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Abstract 
Increasing number of power supply interruptions due to earthquakes leads to heavy direct and indirect 

economic losses and indicates the importance of resilience of electric power networks. The present study, 

focusing on seismic resilience of the electricity transmission grid, is looking to develop a basic 

framework for calculating power grid performance and resilience. This research, based on the network 

performance analysis and the graph theory, is using a prototype model of the electricity transmission grid 

to calculate the average performance of the system over recovery time, as the system resilience. This 

research distinguishes between the damaged facilities in the network by classifying damage levels to 

different degrees between zero and one and assigning performance values to each level to go beyond the 

binary statement of connectivity analysis, while having fast and simple calculations. 
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1. INTRODUCTION 

Electric power is essential to the continued functionality of critical infrastructure, lifelines and economic 

vitality of every community. Several natural and man-made hazards affect electricity grids and might lead to 

power outages or even blackouts, which have serious effects beyond the direct losses. Indirect economic 

losses can be up to five times higher than the direct economic losses [1]. Cascading failure, as a sequence of 

dependent failures, can lead to the spread of damage and thus exacerbates both the direct and indirect 

economic losses. For reducing the losses and recovery of the stricken region, rapid restoration of electric 

power is critical. 

Electric power system of Iran has high vulnerability to earthquakes. This vulnerability is defined by 

two reasons such as the fact that Iran is one of the most seismic countries in the world and its poor 

performance of electricity network against moderate earthquakes and not populated cities. On one hand, the 

Iranian’s power grid resilience against earthquakes has not been investigated in detail and comprehensive 

until now. On the other hand, in Iran the majority of power outages happen because of problems with 

electricity transmission and distribution rather than problems with electricity generation. The main focus of 

this study is on transmission grid because of high economic value of its components, high potential of 

widespread cascading effects and complicated and longer recovery time. So, the objective of this research is 

to develop a comprehensive framework for resilience analysis of power transmission grids due to 

earthquakes. The study will focus on modeling the power grids, performance analysis and network 

restoration in earthquake-prone areas, with a prototype model. 

2. THEORETICAL BACKGROUND: DEFINING AND MEASURING THE RESILIENCE 

Resilience represents the ability of a system to return to an equilibrium state after a temporary disturbance; 

the more rapidly it returns to equilibrium and the less it loses its function, the more resilient it would be. In 

more general, resilience means ‘‘the ability to recover from (or to resist being affected by) some shock, insult 

or disturbance’’ [2]. Due to the widespread use of resilience and its related implications in various fields, the 

wide variety of definitions and methods for measuring resilience is widely used in many subjects and 
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applications. The basic formula for measuring resilience, which represents the basis of this research, is shown 

in the Figure 1. Suppose that the area underneath the blue function of performance is equal to green shaded 

area or performance area, AP and the area over the blue function of performance is equal to red shaded area or 

losses area, AL. The total area, AT is the sum of these two areas. According to the definition [3, 4, 5], 

resilience over time of T, is equal to performance area or AP divided by time of T, that is a representation of 

resilience based on the level of performance. Performance area, AP is equal to loss area, AL subtracted from 

total area, AT. Thus, resilience is equal to one minus loss area divided by time of T, that is a representation of 

resilience based on the level of losses. 
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These representations of resilience are equivalent to each other, see Equation 1. But due to the challenges in 

calculating losses including indirect economic losses, calculation of resilience based on the performance 

level was selected for this research. Therefore, the average performance over defined duration of T can be 

defined as the resilience of the system over that period. So, in order to calculate the area under the 

performance curve, starting performance Ps, ending performance Pe, recovery time, and recovery function 

values over recovery time are needed to be calculated. Note that for the high-magnitude earthquakes, impact 

on structural systems are very fast. For example, the performance of power grid is severely affected and may 

be interrupted. Therefore, the performance curve drops rapidly. On the other hand, the time needed to retrieve 

the power grid should be as short as possible, usually within a few hours, a few days or eventually several 

weeks.  

 
Figure 1. Calculation of resilience based on the level of performance or losses [6]. 

