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The Inverse Relationship Between Life Expectancy-Induced Changes in the 

Old-Age Dependency Ratio and the Prospective Old-Age Dependency Ratio 

 

Abstract  

Unlike other biological populations, the human population is experiencing long-run increases in 

life expectancy. Those lead to changes in age compositions not typical for other biological 

populations. Sanderson and Scherbov (2015a) demonstrated that, in many countries in Europe, 

faster increases in life expectancy lead to faster population aging when measured using the old-

age dependency ratio and to slower population aging when measured using the prospective old-

age dependency ratio that employs a dynamic old-age threshold. We examine this finding 

analytically and with simulations. We use an analytic decomposition of changes in mortality 

schedules into shift and compression processes. We show that shifts and compressions of mortality 

schedules push the two old-age dependency ratios in opposite directions. Our formal results are 

supported by simulations that show a positive effect of a mortality shift on the old-age dependency 

ratio and a negative effect of it on the prospective old-age dependency ratio. The effects are of 

opposite sign for a mortality compression. Our formal and simulation results generalize observed 

European trends and suggest that the inverse relationship between life expectancy and prospective 

old-age dependency would be observed more generally.  

 

Keywords: Aging; Old-Age Dependency Ratio; Prospective Old-Age Dependency Ratio; Life-

Table Population; Mortality Shift; Mortality Compression.  
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1. Introduction 

Human populations share many properties, such as renewal, with other biological populations. 

They also have unique features among which are the long-run lengthening of lifespans. When age-

specific survival probabilities are fixed, increases in chronological age are typically associated 

with decreases in average remaining lifetimes. When age-specific survival probabilities are 

declining, it is possible for average remaining lifetimes to increase even when the average number 

of years already lived also increases (Sanderson and Scherbov 2005).  

When lifetimes are lengthening, population aging can be analyzed from two different 

perspectives, one based on the average number of years already lived and another based on the 

average number of years left to live. Sanderson and Scherbov (2005, 2015a) have shown, using 

historical data and population forecasts, that these two perspectives can often yield strikingly 

different results. Because their findings were based on patterns of survival from the recent past 

and on forecasts based on them, it is not clear what causes those differences and the extent to which 

their findings are more general or are specific to the era from which their data were derived.  

In this paper, we provide a theoretical analysis of the old-age dependency ratio, a 

commonly used measure of human population aging, from the two perspectives. Old age 

dependency ratios are ratios of the number of people who are classified as being old to those who 

are classified as being in the working ages. Our analysis uses the theoretical framework in Ediev 

(2013a). This framework allows changes in human mortality schedules to be expressed using two 

parameters, one related to the shift of the age distribution of deaths and the other to its compression 

or expansion. Sanderson and Scherbov (2005, 2015a) showed that when changes in life expectancy 

occur it matters whether a perspective based on the number of years already lived or one based on 

the number of year left to live is used in computing old-age dependency ratios.  Not only are the 

magnitudes of the changes different, but even the direction of the change. The theoretical results 

presented here show the analytic conditions under which this occurs.  
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We begin with formal definitions of the old-age dependency ratio and the prospective old-

age dependency ratio. 

The conventional Old-Age Dependency Ratio (OADR) is defined as: 

ሻݐሺܴܦܣܱ =
ை஺௉ሺ௧ሻ

ௐ஺௉ሺ௧ሻ
=

׬ ௉ሺ௧,௫ሻௗ௫
ಮ

ೃబ

׬ ௉ሺ௧,௫ሻௗ௫
ೃబ

ೈ

. (1) 

Here, ܱܴܦܣሺݐሻ is the OADR at time t, ܱܲܣሺݐሻ is the old-age population at time t obtained by 

summing the population ܲ ሺݐ,  ሻ over ages ܴ0, the fixed old age threshold, to the maximum lifespanݔ

(the latter is replaced by infinity to facilitate further derivations). The working-age population at 

time t, WAPሺݐሻ, is the population between the ages ܹ, the onset of the working age interval, and 

ܴ0. In one commonly used version of the OADR, ܹ is set to age 20 and ܴ0 is set equal to 65.  

The definition of the Prospective Old-Age Dependency Ratio (POADR) requires a time-varying 

old-age threshold, ܴሺݐሻ, that holds remaining life expectancy constant. To do this, we first choose some 

base year 0ݐ and compute the time varying old age threshold as the age in year t where remaining 

life expectancy is the same as at age ܴ0 in the base year 0ݐ. For numerical illustrations, we use a 

rolling base ݐ଴. For example, for year ݐ, we use year ݐ଴ = ݐ − 1 as the base year. The base-year 

relation ܴሺݐ଴ሻ = ܴ଴ assures a similar ‘start’ for both the conventional and prospective indicators 

of population aging. For example, if 0ݐ were 2015 and ܴ0 were 65, then we would first find the 

remaining life expectancy at age 65 in 2015. Let us suppose that this life expectancy was 20 years. 

If year t were 2016, we would determine ܴሺ2016ሻ by finding the age in 2016 where remaining 

life expectancy was 20 years. When the time varying old age threshold ܴሺݐሻ is used instead of the 

fixed old age threshold, ܴ0, a new ratio is obtained where the numerator is the number of people 

at or above ܴሺݐሻ and the denominator is the number of people from age ܹ to ܴሺݐሻ. This new 

measure is called the POADR. Specific implementations of the POADR concept can be found in 

(Sanderson and Scherbov, 2010, 2013, 2015b): 
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ሻݐሺܴܦܣܱܲ =
׬ ௉ሺ௧,௫ሻௗ௫

ಮ
ೃሺ೟ሻ

׬ ௉ሺ௧,௫ሻௗ௫
ೃሺ೟ሻ

ೈ

, (2) 

where POADR(t) is the POADR at time t. 

POADRs, based on estimates and forecasts, at 5-year intervals from 1950 to 2100, have 

been published for most countries of the world (Sanderson and Scherbov, 2008; Wittgenstein 

Centre for Demography and Global Human Capital, 2014). In those POADRs, the old age 

threshold, ܴሺݐሻ, is set equal to the age at which remaining life expectancy equals 15 years. The 

POADR was designed to study population aging in an environment where the characteristics of 

older people could vary markedly over time and space. This was the motivation for making the old 

age threshold dynamic. For simplicity, the age at labor force entry, W, is kept constant.  

 

Figure 1: Annual change of life-table Prospective Old-Age Dependency Ratio (POADR) (2) 

vs the Old-Age Dependency Ratio (OADR) (1), entire Human Mortality Database, years 

1950-2015: men, women, currently High- and Low-mortality countries 

 

Figure 2: Increments of life-table Prospective Old-Age Dependency Ratio (POADR) (2) vs 

the Old-Age Dependency Ratio (OADR) (1) in model life tables: men, women, Coale-Demeny 

and United Nations model life table families. Note: e0 is the life expectancy at birth (years). 

