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FOREWORD 

Declining rates of national population growth, continuing differential levels of re
gional economic activity, and shifts in the migration patterns of people and jobs are char
acteristic empirical aspects of many developed countries. In some regions they have com
bined to bring about relative (and in some cases absolute) population decline of highly 
urbanized areas ; in others they have brought about rapid metropolitan growth. 

The objective of the Urban Change Task in IIASA's Human Settlements and Services 
Area was to bring together and synthesize available empirical and theoretical information 
on the main determinants and consequences of such urban growth and decline. The Task 
was concluded in 1981, and since then attention has turned to disseminating its principal 
results. 

The two essays republished in this report are part of the Task's dissemination effort. 
They examine aspects of William Alonso's general theory of movement, developed over a 
decade ago. In them, Jacques Ledent argues that the Alonso model and one of Alan Wilson's 
well-known spatial-interaction models are equivalent formulations. A valuable contribu
tion of these two essays is the development of a method for fitting the Alonso model to 
data on interregional migration. 

A list of recent publications in the Urban Change Series appears at the end of this 
report. 

ANDREI ROGERS 
Chairman 

Human Settlements and Services Area 
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Abstract. First, it is shown that Alonso's general theory of movement relies on a standard 
doubly-constrained spatial interaction model. Such a finding then suggests the use of a 
biproportional adjustment method (RAS method) to adequately estimate the systemic variables 
specified in the underlying model. This eventually leads to the development of a complete and 
precise methodology for calibrating the Alonso model. This methodology is illustrated with the 
help of an application to data on interprovincial migration in Canada . 
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0. Introduction 

In the last decade, William Alonso has, in successive efforts , developed a 
general framework for the analysis of movement {Alonso, 1973 , 1975, 1976, 
1978). Owing to its logical consistency as well as to its elegant presentation, 
Alonso's theory rapidly caught the attention of regional scientists, among whom 
it is nowadays very popular (*). 

This theory is generally held to be a common logical and mathematical 
framework for the large number of models of movement proposed in the past 
few decades in the social sciences and related areas. However, the view of 
Alonso's theory as a more general framework for thinking about the diverse 
existing models overstates somewhat its real worth. As shown in this paper, 
Alonso's theory simply relies on a standard doubly-constrained spatial 
interaction model. 

Nevertheless, the peculiarity of its formulation , namely, the consideration of 
place-to-place flows along with that of the totar flows out of and into each 
place in a simultaneous and consistent way, represents a significant contribution 
to the modeling of mobility phenomena. More specifically, owing to its 

• Paper prepared for presentation at the Fourth Annual Meeting of the Canadi an Regional 
Science Association, Montreal, Quebec, June 5-7, 1980. 

(*) For example, at the 19th European Meeting of the Regional Science Associa tion held in 
London in the summer of 1979, W. Isard chaired a three-hour panel session which was entirely 
devoted to a discussion of Alonso's theory. This paper develops reflections and ideas presented by 
the author at that panel session . 
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inclusion of variables and parameters reflecting the impact of the system (i.e ., 
the influence of alternative places) on place-to-place flows, Alonso's theory 
constitutes a potential tool for gaining insights into the interaction of mutually 
exclusive places (groups) which could not be obtained otherwise. But, in spite 
of the general discussion generated by this theory (Anselin, Isard, 1980; 
Dziewonski, 1979), little progress has been made toward its practical use. 

The problem here is mainly one of having a reliable methodology for fitting 
the model underpinning Alonso's theory to actual data sets. To our knowledge, 
the only calibration attempt to date was carried out by Alonso himself in his 
first publication (Alonso, 1973). However, the methodology he used was 
seriously hampered by difficulties originating from the simultaneous 
measurement of the two mutually dependent systemic variables appearing m 
the model (Alonso, 1973, Appendix A, p. 100). 

Fortunately, the observation made in this paper that Alonso's theory is 
centered around a well-known spatial interaction model suggests a more precise 
method for measuring the aforementioned systemic variables. This eventually 
leads to the development of a satisfactory methodology for estimating the 
parameters intervening in the specification of the underlying model. An 
application to the case of interprovincial migration in Canada is provided to 
illustrate the methodology proposed. 

This paper consists of seven sections. Section One, intended as a background 
section, presents a rapid overview of Alonso's theory. Some of the issues 
which its formulation raises are briefly discussed in Section Two. Then, Section 
Three justifies the identification of the underlying model with a standard 
doubly constrained model of spatial interaction. This leads to the development 
of appropriate methodologies for calibrating the Alonso model (Section Four) 
as well as for utilizing it as a forecasting model (Section Five). Finally, 
Sections Six and Seven report on the application of the proposed calibration 
method to the case of Canadian interprovincial migration: Section Six focuses 
on the measurement of Alonso's systemic variables, whereas Section Seven 
deals with the estimation of the two main parameters involved in Alonso's 
theory. Note that the latter relies on a regression analysis of migration flows 
whose results are compared with those of a more classical regression analysis. 

1. Alonso's theory of movement: an overview 

The strength of Alonso's theory which, for a large part, explains its appeal 
is its circular nature which makes alternative expositions possible. Alonso 
himself has provided various versions of his theory (Alonso , 1973, 1975, 1976, 
1978) whereas Anselin and Jsard (1980) have proposed yet another 
formulation. Our exposition below is broadly similar to the variant proposed 
by Alonso in his latest effort (Alonso, 1978). 

In brief, Alonso's theory of movement pertains to a closed system of 
mutually exclusive classes (regions in a nation, sectors in an economy, etc.) 
consisting of units (people, commodities, etc.) which can move to another class. 
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It is concerned with building a mathematical framework for the flow of the 
units moving between the various, for example n, classes in the system. 
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Each class can be regarded as an origin as well as a destination. When 
considered as an origin, it has unfavorable characteristics-summarized in a 
general measure vi (i = 1, ... , n) - which induce units to leave. Alternatively, 
when considered as a destination , it has favorable characteristics-summarized in 
a general measure wi (j = 1, . ., n) - which attract units. 

Central to Alonso's theory of.movement is the idea that place-to-place flows 
are not only determined by the unfavorable characteristics of the origin and 
the favorable characteristics of the destination but are also affected by the 
characteristics of the alternative origins and destinations. In brief, the impact 
exerted by the system is assumed to be accounted for by two variables , the 
pull-in Di exerted on each origin i and the push-out Ci exerted on the flows 
terminating in j (*) . The former may be thought of as a demand or a 
draw-hence the notation D - and the latter as a measure of competition , 
crowding, or congestion-hence the notation C -. 

First, let us consider the total flows out of each class. We may, for example, 
assume that movements out of class i are proportional to the unfavorable 
characteristics of class i and depend on the pull-in of the system Di with a 
rate of response ai. Thus 

vi = 1, .. ., n. (1) 

Similarly, we may assume that movements into class j are proportional to the 
favorable characteristics of class j and depend on the push-out of the system 
Ci with a rate of response ~i· Thus 

M· = w- c"j . J J J v j = 1, ... , n . (2) 

Further, departing slightly from Alonso's expos1t1on , let us consider the flow 
of units Mii moving from a particular class i to a particular class j. In 
accordance with a widely accepted theory of migration in which place-to-place 
flows depend on factors associated with the areas of origin and destination as 
well as with intervening obstacles (Lee, 1966), let us posit that Mii is 
proportional to: 

the measure vi of the unattractive properties of class i, weighted by the 
ease of movement out of i (i.e., D~•-1 ); 

the measure wi of the attractive properties of class j , weighted by the ease 
Of entry into j (i .e., Cj l>H ); 

a relational term tii reflecting the effect of distance between and J. 

(*) These two variables remain undefined for the time being: they will be derived later. 
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Thus 

M,·1· = V· W· t·· Dai-l c. ~ j-1 
I J IJ I ) v i, j = 1, .... , n. (3) 

The next step is the evaluation of the impacts exerted by the system on the 
alternative classes, i.e., the formal definition of the pull-in Di and the push-out 
Ci. This comes naturally from ensuring a certain consistency between the 
place-to-place flow equation (3) and the total flow equations (1) and (2). 

From equation (3), it is easy to derive the total flow of migrants out of and 
into each class by summing over all possible destinations 

v i = 1, ... , n 

and origins 

vj 1, .. .. , n. 

respectively. 

We immediately obtain that 

and 

V,· Da,_, L W · c~j-l tl·)· 
1 • J J 

J 
v i 1, .... , n 

M. = W· c~j-l L vi Df•-l ti)" V J. = 1, .. . , n. 
·l J J i 

Then, comparing the above formulas with (1) and (2), yields 

Di = L wj c/i·• tij 
J 

and 

v i = 1, ... , n 

v j = 1, ... , n 

two formulas which indicate that the competition variable is part of the 
formula defining the draw variable and vice versa; the derivation of the two 
systemic variables thus requires a simultaneous calculation. 

(4) 

(5) 

(6) 

(7) 

Clearly, formula (6) shows that the draw variable Di is a weighted sum of 
the attractive characteristics wi of all the other classes in the system, where the 
weights applied to any wi express the influences of distance (tii) and 
competition (C/H). 

Similarly, formula (7) shows that the competition variable Ci is a weighted 
sum of the unfavorable characteristics vi of all the other classes in the system 
where the weights applied to any vi express the influences of both distance 
(tii) and ease of exit (Df•-•). 
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Now, summarizing the above presentation of Alonso's theory, it appears that 
its underlying model consists of five equations, two of which - (4) and (5) -
are identities. The remaining equations can be: 

Equations (1) and (2) or, alternatively, (6) and (7) 
Equation (3) or any equivalent equation describing the place-to-place 
flows. 

This result indeed makes the circularity and involution of Alonso's theory 
quite clear. For example one could start with the definitions of the systemic 
variables D; and Ci [see Anselin and Isard (1980) who provide a good a 
priori justification of equations (6) and (7)). Then, one would derive (1) and 
(2) by substituting (6) and (7) into the equations obtained from (3) by 
summing over all possible destinations and origins respectively. 

2. Issues 

In broad terms, Alonso's general theory of movement raises two types of 
issues. The first type relates to the specification of the equations underlying 
the· theory, whereas the second type refers -to the nature of the flows with 
which the theory is concerned. 

