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To Burn or Retain Crop Residues on Croplands? An 

Integrated Analysis of Crop Residue Management in China 

 

Abstract: Crop residue burning influences human health and global climate change. 

In China—the world’s largest crop residue producer—farmers burn almost one 

quarter of their crop residues in the field after harvest, despite the government 

providing financial incentives such as subsidies to retain crop residues. This study 

combined economic analyses with simulations of soil carbon accumulation and 

carbon emission reduction associated with different residue management practices to 

determine the minimum level of incentives needed for Chinese farmers to shift from 

burning to retaining crop residues for generating carbon benefits. Simulation results 

showed that [1] the density of topsoil organic carbon in China’s croplands would have 

increased from about 21.8 t ha-1 in 2000 to 23.9 t ha-1 in 2010, and soil organic carbon 

sequestration would have reached 24.4 Tg C yr-1 if farmers had shifted from burning 

to retaining crop residues on croplands during this period; and [2] retaining crop 

residues would have avoided about 149.9 Tg of CO2 emission per year. Economic 

analyses showed that [1] existing subsidies in all regions of China, except Northeast 

China, only accounted for 18-82% of the incentives required for farmers to shift from 

burning to crop residue retention; [2] Northeast China required the lowest incentive 

(287 CNY ha-1), while eastern China required the highest (837 CNY ha-1); and [3] the 

prevailing market prices (1.4-60.2 CNY tCO2e
-1) in China’s seven pilot carbon 

markets seem to be below the required incentives (39.6-189.1 CNY tCO2e
-1). Our 

study suggests that the Chinese government should increase subsidies or seek 

innovative incentive schemes to encourage farmers to change their crop residue 
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management practices for global climate change mitigation and health benefits.  

Key Words: Crop residue management, soil carbon, carbon emissions, economic 

analysis, China. 

 

1. Introduction 

Crop residue burning is practiced by farmers in many parts of the world, 

including India (Venkataraman et al., 2006) and Russia (McCarty et al., 2012), with 

serious health and environmental consequences. Globally, crop residue burning is a 

major contributor to total biomass burning. In Asia, crop residue burning in the field 

accounts for more than one-third of total biomass burning (Street et al., 2003). Since 

crop residue burning releases harmful pollutants such as PM10, PM2.5, and greenhouse 

gases (GHGs) including CO2 and CH4 (Cao et al., 2005; Li et al., 2013), it affects 

human health and contributes to global climate change.  

Crop residue burning is particularly prominent in China, the world’s largest crop 

residue producer, which produces about 600-800 Tg of crop residues per year (Cao et 

al., 2006, 2008; Liu et al., 2008; Cai et al., 2011; Jiang et al., 2012), accounting for 

around 20% of total global production (FAO, 2014). On average, about 20-30% of 

crop residues are burned by Chinese farmers in the field after harvest (Yan et al., 2006; 

Cao et al., 2008; Zhang et al., 2013; Li et al., 2016). About 2,200 Tg of crop residues, 

accounting for 22% of China’s total crop residue production, were burned during 

1996-2013. As a result, approximately 2,707 Tg of CO2 was released, which is 

equivalent to 45% of the total CO2 emission from China’s residential coal 

consumption during the same period (Sun et al., 2016). On the other hand, farmers in 
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China retain around 30% of crop residues on their croplands (Cui et al., 2008; Jiang et 

al., 2012; Yu et al., 2013), which is less than that of other areas such as the US 

(55-90%) (Stewart and Moldenhauer, 1994; Lokupiyiya et al., 2012), Australia 

(70-80%) (Llewellyn and D’Emden, 2010), and Europe (40-70%) (Scarlat et al., 

2010).   

If Chinese farmers retained 20-30% of the crop residues that were burned on their 

croplands, the crop residue retention rate would reach around 50%, which would 

provide carbon benefits for society. When the crop residue retention rate increases 

from 25% to 50%, soil organic carbon (SOC) storage in China’s cropland rises by 

23.2 Tg C yr-1 (Yan et al., 2007). In a 12-year experimental study, Lou et al. (2011) 

demonstrated that a retention rate of 50% led to an increase in SOC, while a retention 

rate of 25% resulted in a loss of SOC. Hence, encouraging Chinese farmers to shift 

from burning to retaining crop residues can contribute to climate change mitigation 

efforts. 

However, for farmers to change their management practices for carbon benefits, 

some appropriate level of incentive needs to be provided, such as subsidies or carbon 

prices. In fact, the government of China has been providing subsidies and other 

supporting policies to encourage farmers to retain crop residues in recent years (Table 

S1). For example, agricultural machinery operation subsidies and agricultural 

machinery purchase subsidies have been provided to farmers who retain their crop 

residues in 10 pilot provinces including Hebei, Shanxi, Inner Mongolia, Liaoning, 

Jilin, Heilongjiang, Jiangsu, Anhui, Shandong, and Henan. Subsidies for agricultural 

machinery operation alone range from 150-375 CNY ha-1 yr-1 in Southern China to 

375-600 CNY ha-1 yr-1 in Northeast China. Meanwhile, seven pilot carbon markets 
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were launched in 2013 and a nationwide carbon market was established in 2017 in 

China. However, Chinese farmers are still burning crop residues.   

