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Abstract  17 

Several model inter-comparison projects (MIPs) have been carried out recently by the climate, 18 

hydrological, agricultural and other modelling communities to quantify modelling uncertainties 19 

and improve modelling systems. Here we focus on MIP design for large-scale water quality models. 20 

Water quality MIPs can be useful to improve our understanding of pollution problems and facilitate 21 

the development of harmonized data setsestimates of current and future water quality. This can 22 

provide new opportunities for assessing  robustness in estimates of water quality hotspots and 23 

trends, improve understanding of processes, pollution sources, water quality model uncertainties, 24 

and to identify priorities for water quality data collection and monitoring. Water quality MIP design 25 

should harmonize relevant model input datasets, use consistent spatial/temporal domains and 26 

resolutions, and similar output variables to improve understanding of water quality modelling 27 

uncertainties and provide harmonized water quality data that suit the needs of decision makers and 28 

other users. 29 

 30 

Highlights  31 

• Model inter-comparison projects (MIPs) can identify robustness of  water quality hotspots 32 

and trends 33 

• Water quality MIPs can improve understanding of pollution causes and model 34 

uncertainties 35 

• MIP design should focus on using consistent input datasets and harmonize output variables, 36 

and spatial and /temporal resolutions,  37 

• MIPs of lumped models should focus on pollutant loadings at river basin outlets  38 

• MIPs of grid-based models can compare spatial water quality heterogeneity within basins. 39 

  40 
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1. Introduction  41 

In the last decade, there has been a strong focus on global and regional model inter-comparison 42 

projects (MIPs), which  in various research fields, including climate, hydrology (water quantity) 43 

and agriculture (crop) modelling.have been used to contribute to a comprehensive and consistent 44 

picture of model-derived insights in several fields, including climate, hydrology (water quantity) 45 

and agriculture (crop) modelling. The concept of MIP offers a framework to consistently evaluate 46 

and compare models, and associated model input, structural, and parameter uncertainty under 47 

different objectives (e.g. climate variability and change, model performance, human impacts and 48 

developments). Some of the most representative global MIPs include the Coupled Model Inter-49 

comparison Project (CMIP) [1], the Agricultural Model Inter-comparison Project (AgMIP) [2], 50 

WATCH Water Model Inter-comparison Project (WaterMIP) [3,4] and the Inter-Sectoral Impact 51 

Model Inter-comparison Project (ISIMIP) [5]. These MIPs were mainly designed to better 52 

understand past, present and future climate changes and associated impacts on respective sectors 53 

(e.g. hydrology, agriculture, biomes, energy). One of the important goals of MIPs is to make the 54 

multi-model output publically available in a standardized format (e.g. netCDF). 55 

 56 

While there has been a significant amount of research and publications on MIPs and multi-model 57 

assessments for water availability, limited multi-model assessments for large-scale water quality 58 

studies exist [6,7]. Water quality problems exist in many parts of the world [8,9] and these issues 59 

may intensify due to climate change and socio-economic developments [10]. Robust estimates of 60 

current and future changes in water quality are needed to achieve sustainable management of clean 61 

accessible water for all, as required by the Sustainable Development Goal for clean water and 62 

sanitation (SDG 6) for 2030. 63 

 64 
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A large-scale water quality model is defined here as a model capable of simulating one or more 65 

water quality variables (pollutants) on a scale that exceeds the size of a single river basin. , which 66 

we define as the upstream land surface area contributing to the streamflow at the basin outlet (river 67 

mouth). Some examples of large-scale nutrient models are Global NEWS-2 [11,12], SPARROW 68 

[13], IMAGE-GNM [14,15], HYPE [16] and MARINA [17]. In addition, large-scale water quality 69 

models including nutrients, salinity (e.g. total dissolved solids (TDS)) and organic pollution 70 

(biochemical oxygen demand (BOD)) have been developed, such as WaterGAP-WorldQual 71 

[18,19] and GWAVA-WQ [20,21].  72 

 73 

Development of large-scale nutrient models started in the 1990s, and since 2010 there has been a 74 

strong growth in the number of large-scale models for other pollutants too (Figure 1). For instance, 75 

global models have been recently developed for river water temperature [22-24], river water 76 

organic pollution [25], micro-organisms [26-28], chemicals [29], plastics [30-32], nanomaterials 77 