With regard to the specification of the equations underlying the theory, two 
questions come to mind: 

(a) Do equations (1) through (3) require the presence of a constant term as 
suggested by Anselin and Isard (1980)? The answer to this question is 
negative, since such constant terms can be incorporated in the definition of 
the systemic variables Di and Ci. 

(b) Is the choice of the exponents ai-l and ~i-l when applied to the draw and 
competition terms in equation (3) restrictive? The answer to this is again 
negative, for the choice of more general exponents ai-xi and ~i-Yi does not 
fundamentally affect the model. This can be seen as follows . Summing the 
place-to-place flows over all origins and destinations leads to: 

v i = 1, .. ., n 

and 

v i = 1, .. ., n. 

Then, redefining the draw and competition variables as 



332 J. Ledent 

and defining the following exponents 

a; ~-
' J 

ai and ~j=-
X; Yi 

leads to an unchanged model: variables and parameters with a prime sign are 
simply substituted for the original ones. 

Turning now to the issue relating to the nature of the flows with which the 
theory is concerned, we must first underline that we have purposely avoided 
the use of the word movements to characterize the flows taking place between 
the various classes (or groups). 

As is well known, changes occurring over a finite period of time in a system 
of mutually exclusive groups can be observed from two different perspectives. 
One perspective looks at all the movements made between each pair of groups 
during the observation period regardless of the group in which the «migrators» 
were present at the beginning of the observation period. The alternative 
perspective simply considers the pairwise transitions resulting from the 
comparison of the groups in which the various units in the system are present 
at the beginning and end of the observation periods. These two perspectives, 
known as the movement and transition perspectives (Ledent, 1980), are indeed 
different in nature and have different implications. 

Which conceptualization of intergroup transfers had Alonso in mind when 
devising his theory? Various indications scattered in his papers - mainly the 
reference to stayers' flows as well as the consideration of the Markov model of 
migration as a particular case of the general theory - suggests that Alonso's 
thoughts are more in line with the transition perspective than with the 
movement perspective. 

However, a focus on transitions is rather limiting because it implies an 
incomplete view of the exchanges occurring between the alternative classes. 
Fundamentally, the transition perspective reflects a conso·Jictated view of the 
movement perspective. Hence it ignores the multiple moves that each 
individual may have made during the observation period, retaining only the 
apparent moves out of or within each class observed between the start and 
end of the observation period. It thus follows that the most complete picture 
of a spatial interaction system is the one which would be obtained by 
considering the whole of the movements made between alternative classes. As 
a corollary, the image which would be drawn from the sole consideration of 
the transitions made between two points in time would be less meaningful 
since it would rely on reduced information. 

Nevertheless, Alonso's theory subsumes both the movement and transition 
perspectives because the choice of either approach does not raise any 
theoretical problem. The only consequence of adopting the transition 
perspective instead of the movement perspective appears to be the 
consideration versus the non-consideration of flows M;; of stayers: stayers' 
flows are indeed irrelevant to the movement perspective. 
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Note that the inclusion of such flows in most applications based on data 
consistent with the transition perspective is likely to blur the picture of spatial 
interaction taking place in the system at hand. The fact that the flows of 
stayers Mii are generally much higher than the migration flows Mii (j ,/. i) 
heavily influences the values of the systemic variables Di and Ci: it is thus 
better to ignore the flows of stayers. 

Consequently, the Alonso model will be fitted to actual data - regardless of 
whether they are data on movements or transitions - without consideration of 
such elements as Mii. In practice, there is little choice as to whether one will 
use movement or transition data. Only in the case of migration, is a choice 
theoretically possible since data in the form of movements can be obtained 
from population registers and data in the form of transitions can be obtained 
from population censuses. 

3. The Alonso model as a standard doubly-constrained model of spatial 
interaction 

By combining equations (1), (2), and (3), it is readily established that 

1 
v i,j 1, ... , n (8) 

an equation which shows that Alonso's theory of movement relies on a 
standard doubly-constrained model of spatial interaction. In addition, the draw 
and competition measures, Di and Ci, appear to be the reciprocals of the 
balancing factors of this doubly-constrained model. We have that 

Di = ~ M.i ci-t tii 
J 

and 

Vi = 1, ... , n (9) 

vj = 1, ... , n. (10) 

The latter result is germane to the observation made by Kirby (1970) that 
the balancing factors of a doubly constrained spatial interaction model of the 
multiplicative type as specified in (8) can be interpreted as a measure of the 
accessibility (in terms of attractiveness and repulsion) of one class with respect 
to other classes. 

Note that the doubly-constrained model of spatial interaction suggested by 
(8) subsumes some of the classical models used in gravity and entropy theory. 
[For a review of such models, see Wilson (1974) or Nijkamp (1979)]. For 
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example, assuming that tii is a simple function of the friction measure dii 
relating to origin i and destination j, we see that 

if tii = dit (h > 0), Alonso's theory of movement relies on a 
generalized formulation of the traditional gravity model constrained at 
both the origin and destination 

1 M· M· 
' · .J 

Mii= 'j i,j 1, ... , n ( 11) 
oicj dif 

if tii = exp(-hdii) (h > 0), Alonso's theory of movement relies on a 
doubly-constrained entropy-derived model 

1 
----Mi. M.i exp (-hdii). 'j i,j 1, ... , n (12) 

4. A methodology for calibrating the Alonso model 

The observation in Section Three that Alonso's theory of movement relies 
on a standard doubly-constrained model of spatial interaction immediately 
suggests a precise methodology for calibrating the underlying model. 

Clearly, on the basis of information known about tii• M;. and M.i• the draw 
and competition measures Di and Ci can be assessed by solving the system of 
equations defined by (9) and (10). Actually, finding the solution to this system 
is nothing else than solving the following biproportional adjustment problem 
(sometimes referred to as the R .A.S. problem): find the matrix M = (Mii) of 
place-to-place flows which has row and column totals equal to the observed 
out- and inmigration flows respectively and which is biproportional to the 
matrix of relational terms T = (tii) . 

As already noted above, Di" and Ci are simply the reciprocals of the 
balancing factors resulting from this adjustment problem. (Note that they are 
defined up to a constant multiplicative factor). IQ practice, they can be 
obtained in a recursive manner using a method originally proposed by Stone 
(1962), but alternative algorithms are possible [for a review of these 
algorithms, see Willekens (1980)]. 

Note that the feasibility of the above procedure rests on the availability of 
the T matrix. Since the values of the relational terms are generally unknown , 
only the calibration of particular versions of (8) - such as. the gravity model 
(11) or the entropy-derived model (12) - allows for the estimation of t]le 
draw and competition measures. At the same time this yields the value h of 
the h-coefficient appearing in the expression of the relational term tii in terms 
of dii· 
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Various calibration techniques for these models have been proposed in 
numerous papers. [For a study in depth of these techniques, see for example 
Batty and Mackie (1972), or Openshaw (1976)]. Broadly speaking, these 
methods can be classified into two groups. The first group consists of methods 
in which the observed parts of the constraints determine the parameters, 
regardless of the actual fit of the model to the observed pattern of 
place-to-place flows. They include maximum-likelihood and entropy-maximizing 
methods which, if it is assumed that the sampling distribution is multivariate 
normal, are equivalent. 

By contrast , the methods of the second group attempt to max1m1ze model 
performance (i.e., yield a predicted value of the place-to-place flow matrix M 
as close as possible to its observed value). These methods include 

(a) a nonlinear, least squares method which seeks to minimize the sum of 
squares of the differences between the observed and predicted flows (this 
method does not suppose any assumption about the form of the 
sampling distribution) 

min SS = L ~ (Mii - Mii) 2 

I J 

where Mii is the predicted value of the flow between i and j; 
(b) a method which attempts to minimize the following chi-square statistic 

(this method assumes that the observed flow matrix is subject to 
sampling errors) 

min x2 L L-------

In practice, if the data available relate only to the total flows out of or into 
each class , the maximum likelihood/entropy-maximizing method will be used. 
For its implementation, one will, for example, use the algorithm proposed by 
Hyman (1969), which Vermot-Desroches (1979) describes as being very 
efficient. 

In case the data available consist of the matrix of place-to-place flows, one 
can, if time and resources permit, perform the various calibration methods 
mentioned above and select the one which offers the best model performance 
on the basis of both the least-squares and chi-square criteria. But, in general , 
lack of resources may lead to select a single method. 

Of course, the calibration of the Alonso model does not stop with the 
estimation of the draw and competition variables. The next step is the 
estimation of the exponents a; and ~ i of the draw and competition variables in 
equations (1) and (2), respectively . First of all, this raises the problem whether 
these two exponents are identical within the system or whether they may vary 
from one place to another. Following Dziewonski (1979) who argues that, in 
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countries which are strongly integrated both socially and economically, the 
same exponents can apply to all places, we thus assume 

a; =a 1:1i = 1, ... , n 

and 

~j = ~ 1:1j = 1,. . ., n. 