 

Sanderson and Scherbov (2015a) used population forecasts for European countries to 

demonstrate a novel result. When the speed of aging is measured using the increase in OADR, 

faster increases in life expectancy lead to faster population aging. When the speed of aging is 

measured using the increase in the POADR, faster increases in life expectancy lead to slower 

increases in aging. Figure 1 shows a similar phenomenon in a different context. It shows the 

relationship between annual changes in OADRs and POADRs defined over life table populations 
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for the years 1950 to 2015 for currently low and high mortality countries in the Human Mortality 

Database (University of California (Berkeley) and Max Planck Institute for Demographic Research 

(Rostock), 2018). The list of currently ‘low mortality’ countries is obtained by excluding Eastern-

European countries from the HMD. It includes Australia, Austria, Belgium, Canada, Chile, 

Denmark, England and Wales, Finland, France, Germany (total population), Ireland, Israel, Italy, 

Japan, Netherlands, New Zealand (Non-Maori), Northern Ireland, Norway, Portugal, Scotland, 

Spain, Sweden, Switzerland, Taiwan (China), USA, UK, and West Germany. We also exclude 

some relatively small populations (Iceland, New Zealand--Maori, and Luxemburg). “High-

mortality” countries include the Eastern-European countries. The annual changes in the OADRs 

and POADRs in Figure 1 are both in response to the same changes in mortality conditions. 

In Figure 1, we can see a strong negative relationship between the annual changes in 

OADRs and POADRs. In this paper, we want to understand whether the relationship extends 

beyond mortality schedules currently observed in HMD. The relationship between changes in old-

age dependency ratios and changes prospective old-age dependency ratios in model life tables 

(Coale and Demeny 1966; United Nations 1982) suggests the relationship is general, with few 

exceptions. In Figure 2, we plot increments of conventional and prospective OADRs within the 

same model life table family against one year increments of life expectancy at birth. The model 

life tables cover a wide range of values of life expectancy at birth from e0=20 years to e0=100 years 

and – unlike the empirical schedules in Figure 1 – are free from stochastic variations. Although 

they have these advantages, they also have the disadvantage that they are based on imputations 

and may be misleading at the lower and upper extremes of life expectancy at birth. The model life 

tables show the same inverse relationship between OADR and POADR that is seen in the observed 

life tables with a few exceptions at low life expectancy at birth. The model life table-based 

relationship is curvilinear. We explain this below in the section on analytic derivations. The object 
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here is to explain analytically why this inverse relationship exists in both observed and model life 

tables. 

We focus on the effects of mortality change alone. To do this, we study dependency ratios 

in stationary populations with survival constant over time and equal to the survival ݈ሺݐ,  ሻ of theݔ

year t. In that context, assuming unit radix ܲሺݐ, 0ሻ = ݈ሺݐ, 0ሻ = 1 of the life table 

population, ܲሺݐ, ሻݔ = ܲሺݐ, 0ሻ݈ሺݐ, ሻݔ = ݈ሺݐ, ,ݐሻ, where ݈ሺݔ  ሻ is the life table proportion survivingݔ

from birth to age x in the period life table for the year t. 

The analytic framework that we use here is the shift-compression model of the age 

distribution of adult deaths in Ediev (2013a) and is described in Section 2. In Section 3, we show 

that the shift-compression model produces a closed form solution for dynamic old age threshold, 

ܴሺݐሻ. The analytic relationship between shifts and compressions of mortality schedules and 

changes in OADRs and POADRs is presented in Section 4. We quantify shifts and compressions 

in mortality schedules using data from the Human Mortality Database and show that the observed 

shifts and compressions produce the results seen in Figures 1 and 2 in Section 5. In the appendix, 

we summarize the notations used. For ease of following the analytical derivations, notations and 

the basic relations used in the paper are summarized in Table 1. 

 

Table 1: Notation and basic relations 

Notation Description 

 time variable ݐ

 ଴ base year used as a reference in computing prospective indicatorsݐ

of aging 

 age variable ݔ

ܲሺݐ,  ሻ population density at age x, time tݔ
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Notation Description 

߱ the maximum lifespan 

ܹ the starting age of the working age interval 

ܴ଴ the time-fixed starting age of the conventional old age interval 

ܴሺݐሻ the time-varying ‘old age threshold’ marking the starting age of 

the prospective old age interval at time ݐ, Eq. (5) 

ሻݐሺܲܣܱ = න ܲሺݐ, ݔሻ݀ݔ
ఠ

ோబ

 
conventional old-age population 

ሻݐሺܲܣܹ = න ܲሺݐ, ݔሻ݀ݔ
ோబ

ௐ
 

working-age population with the conventional definition of old 

age 

ሻݐሺܲܣܱܲ

= න ܲሺݐ, ݔሻ݀ݔ
ఠ

ோሺ௧ሻ
 

prospective old-age population above time-dependent old age 

threshold 

ሻݐሺܲܣܹܲ

= න ܲሺݐ, ݔሻ݀ݔ
ோሺ௧ሻ

ௐ
 

working-age population with the prospective definition of old age 

ሻݐሺܴܦܣܱ =
ሻݐሺܲܣܱ

ሻݐሺܲܣܹ
 

conventional old-age dependency ratio, Eq. (1) 

ሻݐሺܴܦܣܱܲ =
ሻݐሺܲܣܱܲ

ሻݐሺܲܣܹܲ
 

prospective old-age dependency ratio, Eq. (2) 

ܱܲሺݐሻ =
ሻݐሺܲܣܱ

׬ ܲሺݐ, ݔሻ݀ݔ
ఠ

଴

 
proportion of the population who are old (conventional definition) 

ܱܲܲሺݐሻ =
ሻݐሺܲܣܱܲ

׬ ܲሺݐ, ݔሻ݀ݔ
ఠ

଴

 
proportion of the population who are old (prospective definition) 

݀ሺݐ,  ሻ the age distribution of life table adult deaths at time t, Eq. (3)ݔ
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Notation Description 

 ଴ mortality model’s “pivotal age” used to mark the amount ofܣ

mortality shift 

 ሻ mortality model’s parameter used to describe the amount of shiftݐሺܣ

ሻݐሺܣ) − ଴ሻݐሺܣ .଴) at the pivotal ageܣ =  .଴ by definitionܣ

݇ሺݐሻ mortality model’s parameter used to describe the amount of 

compression or expansion of the  distribution of ages at death 

଴ܣ
∗ = ଴ܣ +

ሻݐሺܣ − ଴ܣ

݇ሺݐሻ − 1
 

age at which the mortality model produces no shift 

∆ሺݐ,  ሻ mortality shift at age x and time period t, Eq. (4)ݔ

ሻݐሺߜ = ሻݐሺܣ − ݐሺܣ − 1ሻ the annual mortality shift 

݁ሺݐ,  ሻ remaining life expectancy at age x and time tݔ

,ݐሺߤ  ሻ the death rate (the force of mortality) at age x and time tݔ

݈ሺݐ,  ሻ the life table survival to age x in the period life table for the year tݔ

,ݐሺߪ  ሻ the standard deviation of ages at death above age x, Eq. (27)ݔ

Base year correspondence 

between the conventional 

and prospective indicators: 

ܴሺݐ଴ሻ = ܴ଴ 

଴ሻݐሺܲܣܱܲ =  ଴ሻݐሺܲܣܱ

଴ሻݐሺܲܣܹܲ =  ଴ሻݐሺܲܣܹ

଴ሻݐሺܴܦܣܱܲ =  ଴ሻݐሺܴܦܣܱ

ܱܲܲሺݐ଴ሻ = ܱܲሺݐ଴ሻ 

 

2. The mortality model  

If arbitrary mortality changes are allowed, one may easily construct mortality scenarios with any 

pattern of change of the old-age dependency ratios. Neither the OADR nor the POADR are affected 

by mortality changes at ages below the working age. Mortality changes in the working ages push 
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the two old-age dependency ratios in a similar direction. However, mortality changes at ages 

beyond the old-age threshold ܴ଴ may generate complex patterns of change depending on how they 

affect: (1) the old-age threshold ܴሺݐሻ, (2) the life table person-years below that age and (3) the 

survival probability to ܴሺݐሻ. Therefore, the possibility that the inverse relationship between 

changes of OADR and POADR might be general is ruled out. The form of the relationship depends 

on the pattern of combinations of mortality change at different ages.  