From economic point of view, for farmers to change their crop residue 

management practices, they need to at least reach a break-even point, i.e., they should 

have no net loss. Hence, it is important to conduct cost-benefit analyses.  

Nonetheless, there is still a dearth of quantitative studies conducted at national or 

regional scales to analyze the benefits and costs associated with shifting from burning 

to retaining crop residues. While Zhao et al. (2018) highlighted the importance of 

economic and policy incentives provided to farmers for SOC accumulation through 

changes in farming practices, most existing studies in China in this research area have 

largely focused on estimating greenhouse gas emissions from crop residue burning 

(e.g., Street et al., 2003; Zhang et al., 2008; Li et al., 2013; Sun et al., 2016; Chen et 

al., 2017), or assessing the effect of retaining crop residues on SOC (e.g., Tang et al., 

2006; Lu et al., 2009, 2010, 2015; Lou et al., 2011). Some studies have explored the 

costs and benefits of retaining burned crop residues associated with crop residue 

management, but they were based on experiments conducted at field stations (e.g., 

Xia et al., 2014; Hu et al., 2016) or used qualitative methods (Mei, 2008; Keck and 

Hung, 2018).   

This study attempts to fill gaps in the existing literature in China by combining 

biophysical simulations with economic analyses conducted at the national and 

regional scale. The simulations examined three crop residue management scenarios: 

[1] all crop residues are removed (scenario CR1); [2] business-as-usual crop residue 

retention (scenario CR2), and [3] crop residues that are burned are retained on 

croplands (scenario CR3). The net present value (NPV) of changes in crop residue 
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management were calculated to estimate the minimum incentive required for farmers 

to shift from burning residues to retaining them for carbon benefits.  

 

2. Methods 

2.1 Crop residue management scenarios 

Three scenarios with three different crop residue retention rates were developed: 

[1] CR1, the baseline scenario, where all crop residues are removed from cropland; [2] 

CR2, the business-as-usual residue management scenario, representing the residue 

management practices commonly adopted by farmers in China. For this scenario, a 

region-specific retention rate ranging from 15% to 33% was applied for seven 

different regions (Table 1); and [3] CR3, an improved crop residue management 

scenario, where crop residues that have been burned are retained on croplands. For 

this scenario, regional differences in burning rates were also considered (Table 1).  

For each scenario, the region-specific residue retention rates and burning rates 

were used to account for differences in crop residue management practices and 

biophysical characteristics in seven regions of China, including Northeast China, 

North China, Northwest China, Southwest China, Central China, South China, and 

East China (Figure S1). The crop residue retention rate and the burning rate in these 

seven regions were calculated from provincial crop production data and provincial 

rates of crop residue retention and burning. Provincial crop production data were 

collected from the China Rural Statistical Yearbook released by the Ministry of 

Agriculture of China for the period 2000-2010 (NBSPRC, 2000-2010), and were 

combined with the residue-to-product ratios, i.e., 2 for corn, 1.366 for wheat, and 

0.623 for rice (CAREI, 2000; Cao et al., 2006), to estimate provincial crop residue 

production. Due to a lack of official statistics, information on provincial residue 
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retention and burning rates for three major crops were obtained from existing studies 

(Cao et al., 2005; Han et al., 2008). To obtain the rates at the regional scale, the 

provincial data were aggregated using provincial weights for crop residue production 

(Table 1).  

2.2 SOC sequestration simulation 

The Environmental Policy Integrated Climate (EPIC) model (Williams et al., 

1985, 1989, 2006) was used to simulate spatial changes in SOC pools and SOC 

sequestration under alternative management scenarios during the period 2001-2010. 

The EPIC model is a comprehensive process-based cropping system model that is 

able to simultaneously simulate crop growth and soil processes. The model allows for 

interactions between climate, cropping systems, and soil and crop management 

involving SOC dynamics. Its major components encompass crop growth and yields, 

soil temperature and moisture, soil erosion, tillage, plant environment control, as well 

as hydrological, nutrient, and organic carbon cycling.  

In the EPIC model, daily crop growth was calculated from intercepted 

photosynthetically active radiation using the energy-to-biomass conversion approach 

modified for a vapor pressure deficit and atmospheric CO2 concentration effect 

(Monteith, 1977; Stockle et al., 1992). The model has been widely applied in 

European (van der Velde et al., 2009; Balkovič et al., 2018), Chinese (Zhao et al., 

2013), and global agricultural research (Liu et al., 2007, 2013; Balkovič et al., 2014). 

The soil carbon and nitrogen (N) modules in EPIC were built on concepts from the 

Century model (Izaurralde et al., 2006). Crop residues were split into two litter 

compartments: metabolic and structural, depending on their N and lignin content. As a 

function of soil temperature and moisture, carbon in litter is allocated into three 
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compartments: microbial biomass, slow humus, and passive humus, which differ in 

terms of their size, function, and turnover times (Izaurralde et al., 2006).   