Second, the feasibility of estimating a and ~ requires the knowledge of the 
internal structure of V; and wi. Recalling that the variables v; and wi are 
composite variables which reflect the unfavorable characteristics of place i and 
the attractive characteristics of place j , we may write: 

K 

V; = IT xu· 
k; 1:1 i = 1,. . ., n 

k=l 

and 

L 

wi =IT y'I 
I; 1:1 j = 1,. . ., n 

l=l 

where Xk, is the value of the k-th unfavorable characteristic of place i 
u k is the elasticity or movement response of group i to changes 

in the value of k-th characteristic (*) 

Y11 is the value of the I-th favorable characteristic of place j 
v 1 is the elasticity or movement response of group i to changes 

in the value of the I-th characteristic (*). 
Then, the values of the a and ~ exponents - as well as the values of the 

various elasticities u k and v 1 - can be found by performing the following 
regression analyses in double logarithmic form: 

K 

In Mi. = Uo + L Uk In Xk, + a In O; (13) 
k=l 

and 

L 
In M · Vo+ L V1 In Y1j + ~ In Ci . ·l 

l = l 

(14) 

(*) The u• and v1 elasticities are assumed to be independent of the place of reference for the 
same reason that the a and 13 elasticities were made independent of the place of reference . 
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Note that the presence of constant terms u0 and v0 in (13) and (14) 
respectively - which normally are not called for by the specification of 
equations (1) and (2) - is necessitated by the fact that Di and C; are 
measured up to a constant multiplicative factor. 
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In practice, the feasibility of performing the regression analyses based on 
equations (13) and (14) might be hampered by a low value of the number of 
degrees of freedom due, for example, to the consideration of a limited number 
of places and of a large number of independent variables. Alternatively, if the 
matrix of place-to-place flows is available, one can reasonably expect to find 
the values of the a and 13 parameters by performing a regression analysis 
based on the sole equation (3) rather than equations (1) and (2). In such 
circumstances, one would fit to the available set of data the following 
equation: 

K L 
Wo + L Uk In xk; + L Vi In YI; 

+ a' In Di + f)' In C; - h' In dii (*) (15) 

where w0 is the constant term and h' the distance elasticity of the 
place-to-place migration flows. The a and 13 coefficients would be then 
obtained by adding one unit to the estimated values of a' and !)'. ~ 

Note here that the estimate h' can be different from the value h obtained 
when estimating the values of the systemic variables Ci and D;. It can be 
shown that the measures of the systemic variables obtained as indicated earlier 
are consistent with (a) a certain value of the parameter h entering the function 
expressing the relational terms tii in terms of the distance dii' and also with 
(b) the estimated values Mii of the place-to-place migration flows. Thus, the 
simultaneous estimation of the a and 13 coefficients from the place-to-place 
flows will not be obtained by fitting (15) to the available data but by fitting 
the following regression equation: 

Mij K L 

In = Wo + L Uk In xk; + L v1 In Y1; 

d~-h k = I I= ! 
IJ 

+ a' In Di + f)' In c J 

where Mii is the matrix of the adjusted (estimated) place-to-place flows 
coming out of the measurement of C; and D; 

(16) 

fi is the estimated value of h coming out of the same measurement. 

(*) This assumes that the relational term t;; is given by a negative power of the distance term 
d;;. Alternatively, if t;; is given by a negative exponential function of the distance d;; , the last term 

of (15) will simply be minus h'd•;· 
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Note that, since (16) requires the knowledge of the estimated matrix M;i 
rather than the observed M;i, this allows for an estimation of the a and ~ 
parameters in case the available migration data are limited to the total 
migration flows M;, and M .i· (In these circumstances, a maximum likelihood or 
an entropy-maximizing method allows for the derivation of M;i) . 

To summarize, it appears that the calibration of Alonso's model requires two 
successive stages: 

in a first stage, the systemic variables are estimated using one of the 
classical calibration methods generally applied to gravity and entropy 
models; 
in a second stage, the parameters reflecting the response of migration to 
changes in the systemic variables are estimated from an appropriate 
regression analysis . 

Finally, note that the interest of this calibration method goes beyond the 
estimation of the systemic variables and their corresponding elasticities. In 
effect, this calibration method attempts to explain place-to-place flows not only 
in terms of the characteristics of the origin and destination - as is traditionally 
done - but also in terms of the characteristics of the rest of the system. 
Thus, with reference to the case of interregional migration, the methodology 
developed above provides a way to test the influence of the rest of the system 
(i.e., the places other than the places of origin and desti~ation) on 
place-to-place migration flows. In particular, this methodology allows one to 
answer the problem that some researchers have tried to tackle with relatively 
moderate success (see, for example, Alperovich et al. , 1977; Wadycki, 1979); 
namely, the importance of intervening opportunities in the determination of 
place-to-place migration flows. 

5. Using the Alonso model as a forecasting model 

In their review of Alonso's theory of movement, Anselin and lsard (1980) 
claim that a critical deficiency of this theory is its non-dynamic character. 
However, such a criticism appears to be improperly addressed unless there is a 
divergence on the notion of what constitutes a dynamic model and what does 
not . 

For us, Alonso's model is dynamic in the sense that it allows one to 
calculate the population of each class in successive time periods t, t+l, etc .. 
This property was illustrated by Alonso himself in his first paper (Alonso, 
1973). 

In effect the size P; (t+l) of group i at time (t+l) is linked with the same 
group at time t by the relation 

P;(t + 1) = P;(t) + B;(t) - D;(t) + M.; (t) - Mi. (t) ( 17) 
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where Bi(t) is the number of units added to the system in group i: in a 
multiregional demographic system, they would be the number of 
babies born in region i between times t and t+ 1; 

Di(t) is the number units in group i disappearing from the system: in 
a multiregional demographic system, they would be the number 
of deaths occurring in region i between times t and t+ 1; 

M.i (t) and Mi. (t) are the total number of units entering or leaving 
group i between times t and t+ 1. 

From equation (17) , it is clear that the population of each class i in 
successive times t, t+ 1, etc. can be obtained once the various flows on the 
right-hand side of (17) are determined for the series of the corresponding time 
intervals. In fact , the determination of these flows does not raise any problem. 
On the one hand, it is a simple matter to relate the "births" and "deaths" 
occurring in group i with the size of the same group . On the other hand, the 
total flows of units entering and leaving group i can be easily calculated on 
the basis of the equations shown in the first part of the paper. 

Indeed, if the parameters a and ~ (as well as the u k and v 1 elasticities) are 
known, the availability of the values taken by the variables Xk, and Y1; 

entering the composite variables vi and wi allows one to calculate Di and Ci 
by solving iteratively the system of equations (6) and (7). Then, inserting the 
systemic variables thus obtained into (1) and (2) yields the requested estimates 
of the total number of units entering and leaving each group i. 

Thus, Alonso 's model appears to be a dynamic forecasting too (*) , capable 
of producing alternative simulations of the future based on various assumptions 
regarding the values of the independent variable~ entering the composite 
variables vi and w i· 

6. An application to interprovincial migration flows in Canada 
(I): Measurement of the systemic variables 

The methodology proposed in Section Four for calibrating the Alonso model 
will now be illustrated with an application to the case of interprovincial 

(*) The following digression might be of interest to mathematical demographers. As we will see 
later on , the population sizes at the origin and destination are likely to be the most significant 
variables entering the composite variables v; and w i · This suggests the specification of a general 
model of place-to-place migration flows. 

Mij = P;" P; t,i o;'ci_, 

where D; = I Piv Ci\i 

(3') 

(6') 

(7') 

which encompasses virtually all of the migration models proposed by mathematical demographers . 
[This model can be easily operationalized since (6 ' ) and (7'.) can be easily solved for values of D; 
and Ci in an iterative manner]. 
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migration flows in Canada. The present section reports on the measurement of 
the systemic variables, while the next one deals with the estimation of the 
model parameters. 

The migration data used for the purpose of this illustration are the data on 
the total number of families leaving a given province for another province 
which are published annually by Statistics Canada (see Statistics Canada 1977 
for a chronological series of such annual migration figures). Observe that these 
data are counts of moves rather than of transitions: if a family makes several 
moves across provincial boundaries during a given year, it appears in the data 
as many times as the family moves. 

For the purpose of this paper, the annual data were consolidated into three 
sets covering the periods 1961-66, 1966-71, and 1971-76. The corresponding 
matrices of interprovincial flows , each reflecting an annual average over these 
three periods, are shown in Table A 1 of the Appendix . 

Both the gravity model (11) and the entropy-derived model (12) were fitted 
to these three data sets using a nonlinear least-squares method (*). The 
problem here was one of finding the value of h minimizing the sum of squares 
of the difference between the estimated and observed values of Mii. This was 
solved in an iterative manner as follows. First, we picked an initial value h0 of 
h (h0 = 0.1 in the case of the gravity model), and, using Stone's (1962) 
algorithm already mentioned, we calculated the matrix M biproportional to the 
corresponding matrix of relational terms such that its row and column sums 
were equal to the observed total out- and in-migration flows . Then we 
increased h0 by a quantity ~h (~h = 0.1 in the case of the gravity model) 
and, using again Stone's algorithm, obtained a new estimate of the matrix M. 
Generally, the sum of squares of the residuals relating to the rew estimate of 
M was smaller than in the first iteration . So, we simply increased the previous 
estimate of h by ~h and repeated the previous operation until we obtained a 
sum of squares value greater than in the preceding iteration. If h 1 is the value 
of h corresponding to the iteration which sees an increase in the sum of 
squares value, this means that the optimal value of h is located somewh~re in 
between h1 - 2~h and h1 . Thus, we repeated the procedure described above, 
starting with h = h1 - 2~h and proceeding with increases equal to a tenth 
of ~h until we obtained an increase of the sum of squares value (for say 
h h2). Next, the above procedure was repeated starting with 

~h 
h h2 - 2 -- and proceeding with increases equal to a hundredth of ~h. 

10 

This was pursued until we obtained the desired number of significant digits for 
the value of h . Table 1 shows the successive values of h and the square root 
of the corresponding sum of squares values obtained in the calibration of the 

(*) The matrix of interprovincial distances (road distances between the provinces' principal cities) 
appears in Table A3 of the Appendix. 
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Table 1 - Calibration of the gravity model for the period 1971-76: evolution of the square root 
of the sum of squares of the residuals with the distance friction coefficient h 

h y'SS h y'SS 

0.1 5232.5 0.81 1300.2 
0.2 4636.6 
0.3 4029.9 0.90 1130.7 
0.4 3421.5 0.91 1125.7 
0.5 2823.4 0.92 1123.7 
0.6 2252.5 0.93 1124.5 
0.7 1737.l 
0.8 1331.4 0.911 1125.5 
0.9 1130. 7 
1.0 1204.6 0.921 1123.658 

0.922 1123.641 
0.923 1123.653 

model for the period 1971-76. Finally, a value of h equal to 0.922 and an 
index of model performance equal to 1123.6 were obtained. The corresponding 
matrix of adjusted (predicted) flows as well as the matrix of the ratios of the 
adjusted to the actual flows are shown in Tables A4 and AS of the Appendix. 

Note that the fit of the gravity model was better than that of the 
entropy-derived model: model performance was poorer in the latter case with 
an index equal to 1656.8. The figures in Table 2 summarizing the results of 
the calibration of the two alternative models for the three periods available 
indicate that 

(a) the fit of the gravity model improves with time while no such conclusion 
can be drawn for the entropy derived model; 

(b) the value of the distance friction coefficient is practically the same for the · 
three periods in the case of the gravity model - its lowest values is 0 .916 
in period 1961-66 and its highest 0. 924 in period 1966-71 - while it 
tends to decrease with time in case of the entropy-derived model - from 
0.865 x 10 ·3 in 1961-66 to 0.721 x 10 ·3 in 1971-76 -. 