To study patterns of age-specific mortality rate changes, we consider the two most 

important aspects of those changes: (1) changes in the mean age at death (shift) and (2) changes in 

the spread of the distribution of ages at death around the mean age (compression/expansion). To 

this end, we use the shift-compression/expansion model of the age distribution of adult deaths 

(Ediev, 2013a). Here the age distribution of adult deaths is expressed in relation to a baseline age 

distribution. The age distribution of adult deaths can be expressed as: 

݀ሺݐ, ሻݔ ∝ ݀ ቀݐ଴, ଴ܣ −
஺ሺ௧ሻି௫

௞ሺ௧ሻ
ቁ, (3) 

where x is age, t is time, ݀ሺݐ,  ଴ is theݐ ,ݐ ሻ is the age distribution of life table adult deaths at timeݔ

base year against which we study changes in the dependency ratios. The relationship between the 

age distribution of adult deaths in year ݐ and year ݐ଴ depends on two parameters ܣሺݐሻ and ݇ሺݐሻ. 

ሻݐሺܣ − ଴ܣ ଴ is the amount of age shift of the distribution at the arbitrarily chosen pivotal ageܣ =

 ଴ሻ in the original distribution of life table deaths. Hereinafter, subscript ‘0’ refers to the baseݐሺܣ

year ݐ଴. The parameter ݇ሺݐሻ describes the amount of compression or expansion of the distribution 

and ݇଴ = 1 by definition. When ܣሺݐሻ − ଴ܣ > 0, the age distribution of deaths in year t is shifted 

rightwards relative to the distribution in year ݐ଴. In other words, it is shifted towards longer 

lifespans. When ݇ሺݐሻ = 1, the mortality shift occurs without a change in the shape of the 

distribution of ages at death. When ݇ ሺݐሻ > 1, mortality expands and deaths stretch over more years 

of life. When ݇ሺݐሻ < 1, the distribution of age at death is compressed.  
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Figure 3: Illustrative scenarios of mortality model (3): age at death distributions (dx). Notes: 

The vertical broken line indicates the pivotal age A0 =65. (a) The original distribution of life 

table deaths is shifted by 10 years. (b) The original distribution of life table deaths is 

compressed by 25%. (c) The original distribution of life table deaths is expanded by 25%. 

(d) The original distribution of life table deaths is shifted by 10 years and compressed by 

25%.  

 

In Figure 3, we present four schematic scenarios for shift and compression or expansion 

with the pivotal age ܣ଴ = 65. In panel (a), the original schedule is shifted rightwards by 10 years 

without compression or expansion. In panel (b), compression occurs without shift. The 

transformed schedule is also scaled upwards so as to sum up to the same total number of deaths as 

in the original schedule. In panel (c), the distribution expands without a shift. In panel (d), we 

present the more realistic scenario of shift and compression. Typically, period mortality decline 

manifests itself in positive shifts combined with compression (Fries, 1980; Wilmoth and Horiuchi, 

1999; Kannisto, 2000; Canudas-Romo, 2008; Thatcher et al., 2010), although cohort mortality 

decline may also manifest itself without compression or even with expansion (Ediev 2011, 2013b). 

Before proceeding to the implications of the mortality model, it may be useful to develop 

a better intuition for how the model works. The choice of the pivotal age does not affect the fit of 

the model to empirical data and, in that sense, is arbitrary. For any pivotal age, it is always possible 

to set the model parameters so that the model produces exactly the same distribution of deaths. 

This choice makes a difference, however, for the definition and interpretation of the shift 

parameter. Unlike the compression/expansion parameter ݇ሺݐሻ that has no link to any particular 

age, the mortality shift may only be defined with respect to a given age. Indeed, if mortality would 

exhibit a universal shift, equal for all ages, there could have been no compression or expansion of 
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the mortality distribution. All parts of the curve would be shifting without changing the distance 

between them. Such a pure shift, however, is a rare case. A more plausible scenario involves age-

specific shifts. In our model, the variety of age-specific shifts, say, ∆ሺݐ,  ሻ at some age x and timeݔ

,ݐand ∆ሺ ݐ  ሻ at another age y, are linked to each other through the compression/expansionݕ

parameter ݇ሺݐሻ:  ሾݕ + ∆ሺݐ, ሻሿݕ − ሾݔ + ∆ሺݐ, ሻሿݔ = ݇ሺݐሻሺݕ −   ,ሻ and, thereforeݔ

∆ሺݐ, ሻݕ = ∆ሺݐ, ሻݔ +  ሾ݇ሺݐሻ − 1ሿሺݕ −  ሻ. (4)ݔ

This makes it possible to describe the whole set of age-specific shifts of the death distribution 

curve by the shift at one (arbitrarily chosen) age ܣ଴ and by the compression/expansion coefficient 

݇ሺݐሻ.  

The choice of the pivotal age is arbitrary and has no consequences for the kinds of changes 

the model describes. If one wishes to opt for a different pivotal age, it is only necessary to 

recalculate the amount of shift at new pivotal age according to (4). When making statements about 

the shift, however, one must always be clear about the age to which the shift applies. For ease of 

interpretation, we set ܣ଴ = ܴ଴ = 65 in all numerical and empirical illustrations. Indeed, the model 

simplifies the analysis of real-life mortality change as it reduces the change to two parameters by 

assuming a universal compression/expansion of the age distribution of deaths. A limitation of this 

simplification becomes evident when one notices that the model produces no shift at the age ܣ଴
∗ =

଴ܣ +
஺ሺ௧ሻି஺బ

௞ሺ௧ሻିଵ
. At ages below and above the age ܣ଴

∗, the distribution of deaths is shifted in different 

directions. Adult mortality, typically, changes in the same direction across all ages. That means 

that the model assumption of no shift at age ܣ଴
∗ might be not realistic. However, for a typical 

mortality change, the age ܣ଴
∗ is beyond the range where most of the mortality change occurs. In 

our data, the mean annual shift was about 0.2 years at age 65 and the mean annual compression, 

݇ሺݐሻ − 1, was 0.003. With these parameters, the model would produce non-positive shifts, on 

average, only at ages above ܣ଴
∗ = 65 +

଴.ଶ

଴.଴଴ଷ
≈ 132 years. It may also be noticed that, when we 
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conducted tests of fit, not shown here, we found that the model performs marginally better than 

the Gompertz model (Gompertz 1825). The biggest advantage of the model for our study, however, 

comes from the convenience and accuracy it offers in deriving formal relations for indicators of 

population aging. 

While our mortality model describes only adult deaths, real-life mortality also includes 

child (most importantly infant) deaths. The latter may not be subject to the shifting process and, 

therefore, may not be described by our model. Changes in mortality at ages younger than ܹ, 

however, modify the stationary population at working and old age in a similar proportion and, 

therefore, do not alter the dependency ratios. Neither do they alter the remaining life expectancies 

of working- or old-age adults and, as a consequence, they do not alter the old-age threshold ܴሺݐሻ. 