[33] and pesticides (insecticides) [34]. Most of the large-scale water quality models are spatially-78 

explicit (commonly grid-based) and dynamic (i.e. account for temporal variability). The recent 79 

strong growth in the number of large-scale water quality models increases opportunities for 80 

comparing results from various models per water quality variable.  81 

[Fig 1] 82 

 83 

In this paper, we review work published on model inter-comparison of large-scale water quality 84 

models, discuss reasons to move forward on water quality MIPs and give suggestions for future 85 

directions on water quality MIP design. We first discuss the lessons learnt from previous MIPs in 86 

other sectors (climate, water) (Section 2.1) and from previous large-scale water quality model inter-87 

comparison studies (Section 2.2). We then consider opportunities (Section 3.1), challenges and 88 
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recommendations (Section 3.2) for design of water quality MIPs. We conclude by summarizing 89 

our main findings and examining how water quality MIPs could be designed to provide consistent, 90 

harmonized water quality model output datasets, which are more useful for policy makers and other 91 

users (Section 4). 92 

 93 

 94 

2. Previous large-scale model inter-comparison studies  95 

2.1 Lessons learnt from MIPs in other sectors  96 

In ISIMIP, modelling protocols have been developed with an international network of climate-97 

impact modellers to contribute to a comprehensive and consistent picture of the world’s impacts 98 

under different climate-change scenarios across affected sectors (e.g. water, agriculture, energy, 99 

forestry, marine ecosystems) and spatial scales [35,36]. Overall, the focus of MIPs and associated 100 

concepts and modelling protocols is currently on understanding how model predictions vary across 101 

different sectors and different climate change scenarios. Within CMIP, the aim is to discover why 102 

different climate and earth system models provide different outputs despite receiving similar model 103 

input and identifying aspects of the simulations in which "consensus" in climate model projections 104 

or common problematic features exist [37]. To better understand the model spread and to reduce 105 

the associated uncertainties, a comparison of model performance and the sensitivity of the models 106 

to different warming rates may need to be studied further [38,39]. The consistent modelling 107 

framework of ISIMIP and CMIP using common input datasets and output variables has generated 108 

important datasets used by a broad research community and policy makers. 109 

 110 

2.2 Previous water quality MIPs  111 
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Compared to other sectors (climate, water availability, agriculture) fewer MIP studies or multi-112 

model assessments exist for water quality. Previous MIP studies for large-scale water quality have 113 

mainly focussed on nutrients. Comparisons of model results between different nitrogen (N) export 114 

models have been made, amongst others, at global scale [7], for Chinese basins [40], for the United 115 

States [6] and for selected sub-basins [e.g. 41,42]. These analyses have overall found fairly 116 

consistent loading predictions between similarly scaled models, despite varying levels of model 117 

complexity and differences in input data sources. The focus of most previous nutrient MIPs has 118 

been on comparing nutrient loads (e.g. kg N y-1) with less attention on source apportionment. An 119 

exception is McCrackin et al. [6], where comparing results of SPARROW and Global NEWS-2 for 120 

the United States showed that for several regions similar N sources were identified by both models.  121 

 122 

A model inter-comparison has also been published for global river water temperatures [43] using 123 

global grid-based (0.5°) simulations of the water temperature modules of the global hydrological 124 

models of PCR-GLOBWB [23], VIC-RBM [24,44], and WaterGAP-WorldQual [22]. All three 125 

models were run using consistent model input for climate forcing, land mask, basin delineation and 126 

river flow direction (routing network). The three river water temperature modules show similar 127 

spatial patterns of water temperature [43] and identified similar regions with highest water 128 

temperature increase under climate change. However, the magnitude of water temperature changes 129 

varied, and this was mainly attributed to different representations of impacts of hydrological change 130 

and snowmelt inputs/ice cover processes [43].   131 

 132 

These previous nutrient/water temperature model inter-comparison studies have shown the 133 

importance of evaluating the performance of water quality models and highlighted the need of 134 

common input data to provide consistent water quality model output for comparison [41,43,45]. 135 
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 136 