Table 2 - Calibration of the gravity and entropy models for alternative periods: values of the 
distance friction coefficient (h) and the model performance index (square root of the 
sum of squares of the residuals) 

Period 1961 -66 1966-71 1971-76 

Gravity h 0.916 0.924 0.922 

Model y'SS' 1825.9 1352.5 1123.6 

Entropy h 0.000865 0.000778 0.000721 

Model y'SS' 1734.4 1521.4 1656.8 
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As for the systemic variables resulting from the above calibration method, 
their normalized values appear in Table 3 (only the values obtained with the 
gravity model are shown) . Interestingly enough, the draw and competition 
variables take on remarkably similar values, thus suggesting that they are 
highly correlated. As a matter of fact, their correlation coefficient varies 
between 0.982 for the period 1966-71 and 0.991 for the period 1971-76. 
Thus, the rankings of the ten provinces according to increasing values of both 
C; and D 1 are roughly similar, and even identical for the period 1971-76. In 
this latter period, the typical ranking is as follows: 

l. British Columbia 6. Manitoba 
2. Newfoundland 7. New Brunswick 
3. Ontario 8. Saskatchewan 
4 . Alberta 9. Prince Edward Island 
5. Nova Scotia 10. Quebec. 

Another interesting result suggested by Table 3 is the relative invariance of 
the normalized values of the draw and competition variables over time, so that 
the rankings of the ten provinces according to increasing values of D; and Ci 
for the other periods look roughly the same. For example, the only differences 
that the 1966-71 rankings present with respect to the one above concern Nova 
Scotia and Prince Edward Island - which gain one rank in the D-ranking -
Newfoundland, Manitoba and Saskatchewan - which gain one rank in the 
C-ranking-. 

Following the above observations, two comments are here in order. First of 
all, the similar values taken in each province by the systemic variables may 
appear to contradict the interpretation of Alonso's systemic variables as 
accessibility measures in terms of attractiveness and repulsion. In effect, as a 
consequence of such an interpretation, we would have expected these variables 
to be correlated negatively rather than positively. Our result can be contrasted 
with the evidence provided by Vermot-Desroches (1979) whose calibration of 
Cesario's versions of models (11) and (12) (see Cesario, 1974 , 1975) .(*) to the 
interregional flows by rail of petroleum products in France leads to values of 
the systemic variables conforming with our a priori expectations. Actually , the 
different results obtained by Vermot-Desroches and ourselves can be simply 
attributed to the apparent differences existing in the spatial interaction patterns 
observed. On the one hand, the negative correlation obtained by 
Vermot-Desroches follows from the asymmetric interaction pattern he deals 
with. On the other hand, the positive correlation here is simply the 
consequence of the highly symmetric pattern of interregional migration (* * ) , a 

(*) The Cesario versions of models (11) and (12) group the terms concerning both the production 
(v , and D,) and the attraction (w; and C;) zones. 
(**) Indeed , if the interprovincia l flow matri x M = (M, ;) is symmetric, the C and D indices are 
identical in each province. 
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Table 3 - Calibration of the gravity model for alternative peri~ds : normalized values of the systemic variables C1 and 0 1 I[ 

:J 
<C 

1961-66 1966-71 1971-76 I )> 
0 
:J 

D, Ci (1) D1 Ci (1) D, c, (1) 

I~-- - -
Province (1) (2) (2) (1) (2) (2) (1) (2) (2) 

<1> 
:J 
<1> 

Newfoundland 0.05668 0.05674 0.9990 0.05614 0.05633 0.9966 0.06608 0.06695 0.9807 ?1. 
:T 

Prince Edward Island 0.12659 0.13853 0.9138 0.12536 0.13566 0.9241 0.12083 0.12225 0.9875 <1> 
0 

-< 
Nova Scotia 0.09759 0.09967 0.9792 0.09679 0.10072 0.9610 0.09909 0.10046 0.9847 ~ 

3 
New Brunswick 0.11737 0.12300 0.9543 0.11623 0.12273 0.9470 0.11236 0.11654 0.9574 10 < 

<1> 

Quebec 0.15554 0.14927 1.0419 0.16236 0.15307 1.0606 0.13860 0.14421 0.9346 I~ 
Ontario 0.06945 0.07066 0.9830 0.06367 0.07216 0.8824 0.07071 0.07114 0.9772 

Manitoba 0.10042 0.09565 1.0499 0.09915 0.09368 1.0584 0.10470 0.10135 1.0426 

Saskatchewan 0.11628 0.10982 1.0589 0.12763 0.11530 1.1069 0.12782 0.11870 1.1035 

Alberta 0.10214 0.09678 1.0554 0.09713 0.09285 1.0461 0.09424 0.09179 1.0522 

British Columbia 0.05793 0.05990 0.9675 0.05555 0.05749 0.9662 0.06559 0.06661 1.0034 

--
Coefficient of cor-
relation between 
0 1 and C; 0.9891 0.9821 0.9906 

I 
w 
~ w 
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fact well-known to students of migration since Ravenstein ( 1885) observed that 
"each main current of migration produces a compensating counter-current''. 

The second · comment we would like to make here concerns a possible 
interpretation of the ranking order of the ten Canadian provinces according to 
the values of the systemic variables. Actually, it turns out that this ranking is 
akin to the ranking of the provinces according to increasing values of their 
total out- and in-migration rates, or of the sum of these (*) (see Table 4 ). 

The only major difference concerns the position of Quebec which is at the 
bottom in the former list and at the top in the latter. The other but minor 
differences appear to be the reverse order in which Ontario, Newfoundland 
and British Columbia are to be found and the two-rank gain of Manitoba. 

Table 4 - Migration propensity index during the 1971-76 period 

Province Index Value Ranking 

Newfoundland 6.96 3 
Prince Edward Island 11.21 10 
Nova Scotia 9.06 5 
New Brunswick 9.18 6 
Quebec 2.75 1 
Ontario 3.75 2 
Manitoba 9.54 8 
Saskatchewan 10.95 9 
Alberta 9.25 7 
British Columbia 8.34 4 

Are there any obvious reasons accounting for those differences? A pos1t1ve 
answer to this question will in fact be obtained in the second stage of the 
calibration of the Alonso model, which is the object of the next section. 

7. An application to interprovincial migration flows in Canada 
(II): Estimation of the model parameters 

Once the systemic variables have been measured, the next stage in our 
calibration of the Alonso model to the case of interprovincial migration in 
Canada consists of estimating the model parameters, i.e., the elasticities a and 
(3 of the systemic variables D; and Ci respectively. 

(*) Because the average number of families present in each province during each period was 
unavailable, we proxied the aforementioned rates by migration indices in which the denominators 
were taken as the arithmetic average of the provincial populations at the beginning and end of the 
period. The migration index referred to in Table 4 is the sum of the total out- and in-migration 
proxies. 
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In accordance with the principles set fourth in Section Four, this estimation 
is based on a regression analysis in which the independent variables include 
the variables traditionally used in regression analyses of migration flows (for an 
extensive survey of the determinants of migration, see Greenwood, 1975) as 
well as the two systemic variables proposed by Alonso in this theory of 
movement. 

In a first step however, we perform a classical regression analysis - i.e., in 
which we ignore Alonso's systemic variables - whose objective is to allow, by 
comparing its results with those obtained from the more complete regression 
analysis, a better assessment of the importance of the systemic variables in the 
migration decision in Canada. The explanatory variables used in the course of 
this analysis are for each province: 

The size of its population P 
Its unemployment rate U 
Its weekly wage rate (in real terms) W(*). 

In each of the three periods studied, the population size variable is taken as 
the arithmetic average of the observed populations at the beginning and end of 
the period whereas the socio-economic variables are taken equal to their 
values observed in the starting year of each period (see Table A3 of the 
Appendix for the actual values of the variables considered) . 

The first observation made is that, regardless of the independent variable 
chosen (total outmigration flow, total inmigration flow, or place-to-place 
migration flow) or the observation period examined, large residuals are 
consistently obtained in the case of migration flows originating from or ending 
in Quebec. Thus, we add to the set of explanatory variables a dummy variable 
X, normally equal to zero but taking the value 1 if the corresponding 
migration flow originates from or ends in Quebec. 

When attempting to explain the total migration flows entering and leaving 
each province in terms of the four explanatory variables P, U, W and X, we 
note in both cases that the regression coefficients of the population variable as 
well as of the dummy variable are highly significant. In particular, the negative 
sign of the dummy variable coefficients indicates the existence of a lower 
propensity to move into and out of Quebec: it can be attributed to its 
linguistic peculiarity (see Termote, Frechette, 1979). By contrast, the two 
socioeconomic variables perform poorly. For example, for the period 1971-76, 
they appear to have the wrong sign in both the out and immigration equation: 
however, the coefficient of the latter variable is not statistically significant. Can 
we explain the poor performance of these socio-economic variables? On the 
one hand, the result concerning the wage rate variable can be attributed to a 

(•) Initially, we also used real per capital income (INC), which we discarded after discovering the 
high correlation existing between this variable and the wage rate variable. (Their correlation 
coefficient is equal to 0.81 ). 
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high colinearity with the population variable (in effect the coefficient of 
correlation between the population and the wage rate variables is equal to 
0.83). On the other hand, the result concerning the unemployment rate might 
just be another manifestation of the evidence that high unemployment rates do 
not necessarily imply higher outmigration and smaller immigration (see 
Greenwood, 1975). 

The first two equations of Table 5 show the "best" regression equations 
obtained in the case of the 1971-76 out- and in-migration flows. (The 
socio-economic variables behaving unexpectedly have been removed from these 
equations except for the unemployment rate in the first equation. We will see 
later on why). 

Of course, another good reason for the poor performance of the 
unemployment variables might be that the above analysis of the total migration 
flows is based on too few observations (ten in each case). Thus, we might 
expect to obtain better results if we analyze the place-to-place flows for which 
we have 90 observations . 