Therefore, we facilitate our formal derivations, without limiting the generality of our results, by 

assuming that the density function of infant and child deaths not covered by model (3) is time-

constant before age ܹ. A particular consequence of this assumption is time-invariance of the 

integral ׬ ݀ሺݐ, ݔሻ݀ݔ
ஶ

଴
 of the density function of the adult deaths (3). Furthermore, unless otherwise 

indicated, the life table functions discussed below will be assumed to apply to the working and old 

age populations, not to the ages below ܹ where our mortality model is not fully functional. 

 

3. The Analytic Expression for the Old Age Threshold ࡾሺ࢚ሻ 

The old age threshold, ܴሺݐሻ, adopted here (Sanderson and Scherbov, 2005, 2013) is determined 

based on a fixed remaining life expectancy. Given our consistency constraint ܴሺݐ଴ሻ = ܴ଴, which 

assures the  equality of the conventional and prospective indicators of aging in year 0, the old age 

threshold ܴሺݐሻ must follow the identity: 
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݁൫ݐ, ܴሺݐሻ൯ ≡ ݁ሺݐ଴, ܴ଴ሻ, (5) 

where ݁ሺݐ,  To explore solutions of this identity, we use the .ݐ in year ݔ ሻ is life expectancy at ageݔ

following implication of the shift-compression/expansion mortality model (3) (Ediev 2013a):  

݁ሺݐ, ሻݔ = ݇ሺݐሻ݁ ቀݐ଴, ଴ܣ −
஺ሺ௧ሻି௫

௞ሺ௧ሻ
ቁ. (6) 

Combining this with (5), we obtain the equation for ܴሺݐሻ: 

݁൫ݐ, ܴሺݐሻ൯ = ݇ሺݐሻ݁ ቀݐ଴, ଴ܣ −
஺ሺ௧ሻିோሺ௧ሻ

௞ሺ௧ሻ
ቁ = ݁ሺݐ଴, ܴ଴ሻ. (7) 

The second equality in (7) is satisfied by the solution to 

ܴሺݐሻ = ሻݐሺܣ +  ݇ሺݐሻ ቂ݁ିଵ ቀݐ଴,
௘ሺ௧బ,ோబሻ

௞ሺ௧ሻ
ቁ −  ଴ቃ, (8)ܣ

where ݁ିଵሺݐ଴,  ሻ is the inverse function of the baseline remaining life expectancy with respect toݖ

age. In the pure mortality shift scenario, ݇ሺݐሻ = 1, Equation (8) produces the following solution 

for the old age threshold: 

ܴሺݐሻ = ܴ଴ + ሻݐሺܣ −  ଴.                   (9)ܣ

 Under the pure mortality shift scenario, the old age threshold shifts by exactly the same 

number of years as the age distribution of deaths. A positive mortality shift implies a time-invariant 

number of life-table person years in old-age and an increasing number of life-table person years in 

the working ages, defined here as the ages 20 (the fixed onset of the working age interval) to the 

old age threshold, ܴሺݐሻ. Hence, that shift would produce a fall in the POADR. A negative mortality 

shift would produce effects opposite to those of the positive shift. 

Analytically more challenging is the general case of shift combined with compression or 

expansion, which is considered next. 
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4. The Analytic Relationship between the OADR and the POADR under 

general mortality change 

In a life table (stationary) population with unit radix, the OADR may be written as 

ሻݐሺܴܦܣܱ =
ை஺௉ሺ௧ሻ

ௐ஺௉ሺ௧ሻ
=

׬ ௟ሺ௧,௫ሻௗ௫
ಮ

ೃబ

׬ ௟ሺ௧,௫ሻௗ௫
ೃబ

ೈ

, (10) 

where, ܱܲܣሺݐሻ = ׬ ݈ሺݐ, ݔሻ݀ݔ
ఠ

ோబ
 is the old-age life table population and ܹܲܣሺݐሻ = ׬ ݈ሺݐ, ݔሻ݀ݔ

ோబ

ௐ
 

is the working-age life table population. 

The life table POADR is 

ሻݐሺܴܦܣܱܲ =
௉ை஺௉ሺ௧ሻ

௉ௐ஺௉ሺ௧ሻ
=

׬ ௟ሺ௧,௫ሻௗ௫
ಮ

ೃሺ೟ሻ

׬ ௟ሺ௧,௫ሻௗ௫
ೃሺ೟ሻ

ೈ

, (11) 

where ܱܲܲܣሺݐሻ = ׬ ݈ሺݐ, ݔሻ݀ݔ
ஶ

ோሺ௧ሻ  is the prospective old-age life table population and ܹܲܲܣሺݐሻ =

׬ ݈ሺݐ, ݔሻ݀ݔ
ோሺ௧ሻ

ௐ
 is the working-age life table population (calculated using the prospective definition 

of who is old).  

The two sets of aging indicators are identical in the base year ݐ଴, so that ܴሺݐ଴ሻ = ܴ଴, 

଴ሻݐሺܲܣܱܲ = ଴ሻݐሺܲܣܹܲ ,଴ሻݐሺܲܣܱ = ଴ሻݐሺܴܦܣܱܲ ଴ሻ, andݐሺܲܣܹ =  .଴ሻݐሺܴܦܣܱ

Under model (3), assuming a fixed total count of adult life-table deaths (׬ ݀ሺݐ, ݔሻ݀ݔ
ஶ

଴
≡

,ݐsubject to the model, ݀ሺ (ݐݏ݊݋ܿ ሻݔ =
׬ ௗሺ௧బ,௬ሻௗ௬

ಮ
బ

׬ ௗቀ௧బ,஺బି
ಲሺ೟ሻష೤

ೖሺ೟ሻ ቁௗ௬
ಮ

బ

݀ ቀݐ଴, ଴ܣ −
஺ሺ௧ሻି௫

௞ሺ௧ሻ
ቁ. Assuming, 

additionally, that the support of the age distribution of adult deaths does not include age 0 at all 

times: 

݈ሺݐ, ሻݔ = න ݀ሺݐ, ݕሻ݀ݕ
ஶ

௫
=

׬ ݀ሺݐ଴, ݕሻ݀ݕ
ஶ

଴

׬ ݀ ൬ݐ଴, ଴ܣ −
ሻݐሺܣ − ݕ

݇ሺݐሻ ൰ ݕ݀
ஶ

଴

න ݀ ቆݐ଴, ଴ܣ −
ሻݐሺܣ − ݕ

݇ሺݐሻ
ቇ ݕ݀

ஶ

௫
= 

׬ ݀ሺݐ଴, ݕሻ݀ݔ
ஶ

଴

݇ሺݐሻ ׬ ݀ሺݐ଴, ݖሻ݀ݖ
ஶ

଴

݇ሺݐሻ න ݀ሺݐ଴, ݖሻ݀ݖ
ஶ

஺బି
஺ሺ௧ሻି௫

௞ሺ௧ሻ

= 
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׬ ݀ሺݐ଴, ݖሻ݀ݖ
ஶ

஺బି
ಲሺ೟ሻషೣ

ೖሺ೟ሻ
= ݈ ቀݐ଴, ଴ܣ −

஺ሺ௧ሻି௫

௞ሺ௧ሻ
ቁ. (12) 