3. Opportunities, challenges and recommendations for design of water quality MIPs   137 

3.1. Opportunities to move forward on water quality MIPs  138 

Comparing water quality model results can lend credibility to water quality simulations and 139 

identify areas for future model improvement [6]. Water quality MIPs could facilitate the 140 

development of harmonised model output data sets of the current water quality status and future 141 

scenarios based on the water quality model ensemble. Overall, harmonized water quality model 142 

output datasets based on multiple models are more robust than results of a single water quality 143 

model, providing several new opportunities that are briefly discussed below. 144 

 145 

1. Identify robust water quality (pollution) hotspots 146 

Water quality MIPs can provide more better understanding of the robustness of identification 147 

identified of water pollution hotspots under present-day and under future climate and socio-148 

economic conditions than are currently available. Limited knowledge in particular exist on how 149 

pollution hotspots will develop over the next decades. Using results from multiple water quality 150 

models will provide a more comprehensive picture and assessment of the robustness of identified 151 

pollution hotspots under certain future scenarios than results of a single water quality model. This 152 

information is needed by decision makers and water managers to assess what adaptive solutions 153 

should be implemented in specific regions to improve the quality of water resources for human 154 

water uses and ecosystem health. 155 

 156 

2. Assess robust trends in water quality 157 

Water quality model inter-comparison can be used to identify assess robustness of simulated trends 158 

in water quality. Various water quality models might show different responses and sensitivities to 159 
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changes in climate, land use, and socio-economic development. Ensemble simulations of water 160 

quality models might therefore be more useful than stand-alone models by providing a more 161 

comprehensive projection and increasing understanding of and anticipatingpossible future 162 

pollution changes.  163 

 164 

3. Improve understanding of processes and sources of water pollution 165 

Water quality MIPs can contribute to improved understanding of water quality processes and 166 

contribution of different pollution sources. Source apportionment across wide geographical 167 

domains can only be achieved through the use of large-scale water quality models, due to a lack of 168 

measurements at such scales [6,46]. Comparison of multi-water quality model outputs can provide 169 

a more comprehensive assessment would allow more robust estimates of sources and dominant 170 

pollution processes, . MIPs can identify agreement on identified pollution sources apportioned by 171 

different water quality models, which is which are needed to inform and develop effective water 172 

quality solutions in certain regions. 173 

 174 

4. Increase understanding of water quality model uncertainties   175 

Ideally, observed water quality monitoring records are used to validate water quality model 176 

estimates and assess model uncertainties for regions worldwide. However, In in comparison to 177 

river discharge and meteorological data, there is a significant lack of water quality measurements 178 

for many regions worldwide (e.g. Africa) [8] to evaluate water quality model performances and 179 

uncertainties [47] . A consistent comparison of the results of different water quality models 180 

contributes to lending credibility to water quality estimates. In addition, sensitivity analyses, 181 

perturbing water quality models with different input will enhance understanding of water quality 182 
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model differences and uncertainties related to the structure and parameterization of different water 183 

quality models.   184 

 185 

 186 

5. Identify and set priorities for water quality data collection and monitoring  187 

Across many scientific domains, including water quality, monitoring and modelling are 188 

complementary approaches. The results of multi-model assessments of water quality could 189 

contribute to setting priorities and identifying regions for water quality data collection and 190 

monitoring [48]. 191 

 192 

 193 

3.2 Challenges and recommendations for water quality MIP design  194 

A major challenge for water quality MIPs, so far, has been the limited number of large-scale water 195 

quality models per water quality variable (pollutant) available to compare and provide ensembles 196 

of water quality model results. However, several new large-scale water quality models have been 197 

developed over recent years (see Section 1; Supplementary Information Table S1) [47], providing 198 

new opportunities for water quality MIPs. Below we discuss the main challenges of designing a 199 

water quality model inter-comparison and propose recommendations to ensure useful harmonized 200 

water quality data are produced to suit the needs of decision makers and other users. 201 

 202 

Challenge 1: Water quality models differ in spatial and temporal resolutions and domains 203 

Water quality models differ both in terms of spatial and temporal domains (e.g. use of different 204 

basin delineations and model simulation periods), as well as temporal and spatial resolutions. Some 205 

models simulate daily or monthly water quality estimates whereas others simulate annual average 206 
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values. Thus, when comparing models using different temporal resolutions, methods must be 207 

adopted to aggregate fine temporal scale estimates to compare with coarse-scale water quality 208 

estimates (e.g. select average year or use multiple years). In addition to temporal aspects, spatial 209 

resolution can also differ between models. Some water quality models are grid-based and spatially 210 

resolved at fine scales (e.g. WaterGAP-WorldQual). These are suitable to capture spatial 211 

heterogeneity of water quality,  while others are lumped at basins or sub-basins and are designed 212 

to compute basin-wide pollutant loadings or pollutant loadings of rivers to coastal zones (e.g. 213 

