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Key Points 

 Different crowdsourcing-based methods for acquiring geophysical data are reviewed 

and categorized across seven domains of geophysics 

 Project management, data quality, data processing and privacy issues have hampered 

wider up-take of crowdsourcing methods for practical applications 

 Future applications of crowdsourcing methods require public education, engagement 

strategies and incentives, technology developments and government support 
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Abstract:  
Data are essential in all areas of geophysics.  They are used to better understand and manage 

systems, either directly or via models.  Given the complexity and spatiotemporal variability 

of geophysical systems (e.g., precipitation), a lack of sufficient data is a perennial problem, 

which is exacerbated by various drivers, such as climate change and urbanization. In recent 

years, crowdsourcing has become increasingly prominent as a means of supplementing data 

obtained from more traditional sources, particularly due to its relatively low implementation 

cost and ability to increase the spatial and/or temporal resolution of data significantly.  Given 

the proliferation of different crowdsourcing methods in geophysics and the promise they have 

shown, it is timely to assess the state-of-the-art in this field, to identify potential issues and 

map out a way forward.  In this paper, crowdsourcing-based data acquisition methods that 

have been used in seven domains of geophysics, including weather, precipitation, air 

pollution, geography, ecology, surface water and natural hazard management are discussed 

based on a review of 162 papers.  In addition, a novel framework for categorizing these 

methods is introduced and applied to the methods used in the seven domains of geophysics 

considered in this review. This paper also features a review of 93 papers dealing with issues 

that are common to data acquisition methods in different domains of geophysics, including 

the management of crowdsourcing projects, data quality, data processing and data privacy.  In 

each of these areas, the current status is discussed and challenges and future directions are 

outlined. 
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1 Introduction 

1.1 Importance of data 

The availability of sufficient and high quality data is vitally important for activities in a broad 

range of areas within geophysics (Assumpção et al., 2018).  As shown in Figure 1, data are 

used, either directly or via models, for a variety of purposes (Montanari et al., 2013; See et al., 

2016; Eggimann et al., 2017), such as developing increased understanding of physical 

systems or processes (e.g. the weather), geophysical event prediction (e.g., rainfall, 

earthquakes), natural resources management (e.g. river systems), impact assessment (e.g., air 

pollution), infrastructure system planning, design and operation (e.g. water supply systems) 

and the management of natural hazards (e.g., floods). In addition, they are also used in the 

model development process itself (See et al., 2015), as well as to inform us about deficits in 

our models and thus foster an improved understanding/form the basis of scientific discovery 

(Del Giudice et al., 2016).  It should be noted that the examples in Figure 1 are not meant to 

be exhaustive, but to demonstrate the wide range of purposes for which geophysical data can 

be used. 

In relation to models (Figure 1), data are used for both model building (model set up, 

calibration, and validation) and executing models, as illustrated in Figure 2.  For example, in 

the case of flood models, different types of data are required, including topography and land 

cover during model setup; high water marks for calibration and validation; and water 

levels/discharges, provided by gauging at the flooding area boundary, during the use of 

models (Assumpção et al., 2018).  

1.2 Challenges 

As mentioned in Section 1.1, the availability of adequate geophysical data is vital in a range 

of applications in geophysics. However, a lack of availability of such data has restricted many 

research and application activities, as mentioned above. For example, models have often been 

developed with limited data (Reis et al., 2015) and consequently these models are not used in 

practical applications due to a lack of confidence in their performance (Assumpção et al., 

2018). This is particularly true in relation to extreme events, such as floods and earthquakes, 

as the available data for simulating/predicting such events are significantly rarer than those 

available for more frequent events (Panteras and Cervone, 2018). The issue of data deficiency 

has taken on even greater importance in recent years, as real-time system operations and 

integrated management are becoming increasingly important in many domains within 

geophysics, which requires an increased amount of data with high spatiotemporal resolution 

(Muller et al., 2015). Consequently, how to efficiently and effectively collect sufficient 

amounts of data has been one of the key questions that needs to be addressed urgently in the 

area of geophysics (See et al., 2015). 

The different challenges associated with the availability of adequate geophysical data can be 

divided into a number of categories, as shown in Figure 3 and summarized below: 

 Spatial and temporal resolution: Many geophysical processes are highly spatially and 

temporally variable (e.g. recent research has found that precipitation intensity within 

an identical storm event can vary by up to 30% across a spatial region with an extent 

of 3-5 km (Muller et al., 2015)), but most existing data collection methods are not 

able to capture this variation adequately. 

 Cost: Traditional means of collecting data (e.g., fixed monitoring stations, paying 

people for data collection) are expensive, limiting the amount of data that can be 

collected within the constraints of available resources. 
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 Accessibility: Many locations where data are needed are difficult to access from a 

physical perspective, or the services needed for data collection (e.g., electricity) are 

not available. 

 Availability: In many instances, data are needed in real-time (e.g., infrastructure 

management, natural hazard management), but traditional means of data collection 

and transmission are unable to make the data available when needed. 

 Uncertainty: There can be large uncertainty surrounding the quality of the data 

provided by traditional means. 

 Dimensionality: As mentioned in Section 1.1, collecting the different types of data 

needed for application areas that require a higher degree of social interaction can be a 

challenge. 

For example, some of the challenges associated with weather data are due to the fact that they 

are traditionally obtained through ground gauges and stations, which are usually sparsely 

distributed with low density (Lorenz and Kunstmann, 2012; Kidd et al., 2018). This low 

density has long been an impediment to more accurate real-time weather prediction and 

management (Bauer et al., 2015), but further increases in their density would be difficult to 

achieve because of a lack of availability of candidate locations and high maintenance costs 

(Mahoney et al., 2010; Muller et al., 2013). Radar and satellites have also been used to 

monitor weather data, but the spatial and/or temporal resolution of the data obtained is often 

insufficient for many applications (e.g., real-time management and operation) and 

characterized by high levels of uncertainty (Thorndahl et al., 2017). 

Another example of some of the challenges associated with traditional data collection 

methods relates to the mapping of geographical features such as buildings, road networks and 

land cover, which has traditionally been undertaken by national mapping agencies. In many 

cases the data have not been made openly available or are only available at a cost. There is 

also a need to increase the amount of in situ or reference data needed for different 

applications, e.g., observations of land cover for training classification algorithms or 

collection of ground data to validate maps or model outputs (See et al., 2016). 

Finally, challenges arise from the lack of data availability caused by the failure or loss of 

equipment, for example, during natural disasters. To overcome this limitation in the field of 

flood management, remote sensing and social media are being used increasingly for obtaining 

topographic information and flood extent.  However, to enable effective applications, the data 

must be obtained in a timely fashion (Gobeyn et al., 2015, Cervone et al., 2016), or they may 

need to be obtained at a high spatial resolution, e.g., to capture cross sections. In both cases, 

there may be too much uncertainty in the data (Grimaldi et al., 2016). 

The above challenges are exacerbated by a number of drivers of change (Figure 3), including: 

 Climate Change: This increases the spatial and temporal variability, as well as the of 

uncertainty, of many geophysical processes (e.g. precipitation (Zheng et al., 2015a)), 

therefore requiring data collection at a greater spatiotemporal resolution.  This 

increases cost and can present challenges related to accessibility. 

 Urbanization: This can increase the spatial variability of a number of geophysical 

variables (e.g., due to the urban heat island effect (Arnfield, 2003; Burrows and 

Richardson, 2011)), as well as increasing system complexity.  This is likely to 

increase the cost, uncertainty and the dimensionality associated with data collection. 

 Community Expectation: Increased community expectations around levels of service 

provided by infrastructure systems (e.g., water supply) and levels of protection from 

natural hazards can increase the spatial and temporal resolution of the data required, 
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as well as the speed with which they need to be made available (e.g., as a result of 

real-time operations (Muller et al., 2015)).  This is also likely to increase the cost and 

dimensionality of data collection efforts. 

For example, the above drivers can have a significant impact on the acquisition of in-situ 

precipitation data, the majority of which are currently collected through ground gauges and 

stations that are sparsely distributed around the world (Westra et al., 2014).  However, these 

are unlikely to meet the growing data demands associated with the management of water 

systems, which is becoming increasingly complex due to climate change and rapid 

urbanization (Montanari et al., 2013). This problem has been exacerbated in recent years as 

real-time water system operations and management are being adopted increasingly in many 

cities around the world. These real-time systems require substantially increased amounts of 

precipitation data with high spatiotemporal resolution (Eggimann et al., 2017), which 

themselves are becoming more variable as a result of climate change (e.g., Berg et al., 2013; 

Wasko et al., 2015; Zheng et al., 2015a). 

1.3 Crowdsourcing 

Over the past decade, crowdsourcing has emerged as a promising approach to addressing 

some of the growing challenges associated with data collection.  Crowdsourcing was 

traditionally used as a problem solving model (Brabham, 2008), or as a task distribution or 

particular outsourcing method (Howe, 2006), but it can now be considered as one type of 

‘citizen science’, which is regarded as the involvement of citizens in science, ranging from 

data collection to hypothesis generation (Bonney et al. 2009). Although the terms 

crowdsourcing and citizen science have appeared in the literature much more recently, 

citizens have been involved in data collection and science for more than a century, e.g. 

through manual reporting of rainfall to weather services and participation in the National 

Audubon Society’s Christmas Bird Count. 

Citizen science can be categorized into four levels according to the extent of public 

involvement in scientific activities, as illustrated in Figure 4 (Estellés-Arolas and González-

Ladrón-de-Guevara, 2012; Haklay, 2013). In essence, these four levels can be thought of as 

representing a trajectory of shift in perspectives on data. As part of this trajectory, 

crowdsourcing is referred to as Level 1, as it provides the foundations for the three more 

advanced forms of citizen science, where its implementation is underpinned by a network of 

citizen volunteers (Haklay, 2013). The second level is ‘distributed intelligence’, which relies 

on the cognitive ability of the participants for data analysis, e.g., in projects such as Galaxy 

Zoo (Lintott et al., 2008) or MPing (Elmore et al., 2014). In the third level (participatory 

science), citizen input is used to determine what data need to be collected, requiring citizens 

to assist in research problem definition (Haklay, 2013). The last level (Level 4) is extreme 

citizen science, which engages citizens as scientists to participate heavily in research design, 

data collection and result interpretation.  As a consequence, participants not only offer data, 

but also provide collaborative intelligence (Haklay, 2013). 

In practice, a limited number of participants have the ability to provide integrated designs for 

research projects due to their lack of knowledge of the research gaps to be addressed 

(Buytaert et al., 2014). This is especially the case in the domain of geoscience, as significant 

professional knowledge is required to enable research design in this area (Haklay, 2013). 

Therefore, it has been difficult to develop the levels of trust required to enable common 

citizens to participate in all aspects of the research process within geoscience. This 

substantially limits the practical utilization of ‘citizen science’ (especially Levels 3-4) in 

many professional domains, such as floods, earthquakes and precipitation within the 
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geophysical domain, hampering its wider promotion (Buytaert et al., 2014). Consequently, 

this review is restricted to crowdsourcing (i.e. Level 1 citizen science). 

Crowdsourcing was originally defined by Howe (2006) as “the act of a company or 

institution taking a function once performed by employees and outsourcing it to an undefined 

(and generally large) network of people in the form of an open call”. More specifically, 

crowdsourcing has traditionally been used as an outsourcing method, but it can now 

beconsidered as an approach to collecting data through the participation of the general public, 

therefore requiring the active involvement of citizens (Bonney et al., 2009). However, more 

recently, this definition has been relaxed somewhat to also include data collected from public 

sensor networks, i.e. opportunistic sensing (McCabe et al., 2017) and the Internet of Things 

(IoT) (Sethi and Sarangi, 2017), as well as from sensors installed and maintained by private 

citizens (Muller et al., 2015). In addition, with the onset of data-mining, the data do not 

necessarily have to be collected for the purpose for which they are ultimately used. For 

example, precipitation data can be extracted from commercial microwave links with the aid 

of data mining techniques (Doumounia et al., 2014). Hence for the purpose of this paper, we 

include opportunistic sensing (Krishnamurthy and Poor, 2014; Messer, 2018; Uijlenhoet et al., 

2018) within the broader term ‘crowdsourcing’ to recognize the fact that there is a spectrum 

to the data collection process; this spectrum reflects the degree of citizen or crowd 

participation from 100% to 0%. 

In recent years, crowdsourcing has been made possible by rapid developments in information 

technology (Buytaert et al., 2014), which has assisted with data acquisition, data transmission 

and data storage, all of which are required to enable the data to be used in an efficient manner, 

as illustrated in the crowdsourcing data chain shown in Figure 5.  For example, in the 

instance where citizens count the number of birds as part of ecological studies, technology is 

not needed for data collection.  However, the collected data only become useful if they can be 

transmitted cheaply and easily via the internet or mobile phone networks and are made 

accessible via dedicated online repositories or social media platforms.  In other instances, 

technology might also be used to acquire data via smart phones in addition to enabling data 

transmission, or dedicated sensor networks may be used, e.g. through IoT. In fact, the 

crowdsourcing data chain has clear parallels with a three-layer IoT architecture (Sethi and 

Sarangi, 2017). The data acquisition layer in Figure 5 is similar to the perception layer in IoT, 

which collects information through the sensors, the data transmission and storage layers in 

Figure 5 have similar functions to the IoT network layer data for transmission and processing; 

while the IoT application layer corresponds to the data usage layer in Figure 5. 

Crowdsourcing methods enable a number of the challenges outlined in Section 1.2 (see 

Figure 3) to be addressed.  For example, due to the wide availability of low-cost and 

ubiquitous sensors (either dedicated or as part of smart phones or other personal devices) 

used by a large number of citizens, as well as the sensors’ ability to almost instantaneously 

transmit and store/share the acquired data, data can be collected at a greater spatial and 

temporal resolution and at a lower cost than with the aid of a professional monitoring 

network.  It is noted that data obtained using crowdsourcing methods are often not as accurate 

as those obtained from official measurement stations, but it possesses much higher 

spatiotemporal resolution compared with traditional ground-based observations (Buytaert et 

al., 2014). This makes crowdsourcing a potentially important complementary source of 

information, or, in some situations, the only available source of information that can provide 

valuable observations. 

In many instances, this wide availability also increases data accessibility, as dedicated data 

collection stations do not have to be established at particular sites.  Data availability is 



 

 
© 2018 American Geophysical Union. All rights reserved. 

generally also increased, as data can be transmitted and shared in real-time, often through 

distributed networks that also increase reliability, especially in disaster situations (McSeveny 

and Waddington, 2017).  Finally, given the greater ease and lower cost with which different 

types of data can be collected, crowdsourcing techniques also increase the dimensionality of 

the data that can be collected, which is especially important when dealing with application 

areas that require a higher degree of social interaction, such as the management of 

infrastructure systems or natural hazards (Figure 1). 

In relation to the use of crowdsourcing methods for the collection of weather data, 

measurements from amateur gauges and weather stations can now be assimilated in real-time 

(Bell et al., 2013; Agüera-Pérez et al., 2014), and new, low-cost sensors have been developed 

and integrated to allow a larger number of citizens to be involved in the monitoring of 

weather (Muller et al., 2013).  Similarly, other geophysical data can now be collected more 

cheaply and with a greater spatial and temporal resolution with the assistance of citizens, 

including data on ecological variables (Donnelly et al., 2014; Chandler et al., 2016), 

temperature (Meier et al., 2017) and other atmospheric observations (McKercher et al., 2016). 

These crowdsourced data are often used as an important supplement to official data sources 

for system management.  