Therefore, 

ሻݐሺܲܣܱ = න ݈ሺݐ, ݔሻ݀ݔ
ஶ

ோబ

= න ݈ ቆݐ଴, ଴ܣ −
ሻݐሺܣ − ݔ

݇ሺݐሻ
ቇ ݔ݀

ஶ

ோబ

= ݇ሺݐሻ න ݈ሺݐ଴, ݖሻ݀ݖ
ஶ

஺బି
஺ሺ௧ሻିோబ

௞ሺ௧ሻ

≈ 

݇ሺݐሻܱܲܣሺݐ଴ሻ − ݇ሺݐሻ݈ሺݐ଴, ܴ଴ሻ ቈܣ଴ −
ሻݐሺܣ − ܴ଴

݇ሺݐሻ
− ܴ଴቉ ≈ 

଴ሻݐሺܲܣܱ ቄ1 + ሺܣሺݐሻ − ଴ሻܣ ௟ሺ௧బ,ோబሻ

ை஺௉ሺ௧బሻ
− ሾ1 − ݇ሺݐሻሿ ቂ1 +

௟ሺ௧బ,ோబሻ

ை஺௉ሺ௧బሻ
ሺܴ଴ −  ଴ሻቃቅ. (13)ܣ

ሻݐሺܲܣܹ = ׬ ݈ሺݐ, ݔሻ݀ݔ
ோబ

ௐ
= ׬ ݈ ቀݐ଴, ଴ܣ −

஺ሺ௧ሻି௫

௞ሺ௧ሻ
ቁ ݔ݀

ோబ

ௐ
= ݇ሺݐሻ ׬ ݈ሺݐ଴, ݖሻ݀ݖ

஺బି
ಲሺ೟ሻషೃబ

ೖሺ೟ሻ

஺బି
ಲሺ೟ሻషೈ

ೖሺ೟ሻ

≈  

݇ሺݐሻܹܲܣሺݐ଴ሻ + ሾܣሺݐሻ − ,଴ݐ଴ሿሾ݈ሺܣ ܹሻ − ݈ሺݐ଴, ܴ଴ሻሿ − 

ሾ1 − ݇ሺݐሻሿሾ݈ሺݐ଴, ܴ଴ሻሺܴ − ଴ሻܣ − ݈ሺݐ଴, ܹሻሺܣ଴ − ܹሻሿ = 

଴ሻݐሺܲܣܹ ቄ1 + ሾܣሺݐሻ − ଴ሿܣ ௟ሺ௧బ,ௐሻି௟ሺ௧బ,ோబሻ

ௐ஺௉ሺ௧బሻ
− ሾ1 − ݇ሺݐሻሿ ቂ1 +

௟ሺ௧బ,ோబሻሺோି஺బሻି௟ሺ௧బ,ௐሻሺ஺బିௐሻ

ௐ஺௉ሺ௧బሻ
ቃቅ. (14) 

Combining this with (10) and (13): 

ሻݐሺܴܦܣܱ ≈ ଴ሻݐሺܴܦܣܱ × 

1 + ሾܣሺݐሻ − 0ሿܣ ݈ሺݐ଴, ܴ଴ሻ
଴ሻݐሺܲܣܱ − ሾ1 − ݇ሺݐሻሿ ൤1 +

݈ሺݐ଴, ܴ଴ሻ
଴ሻݐሺܲܣܱ ሺܴ଴ − ଴ሻ൨ܣ

1 + ሾܣሺݐሻ − 0ሿܣ ݈ሺ0ݐ, ܹሻ − ݈ሺ0ݐ, ܴ0ሻ
0ሻݐሺܲܣܹ − ሾ1 − ݇ሺݐሻሿ ൤1 + ݈ሺ0ݐ, ܴ0ሻሺܴ − 0ሻܣ − ݈ሺ0ݐ, ܹሻሺ0ܣ − ܹሻ

0ሻݐሺܲܣܹ ൨
≈ 

଴ሻݐሺܴܦܣܱ ቊ1 + ሾܣሺݐሻ − ଴ሿܣ ቈ
݈ሺݐ଴, ܴ଴ሻ

଴ሻݐሺܲܣܱ
−

݈ሺݐ଴, ܹሻ − ݈ሺݐ଴, ܴ଴ሻ

଴ሻݐሺܲܣܹ
቉ − 

ሾ1 − ݇ሺݐሻሿ ቂ
௟ሺ௧బ,ோబሻሺோబି஺బሻ

ை஺௉ሺ௧బሻ
+

௟ሺ௧బ,ோబሻሺோబି஺బሻା௟ሺ௧బ,ௐሻሺ஺బିௐሻ

ௐ஺௉ሺ௧బሻ
ቃቅ. (15) 

The effect of the mortality shift in (15) will be positive for human mortality change, 

because  

݈ሺݐ଴, ܴ଴ሻ

଴ሻݐሺܲܣܱ
−

݈ሺݐ଴, ܹሻ − ݈ሺݐ଴, ܴ଴ሻ

଴ሻݐሺܲܣܹ
=

1
݁ሺݐ଴, ܴ଴ሻ

−
݈ሺݐ଴, ܹሻ − ݈ሺݐ଴, ܴ଴ሻ

݈ሺݐ଴, ܹሻ݁ሺݐ଴, ܹሻ − ݈ሺݐ଴, ܴ଴ሻ݁ሺݐ଴, ܴ଴ሻ
= 
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ଵ

௘ሺ௧బ,ோబሻ
ቈ1 −

௟ሺ௧బ,ௐሻି௟ሺ௧బ,ோబሻ
೐ሺ೟బ,ೈሻ
೐ሺ೟బ,ೃబሻ௟ሺ௧బ,ௐሻି௟ሺ௧బ,ோబሻ

቉ > 0 assuming 
௘ሺ௧బ,ௐሻ

௘ሺ௧బ,ோబሻ
> 1. The effect of the compression, on the 

other hand, will be negative for all pivotal ages ܣ଴ ≤ ܴ଴. Setting ܣ଴ = ܴ଴, as we do in our 

empirical assessments, and assuming the limiting case of negligible low mortality in the working 

ages, it follows from (15) that:  

ሻݐሺܴܦܣܱ ≈ ଴ሻݐሺܴܦܣܱ ቄ1 + ሾܣሺݐሻ − ଴ሿܣ ଵ

ை஺௉ሺ௧బሻ
− ሾ1 − ݇ሺݐሻሿቅ.  `       (16) 

To express the POADR analytically, we first need to estimate the old age threshold ܴሺݐሻ. 