For each of the three periods studied, it turns out that the main factors 
explaining those flows are distance and size of the population at both the 
origin and the destination. In all cases these variables have t-statistics having an 
absolute value no less than 9. As for the coefficient of the distance variable, it 
is found to be in close agreement with the value h of the distance elasticity 
obtained in the first phase of this calibration effort . For the period 1971-76, 
the "best" regression equation yields a distance elasticity equal to 0.978 , 
whereas the biproportional adjustment method of the preceding section 
produced a value of 0.922 . Also highly significant are the dummy variables at 
the origin and destination. The somewhat higher values of their coefficients 
with respect to their values in the total migration equations indicates that the 
aforementioned peculiarity of Quebec does not solely reflect a comparatively 
smaller impact of Quebec's characteristics on the migration process, but also a 
comparatively higher effect of distance in the case of a move originating or 
ending in Quebec. 

An immediate consequence of the latter result is that the estimation - in 
Section Six - of the systemic variables D; and Ci was probably . incorrectly 
performed owing to a relative underestimation of the relational terms 
concerning the migration flows originating or ending in Quebec; whence the 
extreme positions taken by Quebec in the two ranking orders of the provinces 
considered in the previous section. 

As for the socio-economic variables , they do not appear to perform much 
better than in the case of the total out- and inmigration flows even though, in 
the case of the 1971-76 period, the coefficient of the unemployment variable 
relating to the origin now appears to have the correct sign and a relatively 
high t-value (see third equation of Table 5) . The same result is not obtained 
in the case of the other two periods. 

Now including the systemic variables among the independent variables of the 
total migration equations, we note (see Table 6) few changes in the 
performance of the various variables. As far as the period 1971-76 is 
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Table 5 - "Best" regression equations explaining the variations of the total and place-to-place 
migration flows without inclusion of the systemic variables, 1971-76 

log M; . = 4.109 + 0.754 log P; - 0.545 log U; - 0.679 X; 
(9.88) (-1.84) (-2.41) 

R2 = 0.982 F = 54.3 m = 8.37 S.E = 0.217 

log M.i = -2.860 + 0.615 log Pi + 1.444 log Wi - 0.953 Xi 
(3.76) (1.19) (-2.62) 

R 2 = 0.966 F = 27.7 m = 8.38 S.E = 0.283 

log M;i = -6.755 - 0.978 log d;i + 1.071 log P; + 0.882 log Pi 
(-16.29) (19.42) (9.79) 

+ 0.447 log Uy+ 0.674 log Wi - 1.882 X1 - 1.842 Xi 
(2 .10) (1.53) (-9.21) (-9.19) 

R 2 = 0.959 F = 132.9 m = 5.46 S.E = 0.465 

Table 6 - "Best" regression equations explaining the variations of the total and place-to-place 
migration flows with inclusion of the systemic variables, I 971-76 

log M;. = -3 . 736 + 0. 702 log P; + 
(7.55) 

- l.114X; 
(-4.43) 

R2 = 0.992 F 80.7 m 

log M.j = -3.116 + 0.643 log Pi + 
(3.71) 

-i..206 xj 
(-2.39) 

R' 0.969 F 19.4 m 

1.753 log U; + 0.524 log O; 
(2.63) (2.71) 

8.37 S.E 0.156 

1.608 log wj + 
(1.26) 

0.302 log cj 
(0. 76) 

8.38 S.E 0.294 

log - -
d~-1 

-3.062 + 0.897 log P; + 0.665 log Pi + 1.413 log Wi 
,, (27 .13) (12.33) (3.58) 

- 0.514 log D; - 0.700 log Ci - 1.280 X; - 1.226 Xi 
(-4 .52) (-5.65) (-8.93) (-7.81) 

R 2 0.982 F = 308.2 m = 12.28 S.E = 0.273 
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concerned, the comparison of the first two equations in Table 5 and 6 simpl\ 
reveals the following. 

The coefficient of the unemployment rate variable now has the right 
sign and is significant in the outmigration equation. 
The coefficients of the dummy variables are much higher in size . 

As for the systemic variables, their coefficients are positive as one would 
normally expect. But, whereas the draw variable coefficient is significant in the 
outmigration equation, the competition variable coefficient is not significant in 

the immigration equation. 
With regard to the place-to-place mig_ration flows, let us recall that the 

appropriate dependent variable is M;/d;t i.e., the ratio of the corrected 
(estimated) migration flow from province i to province j to the value of the 
relational term t;i for the estimated value h of the friction coefficient. The 
results obtained (see for example the third equation of Table 6) confirm some 
of the results found earlier. 

The two population variables and the two dummy variables are highly 
significant. 
The socio-economic variables perform poorly: in the case of the 
1971-76 period, the unemployment variable of the origin is not 
significant any longer regardless of whether or not it is used in the 
presence of the wage rate variable of the destination. 

More interesting however is the finding that the coefficients of both systemic 
variables are positive and highly significant. In the case of the 1971-76 period, 
their values lead to estimates of the a and ~ elasticities equal to 0.486 and 
0.300, respectively which are broadly similar to those suggested by the total 
migration equations (0.524 and 0.302, respectively). 

As a digression., note that the value of the population size coefficient at the 
origin appears to be less than 1, i.e., the migration flows out of each province 
are not proportional to the size of that province's population but rather to a 
power function of this size where the exponent takes a value ·less than one. 
The interest of this observation is to suggest that the minor differences 
observed in the ranking orders of the Canadian provinces according to their 
migration propensities and according to their systemic values (differences which 
concern provinces varying as much in size as British Columbia, Newfoundland 
and Ontario) were simply due to a size effect. 

At this stage, let us again point out the poor performance of the 
socio-economic variables in the regression analysis of the total and 
place-to-place migration flows in Canada. We suggest that the main reason for 
such a finding is the small number of spatial units considered, with the 
consequence being the small variation of the socio-economic variables across 
provinces: for example, the ratio of the standard deviation to the mean in the 
case of log W is less than 3 percent. 

In view of the above evidence concerning the socio-economic variables , we 
may wonder whether we would obtain significantly different results if we 
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ignored these variables when performing a regression analysis of the total and 
place-to-place migration flows. Indeed, we have performed such an analysis for 
each of the three periods, 1961-66, 1966-71, and 1971-76, the results of 
which are reported in Tables 7 through 9. It turns out that we obtain for the 
remaining variables results similar to those derived in the presence of the 
socio-economic variables. For example, compare Table 6 and 9 which display 

Table 7 - Regression equations explaining the variations of the total and place-to-place migration 
flows when ignoring economic variables, 1961-66 

log M;. = 4.591 + 0.896 log P; + 1.017 log D; - 1.641 X; 
(10.30) (3.27} (-4.34) 

R' = 0.975 F =38.1 m = 8.28 S.E = 0.239 

log M .; = 3.363 + 0. 987 log P; + 0.801 log C; - 1.540 X; 
(8.37) (1.92) (-3.11) 

R' = 0.966 F = 27.8 m = 8.20 S.E = 0.311 

log---
d:.ii 

•J 

R' = 0.975 

-1.090 + 0.896 log P; + 0. 988 log P; + 0.013 log D;· 
(24.26) (25.66) (0.10) 

0.190 log C; - 1.63 7 X; - 1.546 log X; 
(-1.39) (-10.19) (-9.56) 

F = 261.0 m = 12.14 S.E = 0.303 

Table 8 - Regression equations explaining the variations of the total and place-to-place migration 
flows when ignoring economic variables , 1966-71 

log M;. = 4.025 + 0.867 log P; + 0.688 log D; - 1.241 X; 
( 10.18) (2.39) : (- 3.28) 

R' = 0.977 F = 41.7 m = 8.37 S.E = 0.232 

log M.; = 2.589 + 0.934 log P; + 0.318 log C; - 1.43~ x; 
(8.04) (0.77) (-2.84} 

R' = 0.966 F = 27.7 m = 8.26 S . .E = 0.316 

log ----- -2.482 + 0.866 log P; + 0.936 log P; - 0.316 log D; 
di;h (23.06) (24.83) (-2.48) 

-0.666 log C; - 1.237 X;' - 1.445 X; 
(-4.97) (-7.41) (-!;.85) 

R' = 0.977 F = 284.5 m = 12.24 S.E = 0.306 
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Table 9 - Regression equations explaining the variations of the total and place-to-place migration 
flows when ignoring economic variables. 1971-76 

log M;, = 3.284 + 0.897 log P; + 0.486 log D; - 1.279 X; 
(11.32) (l.78) (-3.72) 

R' = 0.982 F = 53.0 m =8.37 S.E = 0.220 

log M.; = 3.255 + 0.814 log P; + 
(7.12) 

R' = 0.959 F = 23.1 

0.217 log C;- 1.310 X; 
(0.52) (-2 .51) 
m =8.38 S.E = 0.308 

log----- 2.741 + 0.896 log P, + 0.815 log P; - 0.518 log D, 
di;-h (25.36) (22.44) (-4.26) 

0.775 log C;- l.276 X, - 1.317 X; 
(-5.94) (-8.33) (-7.95) 

R' 0.979 F = 312.9 m =12.28 S.E = 0.292 

corresponding regression equations for the period 1971-76 with and without 
inclusion of the socio-economic variables (* ). 

As a consequence, the equations shown in Tables 7 through 9 can be used 
to assess the importance of the systemic variables during each of the three 
observation periods considered. 

First, observe that, from one period to the next, the coefficient of the 
systemic variables in the out- and in-migration flow equations tend to become 
less significant at the same time that their values decrease toward zero: the 
impact of the system on the total migration flows out of and into each 
province tends to diminish over time . 

By contrast, the coefficients of the systemic variables in the place-to-place 
migration flow equation tends, from one period to the next, to become more 
significant as their values move away from zero toward one. The impact of the 
system on the spatial pattern of migration flows tends to increase over time. 

In fact, the two above observations are in total agreement - they reflect 
the consistency existing in Alonso's theory of movement between place-to-place 
and total migration flows - and lead to consistent estimates of the a and ~ 

(*) This shows that in the case of the Canadian interprovincial system, place-to-place migration 
flows can be adequately represented by a gravity model such as (3') - in which the masses refer 
only to the populations at the origin and the destination - with the single addition of a dummy 
variable to account for the specificity of Quebec (a single dummy variable is sufficient since X; 
and X; in each of the place-to-place migration equations have similar coefficients) . 
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parameters which are shown in Table 10 (*) . Note the a parameter is 
consistently higher than the ~ parameter by 0.2 to 0 .3. 