The EPIC model can simulate the amount of organic carbon in the soil to a plow 

layer depth of 20 cm (OCPD, t C ha-1), thereby accounting for disturbance from 

tillage, irrigation, and fertilization, carbon respiration from soil, leaching of carbon, 

and carbon lost in runoff and eroded sediment (Elshout et al., 2015). This model has 

been successfully applied to estimations of SOC storage in China (Zhao, 2013) and 

elsewhere in the world (e.g., Causarano et al., 2007; Billen et al., 2009).   

In this study, EPIC V0509 was used to simulate the impact of crop residue 

retention on topsoil organic carbon in croplands of China. Specifically, it was used to 

estimate OCPD in each pixel for each year of the study period (2000-2010). SOC 

sequestration in the crop residue retention scenarios (i.e., CR2-CR1, CR3-CR1, and 

CR3-CR2) were obtained by combining simulated yearly OCPD values for the 

different scenarios with crop cultivated areas in each region.  

To simulate topsoil organic carbon dynamics, the EPIC model requires weather 

information, soil profile characteristics, topography, and crop management 

information as major inputs (Figure 1). Daily weather information, including 

minimum and maximum air temperature, precipitation, solar radiation, and relative 

humidity, was collected from China’s Surface Climate Data from 660 meteorological 

stations for the period 2001-2010. Information on China’s cropland was generated by 

aggregating 10 × 10 km2 sub-areas (or pixels) classified as dryland or paddy field 

(Figure S2) from the National Land Cover Project Dataset (NLCD), based on Landsat 

ETM+ images acquired in 1999 and 2000 for China (Liu et al., 2003, 2005). 

Information on soil profiles was collected from the 1:1,000,000 soil dataset based on 

the Chinese Second Soil Survey Project (Shi et al., 2002; Liu et al., 2006). The 
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weather and soil data were spatially interpolated and resampled to match the 10 km 

pixels. To characterize the major cropping systems in dryland and paddy fields, we 

used a wheat-corn crop rotation system and a double-cropping rice system, 

respectively. A set of management and equipment parameters were calibrated for the 

EPIC model by referring to relevant studies (Fan et al., 2012; Lin et al., 2013) and 

from field investigations in two experimental stations, i.e., Yucheng Comprehensive 

Agriculture Experiment Station (YCS) in Northern China and Qianyanzhou 

Ecological Experiment Station (QYZ) in Southern China; the wheat-corn crop 

rotation system and the double-cropping rice system are implemented in these two 

stations, respectively. The original crop growth and soil parameters were partly 

calibrated and then validated to account for characteristics of China’s cropland (Table 

2). Validation at the two local sites showed that simulation of SOC was consistent 

with measurements (YCS: R2=0.85, P<0.01; QYZ: R2=0.87, P<0.01), and could 

capture SOC dynamics with or without crop residue retention (Lin et al., 2013). 

The different management scenarios were implemented through the crop residue 

model input (RSD, t ha-1), which was defined as the yield of crop residues and the 

corresponding retention rate (variable among regions and scenarios) (Table 1). The 

yield of crop residues was obtained from the crop residue production (section 2.1) and 

the corresponding crop cultivated areas from the China Rural Statistical Yearbook 

(NBSPRC, 2000-2010).  

2.3 Emissions calculations  

A fraction of crop residues was burned in the CR2 scenario, leading to carbon and 

pollutant emissions into the atmosphere. These emissions were calculated using the 

amount of crop residues burned in the field and detailed emission factors obtained 

from the literature (Table 3). The amount of burned crop residues for each region was 
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calculated based on the crop residue production and the fraction of crop residues 

burned in the field (Table 1). The emissions were products of the amount of each crop 

residue burned in the field and the corresponding emission factors for each pollutant. 

The regional and national emissions were the sum of each crop residue type. 

Emissions for each pollutant were calculated using the following equation: 

3

, , ,

1

=i k i j i j k

j

E Y F EF


                            (1) 

where Y is the amount of crop residue, F is the fraction of crop residue burned (Table 

1), and EF represents the emission factor (Table 3); the subscript i, j, k represent the 

region, fuel type, and pollutant, respectively.  

2.4 Economic analyses  

The cost-benefit analysis focused on two scenarios (CR2 and CR3), i.e., shifting 

from the current crop residue management system to retaining that burned crop 

residue on the cropland. Costs mainly included labor and machinery costs for 

retaining the crop residue. The benefits focused on avoided CO2 emissions and SOC 

sequestration changes from CR2 to CR3. However, other co-benefits, such as reduced 

emissions of CH4 and other pollutants, were not considered for two reasons. First, 

CO2 is the main pollutant associated with crop residue burning, where the emission 

factors of CO2 for corn, wheat, and rice residues are 1261.5, 1557.9, and 791.3 g kg-1, 

respectively (Table 2). Second, CO2 contributes the most to the greenhouse effect, 

accounting for about 60%, and is the most important greenhouse gas (IPCC, 2000).  

