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Abstract: Tropical vegetation biomass represents a key component of the carbon stored in global
forest ecosystems. Estimates of aboveground biomass commonly rely on measurements of tree
size (diameter and height) and then indirectly relate, via allometric relationships and wood density,
to biomass sampled from a relatively small number of harvested and weighed trees. Recently,
however, novel in situ remote sensing techniques have been proposed, which may provide
nondestructive alternative approaches to derive biomass estimates. Nonetheless, we still lack
knowledge of the measurement uncertainties, as both the calibration and validation of estimates
using different techniques and instruments requires consistent assessment of the underlying errors.
To that end, we investigate different approaches estimating the tropical aboveground biomass in
situ. We quantify the total and systematic errors among measurements obtained from terrestrial light
detection and ranging (LiDAR), hypsometer-based trigonometry, and traditional forest inventory. We
show that laser-based estimates of aboveground biomass are in good agreement (<10% measurement
uncertainty) with traditional measurements. However, relative uncertainties vary among the
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allometric equations based on the vegetation parameters used for parameterization. We report
the error metrics for measurements of tree diameter and tree height and discuss the consequences
for estimated biomass. Despite methodological differences detected in this study, we conclude that
laser-based electronic devices could complement conventional measurement techniques, thereby
potentially improving estimates of tropical vegetation biomass.

Keywords: carbon storage; central-eastern Amazonia; forest structure; terra-firme forest; terrestrial
laser scanning; light detection and ranging (LiDAR)

1. Introduction

Tropical vegetation holds the lion’s share of the global terrestrial carbon (C) pool stored in
aboveground plant biomass [1]. However, due to a lack of ground data available for tropical forests,
our knowledge on how much biomass is stored in these ecosystems is still highly uncertain. Such
uncertainties arise because in spite of ongoing initiatives, only a small proportion of this vast and
spatially variable ecosystem has, so far, been surveyed by traditional forest inventories [2,3].

A general technique to measure aboveground biomass (AGB) in situ is to destructively sample
and extract basic structural variables of the vegetation at the individual level and then to develop
calibrated allometric (size-to-mass) relationships for upscaling to the plot-level based on biometric
vegetation parameters [4,5]. The main horizontal structural vegetation parameters collected in forest
inventories are the tree diameter at breast height (DBH), the stem basal area (BA), and number of
individuals (Ni); the main vertical variables are the total tree height (Ht), the commercial height (Hc),
the leaf area index (LAI), and the canopy architecture [4-8]. Each of these estimated parameters is
associated with measurement errors; therefore, it is important to identify the underlying sources
and relative magnitudes of uncertainty as respective errors will add up in compound estimates of
vegetation biomass [4]. Such errors are associated with uncertainties due to the deviation of tree trunks
from a perfect circular shape (irregular trunks and/or buttresses) and to the rate of trunk circumference
decline with height, branching patters, identification of highest point on a tree, as well as variability of
wood density (p) among species and within species from different areas [2—4]. For instance, it has been
demonstrated that a 5% error in tree diameter and a 10% error in tree height and wood density can
lead to a 21.6% uncertainty in estimates of aboveground biomass [9]. This highlights the importance of
assessing the respective measurement errors and also indicates that cumulative errors could propagate
to even larger uncertainties when incorporated into allometric equations for estimating aboveground
biomass [5]. As a result, AGB estimates are dependent on the particular choice of allometric equations
based on the set of variables used for parameterization [10] because these parameters vary in relation
to the spatial heterogeneity of tropical landscapes and among surveyed tree communities [2—4].