In the field of geography, the mapping of features such as buildings, road networks and land 

cover can now be undertaken by citizens as a result of advances in Web 2.0 and GPS-enabled 

mobile technology, which has blurred the once clear-cut distinction between map producer 

and consumer (Coleman et al., 2009). In a seminal paper published in 2007, Goodchild (2007) 

coined the phrase Volunteered Geographic Information (VGI). Similar to the idea of 

crowdsourcing, VGI refers to the idea of citizens as sensors, collecting vast amounts of 

georeferenced data. These data can complement existing authoritative databases from 

national mapping agencies, provide a valuable source of research data and even have 

considerable commercial value. OpenStreetMap (OSM) is an example of a highly successful 

VGI application (Neis and Zielstra, 2014), which was originally driven by users in the UK 

wanting access to free topographic information, e.g., buildings, roads and physical features; 

at the time, these data were only available from the UK Ordnance Survey at a considerable 

cost. Since then, OSM has expanded globally and works strongly within the humanitarian 

field, mobilizing citizen mappers during disaster events to provide rapid information to first 

responders and non-governmental organizations working on the ground (Soden and Palen, 

2014).  Another strong motivator behind crowdsourcing in geography has been the need to 

increase the amount of in situ or reference data needed for different applications, e.g., 

observations of land cover for training classification algorithms or collection of ground data 

to validate maps or model outputs (See et al., 2016). The development of new resources such 

as Google Earth and Bing Maps has also made many of these crowdsourcing applications 

possible, e.g. visual interpretations of very high resolution satellite imagery (Fritz et al., 

2012).  

1.4 Contribution of this paper 

This paper reviews recent progress in the approaches used within the data acquisition step of 

the crowdsourcing data chain (Figure 5) in the geophysical sciences and engineering. The 

main contributions include: (i) a categorization of different crowdsourcing data acquisition 

methods and a comprehensive summary of how these have been applied in a number of 

domains in the geosciences over the past two decades; (ii) a detailed discussion on potential 

issues associated with the application of crowdsourcing data acquisition methods in the 

selected areas of the geosciences, as well as a categorization of approaches for dealing with 

these; and (iii) identification of future research needs and directions in relation to 
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crowdsourcing methods used for data acquisition in the geosciences.  The review will cover a 

broad range of application areas (e.g. see Figure 1) within the domain of geophysics (see 

Section 2.1) and should therefore be of significant interest to a broad audience, such as 

academics and engineers in the area of geophysics, government departments, decision-makers 

and even sensor manufacturers. In addition to its potentially significant contributions to the 

literature, this review is also timely because crowdsourcing in the geophysical sciences is 

nearly ready for practical implementation, primarily due to rapid developments in 

information technologies over the past few years (Muller et al., 2015). This is supported by 

the fact that a large number of crowdsourcing techniques have been reported in the literature 

in this area (see Section 3).  

While there have been previous reviews of crowdsourcing approaches, this paper goes 

significantly beyond the scope and depth of those attempts. Buytaert et al. (2014) 

summarized previous work on citizen science in hydrology and water resources, Muller et al. 

(2015) performed a review of crowdsourcing methods applied to climate and atmospheric 

science, and Assumpção et al. (2018) focused on the crowdsourcing techniques used for flood 

modelling and management. Our review provides significantly more updated developments 

of crowdsourcing methods across a broader range of application areas in geosciences, 

including weather, precipitation, air pollution, geography, ecology, surface water, and natural 

hazard management.  In addition, this review also provides a categorization of data 

acquisition methods and systematically elaborates on the potential issues associated with the 

implementation of crowdsourcing techniques across different problem domains, which has 

not been explored in previous reviews. 

The remainder of this paper is structured as follows. First, an overview of the proposed 

methodology is provided, including details of which domains of geophysics are covered, how 

the reviewed papers were selected and how the different crowdsourcing data acquisition 

methods were categorized.  Next, an overview of the reviewed publications is provided, 

which is followed by detailed reviews of the applications of different crowdsourcing data 

acquisition methods in the different domains of geophysics. Subsequently, a discussion is 

presented regarding some of the issues that have to be overcome when applying these 

methods, as well as state-of-the-art methods to address them.  Finally, the implications arising 

from this review are provided in terms of research needs and future directions. 

 

 

 

2 Review methodology 

2.1 Geophysical domains reviewed 

In order to cover a broad spectrum of geophysical domains, a number of atmospheric 

(weather, precipitation, air quality) and terrestrial variables (geographic, ecological, surface 

water) are included in this review. This is because crowdsourcing has been often 

implemented in these geophysical domains, which is demonstrated by the result of a 

preliminary search of the relevant literature through the Web of Science database using the 

keyword “crowdsourcing” (Thomson Reuters, 2016). This also shows that these domains are 

of great importance within geophysics. In addition, data acquisition in relation to natural 

hazard management (e.g., floods, fires, earthquakes, hurricanes) is also included, as the 

impact of extreme events is becoming increasingly important and because it requires a high 

degree of social interaction (Figure 1).  A more detailed rationale for the inclusion of the 

above domains is provided below.  While these domains were selected to cover a broad range 
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of domains in geophysics, by necessity, they do not cover the full spectrum.  However, given 

the diversity of the domains included in the review, the outcomes are likely to be more 

broadly applicable. 

Weather is included as detailed monitoring of weather-related data at a high spatio-temporal 

resolution is crucial for a series of research and practical problems (Niforatos et al., 2016). 

Solar radiation, cloud cover, and wind data are direct inputs to weather models (Chelton and 

Freilich, 2005). Snow cover and depth data can be used as input for hydrological modeling of 

snow-fed rivers (Parajka and Blöschl, 2008), and they can also be used to estimate snow 

erosion on mountain ridges (Parajka et al., 2012). Moreover, wind data are used extensively 

in the efficient management and prediction of wind power production (Agüera-Pérez et al., 

2014). 

Precipitation is covered here as it is a research domain that has been studied extensively for a 

long period of time. This is because precipitation is a critical factor in floods and droughts, 

which have had devastating impacts worldwide (Westra et al., 2014). In addition, 

precipitation is an important parameter required for the development, calibration, validation 

and use of many hydrological models. Therefore, precipitation data are essential for many 

models related to floods, droughts, as well as water resource management, planning and 

operation (Hallegatte et al., 2013). 

Air quality is included due to pressing air pollution issues around the world (Zhang et al., 

2011), especially in developing countries (Jiang et al., 2015; Erickson, 2017).  The 

availability of detailed atmospheric data at a high spatiotemporal resolution is critical for the 

analysis of air quality, which can result in negative impacts on health (Snik et al., 2014). A 

good spatial coverage of air quality data can significantly improve the awareness and 

preparedness of citizens in mitigating their personal exposure to air pollution, and hence the 

availability of air quality data is an important contributor to enabling the protection of public 

health (Castell et al., 2015).  

The subset of geography considered in this review is focused on the mapping and collection 

of data about features on the Earth’s surface, both natural and man-made, as well as 

georeferenced data more generally.  This is because these data are vital for a range of other 

areas of geophysics, such as impact assessment (e.g., location of vulnerable populations in 

the case of air pollution), infrastructure system planning, design and operation (e.g., location 

and topography of households in the case of water supply), natural hazard management (e.g., 

topography of the landscape in terms of flood management) and ecological monitoring (e.g., 

deforestation). 

Ecological data acquisition is included as it has been clearly acknowledged that ecosystems 

are being threatened around the world by climate change, as well as other factors, such as 

illegal wildlife trade, habitat loss, and human-wildlife conflicts (Donnelly et al., 2014; Can et 

al., 2017). Therefore, it is of great importance to have sufficient high quality data for a range 

of ecosystems, aimed at building solid and fundamental knowledge on their underlying 

processes, as well as enabling biodiversity observation, phenological monitoring, natural 

resource management and environmental conservation (van Vliet et al., 2014; McKinley et al., 

2016; Groom et al., 2017). 

Data on surface water systems, such as rivers and lakes, are vital for their management and 

protection, as well as usage for irrigation and water supply. For example, water quality data 

are needed to improve the management effectiveness (e.g. monitoring) of surface water 

systems (rivers and lakes), which is particularly the case for urban rivers, many of which 

have been polluted (Zhang et al., 2016). Water depth or velocity data in rivers or lakes are 
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also important, as they can be used to derive flows, or indirectly to represent the water quality 

and ecology within these systems. Therefore, sourcing data for surface water with a good 

temporal and spatial resolution is necessary for enabling the protection of these aquatic 

environments (Tauro et al., 2018).  

Natural hazards, such as floods, wildfires, earthquakes, tsunamis, and hurricanes are causing 

significant losses worldwide, both in terms of lives lost and economic costs (McMullen et al., 

2012; Wen et al., 2013; Westra et al., 2014; Newman et al., 2017).  Data are needed to 

support all stages of natural hazard management, including preparedness and response 

(Anson et al., 2017).  Examples of such data include real-time information on the location, 

extent and changes in hazards, as well as information on their impacts (e.g. losses, missing 

persons), to assist with the development of situational awareness (Akhgar et al., 2017; Stern, 

2017), assess damage and suffering (Akhgar et al., 2017) and justify actions prior, during and 

after disasters (Stern, 2017).  In addition, data, and models developed with such data, are 

needed to identify risks and the impact of different risk reduction strategies (Anson et al., 

2017; Newman et al., 2017). 

2.2 Papers selected for review 

The papers to be reviewed were selected using the following steps: (i) first, we identified 

crowdsourcing-related papers in influential geophysics-related journals, such as Nature, 

Bulletin of the American Meteorological Society, Water Resources Research and 

Geophysical Research Letters, to ensure that high-quality papers are included in the review; 

(ii) we then checked the reference lists of these papers to identify additional crowdsourcing-

related publications; and (iii) finally, “crowdsourcing” was used as the keyword to identify 

geophysics-related publications through the Web of Science database (Thomson Reuters, 

2016). While it is unlikely that all crowdsourcing-related papers have been included in this 

review, we believe that the selected publications provide a good representation of progress in 

the use of crowdsourcing techniques in geophysics.  An overview of the papers obtained 

using the above approach is given in Section 3. 

2.3 Categorisation of crowdsourcing data acquisition methods 

As mentioned in Section 1.4, one of the primary objectives of this review is to ascertain 

which crowdsourcing data acquisition methods have been applied in different domains of 

geophysics.  To this end, the categorization of different crowdsourcing methods shown in 

Figure 6 is proposed.  As can be seen, it is suggested that all data acquisition methods have 

two attributes, including how the data were generated (i.e., data generation agent) and for 

what purpose the data were generated (i.e., data type). 

Data generation agents can be divided into two categories (Figure 6), including “citizens” and 

“instruments”.  In this categorization, if “citizens” are the data generating agents, no 

instruments are used for data collection, with only the human senses allowed as sensors.  

Examples of this would be counting the number of fish in a river or the mapping of buildings 

or the identification of objects/boundaries within satellite imagery.  In contrast, the 

“instruments” category does not have any active human input during data collection, but 

these instruments are installed and maintained by citizens, as would be the case with 

collecting data from a network of automatic rain gauges operated by citizens, or sourcing data 

from distributed computing environments (e.g., Mechanical Turk (Buhrmester et al., 2011)).  

As mentioned in Section 1.3, while this category does not fit within the original definition of 

crowdsourcing (i.e. sourcing data from communities), such “passive” data collection methods 

have been considered under the umbrella of crowdsourcing methods more recently (Bigham 

et al., 2015; Muller et al., 2015), especially if data are transmitted via the internet or mobile 
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phone networks and stored / shared in online repositories.  As shown in Figure 6, some data 

acquisition methods require active input from both citizens and instruments.  An example of 

this would include the measurement of air quality by citizens with the aid of their smart 

phones. 

Data types can also be divided into two categories (Figure 6), including “intentional” and 

“unintentional”.  If a data acquisition method belongs to the “intentional” category, the data 

were intentionally collected for the purpose they are ultimately used for.  For example, if 

citizens collect air quality data using sensors on their smart device as part of a study on air 

pollution, then the data were acquired for that purpose they are ultimately used for.  In 

contrast, for data acquisition methods belonging to the unintentional category, the data were 

not intentionally collected for the geophysical analysis purposes they are ultimately used for.  

An example of this includes the generation of data via social media platforms, such as 

Facebook, as part of which people might make a text-based post about the weather for the 

purposes of updating their personal status, but which might form part of a database of similar 

posts that can be mined for the purposes of gaining a better understanding of underlying 

weather patterns (Niforatos et al., 2014).  Another example is the data on precipitation 

intensity collected by the windshields of cars (Nashashibi et al., 2011).  While these data are 

collected to control the operation of windscreen wipers, a database of such information could 

be mined to support the development of precipitation models.  Yet another example is the 

determination of the spatial distribution of precipitation data from microwave links that are 

primarily used for telecommunications purposes (Messer et al., 2006). 

As shown in Figure 6, in some instances, intentional and unintentional data types can both be 

used as part of the same crowdsourcing approach.  For example, river level data can be 

obtained by combining observations of river levels by citizens with information obtained by 

mining relevant social media posts.  Alternatively, more accurate precipitation data could be 

obtained by combining data from citizen-owned gauges with those extracted from microwave 

networks or air quality data could be improved by combining data obtained from personal 

devices operated by citizens and mined from social media posts. 

As data acquisition methods have two attributes (i.e. data generation agent and data type), 

each of which has two categories that can also be combined, there are nine possible 

categories of data acquisition methods, as shown in Table 1.  Examples of each of these 

categories, based on the illustrations given above, are also shown. 

 

3 Overview of reviewed publications 

Based on the process outlined in Section 2.2, 255 papers were selected for review, of which 

162 are concerned with the applications of crowdsourcing methods, and 93 are primarily 

concerned with the issues related to their applications. Figure 7 presents an overview of these 

selected papers.  As shown in this figure, very limited work was published in the selected 

journals before 2010, with a rapid increase in the number of papers from that year onwards 

(2010-2017), to the point where about 34 papers on average were published per year from 

2014-2017. This implies that crowdsourcing has become an increasingly important research 

topic in recent years. This can be attributed to the fact that information technology has 

developed in an unprecedented manner after 2010, and hence a broad range of inexpensive, 

yet robust, sensors (e.g., smart phones, social media, telecommunication microwave links) 

has been developed to collect geophysical data (Buytaert et al., 2014). These collected data 

have the potential to overcome the problems associated with limited data availability, as 
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discussed previously, creating opportunities for research at incomparable scales (Dickinson et 

al., 2012) and leading to a surge in relevant studies. 

Figure 8 presents the distribution of the affiliations of the co-authors of the 255 publications 

included in this review. As shown, universities and research institutions have clearly 

dominated the development of crowdsourcing technology reported in these papers. 

Interestingly, government departments have demonstrated significant interest in this area 

(Conrad and Hilchey, 2011), as indicated by the fact that they have been involved in a total of 

38 publications (14.9%), of which 10 and 7 are in collaboration with universities and private 

or public research institutions, respectively. As shown in Figure 8, industry has closely 

collaborated with universities and research institutions on crowdsourcing, as all of their 

publications (22 in total (8.6%)) have been co-authored with researchers from these sectors. 

These results show that developments and applications of crowdsourcing techniques have 

been mainly reported by universities and research institutions thus far. However, it should be 

noted that not all progress made by crowdsourcing related industry is reported in journal 

papers, as is the case for most research conducted by universities (Hut et al., 2014; Kutija et 

al., 2014; Jongman et al., 2015; Michelsen et al., 2016). 

In addition to the distribution of affiliations, it is also meaningful to understand how active 

crowdsourcing related research is in different countries, which is shown in Figure 9.  It 

should be noted that only the country of the leading author is considered in this figure. As 

reflected by the 255 papers reviewed, the United States has performed the most extensive 

research in the crowdsourcing domain, followed by the United Kingdom, Canada and some 

other European countries, particularly Germany and France. In contrast, China, Japan, 

Australia and India have made limited attempts to develop or apply crowdsourcing methods 

in geophysics. In addition, many other countries have not published any crowdsourcing-

related efforts so far. This may be partly attributed to the economic status of different 

countries, as a mature and efficient information network is a requisite condition for the 

development and application of crowdsourcing techniques (Buytaert et al., 2014).  