Table 10 - Estimated values of the a and 13 elasticities 
for alternative periods 

Period 

1961-66 
1966-71 
1971-76 

a 

1.0 
0.7 
0.5 

0 .8 
0.3 
0.2 
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On the basis of the above evidence, it thus follows that , since the early 
sixties, the total migration out of or into Canadian provinces tends to be 
influenced less and less by the conditions prevailing in the rest of the country. 
(Note that the concomitant result concerning the place-to-place migration flows 
is to be accepted with more caution since, as mentioned above, it is the 
reflection of the internal consistency of Alonso's theory) . 

Conclusion 

In this paper, we have indicated how the observation that Alonso's theory of 
movement relies on a standard model of spatial interaction allows for the 
estimation of the systemic variables entering in its specification . 

The application of the method to the case of Canadian interprovincial 
migration has revealed that the two systemic variables were taking on similar 
values owing to the rather symmetric pattern of the observed matrix of 
interprovincial flows . The relative values of these systemic variables across 
provinces were shown to be primarily affected hy the migration propensities of 
each region - up to a size effect - at the same time that changes m 
socio-economic conditions were found to have a relativeiy small role m the 
migration decision. 

It is suspected , however, that the above results are essentially due to the 
relatively small number of spatial units considered in our Canadian application. 
It is thus recommended that the methodology proposed above be applied to a 
more disaggregated spatial level before drawing some general conclusions on 
(a) the role of Alonso's systemic variables and (b) the role of changes in 
socio-economic variables in the decision to migrate . 

(*) In his empirica l work , however based on a less precise calibration method, Alonso (1973) 
estimated n = 0. 3 and 13 = 0.1 for the United States in the I 955-60 period. 
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APPENDIX 

Table Al - Annual average number of family moves, 1961-66; 1966-71; 1971-76 

A - 1961-66 

Total 
2 3 4 5 6 7 8 9 10 out-

migration 

!. Newfoundland 24 231 95 171 669 28 15 39 45 1317 
2. Prince Edward 

Island 17 143 100 39 238 17 7 26 24 611 
3. Nova Scotia 214 167 628 460 1952 112 48 137 341 4059 
4. New Brunswick 90 91 579 750 1329 99 24 99 118 3179 
5. Quebec 183 35 378 603 4307 228 97 263 407 6501 
6. Ontario 366 165 1244 959 4225 1429 559 1255 1697 11899 
7. Manitoba 31 16 107 79 289 1604 861 849 959 4795 
8. Saskatchewan 12 6 36 24 100 633 903 1823 1038 4575 
9. Alberta 37 19 111 72 290 1378 663 1259 3175 7104 

IO. British 
Columbia 28 21 253 74 333 1321 492 579 2178 5279 

Total inmigration 978 544 3082 2634 6657 13431 3971 3449 6669 7804 
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B - 1966-71 

to Total 
2 3 4 5 6 7 8 9 IO out-

from migration 

I. Newfoundland 15 226 115 165 1053 30 19 52 61 1736 
2. Prince Edward 

Island 15 137 84 42 231 22 8 30 37 606 
3. Nova Scotia 221 151 542 382 1965 126 50 182 368 3987 
4. New Brunswick 103 76 566 594 1424 98 34 131 172 3198 
5. Quebec 178 43 373 629 5826 281 110 414 768 8622 
6. Ontario 662 209 1525 1131 3596 1266 541 1515 2479 12924 
7. Manitoba 24 21 120 99 310 1629 798 1051 1346 5398 
8. Saskatchewan 13 5 49 33 103 717 1025 2155 1429 5529 
9. Alberta 33 21 136 79 255 1454 628 I 179 3777 7562 

10. British 
Columbia 39 16 252 99 385 1941 652 650 2681 6715 

Total inmigration 1288 557 3384 2811 5832 16240 4128 3389 82 I I 10437 

c - 1971-76 

to Total 
2 3 4 5 6 7 8 9 JO out-

from migration 

I. Newfoundland 24 283 157 158 945 81 15 87 96 1846 
2. Prince Edward 

Island 22 135 92 26 198 21 7 48 28 577 
3. Nova Scotia 258 160 602 276 1488 136 53 253 349 3575 
4. New Brunswick 138 106 556 496 989 86 33 157 187 2748 
5. Quebec 151 46 351 651 4803 239 68 456 699 7464 
6. Ontario 1138 282 1749 1366 3804 1488 529 2352 3190 1~898 

7. Manitoba 58 28 129 99 218 1449 829 1229 1204 5243 
8. Saskatchewan 17 8 64 39 65 540 774 2055 I 176 4738 
9. Alberta 63 35 221 121 269 1587 754 1433 4282 8765 

10. British 
Columbia 69 23 270 150 423 2059 768 844 3569 8175 

Total inmigration 1914 712 3758 3277 5735 14058 4347 3811 10206 11209 

SOURCE: Statistics Canada (1977). 



Table A2 - Values of the regional socio-economic variables used 1£ 
0-

New- Prince New 11 found- Edward Nova Bruns- Quebec Ontario Manitoba Saskat- Alberta British 
land Island Scotia wick chewan <Alum bi a 

)> 

0 
1. Population - in thousands :J 

VI 
o_ 

1961 458 105 737 598 5259 6236 922 925 1332 1629 VI 

1966 493 109 756 617 5781 6961 963 955 1463 1874 
tO 
CD 
:J 

1971 522 112 789 635 6028 7703 988 926 1628 2185 CD 

~ 
1976 558 11 8 829 677 6234 8265 1022 922 1838 2467 

~ 
CD 
0 

2. Unemployment Rate - in percentage -< 
2. 1961 - - - - - NOT AVAILABLE - - - - -
3 

1966 6.1 7.5 4.8 5.1 4.1 2.6 2.8 1.5 2.6 4.6 0 
< 

1971 8.8 9.5 6.9 6.2 7.3 5.4 5.7 3.5 5.7 7.2 CD 
3 
CD 
::?. 

I 

3. Weekly Wage (in real terms) - in dollars 

1961 70 53 63 67 79 80 80 79 82 80 

1966 84 64 77 85 98 95 91 94 99 102 

1971 125 87 112 121 137 139 133 131 142 142 

4. Per Capita Disposable Income (in real terms) - in dollars 

1961 951 942 1271 1189 2137 1934 1697 1666 1701 1783 

1966 1365 1357 1722 1698 2117 2573 2286 2272 2398 2442 

1971 2212 2105 2635 2656 3169 3899 3457 2980 3467 3483 

SOURCE : 1. 1961-1966-1971 : Canada Dominion Bureau of Statistics (1968), Statistics Canada (1973) 
1976 - Figures from the 1976 Census of Canada quoted in Termote (1978) 

2. Figures from Statistics Canada (1976) quoted in Termote and Frechette (1979) 
3. Termote, Frechette (1979) I~ 4. Termote, Frechette (1979). 



Table A3 - lnterprovincial distances (in miles) 
'W 

en 
C> 

I 
2 3 4 5 6 7 8 9 10 

1. Newfoundland 900 934 1073 1617 1952 3113 3628 3956 4600 
2. Prince Edward Island 900 174 201 745 1080 2241 2756 3084 3728 
3. Nova Scotia 934 174 192 776 1111 2272 2787 3115 3759 
4. New Brunswick 1073 201 192 584 919 2080 2595 2923 3567 
5. Quebec 1617 745 776 584 335 1496 2011 2339 2983 
6. Ontario 1952 1080 1111 919 335 1304 1819 2147 2791 
7. Manitoba 3113 2241 2272 2080 1496 1304 515 843 1387 
8. Saskatchewan 3628 2756 2787 2595 2011 1819 515 328 1042 
9. Alberta 3956 3084 3115 2923 2339 2147 843 328 773 

10. British Columbia 4600 3728 3759 3567 2983 2791 1387 1042 773 

SOURCE: Termote, Frechette (1979). 

Table A4 - Number of family moves predicted by the gravity model: annual average for the 1971-76 period 

2 3 4 5 6 7 8 9 10 

1. Newfoundland 36 237 150 132 676 93 56 187 278 
2. Prince Edward Island 30 152 96 36 158 17 10 32 46 
3. Nova Scotia 233 179 804 283 1242 136 78 254 366 
4. New Brunswick 134 102 729 240 966 97 54 176 250 
5. Quebec 186 62 408 382 4981 266 140 439 600 
6. Ontario 796 223 1488 1276 4139 1536 781 2416 3243 
7. Manitoba 110 24 163 128 221 1535 532 1217 1314 
8. Saskatchewan 64 13 91 70 113 760 518 1957 1152 Ii 9. Alberta 155 32 215 164 257 1703 858 1418 3963 

10. British Columbia 205 ~l 275 208 313 2036 825 743 3529 
;:?. 



Table A5 - Ratios of the predicted (by the gravity model) to actual numbers of family moves, 1971-76 

2 3 4 5 6 7 

I . Newfoundland 1.497 0.839 0.958 0.833 0.716 1.154 

' Prince Edward Island 1.363 1.125 1.040 1.403 0.800 0.818 

3. Nova Scotia 0.904 1.117 1.335 1.025 0.835 1.004 

4. New Brunswick 0.970 0.963 1.310 0.484 0.977 1.124 

5. Quebec 1.234 1.346 1.162 0.586 1.037 1.114 

6. Ontario 0.699 0.792 0.851 0.934 1.088 1.032 

7. Manitoba 1.896 0.864 1.267 1.289 1.014 1.059 

8. Saskatchewan 3.780 1.682 1.423 1.796 1.742 1.407 0.669 

9. Alberta 2.460 0.906 0.972 1.355 0.957 1.073 1.138 

10. British Columbia 2.976 1.762 1.018 1.385 0.740 0.989 1.075 

8 9 

3.740 2.147 

1.401 0.664 

1.474 1.005 

1.650 1.121 

2.058 0.963 

1.475 1.027 

0.641 0.990 

0.952 

0.989 

0.880 0.989 

10 

2.895 

1.634 

1.047 

1.339 

0.858 

1.017 

1.091 

0.979 

0.926 
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Resume. Cet essai montre d 'abord comment la theorie generale des deplacements d'Alonso peut 
etre ramenee a un modele standard d'interaction spatiale doublement contraint. Cette decouverte 
suggere, ensuite, !'utilisation d'une methode d'adjustement biproportionelle (la methode RAS) pour 
estimer de maniere adequate les variables systemiques specifiees dans le modele sous-jacent. Ceci 
conduit , enfin , au developpement d 'une methodologie complete et precise pour calibrer le modele 
d'Alonso. Cette methodologie est illustree par une application a des donnees sur la migration 
interprovinciale au Canada. 