To calculate carbon benefits, it is important to define the baseline and 

“additionality.” As the main purpose of the economic analysis in this study was to 

understand economic incentives for farmers who chose to retain crop residues during 

the period 2001-2010, the year 2000 was used as the baseline. The “additionality” is 

defined as the amount of SOC sequestration and avoided CO2 emissions associated 
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with a shift from burning to crop residue retention in each year. For SOC 

sequestration, non-permanence is considered to be a critical issue in the existing 

literature (Marland et al., 2001; Murray et al., 2007). In this study, non-permanence 

was also taken into account following the method used by Sohngen and Mendelsohn 

(2003), considering that carbon sequestered in soils may be released back to the 

atmosphere when farmers return to previous crop residue management methods or 

when there are some other incidences.   

For the cost-benefit analysis, two cases were considered. In the first case, where 

non-permanence was not considered, the net present value (NPV) of a shift from CR2 

to CR3 was computed as follows: 

1 1, 2,

1

( )

(1 ) (1 ) (1 )

 
  

  
  

t tt t t

t t t

P Q QB C C
NPV

i i i
               (2) 

where Bt is the benefit from sequestered carbon and carbon emissions avoided; Ct is 

the cost of retaining crop residue that would otherwise be burned, including labor and 

machinery costs; i is the discount rate, taking a value of 8%, which is the discount rate 

for public construction projects jointly announced by the National Development and 

Reform Commission (NDRC) and the Ministry of Construction; t is the time standing 

for years from 2001 to 2010; Q1,t is the amount of carbon not released to the 

atmosphere and Q2,t is the amount of carbon sequestered; P1 is the required incentive 

for Chinese farmers to retain burned crop residues on croplands for each ton of 

additional carbon produced. In order for farmers to shift from burning crop residues to 

retaining them on croplands, incentives need to at least enable them to break-even. 

When NPV1 was set at 0, the value of P1, which was assumed to be constant over time, 

was obtained.  

In the second case, non-permanence was considered. Following Sohngen and 

Mendelsohn (2003), a rental rate of carbon, which was the value of storing a ton of 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

12 
 

carbon for one year, was included in the NPV calculation:   

2010 2010

1, 1, 2,20102001 2001
2 2

(1 ) (1 ) (1 )

 
  

   
  

 
  

t t ratet t i i t

t t t

Q Q rental QB C C
NPV P

i i i
 (3) 

where Q1,t is the amount of carbon not released to the atmosphere and Q2,t is the 

amount of carbon sequestered; P2 is the incentive required for Chinese farmers to 

retain burned crop residues on croplands for each ton of additional carbon produced; 

rentalrate is the rental rate, which is equivalent to the market interest rate (5%).  

When NPV2 was set at 0, the value of P2, which was assumed to be constant over time, 

was obtained. 

In the above two cases, the required incentives were calculated based on the 

quantity of carbon sequestered or not released. This type of required incentive was 

denoted as a “quantity-based” incentive. Considering that subsidies for retaining crop 

residues on croplands in China are usually paid based on unit area, area-based 

incentives were then calculated. Denoting CO2e produced per hectare of land as q, at 

the break-even point, the quantity-based incentive P was calculated as:  

(1 ) (1 ) 




 
 t

t t

C q area
P                       (4) 

which is a function of q, subject to non-permanence issues.   

Denoting the area-based incentives as P’, at the break-even point, P’ was 

calculated as: 

'
(1 ) (1 ) 

  
 

 t

t t

C area
P P q                  (5) 

which is not related to q and not subject to non-permanence issues. 

The above cost-benefit analyses were conducted for each of the seven regions by 

considering regional differences in biophysical conditions, crop residue management, 

and the cost of retaining crop residues on croplands. 
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3. Results and discussion 

3.1 Soil carbon sequestration through crop residue retention 

Simulation results for the SOC dynamics for the whole of China are presented in 

Figure 2. In Figure 2a, the line representing CR3 is upward sloping, showing that the 

density of organic carbon in the soil to a plow layer depth of 20 cm (OCPD) in 

China’s croplands continuously increased from 2000 to 2010. In contrast, the lines 

representing CR1 and CR2 are both downward sloping, showing that the density 

continuously decreased under both scenarios. Moreover, the line for CR1 has a 

steeper slope than that of CR2, indicating that the density in CR1 decreased at a faster 

rate than that in CR2 during the period 2000-2010. Specifically, under CR3, OCPD 

increased from about 21.78 t ha-1 in 2000 to 23.85 t ha-1 in 2010; under CR2, the 

density decreased from 21.78 t ha-1 to 20.64 t ha-1 between 2000 and 2010. The annual 

average loss of SOC during 2001-2010 was higher (28.59 Tg C yr-1) in CR1 than in 

CR2 (10.30 Tg C yr-1) (Table S2), which is consistent with previous studies (Liu et al., 

2014; Lu et al., 2015). This result further confirms findings that a lack of crop residue 

retention is one cause of a net loss of SOC in China’s croplands (Li et al., 2003; Tang 

et al., 2006). 