As stated previously, one of the features of this review is that it assesses papers in terms of 

both application area and generic issues that cut across application areas.  The split between 

these two categories for the 255 papers reviewed is shown in Figure 10. As can be seen from 

this figure, crowdsourcing techniques have been widely used to collect precipitation data 

(15% of the reviewed papers) and data for natural hazard management (17%). This is likely 

because precipitation data and data for natural hazard management are highly spatially 

distributed, and hence are more likely to benefit from crowdsourcing techniques for data 

collection (Eggimann et al., 2017). In terms of potential issues that exist within the 

applications of crowdsourcing approaches, project management, data quality, data processing 

and privacy have been increasingly recognized as problems based on our review and hence 

they are considered (Figure 11). A review of these issues, as one of the important focuses of 

this paper, offers insight into potential problems and solutions that cut across different 

problem domains, but also provides guidance for the future development of crowdsourcing 

techniques.  

4. Review of crowdsourcing data acquisition methods used  

4.1 Weather  

Currently, crowdsourced weather data mainly come from four sources: (i) human estimation; 

(ii) automated amateur gauges and weather stations; (iii) commercial microwave links; and 

(iv) sensors integrated with vehicles, portable devices, and existing infrastructure. For the 

first category of data source, citizens are heavily involved in providing qualitative or 
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categorical descriptions of the weather conditions based on their observations. For instance, 

citizens are encouraged to classify their estimations of air temperature and wind speed into 

three classes (low, medium, and high) for their surrounding regions, as well as to predict 

short-term weather variables in the near future (Niforatos et al., 2014, 2015a). The 

estimations have been compared against the records from authorized weather stations, and 

results showed that both data sources matched reasonably in terms of the levels of the 

variables (e.g., low or high temperature (Niforatos et al., 2015b)). These estimates are 

transmitted to their corresponding authorized databases with the aid of different types of apps, 

which have greatly facilitated the wider up-take of this type of crowdsourcing method. While 

this type of crowdsourcing project is simple to implement, the data collected are only 

subjective estimates.  

To provide quantitative measurements of weather variables, low-cost amateur gauges and 

weather stations have been installed and managed by citizens to source relevant data. This 

type of crowdsourcing method has been made possible by the availability of affordable and 

user-friendly weather stations over the past decade (Muller et al., 2013). For example, in the 

UK and Ireland, the weather observation website (WOW) and Weather Underground have 

been developed to accept weather reports from public amateurs, and in early spring 2012, 

over 400 and 1350 amateurs have been regularly uploading their weather data (temperature, 

wind, pressure and so on) to WOW and Weather Underground, respectively (Bell et al., 

2013). Agüera-Pérez et al. (2014) compiled wind data from 198 citizen-owned weather 

stations and successfully estimated the regional wind field with high accuracy, while a high 

density of temperature data was collected through citizen-owned automatic weather stations 

(Wolters and Brandsma, 2012; Young et al., 2014; Chapman et al., 2016), which have been 

used in urban climate research in recent years (Meier et al., 2017).  

Alternatively, weather data could also be quantitatively measured through analyzing the 

transmitted and received signal levels of commercial cellular communication networks, 

which have often been installed by telecommunication companies or other private entities, 

and whose electromagnetic waves are attenuated by atmospheric influences. For instance, 

during fog conditions, the attenuation of microwave links was found to be related to the fog 

liquid water content, which enabled the use of commercial cellular communication network 

attenuation data to monitor fog at a high spatiotemporal resolution (David et al., 2015), in 

addition to their wider applications in estimating rainfall intensity, as discussed in Section 4.2. 

In more recent years, a large amount of weather data has been obtained from sensors that are 

available in cars, mobile phones, and telecommunication infrastructure. For example, 

automobiles are equipped with a variety of sensors, including cameras, impact sensors, wiper 

sensors, and sun sensors, which could all be used to derive weather data such as humidity, 

sun radiation, and pavement temperature (Mahoney et al, 2010; Mahoney and O’Sullivan, 

2013). Similarly, modern smartphones are also equipped with a number of sensors, which 

enables them to be used to measure air temperature, atmospheric pressure, and relative 

humidity (Anderson et al., 2012; Mass and Madaus, 2014; Madaus and Mass, 2016; Sosko 

and Dalyot, 2017; Mcnicholas and Mass, 2018). More specifically, smartphone batteries, as 

well as smartphone-interfaced wireless sensors, have been used to indicate air temperature in 

surrounding regions (Mahoney et al., 2010; Majethisa et al., 2015). In addition to automobiles 

and smartphones, some research has been carried out to investigate the potential of 

transforming vehicles to moving sensors for measuring air temperature and atmospheric 

pressure (Anderson et al., 2012; Overeem et al., 2013a). For instance, bicycles equipped with 

thermometers were employed to collect air temperature in remote regions (Melhuish and 

Pedder, 2012; Cassano, 2014).  
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Researchers have also discussed the possibility of integrating automatic weather sensors with 

microwave transmission towers, and transmitting the collected data through wireless 

communication networks (Vishwarupe et al., 2016). These sensors have the potential to form 

an extensive infrastructure system for monitoring weather, thereby enabling better 

management of weather related issues (e.g. heat waves).  

4.2 Precipitation  

A number of crowdsourcing methods have been developed to collect precipitation data over 

the past two decades. These methods can be divided into four categories based on the means 

by which precipitation data are collected, including (i) citizens, (ii) commercial microwave 

links, (iii) moving cars, and (iv) low-cost sensors. In methods belonging to the first category, 

precipitation data are collected and reported by individual citizens. Based on the papers 

reviewed in this study, the first official report of this approach can be dated back to the year 

2000 (Doesken and Weaver, 2000), where a volunteer network composed of local residents 

was established to provide records of rainfall for disaster assessment after a devastating 

flooding event in Colorado. These residents voluntarily reported the rainfall estimates that 

were collected using their own simple, home-made equipment (e.g., precipitation gauges). 

These data showed that rainfall intensity within this storm event was highly spatially varied, 

highlighting the importance of access to precipitation data with a high spatial resolution for 

flood management. In recognition of this, research communities have suggested the 

development of an official volunteer network with the aid of local residents, aimed at 

routinely collecting rainfall and other meteorological parameters, such as snow and hail 

(Cifelli et al., 2005; Elmore et al., 2014; Reges et al., 2016). More recent examples include 

citizen reporting of precipitation type based on their observations (e.g., hail, rain, drizzle, etc.) 

to calibrate radar precipitation estimation (Elmore et al., 2014), and the use of automatic 

personal weather stations, which measure and provide precipitation data with high accuracy 

(de Vos et al., 2017).  

In addition to precipitation data collection by citizens, many studies have explored the 

potential of other ways of estimating precipitation, with a typical example being the use of 

commercial microwave links (CMLs), which are generally operated by telecommunication 

companies. This is mainly because CMLs are often spatially distributed within cities, and 

hence can potentially be used to collect precipitation data with good spatial coverage. More 

specifically, precipitation attenuates the electromagnetic signals transmitted between 

antennas within the CML network. This attenuation can be calculated from the difference 

between the received powers with and without precipitation and is a measure of the path-

averaged precipitation intensity (Overeem et al., 2011). Based on our review, Upton et al. 

(2005) probably first suggested the use of CMLs for rainfall estimation, and Messer et al. 

(2006) were the first to actually use data from CMLs to estimate rainfall. This was followed 

by more detailed studies by Leijnse et al. (2007), Zinevich et al. (2009) and Overeem et al. 

(2011), where relationships between electromagnetic signals caused by precipitation and 

precipitation intensity were developed. The accuracy of such relationships has been 

subsequently investigated in many studies (Rayitsfeld et al., 2011; Doumounia et al., 2014). 

Results show that while quantitative precipitation estimates from CMLs might be regionally 

biased, possibly due to antenna wetting and systematic disturbances from the built 

environment, they could match reasonably well with precipitation observations overall (Fencl 

et al., 2015a, 2015b; Gaona et al., 2015; Mercier et al., 2015; Chwala et al., 2016). This 

implies that the use of communication networks to estimate precipitation is promising, as it 

provides an important supplement to traditional measurements using ground gauges and 

radars (Gosset et al., 2016; Fencl et al., 2017). This is supported by the fact that the 

precipitation data estimated from microwave links have been widely used to enable flood 
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forecasting and management (Overeem et al., 2013b) and urban stormwater runoff modeling 

(Pastorek et al., 2017).  

In parallel with the development of microwave-link based methods, some studies have been 

undertaken to utilize moving cars for the collection of precipitation. This is theoretically 

possible with the aid of windshield sensors, wipers, and in-vehicle cameras (Gormer et al., 

2009; Haberlandt and Sester, 2010; Nashashibi et al., 2011). For example, precipitation 

intensity can be estimated through its positive correlation with wiper speed. To demonstrate 

the feasibility of this approach for practical implementation, laboratory experiments and 

computer simulations have been performed, and the results showed that estimated data could 

generally represent the spatial properties of precipitation (Rabiei et al., 2012, 2013, 2016). In 

more recent years, an interesting and preliminary attempt has been made to identify rainy 

days and sunny days with the aid of in-vehicle audio clips from smartphones installed in cars 

(Guo et al., 2016). However, such a method is unable to estimate rainfall intensity and hence 

has not been used in practice thus far.  

As alternatives to the crowdsourcing methods mentioned above, low-cost sensors are also 

able to provide precipitation data (Trono et al., 2012). Typical examples include: (i) home-

made acoustic disdrometers, which are generally installed in cities at a high spatial density, 

where precipitation intensity is identified by the acoustic strength of raindrops, with larger 

acoustic strength corresponding to stronger precipitation intensity (De Jong, 2010); (ii) 

acoustic sensors installed on umbrellas that can be used to measure precipitation intensity on 

rainy days (Hut et al., 2014); (iii) cameras and videos (e.g. surveillance cameras) that are 

employed to detect raindrops with the aid of some data processing methods (Minda and 

Tsuda, 2012; Allamano et al., 2015), and smartphones with built-in sensors to collect 

precipitation data (Alfonso et al., 2015).  

4.3 Air quality  

Crowdsourcing methods for the acquisition of air quality data can be divided into three main 

categories, including (i) citizen-owned in-situ sensors, (ii) mobile sensors and (iii) 

information obtained from social media.  An example of the application of the first approach 

is presented by Gao et al. (2014), who validated the performance of the use of seven Portable 

University of Washington Particle (PUWP) sensors in Xi'an, China, to detect fine particulate 

matter (PM2.5). Similarly, Jiao et al. (2015) integrated commercially available technologies 

to create the Village Green Project (VGP), a durable, solar-powered air monitoring park 

bench that measures real-time ozone and PM2.5. More recently, Miskell et al. (2017) 

demonstrated that crowdsourced approaches with the aid of low-cost and citizen-owned 

sensors can increase the temporal and spatial resolution of air quality networks. Furthermore, 

Schneider et al. (2017) mapped real-time urban air quality (NO2) by combining 

crowdsourced observations from low-cost air quality sensors with time-invariant data from a 

local-scale dispersion model in the city of Oslo, Norway.  

Typical examples of the use of mobile sensors for the measurement of air quality over the 

past few years include the work of Yang et al. (2016), where a low-cost mobile platform was 

designed and implemented to measure air quality. Munasinghe et al. (2017) demonstrated 

how a miniature micro-controller based handheld device was developed to collect hazardous 

gas levels (CO, SO2, NO2) using semiconductor sensors. In addition to moving platforms, 

sensors have also been integrated with smartphones and vehicles to measure air quality, with 

the aid of hardware and software support (Honicky et al., 2008). Application examples 

include smartphones with built-in sensors used to measure air quality (CO, O3, and NO2) in 

urban environments (Oletic and Bilas, 2013), and smartphones with a corresponding app in 

the Netherlands to measure aerosol properties (Snik et al., 2015). In relation to vehicles 
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equipped with sensors for air quality measurement, examples include Elen et al. (2012), who 

used a bicycle for mobile air quality monitoring, and Bossche et al. (2015), who used a 

bicycle equipped with a portable black carbon (BC) sensor to collect BC measurements in 

Antwerp, Belgium. Within their applications, bicycles are equipped with compact air quality 

measurement devices to monitor ultrafine particle number counts, particulate mass and black 

carbon concentrations at a high resolution (up to 1 second), with each measurement 

automatically linked to its geographical location and time of acquisition using GPS and 

Internet time (Elen et al., 2012). Subsequently, Castell et al. (2015) demonstrated that data 

gathered from sensors mounted on mobile modes of transportation could be used to mitigate 

citizen exposure to air pollution, while Apte et al. (2017) applied moving platforms with the 

aid of Google Street View cars to collect air pollution data (black carbon) with reasonably 

high resolution.  

The potential of acquiring air quality data from social media has also been explored recently. 

For instance, Jiang et al. (2015) have successfully reproduced dynamic changes in air quality 

in Beijing by analyzing the spatiotemporal trends in geo-tagged social media messages. 

Following a similar approach, Sachdeva et al. (2016) assessed the air quality impacts caused 

by wildfire events with the aid of data sourced from social media, while Ford et al. (2017) 

have explored the use of daily social media posts from Facebook regarding smoke, haze, and 

air quality to assess population-level exposure in the western US. Analysis of social media 

data has also been used to assess air pollution exposure.  For example, Sun et al. (2017) 

estimated the inhaled dose of pollutant (PM2.5) during a single cycling or pedestrian trip 

using Strava Metro data and GIS technologies in Glasgow, UK, demonstrating the potential 

of using such data for the assessment of average air pollution exposure during active travel, 

and Sun and Mobasheri (2017) investigated associations between cycling purpose and air 

pollution exposure at a large scale.  

4.4 Geography  

Crowdsourcing methods in geography can be divided into three types: (i) those that involve 

intentional participation of citizens; (ii) those that harvest existing sources of information or 

which involve mobile sensors; and (iii) those that integrate crowdsourcing data with 

authoritative databases. Citizen-based crowdsourcing has been widely used for collaborative 

mapping, which is exemplified by the OpenStreetMap (OSM) application (Heipke, 2010; 

Neis et al., 2011; Neis and Zielstra, 2014). There are numerous papers on OSM in the 

geographical literature; see Mooney and Minghini (2017) for a good overview. The 

Collabmap platform is another example of a collaborative mapping application, which is 

focused on emergency planning; volunteers use satellite imagery from Google Maps and 

photographs from Google StreetView to digitize potential evacuation routes. Within 

geography, citizens are often trained to provide data through in situ collection. For example, 

volunteers were trained to map the spatial extent of the surface flow along the San Pedro 

River in Arizona using paper maps and global positioning system (GPS) units (Turner and 

Richter, 2011). This low cost solution has allowed for continuous monitoring of the river that 

would not have been possible without the volunteers, where the crowdsourced maps have 

been used for research and conservation purposes. In a similar way, volunteers were asked to 

go to specific locations and classify the land cover and land use, documenting each location 

with geotagged photographs with the aid of a mobile app called FotoQuest (Laso Bayas et al., 

2016).  

In addition to citizen-based approaches, crowdsourcing within geography can be conducted 

through various low cost sensors, such as mobile phones and social media. For example, 

Heipke (2010) presented an example from TomTom, which uses data from mobile phones 



 

 
© 2018 American Geophysical Union. All rights reserved. 

and locations of TomTom users to provide live traffic information and improved navigation. 