Riassunto. In questo articolo si mostra, in primo luogo, come la teoria generale degli spostamenti 
di Alonso si possa ricondurre ad un modello standard di interazione spaziale doppiamente 
vincolato. Tale riconoscimento suggerisce, dunque , di utilizzare un metodo di calibrazione 
biproporzionale (ii metodo RAS) per stimare adeguatamente le variabili del sistema specificate nel 
modello implicito. Cio porta , alla fine. allo sviluppo di una completa e rigorosa metodologia per la 
calibrazione del modello di Alonso. Questa metodologia e illustrata attraverso un'applicazione ai 
dati sulla migrazione interprovinciale in Canada . 
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Abstract. This paper compares the system of equations underlying Alonso's theory of movement 
with that of Wilson's standard family of spatial-interaction models. It is shown that the Alonso 
model is equivalent to one of Wilson's four standard models depending on the assumption at the 
outset about which of the total outflows and/or inflows are known. This result turns out to 
supersede earlier findings-inconsistent only in appearance-which were derived independently by 
Wilson and Ledent. In addition to this, an original contribution of this paper-obtained as a by
product of the process leading to the aforementioned result-is to provide an exact methodology 
permitting one to solve the Alonso model for each possible choice of the input data. 

Introduction 
Very recently, Wilson (1979) and Ledent ( 1980) have attracted the attention of 
regional scientists to the similarities presented by the general theory of movement 
proposed by Alonso (1973; 1975; 1976; 1978) and the spatial-interaction models 
developed by Wilson (1971; 1974). However, most unfortunately, their papers 
arrive at inconsistent results. 

On the one hand, Ledent ( 1980) argues that the Alonso model is identical to a 
doubly-constrained model of spatial interaction. On the other hand, Wilson ( 1979) 
claims that each of the four models constituting his family of standard interaction 
models (Wilson, 1971) can be seen as a special case of Alonso's underlying model for 
an appropriate choice of the model parameters. In particular, "Setting one of the 
parameters a and {3 to zero essentially makes the Alonso model production or 
attraction constrained respectively. Setting both to zero makes it doubly constrained." 
(Wilson, 1979, page 3). 

Actually, a careful examination of the papers by Wilson and Ledent reveals that both 
of the above results are correct with regard to what they respectively take for granted at 
the outset. This observation then suggests that the aforementioned inconsistency is 
only one of appearance. In other words, there should exist a relationship of a more 
general nature between Alonso's theory of movement and Wilson's spatial-interaction 
models, a relationship which moreover boils down to the similarities observed by Wilson 
or Ledent in case some special conditions are met. 

In view of this, the purpose of this paper is precisely to uncover the nature of this 
general relationship and to indicate in what circumstances such a relationship becomes 
equivalent to those proposed by Wilson and Ledent. 

Alonso's theory of movement: an overview 
First, in order to facilitate understanding by the reader a brief summary of Alonso's 
theory is presented. Fundamentally, this theory is concerned with building a 
mathematical model which describes the flows of elements moving between the 
mutually exclusive classes of a closed system. Its main feature which makes it 

t The reader may care to note a recent issue of Environment and Planning A (volume 12, number 6)
released after this paper was accepted for publication-in which were published the working paper by 
Wilson (1979) alluded to in this paper as well as a paper by Hua and a letter by Alonso relating to the 
same subject. 
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particularly worthwhile is that the formulation of these flows reflects not only the 
influence of the factors which are usually considered to affect movement (that is 
factors associated with the classes of origin and destination as well as with intervening 
obstacles), but also the impacts exerted by the system upon alternative classes. 

Note that, because Alonso's theory is circular in nature, various equivalent 
formulations are possible. The specification which we use below differs significantly 
from Alonso's final exposition (Alonso, 1978): it is a modified version of the 
formulation proposed by Anselin and Isard ( 1980), one which represents a more 
logical demarche in view of the objective of this note. 

Let us focus on the flow M;; of elements from class (origin) i to class (destination) j. 
First, in accordance with the usual explanations of movement, one can reasonably 
hypothesize that this flow is proportional to : 
(a) a global measure V; of the unattractive characteristics of class i, 
(b) a global measure w; of the attractive characteristics of class j, and 
(c) a relational term f;; reflecting the effect of distance between classes i and j. 

Second, suppose that the impacts that the system exerts upon the alternative 
classes can be accounted for by two variables, the pull-in D; it exerts on each origin i 
and the push-out C; it exerts on each destination j . Then, it can reasonably be 
posited that M;; is proportional to: 
(d) D; to which is applied an exponent ex; - 1 reflecting the movement of response 
from class i to its relation to the other classes in the system, and to 
(e) C; to which is applied an exponent (:J; - 1 reflecting the movement of response of 
class j to its relation to the other classes in the system. 

Thus 

(I) 

The problem now is one of defining the systemic variables D; and C;. On the one 
hand, D; can be regarded as a draw effect representing a weighted sum of the 
attractive characteristics w; of all the other classes in the system where the weights 
applied to any w; expresses the influences both of distance and of ease of entry into j . 
Recalling the variables introduced above, these influences can be taken care of by use 
of!;; and cfr1

, respectively. Thus 

D; = L w;cfr1t;;. (2) 
I 

On the other hand, C; can be regarded as a competition effect representing a 
weighted sum of the unattractive characteristics V; of all the other classes in the 
system where the weights applied to any V; expresses the influences both of distance 
and of ease of movement out of j . These influences can indeed be taken care of by 
use of I;; and Df'1 -

1
, respectively, and thus 

C; = LV;Df·-1 I;; . (3) 
i 

From there, the specification of the Alonso model can be completed by deriving 
from equation (I) the total flow of movements out of and into each class by 
summing over all possible destinations: 

M;. = LM;; (4) 
; 

and origins: 

M.; = LM;; ' (5) 
I 

respectively. 
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One immediately obtains 

M;. = v;Df1
-

1 (tw1C/'- 1
t;1) , 

and 

M.1 = w1cfr1 ( f,v;D;"'-1t;1) , 

or, after substitution of equations (2) and (3), 

M;. = V;D;"' , (6) 

and 

M.j = W1Cf1 • (7) 

The Alonso model: the four cases 
Now that the model underlying Alonso's theory of movement in its entirety has been 
spelled out the respective numbers of equations and variables in contains are counted. 
As for the former, it is noted that the model consists of seven equation types, 
type (!)-which contains scalar equations in a number equal to the number of 
communications existing between alternative classes- and types (2) through (7)
each one of which contains as many scalar equations as there are classes. However, 
two of the equation types (2) through (7) are redundant as equation types (6) and 
(7) were obtained by combining equation types (I) through (5). It follows that 
the core of the Alonso model consists of five equation types, of which ( 1) or any 
equivalent equation type describing class-to-class flows is a necessary one. 

Attention is now turned to the count of the number of variables. It is first 
pointed out that the values of the parameters OI.; and (31 as well as of the relational 
term t;1 are inputs to the Alonso model. Thus, the model contains seven variable 
types. One relates to the class-to-class flows M;1 which take as many values as there 
are communications between alternative states, that is, as many as there are scalar 
equations of type (I). The other variable types are D;, c1, V;, w1, M;., and M.1, all of 
which take as many values as there are classes. 

Therefore, in view of the fact that Alonso's system of equations is identified only 
if the number of equations and variables are identical, it follows that variable types 
which are unknown include the class-to-class flows M;1 (necessarily) plus four among 
the six other variable types. Since the systemic variables D; and C1 are indeed 
unknowns, this means that two variable types among v;, w1, M;., and M.1 are 
endogenously determined (that is, unknowns) whereas the other two are necessarily 
inputs to the model. 

Observing that there are six possible ways of choosing two variables among four, 
it is concluded that the Alonso model comprises six alternative cases, depending on 
the composition of the inputs. In practice however, the possibility of knowing both 
variable types relating to the origin (that is, V; and M;.) or to the destination (that is, 
w1 and M.1) is to be ruled out because, by virtue of equation types (6) and (7), 
respectively, D; and C1 would be immediately known. 

We are thus left with the result that the Alonso model comprises four alternative 
cases depending on which of the total flows out of (M;) and into (M) each class are 
known at the outset. The four cases are, respectively: 
case 1 neither outflows (M;.) nor inflows (M.1) are known, 
case 2 only outflows (M;.) are known, 
case 3 only inflows (M) are known, and 
case 4 both outflows (M;.) and inflows (M.1) are known. 
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Let us now examine the model core of these four alternative cases. We already 
know that, in any case, equation type ( 1) belongs to the model core. Also, since D; 
and Ci are unknowns in all the four cases, one can safely include types (2) and (3) in 
the model core. Thus, the problem is one of choosing two equation types from ( 4) 
through (7), but one should avoid taking the two equation types relating to outflows 
or to inflows, hence there are four possibilities. Logically, when outflows and/or 
inflows are known, one can omit from the model core the corresponding equation 
type(s) (4) and/or (5) and keep within the core the equation type(s) (6) and/or (7) 
corresponding to the eventual outflows and/or inflows. Thus, the model core of the 
four alternatives is composed of equations ( 1) through (3) plus the following two: 
case 1 equation types ( 6) and (7), 
case 2 equation types ( 4) and (7), 
case 3 equation types (5) and (6) , and 
case 4 equation types ( 4) and (5). 
The redundant equations are, in each case, those from types ( 4) through (7) which 
are not listed above. 

Clearly, when the outflows and/or inflows are known, the corresponding definitional 
equations- { 4) and/or (5)- which are included within the model core act as constraints. 
This indeed suggests that the Alonso model bears some resemblance to the spatial 
interaction models developed by Wilson (1971 ): there seems to exist a close 
connection between each of the four cases of the Alonso model arrived at above and 
one of the four standard interaction models proposed by Wilson. More precisely: 
case 1 appears to correspond to the unconstrained model, 
case 2 to the production constrained model, 
case 3 to the attraction constrained model, and 
case 4 to the doubly-constrained case. 

The remainder of this paper is devoted to revealing such a connection. 

Equivalence of the Alonso model and Wilson's standard family of spatial-interaction 
models 
This connection is carried out by examining, in the four cases taken in succession, 
how one can solve the Alonso model from the available data. 