In Figure 2b, the line representing CR3 is always above zero, while the two lines 

representing CR1 and CR2 remain below zero. The annual average change in OCPD 

in CR3 during 2000-2010 was around 0.21 t ha-1, leading to an annual average 

increase of 14.08 Tg C; the annual average change in OCPD in CR2 during 

2000-2010 was around -0.11 t ha-1, resulting in a total loss of 10.30 Tg C per year in 

China. The above information shows that [1] there was a net loss of SOC due to crop 

residue burning (CR2) during 2000-2010, and [2] there would have been a net 
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increase in SOC if the residues that were burned had been retained by farmers on the 

cropland (CR3). 

The spatial heterogeneity in SOC dynamics under the three crop residue 

management scenarios is presented in Figure 3. In CR1, croplands in China had 

different degrees of net loss in SOC during 2000-2010. The Northeastern China 

Plain—where cropland has fertile black soil and high initial SOC levels (Xie et al., 

2007)—had the highest loss. This result is consistent with previous findings that a 

significant decrease in SOC has occurred in Northeast China (Huang and Sun, 2006; 

Tang et al., 2006; Yu et al., 2012). In CR2, SOC loss was lower than in CR1, and the 

Northern China Plain showed a net increase in SOC (see Figure S3, Table S2). In CR3, 

there was a net increase in SOC in most regions, except for in croplands in Southwest 

China and paddy fields in several regions (Figure S3, Table S2).   

The above spatial heterogeneity may be explained by differences in crop types, 

cropping systems, and soil types across different regions. For example, drylands with 

a rotation system of “wheat-corn” are concentrated in northern regions, while paddy 

fields with double-cropping rice are prevalent in southern regions (Figure S2).  

Regarding soil types, croplands in northern and western regions are mostly sandy 

while in southern regions, croplands are dominated by clay (Shangguan et al., 2012). 

Regional differences in carbon sequestration in croplands, using removal of all 

crop residues as the baseline scenario (i.e., CR1), are presented in Figure 4. When 

farmers managed crop residues as today (CR2), croplands in Northeast China had the 

highest SOC sequestration among all regions. When farmers retained those crop 

residues that were burned on their croplands (CR3), croplands in the Northern China 

Plain showed the highest SOC sequestration, followed by those in Northeast China 

(Figure 4). Under CR3, croplands in Northwest China showed the lowest SOC 
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sequestration. Northeastern China and the Northern China Plain may demonstrate 

higher SOC sequestration through crop residue retention as these two regions are 

major agricultural production regions and produce more crop residues. When the crop 

residue retention rate is increased, the carbon input to croplands is higher and the 

potential for SOC sequestration increases as well. It is estimated that crop residue 

retention on croplands (CR3 vs. CR1) in North and Northeast China together 

represented about 21.4 Tg of SOC sequestration per year (Figure 4), accounting for 

around half of the national annual total SOC sequestration for 2000-2010. 

Differences in SOC sequestration also exist between drylands and paddy fields. 

The SOC sequestration in China’s drylands was estimated to be 33.68 Tg yr-1 under 

CR3 during 2000-2010 (Figure 4), which is nearly 3.75 times more than that in paddy 

fields. Retaining crop residues that are currently burned on croplands sequestered 

about 20.01 Tg carbon per year in the drylands, while only 4.36 Tg carbon were 

sequestered per year in paddy fields during 2000-2010.  

Using the business-as-usual scenario (CR2) as the baseline, results from 

simulations show that the annual SOC sequestration in CR3 during 2001-2010 was 

24.4 Tg C yr-1 (Figure 4, Table S3), which is equivalent to 1.1% of China’s total 

carbon emissions from fossil fuels in 2010. The SOC sequestration from changing 

CR2 to CR3 strongly suggests that retaining crop residues that were burned on 

croplands during 2001-2010 could have helped to mitigate climate change. Spatial 

differences also exist for SOC sequestration across different regions (Figure 4, S4). 

Among the seven regions studied, North China showed the highest potential for SOC 

sequestration, implying that encouraging farmers to change their crop residue 

management in this region may be most effective for SOC carbon sequestration. 
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3.2 Emissions from crop residue burning in China 

Estimated emissions from crop residue burning in China during 2000-2010 in CR2 are 

presented in Figure 5. It is estimated that the annual average release of CO2, CH4, 

PM2.5, and PM10 from crop residue burning was 149.89 Tg, 0.19 Tg, 1.23 Tg, and 0.77 

Tg, respectively. In 2010 alone, about 179.12 Tg of CO2 was released, equivalent to 

2.1% of China’s total carbon emissions (2.25 Pg) from fossil-fuel burning, cement 

manufacturing, and gas flaring in 2010 (Boden et al., 2011). During 2000-2010, North, 

Central, and Northeast China were the three largest emitters in terms of annual 

average emissions of CO2 from crop residue burning. CO2 emissions released from 

crop residue burning in these three regions, which are major agricultural production 

areas in China, accounted for 68% (30.8% in North China, 20.5% from Central China, 

and 16.8% from Northeast China) of total CO2 emissions from crop residue burning in 

China during 2000-2010 (Table S4). The above results imply that CO2 emissions 

would have been reduced if crop residues burned had been retained on croplands 

during 2000-2010.  