Global NEWS-2, SPARROW). Overall, the scale for comparison is generally limited to lowest 214 

temporal and spatial resolution and domain. MIPs including lumped water quality models (or a 215 

combination of lumped and grid-based model water quality models) should therefore focus on 216 

basin aggregated level, comparing loadings/concentrations at basin outlets (river mouths). MIPs 217 

that solely include spatially-explicit (grid-based) water quality models are more suitable to compare 218 

spatial heterogeneity of water quality and relate to acceptable water quality levels for different uses 219 

(e.g. domestic, irrigation, industrial) and ecosystem health within a basin.  220 

 221 

We present An an illustrative example is presented for  comparison of spatially-explicit organic 222 

pollution, focussing on simulated mean BOD concentrations derived from four large-scale grid-223 

based water quality models, namely WaterGAP-WorldQual, GWAVA-WQ, VIC-QUAL  and the 224 

global BOD model of  Wen et al. [25] (Figure 2). We extracted Simulated simulated mean BOD 225 

concentrations from the model of Wen et al. [25] and global simulation of VIC-QUAL [49] at 226 

0.5°x0.5° were extracted for Europe. These We compared the mean BOD data were compared with 227 

high-resolution simulations (5’x5’) of GWAVA-WQ [20,21]  and WaterGAP-WorldQual [18] for 228 

Europe, which were aggregated to 0.5°x0.5° using nearest neighbour resampling and averaged over 229 

the period 1990-2000 (Figure 2). Overall,These results show that organic pollution hotspots are 230 
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roughly comparable but some differences exist due to differences in model structure, input datasets 231 

(e.g. hydrology) and pollution sources considered. For instance, lower BOD concentrations 232 

simulated by the model of Wen et al. [25], can be explained by the fact that this model focusses 233 

solely on BOD loadings from urban population and livestock, while the other models also consider 234 

organic pollution from manufacturing.  235 

 236 

The importance of using similar temporal/spatial resolutions strongly depends on the purpose of 237 

the water quality model inter-comparison. For instance, full consistencies in temporal/spatial 238 

resolution amongst water quality models might be essential when aiming at understanding the 239 

water quality processes or quantifying model uncertainties, but possibly less so when the purpose 240 

of the inter-comparison is the identification (locations and intensity) of water quality hotspots 241 

(Table 1). Nevertheless, the use of similar spatial and temporal domains, and preferably also 242 

resolutions, of water quality models are overall recommended in water quality MIP design to 243 

provide consistent water quality model output. 244 

 Recommendation 1: Use similar spatial and temporal domains and, preferably, also 245 

resolutions of water quality models in MIP design. However, not all models can be 246 

compared for the same purpose. For instance, MIPs of lumped water quality models should 247 

focus on pollutant loadings at river basin outlets, while MIPs solely including grid-based 248 

models can compare spatial water quality heterogeneity within basins. 249 

 250 

[Fig 2] 251 

 252 

  253 
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Challenge 2: Water quality models differ in reported output variables 254 

Water quality models show a high diversity in output variables, which complicates a direct 255 

comparison of model estimates. For instance, Some some water quality models focus on in-256 

stream concentrations (e.g. in mg/l) while other models simulate loads (e.g. in kg/yr) or area 257 

specific yields (e.g. in kg/km2 of basin/yr). In particular, nutrient models provide outputs for 258 

different nutrient forms. Several models focus on total nitrogen (TN) and total phosphorous (TP) 259 

(e.g. IMAGE-GNM, WaterGAP-WorldQual), whereas others (e.g. Global NEWS-2) simulate 260 

different forms of nitrogen, phosphorus, carbon and silica. We present An an illustrative example 261 

of comparison of river export of TN in loads (106 kg/yr) and yields (kg/km2/yr) for Global 262 

NEWS-2 [11] and IMAGE-GNM [14] models for a single year, 2000, is presented (Figure 3). The 263 

Global NEWS-2 model simulates different forms of nitrogen, i.e. dissolved inorganic nitrogen 264 