Recently, novel technologies based on light detection and ranging (LiDAR) have proven successful
for the calibration of allometric models and, thus, could represent a nondestructive alternative to
traditional destructive sampling techniques [11]. LIDAR technology is able to determine the distance
between the instrument and a specific object by measuring the timespan between the emission and
return of a laser beam with millimetric precision [12] and, thus, is capable of creating three-dimensional
images of a given object based on recording the returns of light pulses emitted from the device [12,13].
Depending on the scale of interest, three types of LiDAR are used for the analysis of vegetation
structure in forest ecosystems, i.e., spaceborne, airborne, and terrestrial LIDAR. Spaceborne LiDAR is
currently limited to 3 years of data and has a relatively large footprint of the order of tens of meters
and, hence, does not provide wall-to-wall coverage. Airborne LiDAR provides higher spatial detail
but covers relatively smaller spatial areas. Both have been successfully tested at the global [14,15],
continental [16], and national levels [17] but are limited by cloud cover and penetration through
the canopy. Terrestrial LIDAR is being used for a more detailed analysis of the complex vegetation
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structure sampled across smaller spatial areas (<1 ha) down to the level of single trees [18-20]. At the
plot level, terrestrial laser scanning (TLS) allows the extraction of biometric variables, such as, leaf,
branch, and trunk volume, as well as canopy architecture, with remarkable accuracy [12,21-23].

So far, studies evaluating the structural parameters using TLS have been conducted mostly in
temperate forest ecosystems [19,24-26], and this technique might be expected to be less successful
in tropical forest ecosystems due to the high structural complexity of tropical vegetation [11,27-31].
One of the main limitations for laser-based technologies in forest environments is the occlusion of
the laser beam by the vegetative material present in different layers of the forest stratum [32-35].
Moreover, the structural complexity of the environment was found to vary throughout the landscape
in response to environmental gradients [30-33]. To cope with the resulting differences in complexity of
structural parameters and to reduce the associated measurement errors between surveyed forest
plots, the sampling protocols for each variable of interest have been established, focusing on
standardization of methodologies among different forest sites and on a greater control of non-sample
errors [36—41]. Accordingly, strategies for sampling campaigns conducted across tropical and temperate
forest plots have been established that are capable of producing point clouds with a uniform point
distribution and, thus, should allow for the intercomparison of metrics between instruments, plots,
and over time [42]. Indeed, TLS has been reported to yield reliable estimates of structural vegetation
parameters across different tropical ecosystems and biogeographic regions, such as Amazonian
lowland rainforests [43,44], mangrove forests in southeastern Brazil [45], neotropical rainforests in
Costa Rica [31], and palaeotropical forests in Malaysia [28,29]. These studies often reported a higher
accuracy of remotely sensed estimates than those applying conventional methods investigating the
vegetation structure based on traditional forest inventories [11,46,47]. However, to thoroughly assess
the uncertainties of estimated vegetation biomass, it is necessary to compare the respective error
metrics among different surveyed vegetation parameters and multiple methodologies applied under
comparable in situ conditions and based on the same tree individuals.

To that end, we conducted an intensive measurement campaign in central-eastern Amazonian
terra-firme forest (1) to compare the measurements of tree diameter and height obtained from
traditional inventory techniques and laser-based electronic devices (i.e., terrestrial laser scanner,
electronic caliper, and hypsometer); (2) to quantify the total error, the systematic error, and the random
error for each of these techniques; and (3) to assess the overall uncertainty of the respective methods
for estimating aboveground biomass in tropical forest ecosystems.