Subsequently, Fan et al. (2016) developed a system called CrowdNavi to ingest GPS traces 

for identifying local driving patterns. This local knowledge was then used to improve 

navigation in the final part of a journey, e.g. within a campus, which has proven problematic 

for applications such as Google Maps and commercial satnavs. Social media has also been 

used as a form of crowdsourcing of geographical data over the past few years. Examples 

include the use of Twitter data from a specific event in 2012 to demonstrate how the data can 

be analyzed in space and time, as well as through social connections (Crampton et al., 2013), 

and the collection of Twitter data as part of the Global Twitter Heartbeat project (Leetaru et 

al.,2013). These collected Twitter data were used to demonstrate different spatial, temporal 

and linguistic patterns using the subset of georeferenced tweets, among several other analyses.   

In parallel with the development of citizen and low-cost sensor based crowdsourcing methods, 

a number of approaches have also been developed to integrate crowdsourcing data with 

authoritative data sources. Craglia et al. (2012) showed an example of how data from social 

media (Twitter and Flickr) can be used to plot clusters of fire occurrence through their 

CONtextual Analysis of Volunteered Information (CONAVI) system. Using data from 

France, they demonstrated that the majority of fires identified by the European Forest Fires 

Information System (EFFIS) were also identified by processing social media data through 

CONAVI. Moreover, additional fires not picked up by EFFIS were also identified through 

this approach. In the application by Rice et al. (2013), crowdsourced data from both citizen-

based and low-cost sensor-based methods were combined with authoritative data to create an 

accessibility map for blind and partially sighted people. The authoritative database contained 

permanent obstacles (e.g. curbs, sloped walkways, etc.), while crowdsourced data were used 

to complement the authoritative map with information on transitory objects such as the 

erection of temporary barriers or the presence of large crowds. This application demonstrates 

how diverse sources of information can be used to produce a better final information product 

for users. 

 

4.5 Ecology  

Crowdsourcing approaches to obtaining ecological data can be broadly divided into three 

categories, including: (i) ad-hoc volunteer-based methods; (ii) structured volunteer-based 

methods; and (iii) methods using technological advances.  Ad-hoc volunteer-based methods 

have typically been used to observe a certain type or group of species (Donnelly et al., 2014). 

The first example of this can be dated back to 1966, where a Breeding Bird Survey project 

was conducted with the aid of a large number of volunteers (Sauer et al., 2009). The records 

from this project have become a primary source of avian study in North America, with which 

additional analysis and research have been carried out to estimate bird population counts and 

how they change over time (Geissler and Noon, 1981; Link and Sauer, 1998; Sauer et al., 

2003). Similarly, a number of well-trained recreational divers have voluntarily examined fish 

populations in California between 1997 and 2011 (Wolfe and Pattengill-Semmens, 2013), 

and the project results have been used to develop a fish database where the density variations 

of 18 different fish species have been reported. In more recent years, local residents were 

encouraged to monitor surface algal blooms in a lake in Finland from 2011 to 2013, and 

results showed that such a crowdsourcing method can provide more reliable data with regard 

to bloom frequency and intensity relative to the traditional satellite remote sensing approach 

(Kotovirta et al., 2014). Subsequently, many citizens have voluntarily participated in a 

research project to assist in the identification of species richness in groundwater, and it was 

reported that citizen engagement was very beneficial in estimating the diversity of the 
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amphipod in Switzerland (Fi er et al., 2017). In more recent years, a crowdsourcing approach 

assisted with identifying a 75% decline in flying insects in Germany over the last 27 years 

(Hallmann et al., 2017). 

While being simple in implementation, the ad-hoc volunteer-based crowdsourcing methods 

mentioned above are often not well designed in terms of their monitoring strategy, and hence 

the data collected may not be able to fully represent the underlying properties of the species 

being investigated. In recognizing this, a network named eBird has been developed to create 

and sustain a global avian biological network (Sullivan et al., 2009), where this network has 

been officially developed and optimized with regard to monitoring locations. As a result, the 

collected data can possess more integrity compared with data obtained using crowdsourcing 

methods where monitoring networks are developed on a more ad-hoc basis. Based on the data 

obtained from the eBird network, many models have been developed to exploit variations in 

observation density (Fink et al., 2013) and show the distributions of hemisphere-wide species 

(Fink et al., 2014), thereby enabling better understanding of broad-scale spatiotemporal 

processes in conservation and sustainability science. In a similar way, a network called 

PhragNet has been developed and applied to investigate the Phragmites australis (common 

reed) invasion, and the collected data have successfully identified environmental and plant 

community associations between the Phragmites invasion and patterns of management 

responses (Hunt et al., 2017).  

In addition to these volunteer-based crowdsourcing methods, novel techniques have been 

increasingly employed to collect ecological data as a result of rapid developments in 

information technology (Teacher et al., 2013). For instance, a global hybrid forest map has 

been developed through combining remote sensing data, observations from volunteer-based 

crowdsourcing methods and traditional measurements performed by governments 

(Schepaschenko et al., 2015). More recently, social media has been used to observe dolphins 

in the Hellenic Seas of the Mediterranean, and the collected data showed high consistency 

with currently available literature on dolphin distributions (Giovos et al., 2016).  

4.6 Surface water  

Data collection methods in the surface water domain based on crowdsourcing can be 

represented by three main groups, including (i) citizen observations, (ii) the use of dedicated 

instruments, and (iii) the use of images or videos.  Of the above, citizen observations 

represent the most straightforward manner for sourcing data, typically water depth. Examples 

include a software package designed to enable the collection of water levels via text messages 

from local citizens (Fienen and Lowry, 2012), and a crowdsourced database built for 

collecting stream stage measurements, where text messages from citizens were transmitted to 

a server that stored and displayed the data on the web (Lowry and Fienen, 2012). In more 

recent years, a local community was encouraged to gather data on time-series of river stage 

(Walker et al., 2016). Subsequently, a crowdsourced database was implemented as a low-cost 

method to assess the water quantity within the Sondu River catchment in Kenya, where 

citizens were invited to read and transmit water levels and the station number to the database 

via a simple text message using their cell phones (Weeser et al., 2016). As the collection of 

water quality data generally requires specialist equipment, crowdsourcing data collection 

efforts in this field have relied on citizens to provide water samples that could then be 

analyzed.  Examples of this include estimation of the spatial distribution of nitrogen solutes 

via a crowdsourcing campaign, with citizens providing samples at different locations, the 

investigation of watershed health (water quality assessment) with the aid of samples collected 

by local citizens (Jollymore et al., 2017), and the monitoring of fecal indicator bacteria 
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concentrations in waterbodies of the greater New York City area with the aid of water 

samples collected by local citizens. 

An example of the use of instruments for obtaining crowdsourced surface water data is given 

in Sahithi (2011), who showed that a mobile app and lake monitoring kit can be used to 

measure the physical properties of water samples.  Another application is given in Castilla et 

al. (2015), who showed that the data from 13 cities (250 water bodies) measured by trained 

citizens with the aid of instruments can be used to successfully assess elevated phytoplankton 

densities in urban and peri-urban freshwater ecosystems.  

The use of crowdsourced images and videos has increased in popularity with developments in 

smart phones and other personal devices, in conjunction with the increased ability to share 

these. For example, Secchi depth and turbidity (water quality parameters) of rivers have been 

monitored using images taken via mobile phones (Toivanen et al., 2013), and water levels 

have been determined using projected geometry and augmented reality to analyze three 

different images of a river’s surface at the same location taken by citizens with the aid of 

smart phones, together with the corresponding GPS location (Demir et al., 2016). In more 

recent years, Tauro and Salvatori (2017) developed 

Kampf et al. (2018) 

proposed the CrowdWater project to measure stream levels with the aid of multiple photos 

taken at the same site, but at different times; and Leeuw et al. (2018) introduced HydroColor, 

which is a mobile application that utilizes a smartphone’s camera and auxiliary sensors to 

measure the remote sensing reflectance of natural water bodies.  

Kampf et al. (2018) developed a Stream 

Tracker with the goal of improving intermittent stream mapping and monitoring using 

satellite and aircraft remote sensing, in-stream sensors, and crowdsourced observations of 

streamflow presence and absence. The crowdsourced data were used to fill in information on 

streamflow intermittence anywhere that people regularly visited streams, e.g., during a hike 

or bike ride, or when passing by while commuting.  

4.7 Natural hazard management  

The crowdsourcing data acquisition methods used to support natural hazard management can 

be divided into three broad classes, including: (i) the use of low-cost sensors; (ii) the active 

provision of dedicated information by citizens; and (iii) the mining of relevant data from 

social media databases.  Low-cost sensors are generally used for obtaining information of the 

hazard itself.  The use of such sensors is becoming more prevalent, particularly in the field of 

flood management, where they have been used to obtain water levels (Liu et al., 2015) or 

velocities (Le Coz et al., 2016, Braud et al., 2014, Tauro and Salvatori, 2017) in rivers. The 

latter can also be obtained with the use of autonomous small boats (Sanjou and Nagasaka, 

2017).  

Active provision of data by citizens can also be used to better understand the location, extent 

and severity of natural hazards and has been aided by recent advances in technological 

developments, not only in the acquisition of data, but also their transmission and storage, 

making them more accessible and usable.  In the area of flood management, Alfonso et al. 

(2010) tested a system in which citizens sent their reading of water level rulers by text 

messages. Since then, other studies have adopted similar approaches (McDougall, 2011; 

McDougall and Temple-Watts, 2012; Lowry and Fienen, 2013) and have adapted them to 

new technologies, such as website upload (Degrossi et al., 2014, Starkey et al., 2017). Kutija 

et al. (2014) developed an approach in which images of floods are received, from which 
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water levels are extracted. Such an approach has also been used to obtain flood extent (Yu et 

al., 2016) and velocity (Le Coz et al., 2016). 

Another means by which citizens can actively provide data for natural hazard management is 

collaborative mapping.  For example, as mentioned in Section 4.4, the Collabmap platform 

can be used to crowdsource evacuation routes for natural hazard events.  As part of this 

approach, citizens are involved in one of five micro-tasks related to the development of maps 

of evacuation routes, including building identification, building verification, route 

identification, route verification, and completion verification (Ramchurn et al., 2013).  In 

another example, citizens used a WEB GIS application to indicate the position of ditches and 

to modify the attributes of existing ditch systems on maps, to be used as inputs in a flood 

model for inland excess water hazard management (Juhász et al., 2016). 

The mining of data from social media databases and image/video repositories has received 

significant attention in natural hazard management (Alexander, 2008; Goodchild and 

Glennon, 2010; Horita et al., 2013) and can be used to signal and detect hazards, to document 

and learn from what is happening and support disaster response activities (Houston et al., 

2014).  However, this approach has been used primarily for hazard response activities in 

order to improve situational awareness (Horita et al., 2013; Anson et al., 2017).  This is due 

to the speed and robustness with which information is made available, its low cost and the 

fact that it can provide text, image/video and locational information (McSeveny and 

Waddington, 2017; Middleton et al., 2014; Stern, 2017).  However, it can also provide large 

amounts of data from which to learn from past events (Stern, 2017), as was the case for the 

2013 Colorado Floods, where social media data were analyzed to better understand damage 

mechanisms and prevent future damage (Dashti et al., 2014).   

Due to accessibility issues, the most common platforms for obtaining relevant information 

are Twitter and Flickr.  For example, Twitter data can be analyzed to detect the occurrence of 

natural hazard events (Li et al., 2012), as demonstrated by applications to floods (Palen et al., 

2010; Smith et al., 2017) and earthquakes (Sakaki et al., 2013), as well as the location of such 

events, as shown for earthquakes (Sakaki et al., 2013), floods (Vieweg et al., 2010), fires 

(Vieweg et al., 2010), storms (Smith et al., 2015) and hurricanes (Kryvasheyeu et al., 2016).  

The location of wildfires has also been obtained by analyzing data from VGI services such as 

Flickr (Goodchild and Glennon, 2010; Craglia et al., 2012). 

Data obtained from analyzing social media databases and image/video repositories can also 

be used to assess the impact of natural disasters.  This can include determination of the spatial 

extent (Jongman et al., 2015; Cervone et al., 2016; Brouwer et al., 2017; Rosser et al., 2017) 

and impact/damage (Vieweg et al., 2010; de Albuquerque et al., 2015; Jongman et al., 2015; 

Kryvasheyeu et al., 2016) of floods, as well as the damage/injury arising from fires (Vieweg 

et al., 2010), hurricanes (Middleton et al., 2014; Kryvasheyeu et al., 2016; Yuan  and Liu, 

2018), tornadoes (Middleton et al., 2014; Kryvasheyeu et al., 2016), earthquakes 

(Kryvasheyeu et al., 2016) and mudslides (Kryvasheyeu et al., 2016). 

Social media data can also be used to obtain information about the hazard itself.  Examples of 

this include the determination of water levels (Vieweg et al., 2010; Aulov et al., 2014; 

Kongthon et al., 2014; de Albuquerque et al., 2015; Jongman et al., 2015; Eilander et al., 

2016; Smith et al., 2015; Li et al., 2017) and water velocities (Le Boursicaud et al., 2016), 

including using such data to evaluate the stability of a person immersed in a flood (Milanesi 

et al., 2016).  The analysis of Twitter data has also been able to provide information on a 

range of other information relevant to natural hazard management, including information on 

traffic and road conditions during floods (Vieweg et al., 2010; Kongthon et al., 2014; de 

Albuquerque et al., 2015) and typhoons (Butler and Declan, 2013), as well as information on 
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damaged and intact buildings and the locations of key infrastructure, such as hospitals, during 

Typhoon Hayan in the Philippines (Butler and Declan, 2013).  Goodchild and Glennon (2010) 

were able to use VGI services such as Flickr to obtain maps of the locations of emergency 

shelters during the Santa Barbara wildfires in the USA. 

Different types of crowdsourced data can also be combined with other types of data and 

simulation models to improve natural hazard management.  Other types of data can be used to 

verify the quality and improve the usefulness of outputs obtained by analyzing social media 

data.  For example, Middleton et al. (2014) used published information to verify the quality 

of maps of flood extent resulting from Hurricane Sandy, and damage extent resulting from 

the Oklahoma tornado, obtained by analyzing the geospatial information contained in tweets.  

In contrast, de Albuquerque et al. (2015) used authoritative data on water levels from 185 

stations with 15 minute resolution, as well as information on drainage direction, to identify 

the tweets that provided the most relevant information for improving situational awareness 

related to the management of the 2013 floods in the River Elbe in Germany.  Other data types 

can also be combined with crowdsourced data to improve the usefulness of the outputs.  For 

example, Jongman et al. (2015) combined near-real-time satellite data with near-real-time 

Twitter data on the location, timing, and impacts of floods for case studies in Pakistan and the 

Philippines for improving humanitarian response. McDougall and Temple-Watts (2012) 

combined high quality aerial imagery, LiDAR data and publically available volunteered 

geographic imagery (e.g. from Flickr) to reconstruct flood extents and obtain information on 

depth of inundation for the 2011 Brisbane floods in Australia. 

With regard to the combination of crowdsourced data with models, Juhász et al. (2016) used 

data on the location of channels and ditches provided by citizens as one of the inputs to an 

online hydrological model for visualizing areas at potential risk of flooding under different 

scenarios.  Alternatively, Smith et al. (2015) developed an approach that uses data from 

Twitter to identify when a storm event occurs, triggering simulations from a hydrodynamic 

flood model in the correct location, and to validate the model outputs, whereas Aulov et al. 

(2014) used data from tweets and Instagram images for the real-time validation of a process-

driven storm surge model for Hurricane Sandy in the USA. 