3. NETWORK MODELING 

The main focus of this research is to develop a framework for seismic resilience assessment of the power 

transmissions grid based on the network performance analysis and the graph theory. For this purpose, 

assumed data is used for a pilot sample as a small scale preliminary study in order to evaluate feasibility of 

applying the suggested method and to improve it prior to a full-scale case study. It’s notable that by 

considering a part of the Iran’s electric power grid to reduce the volume of computations, one will get to 

neither significant changes of peak ground acceleration (PGA) values, nor closed loops, nor redundancies, 

nor a combination of series and parallel connections. Considering larger area with significant variation of 

PGA values, closed loops, redundancies and a combination of series and parallel connections, one will face 

with high volume data of power grid and consequently high volume of computations. Therefore, the 

possibility of focusing on the method will be lost. That's why a prototype model of the electricity 

transmission grid is used to calculate the average performance of the system over considered time. An 

appropriate method for modeling of this prototype and, in general, the electric power network (EPN) is graph 

theory. For more explanation, power plants and substations can be modeled as the graph vertices, while 

transmission lines, including towers and cables will be modeled as the graph edges. Figure 2a represents a 

prototype of the overhead power transmission grid, including 8 nodes (vertices) and 11 edges, that are two 

400 kV transmission lines in magenta color and nine 230 kV transmission lines in red color. Span length 

between transmission towers is 300 m. Edges labels stand for lengths of transmission lines. Figure 2b shows 

the distribution of considered PGAs on the grid. The PGA values are assumed to be between 0.1g to 0.9g, 

(g=9.81 m/s2). 
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a. A prototype network model for overhead 

power transmission grid 
 

b. Example of PGA distribution on the 

Grid 

Figure 2. A prototype network model and considered PGAs 

4. CLASSIFICATION OF EFFECTIVE PARAMETERS ON THE GRID PERFORMANCE 

In order to calculate the electric network resilience, the effect of the constituent components of EPN on the 

network resilience should be considered. In general, effective parameters on the performance of each 

component in a power grid are divided into two categories, see Table 1: 

1- Parameters related to the function of each component alone, which are considered by the vulnerability 

curves, e.g. voltage levels, height of towers, and so on. 

2- Parameters related to the performance of each component, considering its arrangement / positioning in 

the network, which are considered by the weight factors, e.g. number of lost loops after losing a line, 

distances between transmission lines and power plants and substations, changes on the shortest and longest 

paths between transmission lines and power plants and substations after losing a line, and so on. 

Table 1- Classification of effective parameters on the performance of each component 

of power transmission grid for calculation of its resilience. 

Effective 

parameters  

Function of each 

component, alone: 

vulnerability and/or 

fragility functions 

Element typology (macro-components, micro-components); 

Anchoring or unanchoring of the components; 

Voltage levels (low, medium, high); 

…  

Function of each 

component, considering 

its arrangement / 

positioning in the grid: 

weight factors 

Changes in the power grid structural / operative parameters such as 

connectivity level, clustering coefficient, degree correlation, betweenness 

centrality (based on shortest paths), … after losing a part of the network; 

Number of lost loops after losing a line; 

Distances between transmission lines and power plants and substations; 

Changes on the shortest and longest paths between transmission lines 

and power plants and substations after losing a line; 

… 

4.1. VULNERABILITY CURVES 

Considering the strong relationship between resilience and vulnerability, resilience can be calculated with 

help of the vulnerability functions, which are defined as the probability of losses or mean damage ratio 

(MDR) of the system (e.g. ratio of repair cost to replacement cost). Available studies in the field of 

vulnerability functions and also deriving vulnerability functions from fragility functions, make a potential 

support for resilience calculations using vulnerability functions. As shown in the Figure 3 by use of different 

vulnerability curves, which are different from each other for different EPN components, corresponding MDR 

for each component would be determined. In the absence of suitable curves for Iran, some synthetic curves, 

considering other available curves in the world such as UWG, HAZUS and FEMA were used, with agreeing 

that the vulnerabilities of the power transmission equipment are directly proportional to their working/ 

operating voltages. Also, the curves of the towers are considered to be higher than the curves of the cables 

because cable damage is usually the result of damage to the towers. So, by use of vulnerability curves, 

interaction of input, i.e. seismic hazard and system, i.e. EPN would be considered in the model. But there are 

a lot of different components on the network. Therefore, an appropriate engineering approach is needed to 

reduce the volume of computations and make simplification in the model. Dividing the vertical axis of 
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damage and finding the corresponding intervals on the horizontal axis of intensity measure (IM) can be a 

good solution to assign a damage value to each category. These divisions are not necessarily equal or linear. 

By changing the number of intervals, the accuracy, speed and simplicity of the method will also change. 