2. Materials and Methods

The study was conducted in the Cuieiras River Basin near the Experimental Station of
Tropical Forestry (EEST) managed by the National Institute of Amazonian Research (INPA).
The site represents one of the best-studied regions in the Central-Eastern Amazon and is located
near “ZF-2" approx. 70 km north of Manaus, Brazil (2°36/32.67S; 60°12'33.48W; Figure 1 and
the following URL https://www.inpa.gov.br/amazonface/arquivos/Amazon-FACE-Sciencie_Plan_
Implementation_Strategy.pdf). According to Koppen-Geiger, the climate of the region is classified as a
rainy tropical climate, with average monthly temperatures varying from 24 to 27 °C [48]. The mean
annual precipitation is 2400 mm with a dry period between July, August, and September when monthly
precipitation is less than 100 mm [48,49]. The soils are clayic Latosol with high clay content and low
natural fertility [50]. The vegetation is characterized as a dense ombrophilous forest, and foregoing
studies conducted in the same region reported that vegetation structure, i.e., stem density, canopy
height, and aboveground biomass, is representative of the Amazonian terra-firme forest [51]. The
vegetation exhibits a median canopy height of 30 m, with emergent trees reaching 45 m; the individual
stems reach up to 120 cm DBH; and the basal area reaches between 28-30 m? ha~! [52]. The average
canopy cover was 87-89% (dry/wet season), leaf area index of 5.3-6.2 m?/m? (dry/wet season)
and plot mean tree density (>10 cm DBH) was 708 individuals ha~!. The main families found were
Lecythidaceae, Sapotaceae, Arecaceae, Euphorbiaceae, Burseraceae, and Chrysobalanaceae. The largest
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number of species was found in Chrysobalanaceae, Sapotaceae, and Lauraceae [53]. Tree individuals
(inclusion limit DBH > 10 cm) located in a permanent monitoring transect are monitored since 1996 by
the Forest Management Laboratory at the National Institute for Amazonian Research (LMF/INPA).
In this study, we evaluate traditional and laser-based inventory techniques based on surveying tree
stems (n = 55; DBH > 10 cm) located inside circular plots with 30 m in diameter (706 mz) within a
permanent monitoring transect managed by the National Institute of Amazonian Research (Figure 1).

4

(a) (b) 60°20'0"W 60°15'0"W 60°10'0"W 60°5'0"W A

Legal Amazon

60°1227"W

Figure 1. The locations of the monitoring plots in a central-eastern Amazonian terra-firme forest
(situated in the study area ca. 70 km north of Manaus, Brazil): (a) The red points represent the
geographic location of the survey plots situated in the Cuieiras Biological Reserve (delineated by the
black border (b)), as well as the respective location and diameter size of individual trees analyzed in
this study (identified by the respective point size and labeled by individual tree IDs (c)).

2.1. Measurements Obtained with Traditional Forest Inventory Techniques

For DBH, the tree circumference was measured at 1.30 m above ground level using a 5 m diameter
tape (Forestry Supplies, Mississippi, USA). In the case of imperfections or buttresses, the point of
measurement (POM) was moved up until the form of the stem normalized following the RAINFOR
protocol [38] and this observation was annotated in field worksheets. Additionally, the POM was
marked with oil-based paint [36,38]. For Ht, the measurements were obtained with a tape measure of
50 m length (Irwin Tools, North Carolina, USA) at the highest possible point of the tree of interest that
could be reached by a professional climber [54,55]. If the highest point was not reached by climbing,
a measuring rod was used to reach the highest point of the crown.

In this study, the above-described traditional measurements (TM) of diameter and tree height
were compared to estimates of Ht and DBH from multiple electronic devices, i.e., a laser rangefinder
(TruPulse 360R, Laser Technology Inc., Colorado, USA; Figure 2a) coupled to an electronic caliper
(BT MEM, Masser OY, Rovaniemi, Finland; Figure 2b) and connected to a portable computer (Getac
T800, Hsinchu County, Taiwan; Figure 2c) integrated via the so-called Field-Map® software bundle
(Institute of Forest Ecosystem Research Ltd., Prague, Czech Republic), as well as a terrestrial laser
scanner (RIEGL VZ400, Riegl, Horn, Austria; Figure 2d).
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(d)

Figure 2. Electronic devices for the measurement of biometric variables: (a) Trupulse 360R, (b) BT
MEM electronic caliper, (c) Getac T800 portable computer with Field-Map® software bundle, and (d)
TLS RIEGL VZ400.