3.3 Required incentives to retain burned crop residues 

Results from the cost-benefit analyses for seven regions are presented in Table 4 

(see details in the Supplementary Information, Table S5-S9). Columns 2 and 3 in 

Table 4 show the quantity-based incentives with and without considering 

non-permanence, respectively. Column 4 shows the area-based incentives.  

The incentives required to encourage Chinese farmers to shift from burning to 

retaining crop residues varied across regions (Table 4). Without considering 

non-permanence issues, the required incentives ranged from 30 CNY per ton of CO2 

equivalent (tCO2e) to 122 CNY tCO2e
-1. Of all the regions, Northeast China had the 

lowest required incentive (30.44 CNY tCO2e
-1), followed by North China. On the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

17 
 

other hand, East China required the highest incentive (122.42 CNY tCO2e
-1), followed 

by South China (112.41 CNY tCO2e
-1). When non-permanence is considered (column 

3 of Table 4), the required incentive across regions fell in the range of approximately 

40-189 CNY tCO2e
-1, higher than those when non-permanence was not considered. 

This shows that it is more expensive for farmers to provide carbon benefits by shifting 

from burning to retaining crop residues on their cropland when non-permanence 

issues are considered.   

The Chinese government launched a nationwide carbon market in late 2017. 

Comparing the required incentives to prevailing prices in seven pilot carbon markets 

launched in 2012, the required incentives are generally higher than the market prices. 

Even without considering non-permanence issues, the required incentives (30-122 

CNY tCO2e
-1) are much higher than prevailing carbon prices in seven pilot carbon 

markets from 2014 to 2018 (1.40-60.20 CNY tCO2e
-1) (China Carbon Emissions 

Trading Network, 2018). To be more specific, even without considering the discount 

rate and inflation rate, the carbon prices in most parts of China, such as Central China 

and South China, are much lower than the required incentives to stop farmers from 

burning crop residues, except for in North China where the carbon price is 

occasionally higher than subsidies. The required incentive (111.83 CNY tCO2e
-1) in 

Central China is more than four times the price of carbon (10.81-27.88 CNY tCO2e
-1) 

(China Carbon Emissions Trading Network, 2018). Currently, it seems challenging to 

design an offset scheme that involves soil carbon sequestration to incentivize farmers 

to retain crop residues instead of burning them.  

In terms of area-based required incentives, the last column in Table 4 shows that 

Northeast China (287.00 CNY ha-1) requires the lowest incentives for farmers to shift 

from burning residues to retaining them on croplands for carbon benefits. In contrast, 
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farmers in East China (836.49 CNY ha-1) need the highest level of required incentive, 

followed by Central (828.53 CNY ha-1) and Northwest China (781.45 CNY ha-1). 

Farmers in these three regions need higher incentives than the current maximum 

subsidies for them to shift.  

The existing subsidies are too low in most parts of China to incentivize farmers to 

shift from burning crop residues to retaining them on croplands. Particularly in East 

China, the subsidy level used in the pilot stage is only 150-375 CNY ha-1 (Table S1) 

while the required incentives are the highest (836.49 CNY ha-1) of all seven regions. 

Indeed, this region has the highest share of crop residues burned (29%) among all 

regions. In North China and East China, the government subsidy is less than half of 

the required incentive. Only in Northeast China do subsidies (375-600 CNY ha-1) 

(Table S1) exceed the required incentives (287 CNY ha-1). In addition, the 10 pilot 

provinces for crop residue management do not cover Northwest China, Southwest 

China, Central China, or South China and the subsidy policies in these regions are 

lagging behind. 

To summarize, the results in Table 4 show differences in the incentives required 

for farmers to shift from burning crop residues to retaining them on croplands across 

different regions. Farmers in Northeast China need the lowest incentive to shift while 

those in East China need the highest incentive. Among the seven regions, East China 

showed the highest rate (29%) of crop residues burned while Northeast China had the 

highest crop residue retention rate (33%) among all seven regions (Table 1). Given 

that Northeast China is a major food production area in China, this region also has 

high crop residue production. As 22% of crop residues are still burned in this region, 

and it had the lowest costs to incentivize farmers, this region should be prioritized for 

carbon benefits.   
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3.4 Limitations and uncertainties 

Although the annual residues of rice, corn, and wheat account for more than 75% 

of the total crop residues (STEMOA, 2010), and the cultivated area is basically stable 

(Cheng et al., 2018), the reduction of crop systems to wheat-corn rotation systems in 

dryland and double-cropping rice systems in paddy fields is a simplification. Due to 

coarse spatial and temporal data on land use and cover, we did not consider any 

changes in cropland distribution during the simulated years. Besides which, the 

internal homogeneity of all input data for each simulated sub-area (a square area of 

100 km2) cannot be guaranteed. The above-mentioned facts could contribute to 

uncertainties in the SOC sequestration estimations in this study. In addition, SOC 

sequestration lasts decades (Lal, 2004a; West and Six, 2007) and the ten-year 

simulations used in this study cannot account for soil carbon saturation levels under 

long-term carbon inputs, which might cause an overestimation in the SOC 

sequestration potential of crop residue retention. More accurate spatial and temporal 

data and longer time periods would be helpful. It is worth noting that emissions from 

field burning of crop residues depend on complex factors, including the composition 

of crop residues, combustion temperatures, and ambient conditions. However, the 

measurements of emission factors for field burning are limited, especially in China 

(Cao et al., 2008). We used emission factors available in published studies, or even 

used average values (EF of PM10 for wheat residue). Experimental studies would 

validate the suitability of the EF values used in our study. 