4.8 Summary of crowdsourcing methods used  

The different crowdsourcing-based data acquisition methods discussed in Sections 4.1 to 4.7 

can be broadly classified into four major groups: citizen observations, instruments, social 

media and integrated methods (Table 2).  As can be seen, the methods belonging to these 

groups cover all nine categories of crowdsourcing data acquisition methods defined in Table 

1. Interestingly, six out of the nine possible methods have been used in the domain of natural 

hazard management (Table 2), which is primarily due to the widespread use of social media 

and integrated methods in this domain. 

Of the four major groups of methods shown in Table 2, citizen observations have been used 

most broadly across the different domains of geophysics reviewed. This is, at least partly, 

because of the relatively low cost associated with this crowdsourcing approach, as it does not 

rely on the use of monitoring equipment and sensors. Based on the categorization introduced 

in Figure 6, this approach uses citizens (through their senses, such as sight) as data generation 

agents and has a data type that belongs to the intentional category.  As part of this approach, 

local citizens have reported on general degrees of temperature, wind, rain, snow and hail 

based on their subjective feelings, and land cover, algal blooms, stream stage, flooded area 

and evacuation routines according to their readings and counts.  
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While citizen observation-based methods are simple to implement, the resulting data might 

not be sufficiently accurate for particular applications.  This limitation can be overcome by 

using instruments.  As shown in Table 2, instruments used for crowdsourcing generally 

belong to one of two categories: in-situ sensors / stations (installed and maintained by citizens, 

rather than authoritative agencies) or mobile devices. For methods belonging to the former 

category, instruments are used as data generation agents, but the data type can be either 

intentional or unintentional.  Typical in-situ instruments for the intentional collection of data 

include automatic weather stations used to obtain wind and temperature data, gauges used to 

measure rainfall intensity, and sensors used to measure air quality (PM2.5 and Ozone), shale 

gas and heavy metal in rivers, and water levels during flooding events. An example of a 

method as part of which the geophysical data of interest can be obtained from instruments 

that were not installed to intentionally provide these data is the use of the microwave links to 

estimate fog and rain intensity. 

Instruments belonging to the mobile category generally require both citizens and instruments 

as data generation agents (Table 2).  This is because such sensors are either attached to 

citizens themselves, or to vehicles operated by citizens (although this is likely to change in 

future as the use of autonomous vehicles becomes more common).  However, as is the case 

for the in-situ category, data types can be either intentional or unintentional.  As can be seen 

from Table 2, methods belonging to the intentional category have been used across all 

domains of geophysics considered in this review.  Examples include the use of mobile phones, 

cameras, cars, and people on bikes measuring variables such as temperature, humidity, 

rainfall, air quality, land cover, dolphin numbers, suspended sediment, dissolved organic 

matter, water level and water velocity.  Examples from the unintentional data type include the 

identification of rainy days through audio clips collected from smartphones installed in cars 

(Guo et al., 2016) and the general assessment of air pollution exposure with the aid of traces 

and duration of outdoor cycling activities (Sun et al., 2017). It should be noted that there are 

also cases where different instruments can be combined to collect/estimate data. For example, 

weather stations and microwave links were jointly used to estimate wind and humidity by 

Vishwarupe et al. (2016). 

Crowdsourced data obtained from social media or image/video repositories belong to the 

unintentional data type category, as they are mined from information not shared for the 

purposes they are ultimately used for.  However, the data generation agent can either be 

citizens or citizens in combination with instruments (Table 2).  As most of the information 

that is useful from a geophysics perspective contains images or spatial information that 

requires the use of instruments (e.g. mobile phones), there are few examples where citizens 

are the sole data generation agent, such as that of the analysis of text-based information from 

Twitter or Facebook to obtain maps of flooded areas to aid natural hazard management 

(Table 2).  However, applications where both citizens and instruments are used to generate 

the data to be analyzed are more widespread, including the estimation of smoke dispersion 

after fire events, the determination of the geographical locations where tweets were authored, 

the identification of the number of tigers around the world to aid tiger conservation, the 

estimation of water levels, the detection of earthquake events and the identification of 

critically affected areas and damage from hurricanes.  

In parallel with the developments of the three types of methods mentioned above, there is 

also growing interest in integrating various crowdsourced data, typically aimed to improve 

data coverage or to enable data cross-validation. As shown in Table 2, these can involve both 

categories of data-generation agents and both categories of data types. Examples include the 

development of accessibility mapping for people with disabilities, water quantity estimation, 

and estimation of inundated areas.  An example where citizens are used as the only data 
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generation agent but both data types are used is where citizen observations transmitted 

through a dedicated mobile app and Twitter are integrated to show flood extent and water 

level to assist with disaster management (Wang et al., 2018). 

As discussed in Sections 4.1 to 4.7, these crowdsourcing methods can be also integrated with 

data from authoritative databases or with models to further improve the spatiotemporal 

resolution of the data being collected. Another aim of such hybrid approaches is to enable the 

crowdsourcing data to be validated. Examples include gauged rainfall data integrated with 

data estimated from microwave links (Fencl et al., 2017; Haese et al., 2017), stream mapping 

through combining mobile app data and satellite remote sensing data (Kampf et al., 2018), 

and the validation of the quality of water level data derived from tweets using authoritative 

data (de Albuquerque et al., 2015). 

 

 

 

 

 

5 Review of issues associated with crowdsourcing applications 

5.1 Management of crowdsourcing projects 

5.1.1 Background 

The managerial, organizational and social aspects of crowdsourced applications are as 

important and challenging as the development of data processing and modelling technologies 

that ingest the resulting data. Hence there is a growing body of literature on how to design, 

implement and manage crowdsourcing projects. As the core component in crowdsourcing 

projects is the participation of the ‘crowd’, engaging and motivating the public has become a 

primary consideration in the management of crowdsourcing applications, and a range of 

strategies is emerging to address this aspect of project design. At the same time, many 

authors argue that the design of crowdsourcing efforts, in terms of spatial scale and 

participant selection, is a trade-off between cost, time, accuracy and research objectives. 

Another key set of methods related to project design revolves around data collection, i.e. data 

protocols and standards, as well as the development of optimal spatial-temporal sampling 

strategies for a given application. When using low cost sensors and smartphones, additional 

methods are needed to address calibration and environmental conditions. Finally, we consider 

methods for the integration of various crowdsourced data into further applications, which is 

one of the main categories of crowdsourcing methods that emerged from the review (see 

Table 2) but warrants further consideration related to the management of crowdsourcing 

projects.  

5.1.2 Current status 

There are four main categories of methods associated with the management of crowdsourcing 

applications as outlined in Table 3. A number of studies have been conducted to help 

understand what methods are effective in the engagement and motivation of participation in 

crowdsourcing applications, particularly as many crowdsourcing applications need to attract a 

large number of participants (Buytaert et al., 2014; Alfonso et al., 2015). Groom et al. (2017) 

argue that the users of crowdsourced data should acknowledge the citizens who were 

involved in the data collection in ways that matter to them. If the monitoring is over a long 

time period, crowdsourcing methods must be put in place to ensure sustainable participation 

(Theobald et al., 2015), potentially resulting in challenges for the implementation of 

crowdsourcing projects. In other words, many crowdsourcing projects are applicable in cases 
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where continuous data gathering is not the main objective. 

Considerable experience has been gained in setting up successful citizen science projects for 

biodiversity monitoring in Ireland, which can inform crowdsourcing project design and 

implementation. Donnelly et al. (2014) provide a checklist of criteria, including the need to 

devise a plan for participant recruitment and retention. They also recognize that training 

needs must be assessed and the necessary resources provided, e.g., through workshops, 

training videos, etc. To sustain participation, they provide comprehensive newsletters to their 

volunteers, as well as regular workshops to further train and engage participants. Involving 

schools is also a way to improve participation, particularly when data become a required 

element to enable the desired scientific activities, e.g., save tigers (Donnelley et al., 2014; 

Roy et al., 2016; Can et al., 2017). Other experiences can be found in Japan, UK and USA by 

Kobori et al. (2016), who suggested that existing communities with interest in the application 

area should be targeted, some form of volunteer recognition system should be implemented 

and tools for facilitating positive social interaction between the volunteers should be used. 

They also suggest that front-end evaluation involving interviews and focus groups with the 

target audience can be useful for understanding the research interests and motivations of the 

participants, which can be used in application design. Experiences in the collection of 

precipitation data through the mPING mobile app have shown that the simplicity of the 

application and immediate feedback to the user were key elements of success in attracting 

large numbers of volunteers (Elmore et al., 2014). This more general element of the need to 

communicate with volunteers has been touched upon by several researchers (e.g. Vogt et al., 

2014; Donnelly et al., 2014; Kobori et al., 2016). Finally, different incentives should be 

considered as a way to increase volunteer participation from the addition of gamification or 

competitive elements to micro-payments, e.g., though the use of platforms such as Amazon 

Mechanical Turk, where appropriate (Fritz et al., 2017).  

A second set of methods related to the management of crowdsourcing applications revolves 

around data collection protocols and data standards. Kobori et al. (2016) recognize that 

complex data collection protocols or inconvenient locations for sampling can be barriers to 

citizen participation and hence they suggest that data protocols should be simple. Vogt et al. 

(2014) have similarly noted that the ‘usability’ of their protocol in monitoring of urban trees 

is an important element of the project. Clear protocols are also needed for collecting data 

from vehicles, low cost sensors and smartphones in order to deal with inconsistencies in the 

conditions of the equipment, such as the running speed of the vehicles, the operating system 

version of the smartphones, the conditions of batteries, the sensor environments, i.e. whether 

they are indoors or outdoors or if a smartphone is carried in a pocket or handbag, and a lack 

of calibration or modifications for sensor drift (Honicky et al. 2008; Anderson et al., 2012; 

Wolters and Brandsma, 2012; Overeem et al., 2013a; Majethia et al., 2015). Hence the 

quality of crowdsourced atmospheric data is highly susceptible to various disturbances 

caused by user behavior, their movements and other interference factors. An approach for 

tackling these problems would be to record the environmental conditions along with the 

sensor measurements, which could then be used to correct the observations. Finally, data 

standards and interoperability are important considerations, which are discussed by Buytaert 

et al. (2014) in relation to sensors. The Open Geospatial Consortium (OGC) Sensor 

Observation Service is one example where work is progressing on sensor data standards. 

Another set of methods that needs to be considered in the design of a crowdsourcing 

application is the identification of an appropriate sample design for the data collection. For 

example, methods have been developed for determining the optimal spatial density and 

locations for precipitation monitoring (Doesken and Weaver, 2000). Although a precipitation 

observation network with a higher density is more likely to capture the underlying 
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characteristics of the precipitation field, it comes with significantly increased efforts needed 

to organize and maintain such a large volunteer network (de Vos et al., 2017). Hence, the 

sample design and corresponding trade-off needs to be considered in the design of 

crowdsourcing applications. Chacon-Hurtado et al. (2017) present a generic framework for 

designing a rainfall and streamflow sensor network including the use of model outputs. Such 

a framework could be extended to include crowdsourced precipitation and streamflow data. 

The temporal frequency of sampling also needs to be considered in crowdsourcing 

applications. Davids et al. (2017) investigated the effect of lower frequency sampling of 

streamflow, which could be similar to that produced by citizen monitors. By sub-sampling 7 

years of data from 50 stations in California, they found that even with lower temporal 

frequency, the information would be useful for monitoring, with reliability increasing for less 

flashy catchments.  

The final set of methods that needs to be considered when developing and implementing a 

crowdsourcing application is how the crowdsourced data will be used, i.e. integrated or 

assimilated into monitoring and forecasting systems. For example, Mazzoleni et al. (2017) 

investigated the assimilation of crowdsourced data directly into flood forecasting models. 

They developed a method that deals specifically with the heterogeneous nature of the data by 

updating the model states and covariance matrices as the crowdsourced data became available. 

Their results showed that model performance increased with the addition of crowdsourced 

observations, highlighting the benefits of this data stream. In the area of air quality, Schneider 

et al. (2017) used a data fusion method to assimilate NO2 measurements from low cost 

sensors with spatial outputs from an air quality model. Although the results were generally 

good, the accuracy varied based on a number of factors including uncertainties in the low cost 

sensor measurements. Other methods are needed for integrating crowdsourced data with 

ground-based station data and remote sensing since these different data inputs have varying 

spatio-temporal resolutions. An example is provided by Panteras and Cervone (2018), who 

combined Twitter data with satellite imagery to improve the temporal and spatial resolution 

of probability maps of surface flooding produced during four phases of a flooding event in 

Charleston, South Carolina. The value of the crowdsourced data was demonstrated during the 

peak of the flood in phase two when no satellite imagery was available.  

Another area of ongoing research is assimilation of data from amateur weather stations in 

numerical weather prediction (NWP), providing both high resolution data for initial surface 

conditions and correction of outputs locally. For example, Bell et al. (2013) compared 

crowdsourced data from amateur weather stations with official meteorological stations in the 

UK and found good correspondence for some variables, indicating assimilation was possible. 

Muller (2013) showed how crowdsourced snow depth interpolated for one day appeared to 

correlate well with a radar map, while Haese et al. (2017) showed that by merging data 

collected from existing weather observation networks with crowdsourced data from 

commercial microwave links, a more complete understanding of the weather conditions could 

be obtained. Both clearly have potential value for forecasting models. Finally, Chapman et al. 

(2015) presented the details of a high resolution urban monitoring network (UMN) in 

Birmingham, describing many potential applications from assimilation of the data into NWP 

models, acting as a testbed to assess crowdsourced atmospheric data and linking to various 

smart city applications, among others.  

Some crowdsourcing methods depend upon existing infrastructure or facilities for data 

collection, as well as infrastructure for data transmission (Liberman et al., 2014). For 

example, the utilization of microwave links for rainfall estimation is greatly affected by the 

frequency and length of available links (

), and the moving-car and low cost sensor-based methods are heavily influenced by the 
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availability of such cars and sensors (Allamano et al., 2015). An ad-hoc method for tackling 

this issue is the development of hybrid crowdsourcing methods that can integrate multiple 

existing crowdsourcing approaches to provide precipitation data with improved reliability 

(Liberman et al., 2016; Yang & Ng., 2017). 

5.1.3 Challenges and future directions 

There is considerable experience being amassed from crowdsourcing applications across 

multiple domains in geophysics. This collective best practice in the design, implementation 

and management of crowdsourcing applications should be harnessed and shared between 

disciplines rather than duplicating efforts. In many ways, this review paper represents a way 

of signposting important developments in this field for the benefit of multiple research 

communities. Moreover, new conferences and journals focused on crowdsourcing and citizen 

science will facilitate a more integrated approach to solving problems of a similar nature 

experienced within different disciplines. Engagement and motivation will continue to be a 

key challenge. In particular, it is important to recognize that participation will always be 

biased, i.e. subject to the 90:9:1 rule, which states that 90% of the participants will simply 

view the data generated, 9% will provide some data from time to time while the majority of 

the data will be collected by 1% of the volunteers. Although different crowdsourcing 

applications will have different percentages and degrees of success in mitigating this bias, it 

is critical to gain a better understanding of participant motivations and then design projects 

that meet these motivations. Ongoing research in the field of governance can help to identify 

bottlenecks in the operational implementation of crowdsourcing projects, by evaluating 

citizen participation mechanisms (Wehn et al., 2015). 

On the data collection side, some of the challenges related to the deployment of low cost and 

mobile sensors may be solved through improving the reliability of the sensors in the future 

(McKercher et al., 2016). However, an ongoing challenge that hinders the wider collection of 

atmospheric observations from the public is that outdoor measurement facilities are often 

vulnerable to environmental damage (Melhuish and Pedder, 2012; Chapman et al., 2016). 