2.2. Measurements Obtained with the Field-Map Bundle

The field-map bundle is composed of three devices (Figure 2a—c). For the evaluation of DBH,
two perpendicular (90°) measurements were taken from the trunk at the largest and smallest diameters
using an electronic caliper (Figure 2b); at the same, POM as measured with the diameter tape. For the
evaluation of Ht, a laser rangefinder (LR, Figure 2a) was used to triangulate following the tangent
method [56]. The electronic devices are wirelessly connected to a portable computer (Figure 2c)
where data can be accessed directly in the field and extracted later via portable media (e.g., memory
card or pen drive) or sent over wireless networks (Bluetooth). The Field-Map® software interface
allows the user to note additional observations for each measurement, e.g., change in POM, presence
of imperfections, and buttress of the trunk. The device also determines the positions of each tree
individual (x, y, z coordinate system) by conducting distance measurements between respective tree
individuals and a reflecting target in the center of the plot (considered as the center of the x, y, and z
coordinates). This information is used by the Field-Map software to display the position of each tree
on a two-dimensional map on the computer screen. Later on, this spatially explicit information was
used to locate and co-register tree segments identified by the terrestrial laser scan.

2.3. Measurements Obtained with Terrestrial Laser Scanning

Terrestrial Laser Scanning

Three-dimensional scans were performed with the RIEGL VZ-400 laser scanner (Figure 2d).
The device has a vertical angle range of 30-130° and quickly acquires a large amount of data
(300 kHz laser beam repetition rate) by recording multiple laser pulse returns (up to four returns per
pulse emitted). The beam divergence of the laser is 0.35 mrad operating in the near infrared range
(wavelength 1550 nm) and records targets within a range of 350 m. The scan settings were standardized
across multiple scan positions throughout the plot. Briefly, we used a systematic sampling scheme
using a central scanning location and further scanning sites in each cardinal direction to cover the
plot area by conducting eight to ten overlapping scans with a mean distance below 10 m. Data were
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collected using the high-speed mode to obtain the maximum amount of laser return points per time,
thus improving identification of the forest structure. Furthermore, additional scans were acquired at
each scanning location with the instrument tilted 90° from the vertical position to fully sample the
canopy. The collection time per position was approximately 2 min for the vertical position and for
the tilted (90°) positions. To register the respective scans into a single point cloud, reflective targets
made from reflective tape glued onto plastic cylinders 5 cm in diameter and 10 cm in height [42] were
distributed throughout the plot.

Registration of the Point Cloud

The scenes generated by each scan in the previous step were aligned in a common coordinate
system forming a single point cloud for the entire plot (Figure 3). This process is defined as the
point cloud registration [42,57,58]. The process was performed automatically using the RISCAN PRO
software [59]. The program usually identifies at least four reflective targets shared by each scanning
location, which is considered the minimum number to perform a reasonable coarse registration
between two consecutive scans [60]. However, the more reflective targets that can be detected during
the scanning process, the better the automated registration procedure will perform (Figure 3).

Figure 3. Example imagery of terrestrial laser scanning conducted in an eastern-central Amazonian
terra-firme forest using a RIEGL VZ400. Differences in laser beam density are color-coded blue to red
from high to low reflection density.

Extracting Individual Trees

The treeseg library (https:/ /github.com/apburt/treeseg) was used to extract a point cloud for
each individual tree [43]. This library is based on custom algorithms that depend on other open-source
libraries such as the Point Cloud Library (http:/ /pointclouds.org), which provides software processing
the point cloud [61]. The semiautomatic extraction of each tree in the point cloud generated by multiple
scanning was performed by the following steps: (i) tree identification by removing ground points,
obtaining vertical slices of the cloud, and fitting cylinders to potential trunks; (ii) the segmentation of
each stem up to the position of first branching using Euclidean clustering to remove any neighboring
vegetation and assessing the goodness of cylinder fitting from the previous step; (iii) the extraction
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of the crown from each stem detected by generating a volume of canopy and using a region-based
segmentation; and (iv) the visual inspection of the point cloud and, if necessary, manual removal of
misidentified points due to neighboring vegetation [43,46,62].