Then, in each interval, the average amount of the start and the end points of that interval is allocated to it, i.e. 

the numbers displayed in each interval on the axes of the Figure 4. Therefore, by dividing the vertical axis of 

MDR on the vulnerability curves and finding the corresponding intervals on the horizontal axis of IM, 

different levels of excitation accelerations will be classified according to different levels of MDRs, see Figure 

4. In the following, four assumed vulnerability curves for transmission towers and cables at two voltage 

levels of 400 and 230 kV were considered. The calculations were then carried out using the quaternary case, 

that is, the four divisions on the axes.  

   
a. Vulnerability curves of transmission lines b. Classification of MDR (quaternary case) 

Figure 3. Vulnerability curves of overhead transmission lines; dividing the vertical 

axis to allocate the average amount of each interval as the value of damage class.  

  
a. 400 kV transmission towers b. 230 kV transmission towers 

  
c. 400 kV transmission cables d. 230 kV transmission cables 

Figure 4. Finding the corresponding intervals on the horizontal axis to classify the 

excitation acceleration into different levels (quaternary case). 
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4.2. WEIGHT FACTOR ASSIGNED TO EACH TRANSMISSION LINE 

In order to consider the effect of grid structure, a weight factor (wi) to each transmission line (i) is assigned 

based on the connectivity criterion. In other words, transmission lines with smaller degrees of vertices are 

usually more important in terms of connectivity. In order to consider this effect, a weight factor for each 

transmission line is applied, which is the sum of average degrees of vertices of the considered transmission 

line ( vDeg2 ) divided by the sum of degrees of vertices of that transmission line (∑Deg vi):  

lineontransmissiofnumberi,
vDeg

vDeg2

i
w

i




 (2) 

where  describes averaging over the degrees of vertices with considering the whole system and (v) stands 

for each vertex. Labeling the model edges, i.e. the transmission lines with their assigned weights and making 

the width of the edges proportional to their weights, leads to Figure 5. 

 

Figure 5. Weighted network model for overhead power transmission grid. 

5. RECOVERY TIME CALCULATION USING GAMMA CUMULATIVE DISTRIBUTION 

FUNCTION 

An empirical method for the estimation of recovery time is to use a global database of earthquake damage to 

the electric power grids, and their downtimes (the precise numbers of days without services of the power 

utility). Figure 6 shows the location of 31 damaging earthquakes (including the 2003 Bam earthquake in Iran) 

in an available database [7], which is used in this study in the absence of a suitable database for Iran. 

 
Figure 6. Location of the different earthquakes of the considered database [7]. 

IRAN 
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Considering a suitable distribution, e.g. Gamma because of having a rich variety of shapes, it is 

possible to calculate the values of mean ( 78.5
D

 ), standard deviation ( 3.8
D

 ), scale parameter 

(β=12.05), and shape parameter (α=0.48) based on the downtime data of 31 last earthquakes. Afterwards, the 

cumulative distribution function (CDF) can be calculated by use of Equation 3 [7]. 
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where k is the shape parameter, which must be positive to ensure the convergence of the integral. 

    
a. Horizontal axis in the linear / normal scale b. Horizontal axis in the nonlinear / logarithmic scale 

Figure 7. Cut-off approach to calculate the recovery time using Gamma CDF. 

The CDF curves on the Figure 7 were developed based on the quantitative data on the previous 

earthquakes. The horizontal axis can be interpreted as the number of days required for grid to recover its 

performance at the corresponding level, that is the level of network recovery (by comparing baseline 

performance before and after the event) which its information used in plotting the curve, e.g. ultra full or 

getting a better situation than the pre-disaster situation, full or returning to the pre-disaster situation, just 

getting connectivity, and so on. The vertical axis (probability of exceedance) can be interpreted as the 

likelihood that the grid will be restored considering the corresponding level. 