To this end, we derive the first-order approximation for the inverse function in Eq. (8) (noticing 

that ݇ሺݐ଴ሻ = 1 by definition): 

݁ିଵ ቆݐ଴,
݁ሺݐ଴, ܴ଴ሻ

݇ሺݐሻ
ቇ ≈ ݁ିଵ൫ݐ଴, ݁ሺݐ଴, ܴ଴ሻ൯ +

1
݁௫

ᇱ ሺݐ଴, ܴ଴ሻ
ቈ
݁ሺݐ଴, ܴ଴ሻ

݇ሺݐሻ
− ݁ሺݐ଴, ܴ଴ሻ቉ = 

ܴ଴ +
ଵ

௘ೣ
ᇲ ሺ௧బ,ோబሻ

ቂ
௘ሺ௧బ,ோబሻ

௞ሺ௧ሻ
− ݁ሺݐ଴, ܴ଴ሻቃ, (17) 

where, ݁௫
ᇱ ሺݐ଴, ܴ଴ሻ is the partial derivative with respect to age of ݁ሺݐ, ݔ ሻ atݔ = ܴ଴ and ݐ =   .଴ݐ

Substituting (17) into (8), we get the desired relation for the old age threshold: 

ܴሺݐሻ ≈ ሻݐሺܣ +  ݇ሺݐሻ ቊܴ଴ +
1

݁௫
ᇱ ሺݐ଴, ܴ଴ሻ

ቈ
݁ሺݐ଴, ܴ଴ሻ

݇ሺݐሻ
− ݁ሺݐ଴, ܴ଴ሻ቉ − ଴ቋܣ = 

ሻݐሺܣ + ݇ሺݐሻሺܴ଴ − ଴ሻܣ + ሾ1 − ݇ሺݐሻሿ ௘ሺ௧బ,ோబሻ

௘ೣ
ᇲ ሺ௧బ,ோబሻ

, (18) 

To simplify the equation for the old age threshold (18), we note that ݁௫
ᇱ ሺݐ଴, ܴ଴ሻ = −1 +

,଴ݐሺߤ ܴ଴ሻ݁ሺݐ଴, ܴ଴ሻ and rewrite Eq. (18): 

ܴሺݐሻ ≈ ሻݐሺܣ + ݇ሺݐሻሺܴ଴ − ଴ሻܣ − ሾ1 − ݇ሺݐሻሿ ௘ሺ௧బ,ோబሻ

ଵିఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ
. (19) 

The first two terms in (19) describe the shift of the death distribution at the age corresponding to 

ܴ଴ in the original distribution. The last term shows the additional correction to the old age threshold 

due to mortality compression/expansion. In the case of mortality expansion, the old age threshold 

increases by more than the pure shift. In the case of compression, it increases by less. 
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Having obtained the change in the old age threshold (19), we move on to estimate the 

corresponding change in the survival function. This is necessary in order to determine the old-age 

population. Substituting ݔ = ܴሺݐሻ in (12),  

݈൫ݐ, ܴሺݐሻ൯ = ݈ ቀݐ଴, ଴ܣ −
஺ሺ௧ሻିோሺ௧ሻ

௞ሺ௧ሻ
ቁ. (20) 

Combining this with (19) and using first-order approximations leads to 

݈൫ݐ, ܴሺݐሻ൯ ≈ ݈ ቀݐ଴, ܴ଴ −
ଵ

௞ሺ௧ሻ

ሾଵି௞ሺ௧ሻሿ௘ሺ௧బ,ோబሻ

ଵିఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ
ቁ ≈ ݈ሺݐ଴, ܴ଴ሻ − ݈௫

ᇱ ሺݐ଴, ܴ଴ሻ ଵ

௞ሺ௧ሻ

ሾଵି௞ሺ௧ሻሿ௘ሺ௧బ,ோబሻ

ଵିఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ
=

݈ሺݐ଴, ܴ଴ሻ +
ఓሺ௧బ,ோబሻ௟ሺ௧బ,ோబሻ

௞ሺ௧ሻ

ሾଵି௞ሺ௧ሻሿ௘ሺ௧బ,ோబሻ

ଵିఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ
≈ ݈ሺݐ଴, ܴ଴ሻ ቄ1 + ሾ1 − ݇ሺݐሻሿ ఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ

ଵିఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ
ቅ. (21) 

The life-table survival to the old age threshold is not influenced by the mortality shift. It is only 

affected by the mortality compression or decompression. It increases with compression and 

decreases with mortality expansion. 

Because the life-table population at old ages is the product of the number surviving to the 

old age threshold multiplied by the remaining life expectancy at that age and because the latter is, 

by definition, time constant in the definition of the prospective old age, a relation similar to (21) 

applies to the life table prospective old-age population: 

ሻݐሺܲܣܱܲ = ׬ ݈ሺݐ, ݔሻ݀ݔ
ஶ

ோሺ௧ሻ ≈ ଴ሻݐሺܲܣܱܲ ቄ1 + ሾ1 − ݇ሺݐሻሿ ఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ

ଵିఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ
ቅ. (22) 

Equation (22) shows that the prospective old-age population does not depend on the mortality shift, 

but does depend on the extent of compression/expansion. It will increase with mortality 

compression and decrease with expansion. Another consequence of (22) is that the POADR will 

fall in the case of a mortality decline accompanied by an expansion or pure shift. 

Using the equation for the survival function, an alternative approximation of the 

denominator in (11) is: 

ሻݐሺܲܣܹܲ = න ݈ ቆݐ଴, ଴ܣ −
ሻݐሺܣ − ݔ

݇ሺݐሻ
ቇ ݔ݀

ோሺ௧ሻ

ௐ
= ݇ሺݐሻ න ݈ሺݐ଴, ݖሻ݀ݖ

஺బି
஺ሺ௧ሻିோሺ௧ሻ

௞ሺ௧ሻ

஺బି
஺ሺ௧ሻିௐ

௞ሺ௧ሻ

≈ 
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݇ሺݐሻܹܲܲܣሺݐ଴ሻ − ݇ሺݐሻ݈ሺݐ଴, ܹሻ ቂܣ଴ −
஺ሺ௧ሻିௐ

௞ሺ௧ሻ
− ܹቃ + ݇ሺݐሻ݈ሺݐ଴, ܴ଴ሻ ቂܣ଴ −

஺ሺ௧ሻିோሺ௧ሻ

௞ሺ௧ሻ
− ܴ଴ቃ. (23) 

Substituting ܴሺݐሻ from (18), rearranging and keeping only the first-order terms: 

ሻݐሺܲܣܹܲ ≈ ݇ሺݐሻܹܲܲܣሺݐ଴ሻ − ݈ሺݐ଴, ܹሻሼ݇ሺݐሻܣ଴ − ሻݐሺܣ + ሾ1 − ݇ሺݐሻሿܹሽ − 

݈ሺݐ଴, ܴ଴ሻሾ1 − ݇ሺݐሻሿ
݁ሺݐ଴, ܴ଴ሻ

1 − ,଴ݐሺߤ ܴ଴ሻ݁ሺݐ଴, ܴ଴ሻ
≈ ݇ሺݐሻܹܲܲܣሺݐ଴ሻ + ݈ሺݐ଴, ܹሻ × 

ሼܣሺݐሻ − ଴ܣ + ሾ1 − ݇ሺݐሻሿሾܣ଴ − ܹሿሽ − ሾ1 − ݇ሺݐሻሿ ை஺௉ሺ௧బሻ

ଵିఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ
. (24) 

Finally, combining this with (11) and (22) and noticing the base-year equalities between the 

conventional and prospective indicators, we obtain: 

ሻݐሺܴܦܣܱܲ =
ሻݐሺܲܣܱܲ

ሻݐሺܲܣܹܲ
≈ 

଴ሻݐሺܲܣܱ ൜1 + ሾ1 − ݇ሺݐሻሿ ,଴ݐሺߤ ܴ଴ሻ݁ሺݐ଴, ܴ଴ሻ
1 − ,଴ݐሺߤ ܴ଴ሻ݁ሺݐ଴, ܴ଴ሻൠ

݇ሺݐሻܹܲܣሺݐ଴ሻ + ݈ሺݐ଴, ܹሻሼܣሺݐሻ − 0ܣ + ሾ1 − ݇ሺݐሻሿሾ0ܣ − ܹሿሽ − ሾ1 − ݇ሺݐሻሿ ଴ሻݐሺܲܣܱ
1 − ,଴ݐሺߤ ܴ଴ሻ݁ሺݐ଴, ܴ଴ሻ