Acquisition of Biometric Variables from the Point Cloud

Following the procedure above, point coordinates for each individual tree were generated using
open-source software for point cloud analysis (3D Forest version 0.42; available from www.3dforest.
eu; [63]). The software extracts horizontal and vertical structural variables such as DBH, Ht, position
of the tree, and volume of sections of the trunk, as well as canopy-related variables such as base
height, crown depth, crown area, and volume. For the DBH estimation, we applied two methods:
(i) Randomized Hough transformation (TLSgy) fitting a circle to the horizontal section of the trunk,
with an adjusted number of iterations (standard setting n = 200) [64], and (ii) least squares regression
(TLSrgr) with an algebraic estimation of the diameter and reduction of the quadratic distance of the
adjusted circle [65]. The two methods use only part of the point cloud, i.e., a 10 cm horizontal section of
the trunk between 1.25 and 1.35 m above the lowest point determined by the digital terrain model [63]
(Figure 4). For the extraction of diameters in a position different from the conventional POM (1.30 m),
the stem curve command is able to determine the diameter in different positions of the trunk. The
diameters in the stem curve command are located, relative to the base of the cloud, at 0.65m, 1.3 m, 2 m,
and every 1 m until the first bifurcation of the trunk. The stem curve command terminates when the
estimated diameter is twice as large as the two diameters above, which indicates the crown expansion
in the point cloud [63].

TLSyeign=28.92 M

(a) : (b)

- TLSgyr= 39.57 cm

TLS,sx = 39.60 cm

l TLS (engtn=29.04 m

Figure 4. An example of a point cloud and biometric variables obtained with 3D Forest: (a) An
example for estimating the total tree height (TLSpeign: = 28.92 m) and the length of the point cloud
(TLSLength =29.04 m) and (b) an example for estimating the diameter at breast height (DBH) based on
a randomized Hough transformation (TLSgyT = 39.57 cm) and a least squares regression (TLS;gr =
39.60 cm). Note that the estimates of stem height and stem length differ due to an inclination of the tree
stem, whereas the estimates of diameter vary due to the different mathematical formulations of the
stem-fitting algorithm.

For estimates of total tree height (Ht), the program offers two different approaches: (i) The “TLS
Height” method defines the height by calculating the difference between the highest and the lowest
points in the cloud along the z-axis (ii) the “TLS Length” method that computes the largest Euclidean
distance between a point at the base of the cloud and the farthest point in any direction of the cloud,
thus being the method of choice for analyzing inclined trees [63] (Figure 4).
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2.4. Data Analysis

The relationship between traditional inventory measurements (TM) and laser-based estimates of
tropical vegetation structure (i.e., tree diameter and tree height) obtained either with the Fieldmap
bundle (FM) or the terrestrial laser scanner (TLS) was assessed using reduced major axis regression
(RMA) [66]. For each instrument, the total error, the systematic error (i.e., accuracy), and the random
error (i.e., precision) were quantified [56]. The total error (Equation (1)) was evaluated based on root
mean square error (RMSE):

1 2
Total Error (Et) = \/nZ (xpredicted - xobsewed) @

The systematic error (Equation (2)) or bias was calculated as the mean of the measurement error
(Equation (2)) and represents “a mean of the differences between population measurements or test
results and an accepted reference or true value” [67]. It was calculated as follows:

. 1
syStemath error (ES) = Ez(xpredicted - xobserved) )

The random error (Equation (3)) considers the variation of the measurement errors and represents
the “statistical variance of an estimation methodology” [68], calculated as follows:

1 2
Random error (ET) = \/1’12 (xpredicted — Xobserved — ES) 3)

Due to errors increasing in absolute terms with the DBH and Ht, all the abovementioned errors
were calculated in a proportional way. The proportional total error, proportional systematic error, and
proportional random error were calculated according to the following equations (Equations (4)—(6)):

2
1 o [ Xpredicted — Xobserved

Total Error prop (Etpror:) = \/Z< g AL 4)

n Xobserved

: Xpredicted — Xobserved
Systematic error prop = 2( predicte observe ) )
Xobserved
2

1 Xpredicted — Xobserved

Random errorprep = y ( Zpredicte observed ESprop ©)
n—1 X
observed

where X, peerpeq is the actual measurement for the desired variable, e.g., for DBH, the data obtained
from the diameter tape (i.e., by calculating DBH from the circumference measurements) or for Ht
obtained with a vertical tape measurement; X gicteq refers to the biometric data obtained with the
electronic devices, i.e., FM and TLS; and n the number of trees. Briefly, the systematic error indicates
the tendency of an instrument to record results systematically above or below the actual value (i.e.,
precision), whereas the random error is the product of the variations in measurements that do not
follow a fixed trend and the total error is the product of the estimate (systematic and random error) in
relation to the observed in situ measurement (i.e., accuracy).