There are technical challenges arising from the lack of data standards and interoperability for 

data sharing (Panteras and Cervone, 2018), particularly in domains where multiple types of 

data are collected and integrated within a single application. This will continue to be a future 

challenge, but there are several open data standards emerging that could be used for 

integrating data from multiple sources and sensors, e.g., WaterML or SWE (Sensor Web 

Enablement), which are being championed by the OGC.  

Another key future direction will be the development of more operational systems that 

integrate intentional and unintentional crowdsourcing, particularly as the value of such data 

to enhance existing authoritative databases becomes more and more evident. Much of the 

research reported in this review presents the results of dedicated, one-time-only experiments 

that, as discussed in Section 3, are in most cases restricted to research projects and the 

academic environment. Even in research projects dedicated to citizen observatories that 

include local partnerships, there is limited demonstration of changes in management 

procedures and structures, and little technological uptake. Hence crowdsourcing needs to be 

operationalized, and there are many challenges associated with this. For example, amateur 

weather stations are often clustered in urban areas or areas with a higher population density, 

they have not necessarily been calibrated or recalibrated for drift, they are not always placed 

in optimal locations at a particular site and they often lack metadata (Bell et al., 2013). 

Chapman et al. (2015) touched upon a wide range of issues related to the UMN in 

Birmingham from site discontinuation due to lack of engagement to more technical problems 

associated with connectivity, signal strength and battery life. Use of more unintentional 
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sensing through cars, wearable technologies and the Internet of Things may be one solution 

for gathering data in ways that will become less intrusive and less effort for citizens in the 

future. There are difficult challenges associated with data assimilation but this will clearly be 

an area of continued research focus. Hydrological model updating, both offline and real-time, 

which has not been possible due to lack of gauging stations, could have a bigger role in future 

due to the availability of new data sources, while the development of new methods for 

handling noisy data will most likely result in significant improvements in meteorological 

forecasting. 

5.2 Data quality 

5.2.1 Background  

Concerns about the uncertain quality of the data obtained from crowdsourcing and their rate 

of acceptability is one of the primary issues raised by potential users (Foody et al., 2013; 

Walker et al., 2016; Steger et al., 2017). These include not only scientists, but natural 

resource managers, local and regional authorities, communities, and businesses, among others. 

Given the large quantities of crowdsourced data that are currently available (and will 

continue to come from crowdsourcing in the future), it is important to document the quality 

of the data so that users can decide if the available crowdsourced data are fit-for-purpose, 

similar to the way that users would judge data coming from professional sources. 

Crowdsourced data are subject to the same types of errors as professional data, each of which 

require methods for quality assessment. These errors include observational and sampling 

errors, lack of completeness, e.g. only 1 to 2% of Twitter data are currently geo-tagged 

(Middleton et al. 2014; Das and Kim 2015; Morstatter et al. 2013; Palen and Anderson, 2016), 

and issues related to trust and credibility, e.g. for data from social media (Sutton et al., 2008; 

Schmierbach and Oeldorf-Hirsh, 2010), where information may be deliberately or even 

unintentionally erroneous, potentially endangering lives when used in a disaster response 

context (Akhgar et al., 2017). In addition, there are social and political challenges, such as the 

initial lack of trust in crowdsourced data (McCray, 2006; Buytaert et al., 2014). For 

governmental organizations, the driver could be fear of having current data collections 

invalidated or the need to process overwhelming amounts of varying quality data (McCray, 

2006). It could also be driven by cultural characteristics that inhibit public participation.  

5.2.2 Current status 

From the literature, it is clear that research on finding optimal ways to improve the accuracy 

of crowdsourced data is taking place in different disciplines within geophysics and beyond, 

yet there are clear similarities in the approaches used, as outlined in Table 4. Seven different 

types of approaches have been identified, while the eighth type refers to methods of 

uncertainty more generally. Typical references that demonstrate these different methods are 

also provided.  

The first method in Table 4 involves the comparison of crowdsourced data with data collected 

by experts or existing authoritative databases; this is referred to as a comparison with a ‘gold 

standard’ data set. This is also one of seven different methods that comprise the Citizen 

Observatory WEB (COBWEB) quality assurance system (Leibovici et al., 2015). An example 

is the gold standard data set collected by experts using the Geo-Wiki crowdsourcing system 

(Fritz et al., 2012). In the post-processing of data collected through a Geo-Wiki 

crowdsourcing campaign, See et al. (2013) showed that volunteers with some background in 

the topic (i.e., remote sensing or geospatial sciences) outperformed volunteers with no 

background when classifying land cover but that this difference in performance decreased 

over time as less experienced volunteers improved. Using this same data set, Comber et al. 
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(2013) employed geographically weighted regression to produce surfaces of crowdsourced 

reliability statistics for Western and Central Africa. Other examples include the use of a gold 

standard data set in crowdsourcing via the Amazon Mechanical Turk system (Kazai et al., 

2013), to examine various drivers of performance, in species identification in East Africa 

(Steger et al., 2017), in hydrological (Walker et al., 2016) and water quality monitoring 

(Jollymore et al., 2017), and to show how rainfall can be enhanced with commercial 

microwave links (Pastorek et al., 2017). Although this is clearly one of the most frequently 

used methods, Goodchild and Li (2012) argue that some authoritative data, e.g. topographic 

databases, may be out of date so other methods should be used to complement this gold 

standard approach. 

The second category in Table 4 is the comparison of crowdsourced data with alternative 

sources of data, which is referred to as model-based validation in the COBWEB system 

(Leibovici et al., 2015). An illustration of this approach is given in Walker et al. (2015), who 

examined the correlation and bias between rainfall data collected by the community with 

satellite-based rainfall and reanalysis products as one form of quality check among several. 

Combining multiple observations at the same location is another approach for improving the 

quality of crowdsourced data. Having consensus at a given location is similar to the idea of 

replicability, which is a key characteristic of data quality. Crowdsourced data collected at the 

same location can be combined using a consensus-based approach such as majority weighting 

(Kazai et al., 2013; See et al., 2013) or latent analysis can be used to determine the relative 

performance of different individuals using such a data set (Foody et al., 2013). Other methods 

have been developed for crowdsourced data being collected on species occurrence. In the 

Snapshot Serengeti project, citizens identified species from more than 1.5 million 

photographs taken by camera traps. Using bootstrapping and comparison of accuracy from a 

subset of the data with a gold standard data set, researchers determined that 90% accuracy 

could be reached with 5 volunteers per photograph while this number increased to 95% 

accuracy with 10 people (Swanson et al. 2016). 

The fourth category is crowdsourced peer review or what Goodchild and Li (2012) refer to as 

the ‘crowdsourcing’ approach. They argue that the crowd can be used to validate data from 

individuals and even correct any errors. Trusted individuals in a self-organizing hierarchy 

may also take on this role of data validation and correction in what Goodchild and Li (2012) 

refer to as the ‘social’ approach. Examples of this hierarchy of trusted individuals already 

exist in applications such as OSM and Wikipedia. Automated checking of the data, which is 

the fifth category of approaches, can be undertaken in numerous ways and is part of two 

different validation routines in the COBWEB system (Leibovici et al., 2015), one that looks 

for simple errors or mistakes in the data entry and a second routine that carries out further 

checks based on validity. In the analysis by Walker et al. (2016), the crowdsourced data 

undergo a number of tests for formatting errors, application of different consistency tests, e.g., 

are observations consistent with previous observations recorded in time, and tests for 

tolerance, i.e., are the data within acceptable upper and lower limits. Simple checks like these 

can easily be automated. 

The next method in Table 4 refers to a general set of approaches that are derived from 

different disciplines. For example, Walker et al. (2016) use the quality procedures suggested 

by the World Meteorological Organization (WMO) to quality assess crowdsourced data, 

many of which also fall under the types of automated approaches available for data quality 

checking. WMO also recommends a completeness test, i.e., are there missing data that may 

potentially affect any further processing of the data, which is clearly context-dependent. 

Another test that is specific to streamflow and rainfall is the double mass check (Walker et al., 

2016), whereby cumulative values are compared with those from a nearby station to look for 
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consistency. Within VGI and geography, there are international standards for assessing spatial 

data quality (ISO 19157), which break down quality into several components such as 

positional accuracy, thematic accuracy, completeness, etc. as outlined in Fonte et al. (2017). 

In addition, other VGI-specific quality indicators are discussed such as the quality of the 

contributors or consideration of the socio-economics of the areas being mapped. Finally, the 

COBWEB system described by Leibovici et al. (2015) is another example that has several 

generic elements, but also some that are specific to VGI, e.g., the use of spatial relationships 

to assess the accuracy of the position using the mobile device. 

When dealing with data from social media, e.g., Twitter, methods have been proposed for 

determining the credibility (or believability) in the information. Castillo et al. (2011) 

developed an automated approach for determining the credibility of tweets by testing 

different message-based (e.g., length of the message), user-based (e.g. number of followers), 

topic-based (e.g. number and average length of tweets associated with a given topic) and 

propagation-based (i.e. retweeting) features. Using a supervised classifier, an overall 

accuracy of 86% was achieved. Westerman et al. (2012) examined the relationship between 

credibility and the number of followers on Twitter and found an inverted U-shaped pattern, 

i.e., having too few or too many followers decreases credibility, while credibility increased as 

the gap between the number of followers and the number followed by a given source 

decreased. Kongthon et al. (2014) applied the measures of Westerman et al. (2012) but found 

that retweets were a better indicator of credibility than the number of followers. Quantifying 

these types of relationships can help to determine the quality of information derived from 

social media. The final approach listed in Table 1 is the quantification of uncertainty, 

although the methods summarized in Rieckermann (2016) are not specifically focused on 

crowdsourced data. Instead the author advocates the importance of reporting a reliable 

measure of uncertainty, of either observations or predictions of a computer model, to improve 

scientific analysis, such as parameter estimation, or decision making in practical applications. 

5.2.3 Challenges and future directions 

Handling concerns over crowdsourced data quality will continue to remain a major challenge 

in the near future. Walker et al. (2016) highlight the lack of examples of the rigorous 

validation of crowdsourced data from community-based hydrological monitoring programs. 

In the area of wildlife ecology, the quality of the crowdsourced data varies considerably by 

species and ecosystem (Steger et al., 2017), while experiences of crowd-based visual 

interpretation of very high resolution satellite imagery show there is still room for 

improvement (See et al., 2013). To make progress on this front, more studies are needed that 

continue to evaluate the quality of crowdsourced data, in particular how to make 

improvements, e.g., through additional training and the use of stricter protocols, which is also 

closely related to the management of crowdsourcing projects (section 5.1). Quality assurance 

systems such as those developed in COBWEB may also provide tools that facilitate quality 

control across multiple disciplines. More of these types of tools will undoubtedly be 

developed in the near future. 

Another concern with crowdsourcing data collection is the irregular intervals in time and 

space at which the data are gathered. To collect continuous records of data, volunteers must 

be willing to provide such measurements at specific locations, e.g., every monitoring station, 

which may not be possible. Moreover, measurements during extreme events, e.g., during a 

storm, may not be available as there are fewer volunteers willing to undertake these tasks. 

However, studies show that even incidental and opportunistic observations can be invaluable 

when regular monitoring at large spatial scales is infeasible (Hochachka et al., 2012). 
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Another important factor in crowdsourcing environmental data, which is also a requirement 

for data sharing systems, is data heterogeneity. Granell et al. (2016) highlight two general 

approaches for homogenizing environmental data: (1) standardization to define common 

specifications for interfaces, metadata, and data models, which is also discussed briefly in 

section 5.1, and (2) mediation to adapt and harmonize heterogeneous interfaces, meta-models, 

and data models. The authors also call for reusable Specific Enablers (SE) in the 

environmental informatics domain as possible solutions to share and mediate collected data in 

environmental and geospatial fields. Such SEs include geo-referenced data collection 

applications, tagging tools, mediation tools (mediators and harvesters), fusion applications for 

heterogeneous data sources, event detection and notification, and geospatial services. 

Moreover, test beds are also important for enabling generic applications of crowdsourcing 

methods. For instance, regions with good reference data (e.g., dedicated Urban 

Meteorological Networks) can be used to optimize and validate retrieval algorithms for 

crowdsourced data. Ideally, these test beds would be available for different climates, so that 

improved algorithms can subsequently be applied to other regions with similar climates but 

where there is a lack of good reference data. 

5.3 Data processing 

5.3.1 Background  

In the 1970s, an automated flood detection system was installed in Boulder County, 

consisting of around 20 stream and rain gauges following a catastrophic flood event that 

resulted in 145 fatalities and considerable damage. After that, the Automated Local 

Evaluation in Real-Time (ALERT) system spread to larger geographical regions with more 

instrumentation (of around 145 stations), and internet access was added in 1998 (Stewart, 

1999). Now two decades later, we have entered an entirely new era of big data, including 

novel sources of information such as crowdsourcing. This has necessitated the development 

of new and innovative data processing methods (Vatsavai et al., 2012). Crowdsourced data, 

in particular, can be noisy and unstructured, thus requiring specialized methods that turn 

these data sources into useful information. For example, it can be difficult to find relevant 

information in a timely manner due to the large volumes of data such as Twitter (Goolsby, 

2009; Barbier et al., 2012). Processing methods are also needed that are specifically designed 

to handle spatial and temporal autocorrelation since some of these data are collected over 

space and time, often in large volumes over short periods (Vatsavai et al., 2012), as well as at 

varying spatial scales, which can vary considerably between applications, e.g., from a single 

lake to monitoring at the national level. The need to record background environmental 

conditions along with data observations can also result in issues related to increased data 

volumes. The next section provides an overview of different processing methods that are 

being used to handle these new data streams. 

5.3.2 Current status 

The different processing methods that have been used with crowdsourced data are 

summarized in Table 5 along with typical examples from the literature. As the data are often 

unstructured and incomplete, crowdsourced data are often processed using a range of 

different methods in a single workflow, from initial filtering (pre-processing methods) to data 

mining (post-processing methods). 

One increasingly used source of unintentional crowdsourced data is Twitter, particularly in a 

disaster-related context. Houston et al. (2015) undertook a comprehensive literature review of 

social media and disasters in order to understand how the data are used and in what phase of 

the event. Fifteen distinct functions were identified from the literature and described in more 
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detail, e.g. sending and receiving requests for help, and documenting and learning about an 

event. Some simple methods mentioned within these different functions included mapping 

the evolution of tweets over an event or the use of heat maps, and building a Twitter listening 

tool that can be used to dispatch responders to a person in need. The latter tool requires 

reasonably sophisticated methods for filtering the data, which are described in detail in papers 

by Barbier et al. (2012) and Imran et al. (2015). For example, both papers describe different 

methods for data pre-processing. Stop word removal, filtering for duplication and messages 

that are off topic, feature extraction and geotagging are examples of common techniques used 

for working with Twitter (or other text-based) information. Once the data are pre-processed, 

there is a series of other data mining methods that can be applied. For example, there is a 

variety of hard and soft clustering techniques, as well as different classification methods and 

Markov models. These methods can be used, e.g., to categorize the data, detect new events or 

examine the evolution of an event over time. 

An example that puts these different methods into practice is provided by Cervone et al. 

(2016), who show how Twitter can be used to identify hotspots of flooding. The hotspots are 

then used to task the acquisition of very high resolution satellite imagery from Digital Globe. 

By adding the imagery with other sources of information such as the road network and the 

classification of satellite and aerial imagery for flooded areas, it was possible to provide a 

damage assessment of the transport infrastructure and determine which roads are impassable 

due to flooding. A different flooding example is described by Rosser et al. (2017), who used 

a different source of social media, i.e. geotagged photographs from Flickr. These photographs 

are used with a very high resolution digital terrain model to create cumulative viewsheds. 