≈ 

଴ሻݐሺܴܦܣܱܲ ቈ1 + ሾ1 − ݇ሺݐሻሿ
,଴ݐሺߤ ܴ଴ሻ݁ሺݐ଴, ܴ଴ሻ

1 − ,଴ݐሺߤ ܴ଴ሻ݁ሺݐ଴, ܴ଴ሻ
+ ሾ1 − ݇ሺݐሻሿ −

݈ሺݐ଴, ܹሻ

଴ሻݐሺܲܣܹ
× 

ሼܣሺݐሻ − ଴ܣ + ሾ1 − ݇ሺݐሻሿሾܣ଴ − ܹሿሽ + ሾ1 − ݇ሺݐሻሿ
଴ሻݐሺܲܣܱ

଴ሻሾ1ݐሺܲܣܹ − ,଴ݐሺߤ ܴ଴ሻ݁ሺݐ଴, ܴ଴ሻሿ
቉ = 

଴ሻݐሺܴܦܣܱܲ ቊ1 − ሾܣሺݐሻ − ଴ሿܣ
݈ሺݐ଴, ܹሻ

଴ሻݐሺܲܣܹ
+ 

ሾ1 − ݇ሺݐሻሿ ቂ1 −
௟ሺ௧బ,ௐሻ

௉ௐ஺௉ሺ௧బሻ
ሺܣ଴ − ܹሻ +

ை஺஽ோሺ௧బሻାఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ

ଵିఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ
ቃቅ. (25) 

 

The effect of a positive shift in (25) is always negative, while the sign of the effect of 

compression depends on the pivotal age ܣ଴. When ܣ଴ is set equal to ܴ଴, as we do here, the effect 

of the compression in (25) is typically positive, because the ratio 
ௐ஺௉ሺ௧బሻ

௟ሺ௧బ,ௐሻ
 , the average duration of 

life at ages ܹ to ܴ଴ for people surviving to age ܹ, does not differ much from the upper limit ܴ଴ −

ܹ. For example, in the case of French women, with ܹ = 20 and ܴ଴ = 65, the expression 1 −
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௟ሺ௧బ,ௐሻ

ௐ஺௉ሺ௧బሻ
ሺܴ଴ − ܹሻ was -0.23 in 1900, -0.07 in 1950 and only -0.02 in 2013. These numbers were 

small as compared to the magnitude of the last summand in the expression for the compression 

effect in (25) where 
ை஺஽ோሺ௧బሻାఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ

ଵିఓሺ௧బ,ோబሻ௘ሺ௧బ,ோబሻ
 was 1.04 in 1900, 0.78 in 1950, and 0.71 in 2013. 

Hence, the effects of both shift and compression on the change of the POADRs are typically 

opposite in sign to their effects on the OADRs.  

One may find it counterintuitive that the compression effect in (25) depends on the choice 

of the parameter ܣ଴ describing the mortality shift. Parameter ܣ଴ determines the age to which the 

mortality shift refers. Shifts of the mortality curve at all other ages are described by the 

combination of the shift and the compression parameters (4). The higher the age ܣ଴, the more the 

compression effect in (25) is ‘contaminated’ by the effects of shifts at younger ages. Our numerical 

assessments, not presented here in detail, suggest the compression effect remains positive at all ܣ଴ 

below age 90. One important implication of this observation is that the effect of compression with 

respect to the modal age, often used to describe the mortality shift, is positive. 

Typically, the effect of a shift at age ܣ଴ = ܴ଴ in (25) dominates the effect of compression 

and the net effect of mortality decrease is negative. To develop the intuition for this observation, 

consider the limit case of a population with negligible mortality at ages between W and ܴ଴. In that 

population, (25) simplifies to: 

ሻݐሺܴܦܣܱܲ ≈ ଴ሻݐሺܴܦܣܱܲ ቄ1 − ሾܣሺݐሻ − ଴ሿܣ ଵ

ோబିௐ
+ ሾ1 − ݇ሺݐሻሿܱܴܦܣሺݐ଴ሻቅ, (26) 

and the effect of a shift will be about −
ଵ

଺ହିଶ଴
≈ −0.02 when the mortality shift is one year, while 

the effect of a one percent compression will be 0.01 ∙  ଴ሻ, that is about 0.003 per oneݐሺܴܦܣܱ

percent of compression assuming a typical ܱܴܦܣሺݐ଴ሻ ≈ 0.3. To have an idea of the relative 

contributions of a shift and a compression at age ܴ଴ =65, consider a case when mortality 

compresses to age ܣ଴
∗ = 100 years. In such a scenario, a one percent compression will result in a 
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shift of 0.01ሺ100 − 65ሻ = 0.35 years at age 65. Given the shift and compression effect 

coefficients in (26), the scenario will result in a change in the POADR of −0.02 ∙ 0.35 = −0.007 

due to the shift and a change of 0.003 due to the compression effect.  

Empirically, the relative effect of shifts is even stronger because mortality declines over 

time even at age 100. The average annual mortality shift at age 65 in low-mortality Human 

Mortality Database countries after 1950 was about 0.2 years and the annual compression was about 

0.3%. The effect of the observed shifts on the POADR has been stronger than the effect of the 

observed compressions by about four times, 0.02 ∙ 0.2/ሺ0.003 ∙ 0.3ሻ ≈ 4.4. Hence, the POADR, 

typically, decreases, as mortality declines. 

One may naturally be interested in whether our conclusion about the oppositely signed 

effects of shifts and compressions on the two old-age dependency ratios, when the effect of a shift 

exceeds the effect of a compression, is more generally applicable to cases where ܴ଴ is higher than 

65. We did not study this aspect in detail, but numerical analysis of (25) and (15) suggests that our 

conclusions about the signs of the effects remain valid at all ܴ଴’s up to age 90.  

Comparing (16) to (26), we see that the change in the POADR will, approximately, be 

−OADRሺt଴ሻ, i.e., currently, about -0.3, times the change in the conventional OADR for a 

population with negligibly low mortality at working ages.  

 

5. Empirical assessment 

We examine the accuracy of the first-order approximations based on empirical data from the 

Human Mortality Database (University of California (Berkeley) and Max Planck Institute for 

Demographic Research (Rostock), 2018) that covers 31 currently low-mortality populations and 

12 currently higher mortality populations.  

In our empirical study, we set ܴ଴ equal to age 65 for consistency with the commonly used 

old age threshold. We also define ܣ଴ = ܴ଴ = 65 to simplify the interpretation of the shift 
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parameter. To estimate the amounts of mortality shift and compression, ݇ሺݐሻ, we used Eq. (6) and 

a similar equation for the standard deviation of ages at death above age x (Ediev 2013a): 

,ݐሺߪ ሻݔ = ݇ሺݐሻߪ ቀݐ଴, ଴ܣ −
஺ሺ௧ሻି௫

௞ሺ௧ሻ
ቁ. (27) 

We apply both equations to the pivotal age ܣሺݐሻ to obtain: 

ఙ൫௧,஺ሺ௧ሻ൯

ఙሺ௧బ,஺బሻ
=

௘൫௧,஺ሺ௧ሻ൯

௘ሺ௧బ,஺బሻ
= ݇ሺݐሻ (28) 

We estimate the annual shift ߜሺݐሻ = ሻݐሺܣ − ݐሺܣ − 1ሻ by setting ݐ଴ = ݐ − 1 and solving the first 

equality in (28) numerically and then estimating the compression coefficient ݇ሺݐሻ from the second 

equality. 