The DBH and Ht obtained through the conventional measurements and the instruments assessed
in this study were used as input variables for allometric equations estimating tropical aboveground
biomass (AGB). We selected two local equations, derived from central Amazonian inventory plots,
and two pantropical equations extracted from the published literature [5,10,69] (see references in
Appendix A Table A1). The local equation proposed by Higuchi et al. [69] was used as a reference for
calculating the error metrics among AGB estimates resulting from different allometric relationships
evaluated in this study. The equation is based on fresh weight from destructively sampled trees and
applies a correction factor of 0.6028 (1 — mean moisture content) [70].
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3. Results

3.1. Analysis of Horizontal Vegetation Structure (Tree Diameter)

Regardless of the instrument used, the estimated DBHs were in good agreement with the
measurements obtained with a diameter tape and centered around the 1:1 line for class DBH;(_39
cm and DBH,y (Figure 5). However, for both size classes, the coefficient of determination (R?) for
measurements conducted with the electronic caliper (each R? = 0.99) was slightly higher than the
estimates derived from TLS using both methods TLSryT (R? = 0.93 and 0.96 for class DBH;o_3p and
all trees, respectively) and TLS sr (R? = 0.94 and 0.96, respectively). Such differences in R? among
the different methods were related to respective random errors. Estimates from the electronic caliper
exhibited a relatively low random error (Erprop = 2.2% and 2.3%) compared to estimates from TLSgpyT
(11.6% and 11.0%) and TLSygr (10.4% and 10.1%). Systematic errors (i.e., errors within methods) were
smaller in magnitude when compared to random errors for all three methods and both size classes.
TLSgryr exhibited a low systematic error for class DBH1p_39. However, this might be a mathematical
artifact because negative deviations cancel out positive deviations and vice versa, and therefore,
systematic errors can be close to zero (Table 1).

40
— Y=1.00x+0.23 Y=0.86x+1.86 Y=0.83x+2.73 .
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©
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Figure 5. The observed (tape measured) DBHs versus the DBH measured with the caliper from the
field map bundle and extracted from the terrestrial laser scanning (TLS) point cloud using two different
methods—TLSgyt and TLS; sg—estimated for different tree size classes: DBH;o 3¢ (upper panel) and
DBH,j (lower panel): The solid lines represent the adjusted linear models, and the dashed lines
represents the 1:1 lines (Y = X).
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Table 1. A summary of the errors in estimated DBHs for different measurement methods relative to
the observed (tape measure) DBHs for different size-classes of tropical trees: The errors are shown in
absolute and proportional terms, respectively.

Total Error Systematic Error Random Error
Et (cm) Etprop (%) Es (cm) Esprop (%) Er (cm) Erprop (%)
10 < DBH < 30 cm (n = 46)

Method

Caliper 0.5 3.0 -0.3 —-21 0.4 2.2

TLSRuT 1.8 115 <0.1 -12 1.8 11.6

TLS;sr 1.6 10.5 0.5 2.2 1.2 10.4
All trees (n = 55)

Caliper 0.9 3.2 —0.5 —-2.3 0.7 2.3

TLSRyT 24 11.1 —04 ~18 24 11.0

TLSisr 23 10.2 0.2 1.6 2.0 10.1

For the electronic caliper, the regression coefficients were close to 1 and the intercept close to 0
(Figure 5), whereas for TLSgyT and TLSy gR, the regression coefficients were 0.86 and 0.83 and intercepts
were 1.86 and 2.73, respectively, for class DBH;jg 3. In the class DBH 5y, the coefficient keeps close to 1
and the intercept close to 0 for the caliper; for TLSgyT and TLS; sR, the regression coefficients the of the
regression had a slight improvement when compared to coefficients in class DBH1_30.