(DIN), dissolved organic nitrogen (DON) and particulate nitrogen (PN). The individual loads for 265 

each form were summed in order to provide TN estimates, which were then compared to 266 

estimates of TN loads generated with IMAGE-GNM. We compared The the TN river export from 267 

the grid-based IMAGE-GNM (0.5°) at basin outlet gridcells was compared with TN river export 268 

from similar basin outlets of Global NEWS-2. Comparison of simulated TN loads (Figure 3a) and 269 

yields (Figure 3b) from both global nutrient models shows rather similar basins with high or low 270 

TN river export. Worldwide, lower values of TN river export were found for IMAGE-GNM (37 271 

Tg N/yr) compared to Global NEWS-2 (45 Tg N/yr).  This might be related to differences in 272 

model structure, process descriptions and input data. For instance, the approaches to simulate N 273 

retentions in the terrestrial and aquatic systems differ greatly between both models, as do the use 274 

of hydrological input data and basin delineations. The differences can also be explained by the 275 

different purposes of the models: e.g. Global NEWS-2 for scenario analyses and IMAGE-GNM 276 

for improved, spatial-explicit understanding of the processes controlling nutrient export. Overall, 277 
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it iswe highly recommended to groupgrouping of water quality models per pollutant form and 278 

focus on similar output variables (e.g. total nitrogen concentrations, loads or yields) and units 279 

(e.g. mg/l, kg/km2/yr), in order to. This is needed to provide harmonized ensemble model outputs 280 

of water quality that can be used to identify in which regions models agree on simulated water 281 

quality changes,  that are useful forneeded for water quality management and decision making, 282 

and to assess areas for model improvements.  In line with model intercomparison projects within 283 

the climate community (e.g. CMIP6), a minimum ensemble size of three models is desired to 284 

assess the robustness of identified trends [50]. 285 

 286 

 Recommendation 2: Use similar model output variables per pollutant form for comparison of 287 

to provide insights in the robustness large-scale water quality models.of simulated pollution 288 

hotspots, trends and sources by large-scale water quality models.  289 

[Fig 3] 290 

 291 

Challenge 3: Water quality models use different input datasets 292 

Various water quality models use different climate forcing datasets, hydrological (discharge, 293 

runoff) input, reservoir, land use and waste-water treatment data and assumptions. This complicates 294 

direct comparison and understanding of differences in simulated water quality results between 295 

models. Therefore the use of similar model input datasets in water quality MIP design is strongly 296 

recommended to provide consistent water quality model results that are meaningful for water 297 

pollution management, decision-making and other possible uses. In global hydrological and land 298 

surface modelling, the development of the WATCH Meteorological Forcing Data [51], was a major 299 

accomplishment facilitating inter-comparison projects such as WaterMIP and ISIMIP. In a similar 300 

way, producing different input datasets for water quality can be an important step to provide 301 
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harmonized water quality results. The level of harmonization on input data might differ, as certain 302 

water quality variables might have different driving forces and sensitivities to various input 303 

datasets. For example, river water temperature MIPs would prioritize the use of similar climate 304 

forcing data and hydrological datasets (reservoirs) into various water temperature models, while 305 

inter-comparison of organic pollution and nutrients models would ideally require harmonization 306 

also on land use and waste-water treatment input datasets. Furthermore, the main purpose for water 307 

quality model inter-comparison is important to consider. For instance, harmonization on all model 308 

input is preferred, but not absolutely trivial for the identification of present-day pollution hotspots. 309 

In contrast, strict harmonization on all model input would beis essential when the focus of the MIP 310 

is on improved understanding of water quality processes and model uncertainties (Table 1).  311 

 Recommendation 3: Harmonize relevant input datasets to provide consistent output for water 312 

quality model inter-comparison.  313 

[Table 1] 314 

 315 

4. Discussion, conclusions and future outlook  316 

Large-scale MIPs such as CMIP, AgMIP and ISIMIP have contributed to a better understanding 317 

of important components of the Earth system and climate change impacts on various sectors, as 318 

well as the associated model uncertainties.  by bringing these modelling communities and  together 319 

and consistently comparing model output. Given the recent proliferation of water quality models 320 

(Figure 1) and the fact that many people around the world are affected by water quality 321 

deterioration [8,9], pollution-driven water scarcity [52,53], and water security threats [54], there is 322 

now both an opportunity and a clear need to implement regional and global water quality MIPs. 323 