These are then fused with classified Landsat images for areas of water using a Bayesian 

probabilistic method to create a map with areas of likely inundation.  Even when data come 

from citizen observations and instruments intentionally, the type of data being collected may 

require additional processing, which is the case for velocity, where velocimetry-based 

methods are usually applied in the context of videos (Braud et al., 2014; Le Coz et al., 2016, 

Tauro and Salvatori, 2017). 

The review by Granell and Ostermann (2016) also focuses on the area of disasters, but they 

undertook a comprehensive review of papers that have used any types of VGI (both 

intentional and unintentional) in a disaster context. Of the processing methods used, they 

identified six key types, including descriptive, explanatory, methodological, inferential, 

predictive and causal. Of the 59 papers reviewed, the majority used descriptive and 

explanatory methods. The authors argue that much of the work in this area is technology or 

data driven, rather than human or application centric, both of which require more complex 

analytical methods.  

Web-based technologies are being employed increasingly for processing of environmental 

big data, including crowdsourced information (Vitolo et al., 2015), e.g., using web services 

such as SOAP, which sends data encoded in XML, and REST (Representational State 

Transfer), where resources have URIs (Universal Resource Identifiers). Data processing is 

then undertaken through Web Processing Services (WPS) with different frameworks 

available that can apply existing or bespoke data processing operations. These types of 

‘Environmental Virtual Observatories’ promote the idea of workflows that chain together 

processes and facilitate the implementation of scientific reproducibility and traceability. An 

example is provided in the paper of an Environmental Virtual Observatory that supports the 

development of different hydrological models, from ingesting the data to producing maps and 

graphics of the model outputs, where crowdsourced data could easily fit into this framework 

(Hill et al., 2011). 
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Other crowdsourcing projects such as eBird contain millions of bird observations over space 

and time, which requires methods that can handle non-stationarity in both dimensions. 

Hochachka et al. (2012) have developed a spatiotemporal exploratory model (STEM) for 

species prediction, which integrates randomized mixture models capturing local effects, 

which are then scaled up to larger areas. They have also developed semi-parametric 

approaches to occupancy detection models, which represents the true occupancy status of a 

species at a given location. Combining standard site occupancy models with boosted 

regression trees, this semi-parametric approach produced better probabilities of occupancy 

than traditional models. Vatsavai et al. (2012) also recognize the need for spatiotemporal data 

mining algorithms for handling big data. They outline three different types of models that 

could be used for crowdsourced data, including spatial autoregressive models, Markov 

random field classifiers and mixture models like those used by Hochachka et al. (2012). They 

then show how different models can be used across a variety of domains in geophysics and 

informatics, touching upon challenges related to the use of crowdsourced data from social 

media and mobility applications, including GPS traces and cars as sensors. 

When working with GPS traces, other types of data processing methods are needed. Using 

cycling data from Strava, a website and mobile app that citizens use to upload their cycling 

and running routes, Sun and Mobasheri (2017) examined exposure to air pollution on cycling 

journeys in Glasgow. Using a spatial clustering algorithm (A Multidirectional Optimum 

Ecotope-Based Algorithm-AMOEBA) for displaying hotspots of cycle journeys in 

combination with calculations of instantaneous exposure to particulate matter (PM2.5 and 

PM10), they were able to show that cycle journeys for non-commuting purposes had less 

exposure to harmful pollutants than those used for commuting. Finally, there are new 

methods for helping to simplify the data collection process through mobile devices. The 

Sensr system is an example of a new generation of mobile application authoring tools that 

allows users to build a simple data collection app without requiring any programming skills 

(Kim et al., 2013). The authors then demonstrate how such an app was successfully built for 

air quality monitoring, documenting illegal dumping in catchments and detecting invasive 

species, illustrating the generic nature of such a solution to process crowdsourcing data.  

5.3.3 Challenges and future directions 

Tulloch (2013) argued that one of the main challenges of crowdsourcing was not the 

recruitment of participants but rather handling and making sense of the large volumes of data 

coming from this new information stream. Hence the challenges associated with processing 

crowdsourced data are similar to those of big data. Although crowdsourced data may not 

always be big in terms of volume, they have the potential to be with the proliferation of 

mobile phones and social media for capturing videos and images. Crowdsourced data are also 

heterogeneous in nature and therefore require methods that can handle very noisy data in such 

a way as to produce useful information for different applications, where the utility for 

disaster-related applications is clearly evident. Much of the data are georeferenced and 

temporally dynamic, which requires methods that can handle spatial and temporal 

autocorrelation, or correct for biases in observations in both space and time. Since 2003, there 

have been advances in data mining, in particular in the realm of deep learning (Najafabadi et 

al., 2015), which should help solve some of these data issues. From the literature, it is clear 

that much attention is being paid to developing new or modified methods to handle all of 

these different types of data-relevant challenges, which will undoubtedly dominate much of 

future research in this area. 

At the same time, we should ensure that the time and efforts of volunteers are used optimally. 

For example, where relevant, the data being collected by citizens should be used to train deep 
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learning algorithms, e.g., to recognize features in images. Hence parallel developments 

should be encouraged, i.e., train algorithms to learn what humans can do from the 

crowdsourced data collected and use humans for tasks that algorithms cannot yet solve. 

However, training algorithms still require a sufficiently large training dataset, which can be 

quite laborious to generate. Rai (2018) showed how distributed intelligence (Level 2 of 

Figure 4), recruited using Amazon Mechanical Turk, can be used for generating a large 

training dataset for identifying green stormwater infrastructure in Flickr and Instagram 

images. More widespread use of such tools will be needed to enable rapid processing of large 

crowdsourced image and video datasets. 

5.4 Data privacy 

5.4.1 Background  

“The guiding principle of privacy protection is to collect as little private data as possible” 

(Mooney et al., 2017). However, advances in information and communication technologies 

(ICT) in the late 20
th

 and early 21
st
 century have created the technological basis for an 

unprecedented increase in the types and amounts of data collected, particularly those obtained 

through crowdsourcing. Furthermore, there is a strong push by various governments to open 

data for the benefit of society. These developments have also raised many privacy, legal and 

ethical issues (Mooney et al., 2017). For example, in addition to participatory (volunteered) 

crowdsourcing, where individuals provide their own observations and can choose what they 

want to report, methods for non-volunteered (opportunistic) data harvesting from sensors on 

their mobile phones can raise serious privacy concerns. The main worry is that without 

appropriate suitable protection mechanisms, mobile phones can be transformed into 

“miniature spies, possibly revealing private information about their owners” (Christin et al., 

2011). Johnson et al. (2017) argue that for open data, it is the government’s role to ensure that 

methods are in place for the anonymization or aggregation of data to protect privacy, as well 

as to conduct the necessary privacy, security, and risk assessments. The key concern for 

individuals is the limited control over personal data, which can open up the possibility of a 

range of negative or unintended consequences (Bowser et al., 2015).  

Despite these potential consequences, there is a lack of a commonly accepted definition of 

privacy. Mitchell and Draper (1983) defined the concept of privacy as “the right of human 

beings to decide for themselves which aspects of their lives they wish to reveal to or withhold 

from others”. Christin et al. (2011) focused more narrowly on the issue of information 

privacy and define it as “the guarantee that participants maintain control over the release of 

their sensitive information.” He goes further to include the protection of information that can 

be inferred from both the sensor readings and from the interaction of the users with the 

participatory sensing system. These privacy issues could be addressed through technological 

solutions, legal frameworks and via a set of universally acceptable research ethics practices 

and norms (Table 6). 

Crowdsourcing activities, which could encompass both volunteered geographic information 

(VGI) and harvested data, also raise a variety of legal issues, “from intellectual property to 

liability, defamation, and privacy” (Scassa, 2013). Mooney et al. (2017) argued that these 

issues are not well understood by all of the actors in VGI. Akhgar et al. (2017) also 

emphasized legal considerations relating to privacy and data protection, particularly in the 

application of social media in crisis management. Social media also come with inherent 

problems of trust and misuse, ethical and legal issues, as well as with potential for 

information overload (Andrews, 2017). Finally, in addition to the positive side of social 

media, Alexander (2008) indicated the need for the awareness of their potential for negative 

developments, such as disseminating rumors, undermining authority and promoting terrorist 
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acts. The use of crowdsourced data on commercial platforms can also raise issues of data 

ownership and control (Scassa, 2016). Therefore, licensing conditions for the use of 

crowdsourced data should be in place to allow sharing of data and provide not only the 

protection of individual privacy, but also of data products, services or applications that are 

created by crowdsourcing (Groom et al., 2017).  

Ethical practices and protocols for researchers and practitioners who collect crowdsourced 

data are also an important topic for discussion and debate on privacy. Bowser et al. (2017) 

reported on the attitudes of researchers engaged in crowdsourcing that are dominated by an 

ethic of openness. This, in turn, encourages crowdsourcing volunteers to share their 

information and makes them focus on the personal and collective benefits that motivate and 

accompany participation. Ethical norms are often seen as ‘soft law’, although the recognition 

and application of these norms can give rise to enforceable legal obligations (Scassa et al., 

2015). The same researchers also state that “codes of research ethics serve as a normative 

framework for the design of research projects, and compliance with research norms can 

shape how the information is collected”. These codes influence from whom data are collected, 

how they are represented and disseminated, how crowdsourcing volunteers are engaged with 

the project and where the projects are housed.  

5.4.2 Current status  

Judge and Scassa (2010) and Scassa (2013) identified a series of potential legal issues from 

the perspective of the operator, the contributor and the user of the data product, service or 

application that is created using volunteered geographic information. However, the scholarly 

literature is mostly focused on the technology, with little attention given to legal concerns 

(Cho, 2014). Cho (2014) also identified the lack of a legal framework and governance 

structure whereby technology, networked governance and provision of legal protections may 

be combined to mitigate liability. Rak et al. (2012) claimed that non-transparent, inconsistent 

and producer-proprietary licenses have often been identified as a major barrier to the sharing 

of data and a clear need for harmonized geo-licences is increasingly being recognized. They 

gave an example of the framework used by the Creative Commons organization, which 

offered flexible copyright licenses for creative works such as text articles, music and 

graphics
1
. A recent example of an attempt to provide a legal framework for data protection 

and privacy for citizens is the General Data Protection Regulation (GDPR), as shown in 

Table 6. The GDPR
2
 particularly highlights the risks of accidental or unlawful destruction, 

loss, alteration, unauthorized disclosure of, or access to, personal data transmitted, stored or 

otherwise processed, which may in particular lead to physical, material or non-material 

damage. The GDPR, however, may also pose questions for another EU directive, INSPIRE
3
, 

which is designed to create infrastructure to encourage data interoperability and sharing. The 

GDPR and INSPIRE seem to have opposing objectives, where the former focuses on privacy 

and the latter encourages interoperability and data sharing. 

Technological solutions (Table 6) involve the provision of tailored sensing and user control 

of preferences, anonymous task distribution, anonymous and privacy-preserving data 

reporting, privacy-aware data processing, as well as access control and audit (Christin et al., 

2011). An example of a technological solution for controlling location sharing and preserving 

the privacy of crowdsourcing participants is presented by Calderoni et al. (2015). They 

                                                 
1
 http://creativecommons.org  

2
 http://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG  
3
 http://inspire.ec.europa.eu/  

http://creativecommons.org/
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG
http://inspire.ec.europa.eu/
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describe a spatial Bloom filter (SBF) with the ability to allow privacy-preserving location 

queries by encoding into an SBF a list of sensitive areas and points located in a geographic 

region of arbitrary size. This then can be used to detect the presence of a person within the 

predetermined area of interest, or his/her proximity to points of interest, but not the exact 

position. Despite technological solutions providing the necessary conditions for preserving 

privacy, the adoption rate of location-based services has been lagging behind from what it 

was expected to be. Fodor and Brem (2015) investigated how privacy influences the adoption 

of these services. They found that it is not sufficient to analyze user adoption through 

technology-based constructs only, but that privacy concerns, the size of the crowdsourcing 

organization and perceived reputation also play a significant role. Shen et al. (2016) also 

employ a Bloom filter to protect privacy while allowing controlled location sharing in mobile 

online social networks. 

Sula (2016) refers to the “The Ethics of Fieldwork”, which identifies over 30 ethical 

questions that arise in research, such as prediction of possible harms, leading questions and 

the availability of raw materials, to other researchers. Through these questions, he examines 

ethical issues concerning crowdsourcing and ‘Big Data’ in the areas of participant selection, 

invasiveness, informed consent, privacy/anonymity, exploratory research, algorithmic 

methods, dissemination channels and data publication. He then concludes that Big Data 

introduces big challenges for research ethics, but keeping to traditional research ethics should 

suffice in crowdsourcing projects. 

5.4.3 Challenges and future directions 

The issues of privacy, ethics and legality in crowdsourcing have not received widespread or 

in-depth treatment by the research community, thus these issues are also still not well 

understood. The main challenge for going forward is to create a better understanding of 

privacy, ethics and legality by all of the actors in crowdsourcing (Mooney et al., 2017). Laws 

that regulate the use of technology, the governance of crowdsourced information and 

protection for all involved is undoubtedly a significant challenge for researchers, policy 

makers and governments (Cho, 2014). The recent introduction of GDPR in the EU provides 

an excellent example of the effort being made in that direction. However, it may be only seen 

as a significant step in harmonizing licensing of data and protecting the privacy of people 

who provide crowdsourced information. Norms from traditional research ethics need to be 

reexamined by researchers as they can be built into the enforceable legal obligations. Despite 

advances in solutions for preserving privacy for volunteers involved in crowdsourcing, 

technological challenges will still be a significant direction for future researchers (Christin et 

al., 2011). For example, the development of new architectures for preserving privacy in 

typical sensing applications and new countermeasures to privacy threats represent a major 

technological challenge. 

6 Conclusions and Future Directions 

This review contributes to knowledge development with regard to what crowdsourcing 

approaches are applied within seven specific domains of geophysics, and where similarities 

and differences exist.  This was achieved by developing a new approach to categorizing the 

methods used in the papers reviewed based on whether the data were acquired by “citizens” 

and/or by “instruments” and whether they were obtained in an “intentional” and/or 

“unintentional” manner, resulting in nine different categories of data acquisition methods. 

The results of the review indicate that methods belonging to these categories have been used 

to varying degrees in the different domains of geophysics considered. For instance, within the 

area of natural hazard management, six out of the nine categories have been implemented.  In 

contrast, only three of the categories have been used for the acquisition of ecological data 
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based on the papers selected for review.  In addition to the articulation and categorization of 

different crowdsourcing data acquisition methods in different domains of geophysics, this 

review also offers insights into the challenges and issues that exist within their practical 

implementations by considering four issues that cut across different methods and application 

domains, including crowdsourcing project management, data quality, data processing and 

data privacy.   

Based on the outcomes of this review, the main conclusions and future directions are 

provided as follows:  

(i) Crowdsourcing can be considered as an important supplementary data source, 

complementing traditional data collection approaches, while in some developing countries, 

crowdsourcing may even play the role of a traditional measuring network due to the lack of a 

formally established observation network (Sahithi, 2016). This can be in the form of 

increased spatial and temporal distribution, which is particularly relevant for natural hazard 

management, e.g. for floods and earthquakes. Crowdsourcing methods are expected to 

develop rapidly in the near future with the aid of continuing developments in information 

technology, such as smart phones, cameras and social media as well as in response to 

increasing public awareness of environment issues. In addition, the sensors used for data 

collection are expected to increase in reliability and stability, as will the methods for 

processing noisy data coming from these sensors. This in turn will further facilitate continued 

development and more applications of crowdsourcing methods in the future.  