One may estimate the time for recovery by finding the cut-off point of chart with the number of one on 

the vertical axis, to find the corresponding point on the horizontal axis, which would be easier by use of 

logarithmic scale. But this method is not applicable because it leads to an infinite value on the horizontal 

axis. So, it’s required to cut-off the chart below the number of one on the vertical axis to calculate the 

recovery time, TR on the horizontal axis. Chart cut-off point on the vertical axis, Pc, can be selected using trial 

and error method, as the following equation: 

2)(1
e

s
c

P

P
P                                                                                                                                                        (4) 

Considering Equation 4, calculation of recovery time in the two boundary states, will lead to the following 

expected equations: 

1- Full failure of power transmission grid: Ps = 0 ⇒ Pc = 1 ⇒ TR→∞                                                               (5) 

2- No significant damage on power transmission grid: Ps = Pe ⇒ Pc = 0 ⇒ TR→0                                          (6) 

6. OVERALL PERFORMANCE AND RESILIENCE OF TRANSMISSION GRID 

For calculating the resilience by use of the area under the curve method, it is necessary to calculate the 

seismic performance of the power grid. The overall system performance can be defined as: 

MDRsweightedPP i  1                                                                                                                       (7) 

where Pi is the performance for each part of grid such as cables, towers, etc. and i is the number of all 

considered parts of the grid. Consider the two following boundary / extreme modes in the Equation 7. Full 

failure of transmission grid leads to P =0 and no significant damage on transmission grid leads to P=1, as it is 

expected.  

Therefore, by calculating the Equation 7 after an earthquake, minimum point on resilience curve 

immediately after earthquake i.e. Ps will be achievable. Then, expected performance at the end of recovery 

phase i.e. Pe can be considered, for example 1 in this study. In other words, recovery measures are supposed 

to be in such a way that the power grid has returned to its basic performance before occurring the earthquake. 

In order to find other points on the performance curve between Ps and Pe, it’s necessary to calculate the 
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system performance over the time difference between these two points, TR by use of recovery functions, fr. 

Depending on how recovery is performed, recovery functions can be in a great variety. In order to use the 

most common simplified recovery function models different recovery functions can be considered. For 

example linear recovery function for the case of average prepared system; which is useful when there is no 

information, exponential recovery function for the case of not well prepared system; which the rapidity of 

recovery increases as the process nears its end, and trigonometric recovery function for the case of 

unprepared system; which the rapidity of recovery increases as the process nears its end, see Equations 8 to 

10 and Figure 8 (adapted from [2]). 
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where a, b are constant values that are calculated using curve fitting to available data sources i.e. using the 

two points of (t0, Ps) and (t0+ TR, Pe), while t0 is the instant of time when the extreme event strikes and TR is 

the recovery time necessary to go back to pre-disaster condition evaluated starting from t0.  

   
a. Linear recovery  b. Exponential recovery  c. Trigonometric recovery  

Figure 8. Adopted recovery function models based on Cimellaro et al. [2]. 

By calculating the points of Ps, Pe, Pc, TR, and fr, required parameters to calculate resilience are 

obtained. Therefore grid resilience using linear, exponential, and trigonometric recovery functions - 

respectively RL, RE, and RT - would be measured. Then, by repeating the calculations using different values as 

the input PGAs Figure 9 will be obtained, which indicates on reduction of resilience by increasing PGAs. 

Effective coefficients on the input PGAs are selected from 0.5 to 1.5, so that the effect of decreasing and 

increasing the input acceleration can be investigated. With regards to the Figure 9b, chart values at point 1 

shows the results of this study, depicted in the Figure 9a. 

  
a. Most common simplified recovery functions b. Effect of PGAs changes on resilience 

Figure 9. Calculation of grid resilience using three recovery functions under different 

distributions of PGAs 
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RE=0.70 
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RT=0.63 
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Ps=0.47 

Pe=1 
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7. CONCLUSIONS 

The aim of the study, focousing on the electricity transmission grid, is to develop a basic framework for 

calculating power grid performance and resilience and to investigate how effective parameters act. In order to 

consider the effect of components arrangement / positioning on the grid resilience, a weighting coefficient 

has been used based on the concept of redundancy. The numerical problem in calculating recovery time has 

been overcome by use of a coefficient, obtaining from the trial and error method. The methodology of this 

study allowed the calculation of physical resilience based on the seismic performace of the transmission grid 

resulting from the seismic vulnerability curves of the power network components. Based on the level of 

damage to different components on the vulnerability curves, network components have been divided into 

different groups to classify the coresponding excitation PGAs. This classification reduces the volume of 

computation and makes the method more efficient. The number of divisions will be selectable based on the 

expected level of accuracy, speed, and simplicity. This research distinguishes between the damaged facilities 

in the network by classifying damage levels to different degrees between zero and one and assigning 

performance values to each category. Therefor, while having fast and simple calculations, it goes beyond the 

binary statement of connectivity analysis. 
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