In addition, the standard deviation of differences between the diameter tape measurements
and the estimates obtained with the caliper was 3-5 times lower than for the estimates from TLS
methods for both size classes (Figure 6a). In terms of accuracy (i.e., total errors of respective methods),
the electronic caliper presented lower error values for both classes, DBH 1y_30 and DBHy; (Table 1).
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Figure 6. (a) The standard deviation of differences between the estimated versus observed diameter
and for three different methods, i.e., traditional measurement (TM observed) vs. fieldmap (FM caliper)
and terrestrial laser scanning (TLSgyT and TLS;gr), and (b) the standard deviation of differences
between estimated versus observed tree height, i.e., measured manually (TM observed) versus fieldmap
(FM rangefinder), as well as TLSp engh (tree length) and TLSpeign: (tree height).

3.2. Analysis of Vertical Vegetation Structure (Tree Height)

Height estimates (Ht) obtained from different instruments presented a relatively lower
correspondence to direct observations of tree height obtained from vertical tape measurements
(Table 2).
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Table 2. Metrics of error among the methodologies for predict the total height (Ht) for trees with Ht
between 10 and 20 m (n = 26), Ht between 20 and 35 m (n = 29), and for all trees (n = 55): The errors are
presented in absolute and proportional terms for respective measurements obtained from hypsometry
using the laser rangefinder (Rangefinder), as well as the extraction of height (TLSpejgp) and length
obtained from the TLS point-cloud (TLSyengtn). The Mean Absolute Error (MAE) is the difference
between the estimate and reference measurements.

Total Error Systematic Error Random Error MAE
Et(m)  Etprop (%)  Es(m)  Esprop (%)  Er(m)  Erprop (%) (M)
Height 10-20 m (n = 26)

Methodology

Rangefinder 1.9 119 -0.3 —-2.0 1.9 12.0 1.5
TLSHeight 1.8 10.2 0.9 49 1.2 9.1 1.2
TLSLength 1.9 105 1.0 5.8 1.6 8.9 1.2

Height 20-35 m (n = 29)

Rangefinder 3.1 11.5 1.00 3.9 29 11.0 2.1
TLSHeight 2.4 9.8 0.5 2.5 22 9.6 1.7
TLSLength 2.4 9.7 0.7 32 2.3 9.3 1.7

Height all trees (n = 55)

Rangefinder 2.6 11.7 0.4 1.1 2.6 11.8 2.0
TLSHeight 2.2 10.0 0.7 3.6 1.8 9.3 1.6
TLSLength 22 10.1 0.9 45 2.0 9.1 1.6

For trees with Htjg_p, the heights obtained from the laser rangefinder presented less accuracy
(R? = 0.62 and Erprop = 12.0%) when compared with TLSpgeignt (R? = 0.77 and Erprop = 9.1%) and
TLSpength (R? =0.75 and Erprop = 8.9%). On the other hand, the three methods had similar precisions
for height classes of Hty 35 and Ht,y;, with a decrease in accuracy for the TLSpeignt and TLSp engtn for
the Htyg 35 class, but accuracy improved when all tree individuals were considered (Figure 7). This
gain in accuracy comes from the expected positive relationship between the number and accuracy
of estimates (due to an increase in sample size; Figure A2). Conversely, the standard deviation of
the differences was larger for height classes of Htyo 35 and Ht,; compared to Htjg_po for the three
methods (Figure 6b). In terms of accuracy, there is a clear tendency to overestimate tree heights derived
from both TLS methods for the class of Htjo_p9. The laser rangefinder, in turn, tends to underestimate
smaller trees and overestimate larger trees, respectively (Figure 7).