 

Figure 4: Estimates of annual shifts and compressions of the life table distributions of deaths, 

entire Human Mortality Database: men, women 

 

In Figure 4, we show estimates of annual changes in the shift and compression parameters, 

computed separately for men and women, using data from the Human Mortality Database 

countries. In agreement with the previous empirical studies and theories (Fries, 1980; Wilmoth 

and Horiuchi, 1999; Ediev, 2013a, 2013b), a positive period mortality shift is, typically, 

accompanied by the compression of the age at death distribution. Negative shifts, on the other 

hand, usually accompany mortality expansion, which is also in agreement with theory (Ediev 

2011). Our database covers a wide range of the shift and compression values, and of their 

combinations. The large number of negative shifts in low mortality countries seen in the figure is 

not a surprise, as the annual mortality changes are rather volatile and may easily go against the 

main trend. On average, though, the distributions of age at death were shifting rightwards with a 

slight compression. The annual mortality shift in low-mortality Human Mortality Database 

countries after 1950 was about 0.2 years and the annual compression was about 0.3%. 
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Using the Human Mortality Database data, we ran linear regressions with no intercept using 

annual changes in the OADR and POADR as independent variables and taking annual shifts and 

compressions as dependent variables. We present the results in Table 2. There we pooled together 

results for both the high- and low-mortality populations, except for observations based on very 

small populations like the New Zealand-Maori that were excluded from the analysis. All effects 

are highly significant. The p-values are not shown in the table because they are all negligible. As 

expected from our formal inquiry, the effects of shift and compression are of opposite sign, and 

the effects change sign when switching from the conventional to the prospective old-age 

dependency ratio. Our empirical estimates of effects, about -0.006 for a one-year shift and 0.2 for 

a one-percent compression, on the change in the POADR are somewhat different from the rough 

assessments based on the first-order approximation (26), which were -0.02 and 0.3 respectively. 

The empirical relation between the changes of the POADR and the OADR, however, with the 

POADR change being approximately -0.38 times the change in the OADR, is close to our first-

order approximation of -0.3 times, as we discussed above. 

 

Table 2: Regression results for the shift and compression effects (linear model, no intercept) 

on the annual changes of ܱܴܦܣሺݐሻ and ܱܴܲܦܣሺݐሻ: entire Human Mortality Database, men, 

women, excluding small-size populations (Iceland, New Zealand--Maori, and Luxemburg) 

Indicator Sex Shift effect Compression effect R2 

 ሻ women 0.0170 (0.0001) -0.356 (0.002) 0.961ݐሺܴܦܣܱ

 ሻ men 0.0139 (0.0001) -0.294 (0.002) 0.929ݐሺܴܦܣܱ

 ሻ women -0.0061 (0.0001) 0.171 (0.001) 0.862ݐሺܴܦܣܱܲ

 ሻ men -0.0058 (0.0001) 0.159 (0.002) 0.750ݐሺܴܦܣܱܲ

Note: numbers in the parentheses indicate standard errors of regression coefficients.  
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Figure 5: Increments of life-table Prospective Old-Age Dependency Ratio (POADR) divided 

by the initial Old-Age Dependency Ratio (OADR) vs the increments of Old-Age Dependency 

Ratio (OADR) in model life tables: men, women, Coale-Demeny and United Nations model 

life tables’ families.  

 

Our analytical approximations for regimes with low mortality in the working ages suggest the 

POADR change should be roughly equal to the minus OADR multiplied by the OADR change. 

To check validity of this approximation, in Figure 5 we present the POADR increments divided 

by the initial OADR versus OADR increments in model life tables (each model life table compared 

to another one with one year longer life expectancy at birth from the same family of model life 

tables). With the exception of cases with low life expectancy at birth (below 60 years) the model 

life tables produce patterns consistent with our analytical findings. The anomalous results at low 

life expectancies may be due to two factors. First, in that range our approximations may be too 

rough. Second, at low life expectancy the model life tables themselves could be problematic. UN 

and Coale-Demeny model life tables differ most from one another when life expectancy is low, 

possibly because in that range they are based more on analytic approximations and less on 

observations. 

 

6. Conclusion 

The OADR assumes that the old age starts at some fixed age regardless of time or place. 

Nevertheless, in a world where life expectancy is increasing, where people are often healthier at 

given ages than they were in the past, where age-specific cognitive functioning is improving, 

where older people are now more educated than they were in the past, and where people in OECD 

countries will generally be facing higher normal pension ages, another measure of aging, consistent 

with these changes, seems appropriate. The POADR is such a measure.  



25 
 

Population aging, viewed from the perspective of the POADR looks very different from 

the picture provided by the OADR. Sanderson and Scherbov (2015a) showed that faster increases 

in life expectancy lead to slower rates of population aging when measured by the percentage 

increase in the POADR, in contrast to the faster rates of population aging when measured by the 

percentage increase in the OADR.  

We show why those differences were observed and, indeed, that they were predictable 

given the sorts of shifts and compressions that have been observed. Here, we have shown that, in 

a wide variety of life table populations, annual changes in OADRs and POADRs move in opposite 

directions. Ediev’s (2013a) shift-compression model provides an analytic two-parameter 

specification of the age distribution of adult deaths. We used that model to provide analytic 

expressions for both the OADR and the POADR in terms of shift and compression parameters. 

The theoretical expressions that we obtained predicted that the observed negative relationship 

between annual changes in OADRs and POADRs is exactly what we should expect to see. We 

estimated the shift and compression parameters using data from the countries in the Human 

Morality Database. The data showed that the change in the POADR was around -0.38 times the 

change in the OADR. Our theoretical approximation predicted that it would be around -0.3 times 

the change in the OADR.  

Decreasing period mortality in developed countries has been typically accompanied by a 

gradually diminishing mortality compression. Here, we show that these sort of changes will result 

in increasing numbers of people considered old even using the prospective definition. That number 

will stop increasing, however, if mortality compression stalls (Bongaarts 2005; Canudas-Romo 

2008) and gives way to a pure mortality shift. In either scenario, be it mortality compression or 

shift, our results show that, in life table populations, the number of people below the old age 

threshold marking the onset of the old age will grow faster than the number of people old, so that 

POADR will fall as lifespans increase. In non-stationary populations, there are factors, other than 
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mortality, that influence age structure. An earlier study (Sanderson and Scherbov 2015) of OADR 

and POADR changes in observed populations suggests, however, that the effects of fertility and 

migration on the changes in those aging indicators might be secondary compared to the effects of 

mortality that we have elucidated here. 
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The formal demography of prospective age:  

The relationship between the old age dependency ratio and the 

prospective old age dependency ratio  

 
Highlights 

 Inverse relationship between alternative responses of population ageing indicators to 
mortality is explained 

 Mortality shift and mortality compression push ageing indicators in opposite directions  

 Results of analysis of population dynamics depend crucially on whether the conventional 
or prospective old-age dependency ratios are used 

 Mortality shift and compression model is useful in analytically studying effects of 
mortality change 

 