 324 
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Water quality MIPs can provide consistent, harmonized ensemble water quality model outputs, 325 

which is important for water policy and decision making [55]. Water quality MIPs can also 326 

contribute to improved understanding of pollution processes and pollution sources [6]. This is 327 

particularly important in world regions where observed water quality data are sparse (e.g. Africa, 328 

parts of southern America, Asia) [8]. In addition, water quality MIPs can be used to assess water 329 

quality trends and pollution hotspots, both for present-day and future scenarios. Such information 330 

is needed to  assess potential strategies to provide clean water, both for human uses and ecosystems, 331 

and, to reduce pollution-driven water scarcity [52,53].  332 

 333 

To further improve large-scale water quality modelling we believe a more coordinated effort for 334 

inter-comparisons is recommended. This paper has discussed some of the main challenges and 335 

recommendations for water quality MIPs. Harmonising model output by using similar 336 

spatial/temporal resolution and domains (recommendation 1) and by using similar water quality 337 

output variables (concentration, loadings) (recommendation 2) is of major importance to provide 338 

consistent results. In addition, previous water quality MIPs have shown the importance of 339 

evaluating the performance of water quality models [41,45]. An important next step is to further 340 

harmonize on model input data (recommendation 3) and perform sensitivity analyses to improve 341 

understanding of uncertainties related to differences in water quality model structure. The extent 342 

of harmonization between input datasets will depend on the aim and ambition of the MIP. We think 343 

tThere is a clear need for MIPs comparing model output for a single quality variable. However, 344 

MIPs comparing model output for multiple water quality variables may also be useful to identify 345 

hotspots for water pollution for selected pollutants with similar sources [47,56].  346 

 347 
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Several MIPs of climate models and integrated assessment models have not only been informative 348 

for the scientific community, they have also influenced policy, especially in relation to climate 349 

change [57,58].  We think aA standardized set-up and input dataset on water quality observation 350 

and model outputs for both current conditions and for future scenarios will be helpful to address 351 

future water quality and scarcity problems, and identify where water quality improvement are 352 

needed. This could facilitate the development of harmonized water quality assessments that can 353 

contribute to sustainable management and solution(s) identification supporting the achievement of 354 

clean water for all (SDG6) in coming decades. 355 

 356 
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Figures and Tables 

 

 

Figure 1: Increase in number of large-scale water quality models per water quality variable since the 1990s. A 

large-scale water quality model is defined here as a model capable of simulating one or more water quality 

variables on a scale that exceeds the size of one river basin. See Supplementary Information Table S1 for an 

overview of published studies per large-scale water quality model. 
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Figure 2: Model comparison of simulated mean BOD concentrations for Europe converting spatial domains and 

resolutions and aggregating to average values for the period of 1990-2000. Global gridded 0.5° simulations were 

extracted from the global models VIC-QUAL [49] and the global BOD model of Wen et al. [25] (upper panels), 

and BOD simulations from GWAVA-WQ [21] and WaterGAP-WorldQual [18] for Europe at 5’x5’ were 

aggregated to 0.5°x0.5° (lower panels). The BOD model of Wen et al. [25] excludes grid cells with very low water 

availability, and a similar mask to exclude grid cells with low water availability was therefore applied to the other 

BOD models to allow for a consistent comparison. 
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Figure 3. Use of similar model output variables and units for model inter-comparison of global total nitrogen (TN) 

river export in loads (a) and yields (b). Different nitrogen forms simulated by Global NEWS-2 [11] (upper panels) 

were aggregated to compare with total nitrogen (TN) river export from IMAGE-GNM [14] (lower panels). 

Different nitrogen forms are dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and particulate 

nitrogen (PN). TN river export from the grid-based IMAGE-GNM (0.5°) at basin outlet gridcells were compared 

with TN river export from similar basin outlets of Global NEWS-2. 
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Table 1: Relative importance of proposed recommendations for the five main aims of water quality model inter-

comparison. Greyscale indicates the relative importance (light grey = relevant; middle grey = important; dark grey 

= highly needed (compulsory) to include in water quality MIP design)  
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domains and 
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output) 

R2: Use similar model 
output variables for 
comparison 
(harmonize on model 
output) 

R3: Harmonize on 
main model input 
datasets  

1. Identify robust water quality 
(pollution) hotspots 

   

2. Assess robust trends in water 
quality 

   

3. Improve understanding of 
processes and sources of water 
pollution 

   

4. Increase understanding of water 
quality model uncertainties   

   

5. Identify and set priorities for 
water quality data collection and 
monitoring 

   

 

 

 
 