In this study we only focus on carbon benefits without considering all other 

possible co-benefits. Although retaining crop residues on croplands rather than 

burning them upon harvest may bring other benefits, such as improved soil fertility 

that is beneficial for crop yields (Witt et al., 2000; Lal, 2004b; Malhi and Kutcher, 
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2007; Zhao et al., 2015) and water availability (Bescansa et al., 2006; Sissoko et al., 

2013), greater amounts of crop residues retained on croplands may also result in water 

percolation and promote nitrogen leaching, which may negatively affect crop growth 

and yields (Yang et al., 2016). In addition, when crop residues are retained on 

croplands, the survival of soil-borne plant pathogens in crop residues may also make 

diseases more problematic (Cook et al., 1978; Sturz et al., 1997; Bockus and Shroyer, 

1998; Xia and Wu, 2013). Thus, our study acts as a starting point for future studies 

that could incorporate these additional costs and benefits. 

The role of carbon markets in encouraging Chinese famers to retain crop residues 

on croplands instead of burning is largely uncertain. Based on the prevailing price of 

the seven pilot carbon markets during 2013-2016, it seems that carbon trading alone 

may not be sufficient to incentivize farmers to shift their crop residue practices. The 

carbon prices in the nascent national market are still unpredictable, given tremendous 

changes faced by seven pilot carbon markets in China, such as high transaction costs, 

lack of scientific data, and weak legal foundations (Auffhammer et al., 2015). Thus, 

given the current situation, it is difficult to judge whether designing an offset scheme 

involving soil carbon sequestration can be a viable solution for incentivizing farmers 

to provide carbon benefits through changes in crop residue management.  

Last, it is important to note that owing to data limitations, this study only used 

aggregated data to analyze the required incentives for the period 2001-2010 to provide 

some benchmark information for future analyses. If more accurate estimations need to 

be conducted in the future, updated information must be collected through detailed 

surveys, preferably conducted at disaggregated levels, such as the household.   
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4. Conclusions 

Through a combination of simulations with economic analyses, this study 

assessed the changes in C emissions and SOC dynamics associated with different crop 

residue retention rates. We found a net loss of SOC during 2000-2010 based on 

current retention rates. However, there would have been a net increase in SOC if the 

residues that were burned had been retained by farmers on croplands. If farmers could 

change their crop residue management practices from burning to retention on field, 

approximately 149.9 Tg yr-1 of CO2 emission could be avoided and 24.4 Tg C yr-1 of 

SOC could be sequestered, albeit with significant heterogeneity among the seven 

regions studied. Northeast China and North China had the highest SOC sequestration. 

From an economic point of view, Northeast China is the lowest-cost region in China 

to incentivize farmers to change their residue management practices for carbon 

benefit, while East China is the most expensive. However, the subsidy standards set 

by the government in recent years are too low. Except for subsidies in Northeast 

China, which may be considered sufficient, the government subsidies in other parts of 

China still do not provide sufficient incentives for farmers to shift from burning to 

retaining crop residues. It can be speculated that current subsidies may not be 

sufficient to prevent Chinese farmers from burning crop residues. Besides, the 

incentives required to encourage farmers to retain crop residues are much higher than 

prevailing carbon prices in seven pilot carbon markets, making it impossible for 

carbon markets alone to provide sufficient incentives for farmers to change their crop 

residue management practices. 

Taken together, neither the existing subsidies nor the carbon market provides 

sufficient incentives for farmers in China to change their crop residue management 

practices. As abolition of crop residue burning may be accompanied with other 
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co-benefits, such as reduced health impacts because of reduced emissions of 

particulate matter, the government of China should consider providing higher 

subsidies or seeking other innovative solutions to encourage farmers to improve their 

crop residue management. Foremost, existing subsidies would need to be increased in 

North China and East China. The subsidies in North China need to increase by 

100-150 CNY ha-1 and the subsidy in East China would have to be tripled (from 451 

CNY ha-1 to 686 CNY ha-1). Meanwhile, other non-pilot provinces should develop 

scientific subsidy policies as soon as possible. In addition, we suggest including soil 

carbon sink trade on the carbon market as a supplementary policy tool. Although the 

carbon market alone cannot solve the problem of crop residue burning, it can still be a 

supplementary policy tool, especially in North China. 
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Table and figure legends 

Table 1. Current rates of crop-residue burning and retention in seven regions of 

China 

Table 2. Parameter calibration in the EPIC model 
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Table 3. Emission factors for carbon and pollutants (g kg-1) 

Table 4. Incentives required to encourage farmers retain the burned crop 

residues on croplands 

 

Figure 1. Flow diagram for the EPIC model simulation 

Figure 2. (a) Average organic carbon in the soil to a plow layer depth of 20 cm 

(OCPD), and (b) its annual variation in croplands of China under different 

scenarios. CR1, CR2, and CR3 present the baseline, the business-as-usual and the 

improved crop residue management scenarios, respectively. All values are nationwide 

averages. 

