2014). Prodéi&iobal Land Cover Data
GLCNMO2008.2014, 6

Tateishi, R., Uriyangqai, B., ABilbisi, H., Ghar, M.A., Tsendyush, J., Kobayashi, T., Kasimu, A., Hoan, N.T., Shalaby, A., Alsaaideh,
B., Enkhzaya, T., Gegentana, & Sato, H.P. (2011). Production ofl ¢golohcover data GLCNMO. International Journal of Digital Earth,
4, 22-49

Tsendbazar, NE., de Bruin, S., & Herold, M. (2016dhtegrating global land cover datasets for deriving-gpecific mapsinternational
Journal of Digital Earth 1-19

Tsendbaar, N., Herold, M., Fritz, S., & Lesiv, M. (201Qopernicus Global Land Operations: Validation Report for Dynamic Land Cover
100m productCopernicus Global Land Operations

Tsendbazar, N.E., de Bruin, S., Fritz, S., & Herold, M. (201Spatial Accurag Assessment and Integration of Global Land Cover
DatasetsRemote Sensing, 7580415821

Tsendbazar, N.E., de Bruin, S., & Herold, M. (2015b). Assessing global land cover reference datasets for different usitiesdiSRRS
Journal of Photogrammetgnd Remote Sensing, 188114

Tsendbazar, N.E., de Bruin, S., Mora, B., Schouten, L., & Herold, M. (2016b). Comparative assessment of thematic a@t(angus
for specific applications using existing reference datarnational Journal of Applie&arth Observation and Geoinformation,,4424135

Tuanmu, M., & Jetz, W. (2014). A globalkin consensus larcbver product for biodiversity and ecosystem modelliigbal Ecology and
Biogeography, 2310311045

Verburg, P.H., Neumann, K., & Nol, L. (20l Challenges in using land use and land cover data for global change shmlia$ Change
Biology, 17 974989

Wickham, J., Stehman, S., Fry, J., Smith, J., & Homer, C. (2010). Thematic accuracy of the NLCD 2001 land cover forrttieoctnte
United Sates.Remote Sensing of Environment, 112861296

Xiong, J., Thenkabail, P., Tilton, J., Gumma, M., Teluguntla, P., Oliphant, A., Congalton, R., Yadav, K., & Gorelick,7/IN.N®ddinal 30
m Cropland Extent Map of Continental Africa by Integrating RBased and Objeddased Algorithms Using Sentin2land Landsa8
Data on Google Earth Engin@emote Sensing, 2065

32