(ii) Successful applications of crowdsourcing methods should not only rely on the 

developments of information technologies, but also foster the participation of the general 

public through active engagement strategies, both in terms of attracting large numbers and in 

fostering sustained participation. This requires improved cooperation between academics and 

relevant government departments for outreach activities, awareness raising and intensive 

public education to engage a broad and reliable volunteer network for data collection. A 

successful example of this is the “River Chief” project in China, where each river is assigned 

to a few local residents who take ownership and voluntarily monitor the pollution discharge 

from local manufacturers and businesses (Zhang et al., 2016). This project has markedly 

increased urban water quality, enabled the government to economize on monitoring 

equipment and involved citizens in a positive environmental outcome. 

(iii) Different types of incentives should be considered as a way of engaging more 

participants while potentially improving the quality of data collected through various 

crowdsourcing methods. A small amount of compensation or other type of benefit can 

significantly enhance the responsibility of participants. However, such engagement strategies 

should be well designed and there should either be leadership from government agencies in 

engagement or they should be thoroughly embedded in the process.  

(iv) There are already instances where data from crowdsourcing methods fall into the 

category of Big Data and therefore have the same challenges associated with data processing. 

Efficiency is needed in order to enable near real-time system operation and management. 

Developments of data processing methods for crowdsourced data is an area where future 

attention should be directed, as these will become crucial for the successful application of 

crowdsourcing applications in the future. 

(v) Data integration and assimilation is an important future direction to improve the 

quality and usability of crowdsourced data. For example, various crowdsourced data can be 

integrated to enable cross validation, and crowdsourced data can also be assimilated with 

authorized sensors to enable successful applications., e.g., for numerical models and 

forecasting systems. Such an integration and assimilation not only improves the confidence 

of data quality, but also enables improved spatiotemporal precision of data. 
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(vi) Data privacy is an increasingly critical issue within the implementations of 

crowdsourcing methods, which has not been well recognized thus far. To avoid malicious use 

of the data, complaints or even lawsuits, it is time for governments and policy makers to 

consider/develop appropriate laws to regulate the use of technology and the governance of 

crowdsourced information. This will provide an important basis for the development of 

crowdsourcing methods in a sustainable manner.  

(vii) Much of the research reported here falls under ‘proof of concept’, which equates to 

a Technology Readiness Level (TRL) of 3 (Olechowski et al., 2015). However, there are 

clearly some areas in which crowdsourcing and opportunistic sensing are currently more 

promising than others and already have higher TRLs.  For example, amateur weather stations 

are already providing data for numerical weather prediction, where the future potential of 

integrating these additional crowdsourced data with nowcasting systems is immense. 

Opportunistic sensing of precipitation from commercial microwave links is also an area of 

intense interest as evidenced by the growing literature on this topic, while other 

crowdsourced precipitation applications tend to be much more localized, linked to individual 

projects. Low cost air quality sensing is already a growth area with commercial exploitation 

and high TRLs, driven by smart city applications and the increasing desire to measure 

personal health exposure to pollutants, but the accuracy of these sensors still needs further 

improvement. In geography, OpenStreetMap (OSM) is the most successful example of 

sustained crowdsourcing. It also allows commercial exploitation due to the open licensing of 

the data, which contributes to its success. In combination with natural hazard management, 

OSM and other crowdsourced data are becoming essential sources of information to aid in 

disaster response. Beyond the many proof of concept applications and research advances, 

operational applications are starting to appear and will become mainstream before long. 

Species identification (and to a lesser extent phenology) is the most successful ecological 

application of crowdsourcing, with a number of successful projects that have been in place 

for several years. Unlike other areas in geosciences, there is less commercial potential in the 

data but success is down to an engaged citizen science community.  

(viii) While this paper mainly focuses on the review of crowdsourcing methods applied 

to the seven areas within geophysics, the techniques, potential issues, as well as future 

directions derived from this paper can be easily extended to other domains. Meanwhile, many 

of the issues and challenges faced by the different domains reviewed here are similar, 

indicating the need for greater multidisciplinary research and sharing of best practices. 
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Figure 1: Example uses of data in geophysics  
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Figure 2: Illustration of data requirements for model development and use 
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Figure 3: Data challenges in geophysics and drivers of change of these challenges 
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Figure 4: Levels of participation and engagement in citizen science projects 

(adapted from Haklay (2013)) 
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Figure 5: Crowdsourcing data chain 
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Figure 6: Categorisation of crowdsourcing data acquisition methods 
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Figure 7: Temporal distribution of reviewed publications on crowdsourcing related 

research in geophysics. The number on the bars is the number of publications each year 

(the publication number in 2018 is not included in this figure). 
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Figure 8: Distribution of affiliations of the 255 reviewed publications 
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Figure 9: Distribution of countries of the leading authors for the 255 reviewed 

publications 
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Figure 10: Number of papers reviewed in different application areas and issues 

that cut across application areas 
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Table1: Examples of different categories of crowdsourcing data acquisition methods 

Data Generation Agent Data Type 
Examples 

Citizens Instruments Intentional Unintentional 

X  X  
Counting the number of fish, mapping 
buildings 

X   X Social media text data 

X  X X 
River level data from combining 
citizen reports and social media text 
data 

 X X  Automatic rain gauges 

 X  X Microwave data 

 X X X 
Precipitation data from citizen-owned 
gauges and microwave data 

X X X  
Citizens measure air quality with 
sensors 

X X  X 
People driving cars that collect rainfall 
data on windshields 

X X X X 
Air quality data from citizens collected 
using sensors, gauges and social media 
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Table 2: Classification of the crowdsourcing methods 

CI: Citizen, IS: Instrument, IT: intentional, UIT: unintentional.

Methods 

Data  
agent 

Data  
type Weather Precipitation Air quality Geography Ecology Surface water 

Natural hazard 
management 

CI* IS IT UIT 

Citizens 
Citizen 

observation 
√  √  

Temperature, 
wind (Elmore 
et al., 2014, 
Niforatos et 
al., 2015a) 

Rainfall, snow, 
hail (Illingworth 

et al., 2014) 
 

Land cover and 
Geospatial 

database (Fritz et 
al., 2012: Neis 
and Zielstra, 

2014);  

Fish and algal 
bloom 

(Pattengill-
Semmens, 

2013, Kotovirta 
et al., 2014) 

Stream stage 
(Weeser et al., 

2016) 

Flooded area and  
evacuation routes 

(Ramchurn et al., 2013, 
Yu et al., 2016) 

Instruments 

In-situ 
(automatic 

stations, 
microwave 
links, etc) 

 
√ √  

Wind and 
temperature 
(Chapman et 

al., 2016) 

Rainfall ( de Vos 
et al., 2016) 

PM2.5, 
Ozone (Jiao et 

al., 2015) 
  

Shale gas and 
heavy metal 
(Jalbert and 

Kinchy, 2016) 
 

 √  √ 
Fog (David et 

al., 2015) 
Rainfall (Fencl et 

al., 2017) 
     

Mobile 
(phones, 
cameras, 
vehicles, 
bicycles, 

etc) 

√ √ √  

Temperature 
and humidity 
(Majethisa et 

al., 2015, 
Sosko and 

Dalyot, 2017) 

Rainfall 
( Allamano et al., 
2015, Guo et al., 

2016) 

NO, NO2, 
black carbon 
(Apte et al., 

2017) 

Land cover (Laso 
Bayas et al., 

2016) 

Dolphin count 
(Giovos et al., 

2016) 

Suspended 
sediment and 

dissolved organic 
matter (Leeuw et 

al., 2018) 

Water level and velocity 
(Liu et al. 2015, Sanjou 

and Nagasaka, 2017) 

√ √  √  
Rainfall (Yang 
and Ng, 2017) 

Particulate 
matter (Sun et 

al., 2017) 
    

Social media 

Text-based  √   √ 
      

Flooded area (Brouwer 
et al., 2017) 

Multimedia 
(text, 

images, 
videos, etc) 

√ √  √   

Smoke 
dispersion 

(Sachdeva et 
al., 2016) 

Location of 
tweets (Leetaru 

et al., 2013) 

Tiger count 
(Can et al., 

2017) 

Water level 
(Michelsen et al., 

2016) 

Disaster detection 
(Sakaki et al., 2013) 

Damage (Yuan and Liu, 
2018) 

Integrated 
Multiple 
sources 

√  √ √ 
      

Flood extent and level 
(Wang et al., 2018) 

 √ √ √  
Rainfall (Haese et 

al., 2017) 
     

√ √ √ √    
Accessibility 

mapping (Rice et 
al., 2013) 

 
Water quantity 

(Deutsch et 
al.,2005) 

Inundated area (Le Coz 
et al., 2016) 
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Table 3: Methods associated with the management of crowdsourcing applications  

Methods Typical references Key comments 

Engagement 

strategies for 

motivating 

participation in 

crowdsourcing 

Buytaert et al., 2014; Alfonso et al., 2015; 

Groom et al., 2017; Theobald et al. 2015; 

Donnelly et al. 2014; Kobori et al. 2016; 

Roy et al. 2016; Can et al. 2017; Elmore et 

al. 2014; Vogt et al. 2014; Fritz et al. 2017 

 Understanding of the motivations of citizens to 

guide the design of crowdsourcing projects 

 Adoption of the best practice in various projects 

across multiple domains, e.g. training, good 

communication and feedback, targeting existing 

communities, volunteer recognition systems, social 

interaction, etc.  

 Incentives, e.g. micro-payments, gamification 

Data collection 

protocols and 

standards 

Kobori et al. 2016; Vogt et al. 2014; 

Honicky et al. 2008; Anderson et al. 2012; 

Wolters and Brandsma 2012; Overeem et 

al. 2013b; Majethia et al., 2015; Buytaert 

et al., 2014 

 Simple, usable data collection protocols  

 Better protocols and methods for the deployment of 

low cost and vehicle sensors 

 Data standards and interoperability, e.g. OGC 

Sensor Observation Service 

Sample design for 

data collection 

Doesken and Weaver 2000; de Vos et al. 

2017; Chacon-Hurtado et al. 2017; Davids 

et al. 2017 

 Sampling design strategies, e.g. for precipitation 

and streamflow monitoring, i.e. spatial distribution 

and temporal frequency 

 Adapting existing sample design frameworks to 

crowdsourced data 

Assimilation and 

integration of 

crowdsourced data 

Mazzoleni et al., 2017; Schneider et al. 

2017; Panteras and Cervone 2018; Bell et 

al. 2013; Muller 2013; Haese et al. 2017; 

Chapman et al. 2015;Liberman et al. 2014; 

Doumounia et al. 2014; Allamano et al. 

2015; Overeem et al. 2016a 

 Assimilation of crowdsourced data in flood 

forecasting models, flood and air quality mapping, 

numerical weather prediction, simulation of 

precipitation fields  

 Dense urban monitoring networks for assessment 

of crowdsourced data, integration into smart city 

applications 

 Methods for working with existing infrastructure 

for data collection and transmission 
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Table 4: Methods of crowdsourced data quality assurance  

Methods Typical references Key comments 

Comparison with an 

expert or ‘gold 

standard’ data set 

Goodchild and Li, 2012; Comber et 

al., 2013; Foody et al., 2013; Kazai et 

al., 2013; See et al., 2013; Leibovici 

et al., 2015; Jollymore et al., 2017; 

Steger et al., 2017; Walker et al., 

2016. 

 Direct comparison of professionally collected data 

with crowdsourced data to assess quality using 

different quantitative metrics 

Comparison against 

an alternative source 

of data 

Leibovici et al., 2015; Walker et al., 

2016. 

 

 Use of another data set as a proxy for expert data, 

e.g. rainfall from satellites for comparison with 

crowdsourced rainfall measurements 

 Model-based validation, i.e. validation of 

crowdsourced data against model outputs  

Combining multiple 

observations 

Comber et al., 2013; Foody et al., 

2013; Kazai et al., 2013; See et al., 

2013; Swanson et al. 2016 

 Use of majority voting or another consensus-based 

method to combine multiple observations of 

crowdsourced data 

 Latent class analysis to look at relative performance 

of individuals 

 Use of certainty metrics and bootstrapping to 

determine the number of volunteers needed to reach 

a given accuracy 

Crowdsourced peer 

review 

Goodchild and Li, 2012.  Use of citizens to crowdsource information about the 

quality of other citizen contributions 

Automated checking Leibovici et al., 2015; Walker et al., 

2016; Castillo et al. 2011 

 Look for errors in formatting, consistency, and assess 

whether the data are within acceptable limits 

(numerically or spatially)  

 Train a classifier to determine the level of credibility 

of information from Twitter 

Methods from 

different disciplines 

Leibovici et al., 2015; Walker et al., 

2016; Fonte et al., 2017 

 Quality control procedures from the World 

Meteorological Organization (WMO) 

 Double mass check 

 ISO 19157 standard for assessing spatial data quality 

 Bespoke systems such as the COBWEB quality 

assurance system 

Measures of 

credibility (of 

information and 

users) 

Castillo et al., 2011; Westerman et 

al., 2012; Kongthon et al., 2011 

 Credibility measures based on different features, e.g. 

user-based features such as number of followers, 

message-based features such as length of messages, 

sentiments, propagation-based features such as 

retweets etc. 

Quantification of 

uncertainty of data 

and model 

predictions 

Rieckermann, 2016.  Identify potential sources of uncertainty in 

crowdsourced data and construct credible measures 

of uncertainty to improve scientific analysis and 

practical decision making 
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Table 5: Methods of processing crowdsourced data  

Methods Typical references Key comments 

Passive 

crowdsourced data 

processing methods 

e.g. Twitter, Flickr 

Houston et al. 2015; Barbier et al. 2012; 

Imran et al. 2015; Granell & Ostermann 

2016; Rosser et al. 2017; Cervone et al. 

2016; Braud et al. (2014); Le Coz et al. 

(2016), Tauro and Slavatori (2017) 

 Methods for acquiring the data (through APIs)  

 Methods for filtering the data, e.g., natural 

language processing, stop word removal, filtering 

for duplication and irrelevant information, feature 

extraction and geotagging 

 Processing crowdsourced videos through 

velocimetry techniques 

Web-based 

technologies 

Vitolo et al., 2015  Use of web services to process environmental big 

data, i.e. SOAP, REST 

 Web Processing Services (WPS) to create data 

processing workflows 

Spatio-temporal data 

mining algorithms 

and geospatial 

methods 

Hochachka et al. 2012; Sun and 

Mobasheri, 2017; Cervone et al. 2016, 

Granell & Oostermann 2016, Barbier et al. 

2012, Imran et al. 2015, Vatsavai et al. 

2012 

 Spatial autoregressive models, Markov random 

field classifiers and mixture models 

 Different soft and hard classifiers 

 Spatial clustering for hotspot analysis  

Enhanced tools for 

data collection 

Kim et al., 2013  New generation of mobile app authoring tools to 

simplify the technical process, e.g., the Sensr 

system 
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Table 6: Methods for dealing with data privacy 

Methods Typical references Key comments 

Legal framework Rak et al., 2012; European 

Parliament and Council, 2016 

 Methods from the perspective of the operator, the contributor 

and the user of the data product  

 Creative Commons, General Data Protection Regulation 

(GDPR), INSPIRE 

 Highlights the risks of accidental or unlawful destruction, loss, 

alteration, unauthorized disclosure of personal data 

Technological 

solutions 

Christin et al., 2011; 

Calderoni et al., 2015; Shen 

et al., 2016 

 Method from the perspective of sensing, transmitting and 

processing 

 Bloom filters  

 Provides tailored sensing and user control of preferences, 

anonymous task distribution, anonymous and privacy-

preserving data reporting, privacy-aware data processing, and 

access control and audit 

Ethics practices and 

norms 

Alexander, 2008; Sula, 2016  Places special emphasis on the ethics of social media  

 Involves participants more fully in the research process 

 No collection of any information that should not be made 

public 

 Informs participants of their status and provides them with 

opportunities to correct or remove data about themselves 

 Communicates research broadly through relevant channels 

 

 

 

 