Figure 3. Spatial patterns of carbon changes in cropland of China under three 

management scenarios (a) CR1, (b) CR2, and (c) CR3. Variations in organic 

carbon in the soil to a plow layer depth of 20 cm (OCPD) were calculated from the 

OCPD of each year minus that of the year before. All values are annual averages 

calculated for the period 2001-2010.   

Figure 4. SOC sequestration in seven regions. “CR2-CR1” and “CR3-CR1” 

represent the differences between SOC pools under crop residue retention (CR2 and 

CR3) and crop residue removal (CR1) scenarios; “CR3-CR2” represents the 

difference between SOC pools in the improved retention scenario (CR3) and the 

business-as-usual retention scenario (CR2), namely the SOC sequestration of 

retaining those burned crop residues. All values are annual averages for 10 years. 

Figure 5. Time series of greenhouse gases and particulate matter emissions from 

crop residue burning. The annual emissions of (a) CO2, (b) CH4, (c) PM2.5, and (d) 

PM10 from corn, wheat, and rice residue burning from 2000 to 2010. Each value 

represents the sum of each type of emissions across seven regions. 
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Table 1. Current rates of crop-residue burning and retention in seven regions of 

China  

Region 
Rate of crop-residue 

burning 

Rate of crop-residue 

retention 
Sum 

Northeast China 22% 33% 55% 

North China 24% 28% 52% 

Northwest China 17% 17% 34% 

Southwest China 17% 15% 32% 

Central China 23% 22% 45% 

South China 27% 23% 50% 

East China 29% 23% 52% 

Note: The Sum represents the largest percentage of crop-residue retained if the originally 

burned crop residues were retained on cropland (CR3). 
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Table 2. Parameter calibration in the EPIC model  

Parameter Description Default value Modified value 

Crop related   
  

HI harvest index 

0.2 (rice) 0.5 (rice) 

0.5 (corn) 0.55 (corn) 

0.45 (wheat) 0.47 (wheat) 

DMLA maximum potential leaf area index 
6 (rice) 6.82 (rice) 

6 (corn) 7 (corn) 

DLAI 
fraction of the growing season when 

LAI begins to decline 

0.8 (rice)  0.9 (rice) 

0.8 (corn) 0.6 (corn) 

0.6 (wheat) 0.5 (wheat) 

HMX  maximum crop height (m) 2 (corn) 2.5 (corn) 

RDMX  maximum root depth (m) 2 (corn) 2.5 (corn) 

Soil related 
   

PARM20 microbial decay rate coefficient 1 1.5 

PARM45 residue decay tillage coefficient 15 10 

PARM47 slow humus transformation rate (d-1) 0.000548 0.00068 

PARM48 passive humus transformation rate (d-1) 0.000012 0.000015 

PARM61 

soil erosion coefficient relates C factor 

to soil cover by flat and standing residue 

and growing biomass 

1 2 
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Table 3. Emission factors for carbon and pollutants (g kg-1)  

Fuel type CO2 CH4 CO NO NO2 NOx SO2 PM2.5 PM10 

Corn residue 1,261.5a 1.75a 114.7a 0.8 a 0.43a 1.28a 0.44b 11.7 b 4.3d 

Wheat residue 1,557.9a 1.82a 141.2a 0.79a 0.32a 1.12a 0.85b 4.71c 8.05e 

Rice residue 791.3a 0.72a 64.2a 1.02a 0.79a 1.81a 0.18b 12.95c 9.1d 

aZhang et al., 2008. 

bLi et al., 2007. 

cHays et al., 2005. 

dKanabkaew et al., 2011. 

eOwing to lack of data, the EF of PM10 for wheat residue was selected based on available EFs 

of PM10 for combined crop residues. 
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Table 4. Incentives required to encourage farmers retain the burned crop 

residues on croplands 

Regions 

Quantity-based  Area-based 

Not considering 

non-permanence 

Considering 

non-permanence 

  

(CNY ha-1) 

(CNY tCO2e-1) (CNY tCO2e-1)  

Northeast China 30.44  39.60   287.00  

North China 39.24  63.80   550.82  

Northwest China 95.21  119.60   781.45  

Southwest China 65.26  95.49   455.38  

Central China 111.83  166.63   828.53  

South China 112.41  186.15   465.08  

East China 122.42  189.10   836.49  
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HIGHLIGHTS 

 Farmers in China burn almost 1/4 of crop residues, causing environmental 

damages.  

 Simulations and economic analyses combined to assess a shift in residue 

management.  

 Residue retention avoided CO2 emission by 150 Tg yr-1 and increased SOC 

sequestration by 24 Tg C yr-1. 

 Required incentives vary regionally; Northeast China required the lowest. 

 Existing subsidies (150-600 CNY ha-1) are lower than the incentives required 

(287-836 CNY ha-1) to make a shift.  
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