Case 1: neither the outflows M;. nor the inflows M.i are known 
By recalling that two among the four variable types M;., M.i, V;, and wi are known, 
the assumption underlying this first case implies that v; and wi are known inputs to 
the model. [Note that in this case, the parameters a and (3 are necessarily different 
from zero because, if they were not , the total outflows and/or inflows would be 
known at the same time. This is by virtue of equations (14) and/or (15) to be 
derived.] 

Under these circumstances, the model is solved as follows. First, the system of 
equations (2) and (3) is solved iteratively to yield values of D; and C;. This allows 
one to derive the values of the following composite variables: 

(8) 

and 

J1.'i = wicfr1 

Finally, the class-to-class flows can be obtained from equation (I) which can be 
rewritten as 

(9) 

(10) 
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an equation which permits one to conclude that, if neither M;. nor M .i are known, 
the Alonso model boils down to Wilson's unconstrained spatial-interaction model. 

Case 2: only the outflows M;. are known 
In this case the inputs to the Alonso model appear to be M;. and w1 (with fJ; * 0, 
otherwise the inflows would also be known). From equation (6), one can then 
substitute M;.D/1 for v;Dr•-1 in equation (3). This leads to the system of equations 
comprised of equation (2) and 

C = "M. fl-: 1 t ·· J ~ l• l IJ' 
I 

(11) 

which can be solved iteratively to yield values of D; and Ci (as well as values of 
composite variables W; defined exactly as before). Then, the class-to-class flows can 
be obtained from equation (I) rewritten as 

in which one has from equations (2) and (9) 

n;1 = (l: W;t;i)-1 . 
i 

Thus, if the outflows M;. solely are known, the Alonso model boils down to 
Wilson's production-constrained interaction model in which the balancing factor is 
the reciprocal of the systemic variable D;. 

Case 3: only the inflows M.i are known 

(12) 

(13) 

This case is the mirror image of case 2 above. The inputs to the Alonso model are 
M.i and V; (with ex;* 0, otherwise the outflows would also be known). By means of 
equation (7), one can then substitute M.i ci-I for wi cfr' in equation (2). This leads 
to the system of equations comprised of equation (3) and 

D; = l:M.i ci-1 t;i , 
I 

(14) 

which can be solved iteratively for values of Ci and D; (as well as values of composite 
variables V; defined exactly as before). Then, the class-to-class flows can be obtained 
from equation ( 1) rewritten as 

M;1 = c1-
1 V;M.1 t;1 , 

in which one has from equations (3) and (8) 

ci-1 = (~V;t;it 

(15) 

(16) 

Thus, if only the inflows M.1 are known, the Alonso model boils down to Wilson's 
attraction-constrained interaction model in which the balancing factor is the reciprocal 
of the systemic variable Ci . 

Case 4: both the outflows M;. and the inflows M.1 are known 
In this case, by means of the redundant equations (6) and (7), one is led to the 
system of equations comprised of equations ( 11) and (14), which can be solved 
iteratively for values of D; and q. Then, the class-to-class flows can be obtained from 
equation ( 1) rewritten as 

M;1 = n;1c1-IM;.M.1 t;1 , 

where one indeed has 

Dj1 = (t=M-iC1-1t;1t1 

(17) 

(18) 
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and 

e;-1 = ( LMi.D/1t;;)-I 
i 
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(19) 

Thus, if both outflows and inflows are known at the outset, the Alonso model boils 
down to Wilson's doubly-constrained interaction model in which the balancing factors 
are the reciprocals of the systemic variables Di and C;. 

The conclusion here is that the Alonso model and the standard family of spatial
interaction models developed by Wilson are equivalent: as shown above, the Alonso 
models boils down to one among the four members of the family depending upon 
which of the total outflows Mi. and inflows M.; are known at the outset. 

On looking back at the treatment of the four cases, the central role played by the 
following system of equations is noted: 

D; = Lb;C;61 f;;, 
; 

C; = La;D/' ti; , 
i 

where 
ai is equal either to vi or to Mi., 
b1 is equal either tow; or to M.;, 
"ti is equal either to cxi - 1 or to -1, and 

(20) 

(21) 

81 is equal either to f3; - 1 or to -1. 
The fact is that, for any value of "ti and 8/1>, the above system of equations has a 

unique solution which in general can be reached by iteration (if "ti = 0 and o; = 0, 
the solution is immediately obtained). No attempt is made, in the context of this 
paper, to provide a formal demonstration of this result which actually is a generalization 
of the result which is well known to hold in the case "ti = -1 and 8; = -1. It is 
recalled that this particular choice of the parameters "ti and 81 corresponds to the 
possibility of finding Di and C; as the inverse of the balancing factors of the following 
biproportional adjustment problem-sometimes referred to as the RAS problem: find 
the matrix M which has row and column totals equal to a; and b;, respectively, and 
which is biproportional to the matrix of relational terms T. 

Summary and conclusions 
This paper has sought to uncover the general nature of the connection between 
Alonso's theory of movement and Wilson's standard family of spatial-interaction 
models. It was shown that the two frameworks are formally identical: the eventual 
knowledge of the total outflows and/or inflows considered determines which one 
among the members of Wilson's family the Alonso model is equivalent to. 

How does this result compare with the earlier findings obtained by Wilson ( 1979) 
and Ledent (1980)? Clearly, it supersedes them as Wilson's and Ledent's findings can 
be taken as particular cases. 

On the one hand, assuming the total outflows and inflows to be known-which is 
precisely what Ledent (1980) does-leads to the recovery of his result that the 
Alonso model can be identified with a doubly-constrained spatial-interaction model. 

(I) An exception to this-which Oscar Fisch pointed out to the author-arises in the case 'Yi = 1 
and o1 = 1. Under these circumstances, the system of equations (20)-(21) becomes an 
homogeneous linear equation system which generally has no other solution than D; = 0 and 
c1 = 0. It is readily established that there would be a nontrivial solution only if the determinant 
of the matrix TT ATB-1 (where TT is the transpose of the matrix T of the relational terms, A and 
B two diagonal matrices having ai and b1, respectively, as typical elements, and I an identity matrix) 
would be zero. 
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On the other hand, in case the values of ui and w; are known, setting a and/or [3 to 
zero causes total outflows and/or inflows to be known and allows one to derive each 
of Wilson's family of spatial-interaction models as special cases of the Alonso model. 

Note the possibility of characterizing further, from a different angle, the difference 
between Wilson's (1979) result and the one derived in this paper. Wilson ( 1979) 
appears to have stated a sufficient condition for the Alonso model to be identical 
with this standard family of spatial-interaction models, but his condition (ui and w; 
are known, a and [3 are equal and/or different from zero, respectively) is not 
necessary. By contrast, this paper has shown that a necessary and sufficient condition 
for the identity of the two frameworks rested on the eventual knowledge of the 
outflows and/or inflows, which indeed does not necessitate the inclusion of the 
variables ui and/or w;, among the input data: as has been shown, the values of these 
variables can be endogenously determined by solving the Alonso model from the 
iterative procedure which was suggested. 

Table l. The relationship between Alonso's theory of movement and Wilson's family of standard 
interaction models: a tabular summary. 

Case I : Case 2: Case 3: Case 4: 
neither M;. nor M.1 are only M;. is known only M.1 is known both M1. and M.1 are 
known known 

Inputs to the model 
v1,w; M1.,w1 V;,M.J M1.,M.1 
(a1 and (31 >F 0) (ll, * 0) (a; >F 0) 

Alonso's model 
Model core-equations common to the four alternatives 
M11 = v1w1D'f'· 1c/r 1t11 (I) 

D; =yw10~-1t11 (2) as for case I as for case I as for case I 

q ="fv1D1"'"
1 

t 11 (3) 

Model core-additional equations 
M;. ="fM;1 M,. = v;Dr' (6) M;. ="fM;1 (4) M;. =v1D'f' (6) (4) 

M.1=w1c/1 (7) M.1 = w1 c1~ (7) M.1 ='fM11 (5) M.1 ='fM11 (5) 

Redundant equations 
M1.='i(M11 (4) M1.=v1D'f' (6) M1.='i;,M11 (4) M1. = v1Df' (6) 

I 

M.1="fM11 (5) M.1='fM11 (5) M.1=w1c/1 (7) M.1 =w1c/1 (7) 

Corresponding spatial-interaction model 
Type 
Unconstrained Production- Attraction- Doubly-constrained 

constrained constrained 
Equations 
M11 = J'i~t11 (IO) Mi/ =Di'M1.W1t11 (12) M11 = c1-' V;M.1111 (15) M11 =Dj1q· 1M1.M.1t11 (17) 

where where where 
V; = v;D['.-1 (8) V; = v1D'f'" 1 (8) 

w1=w1c/r' (9) w1 = w1c/r1 (9) 

Balancing factors 
Di' =(yW1t11 r n·/ =(4.M.1q-•t,J' (13) (18) 

cc• =(L:l-'.t·if 
I -1 

I i JI 
(16) Cj' =('fM1Pi' t11) (19) 

Fundamental equations 
D, =yw10~-1t11 D; =yw10~-1 t11 (2) (2) D; =L:M.1Cf't11 (14) D; ='f;.M.1Cj 1t11 (14) 

I I 

q='i[-v1Df"- 1t11 (3) q ="f-M1.D-/ ti/ (11) q ="fv1Df'"1 (3) q ="fM;JYi1t11 (11) 
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In addition, the difference observed in the nature of the conditions considered in 
this paper-sufficient in the case of Wilson (1979), necessary and sufficient in the 
case of this paper-leads to the following corollary: Wilson has not formally proved 
the equivalence of Alonso's framework and his-a fact which was demonstrated in 
this paper-but has simply shown that his framework was a subset of Alonso's system 
of equations. 

Finally, note that, besides uncovering the general nature of Alonso's and Wilson's 
frameworks-of which a tabular summary is shown in table I-an original contribution 
of this paper is to set forth an exact methodology for solving the Alonso model for 
each possible choice of the input data. The main interest of this is that, in contrast 
to the general belief that the Alonso model is only a theoretical framework, this 
model constitutes a tool that can be used for applied analysis: for example, as 
illustrated by Ledent ( 1980, section V), the Alonso model is capable of producing 
alternative simulations of the regional populations of a nation based on various 
assumptions regarding the values of the variables v; and wi . 
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