In general, methodological differences in systematic and total errors were comparable among the
three methods (Table 2). However, for all of the three methods, there was a tendency to overestimate
large trees (Htyp_35); the rangefinder tended to overestimate large trees (at the upper end of the range;
cf. slope coefficient > 1), and both TLS methods overestimated tree height of small trees (at the lower
end of the range, cf. slope coefficient < 1). Hence, using the hypsometer to estimate tree height tended
to overestimate the largest trees with greater total heights, whereas there was a better correspondence
between the estimated and observed heights using the TLS method, which indicates that the latter
method was not prone to increasing errors with increasing tree size (as highlighted by regression
coefficients close to 1 and intercepts closer to 0; Figure 7).
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Figure 7. The observed (tape measured) tree height versus laser rangefinder, TLSHeight, and TLSp engtn
estimates for different tree size classes: 10 < height < 20m (upper panel), 20 < height < 35m (middle
panel), and all trees (lower panel): The solid curves represent the adjusted linear models, and the
dashed lines represents the 1:1 lines (Y = X).

3.3. Analysis of Compound Structural Parameters (Tree Biomass)

Stem volume (Vgem) and basal area (BA), exhibited values that were close to conventional
measurements obtained with the diameter tape (Figure A1l). However, estimates obtained with the
TLSryt method and the electronic caliper underestimated the reference measurement conducted
with the diameter tape by 4.9% and 6.3% and with an RMSE of 0.20 and 0.09 m?, respectively,
while the rangefinder method overestimated by only 0.1%, however, with a high RMSE of 0.2 m?
(Figure A1). For all trees, TLSgyT and caliper measurements underestimated BA calculated from
the tape measurement in 4.4 and 5.9% and with an RMSE of 146.7 and 61.4 cm?, respectively; BA
calculated from the electronic caliper overestimated by 0.3% and with an RMSE of 145.9 cm? (Figure A1).
Structural parameters that are directly related to the number of individuals (e.g., basal volume and
area) within an inclusion limit (usually DBH > 10 cm) can be biased if a different number of tree stems
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are identified by respective methods (Figure A2). This difference is usually minimal on a plot scale
(Figure A1) but can introduce large uncertainties when extrapolated to larger spatial scales.

The aboveground biomass estimates differed between allometric equations tested as well as
within the same equations depending on the instrument used to collect the input variables to derive
the allometric relationships among vegetation parameters and vegetation biomass (Figure 8).
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Figure 8. A bar chart showing the estimates of aboveground biomass based on different methods—tape
measurement (TM), Field-Map bundle (FM), Terrestrial LIDAR (TLS)—to calculate the estimates of
aboveground biomass (using DBHgpt and TLSpeignt) and based on different allometric equations
(listed in Table A1) and assessing the vegetation parameters such as diameter (D in cm), height (H in
m) and wood density (p in g cm~3).

Here, we considered the allometric equation presented by Higuchi 1998 (DH) as a reference
estimate as it was based on measurements of tree diameter (D) and tree height (H) derived from a
destructive harvest in a nearby forest area (cf. Table Al). Both estimates derived from electronic
devices overestimated the manual reference estimate by 8.4% and 6.6%, respectively (Table 3). The
equation by Higuchi 1998 (D) considering only the diameter (D) as an input variable overestimated the
aboveground biomass by 12.9%, 6.4%, and 10.9% for diameter tape (TM), electronic caliper (FM), and
TLS, respectively. The two pantropical equations using three parameters (D, H, and p) overestimated
aboveground biomass (Figure 8, Table 3): the equation by Feldpausch et al. 2012 overestimated the
reference measurement by 14.8%, 10.7%, and 17.5% for TM, FM, and TLS respectively; the equation by
Chave et al. 2014 overestimated the reference measurement by 27.6%, 23.0%, and 30.5% for TM, FM,
and TLS respectively. As a result, the pantropical equations presented relatively large error metrics,
such that applying the equations by Feldpausch and Chave resulted in total errors of up to 42-66%
(Table 3).

In contrast, estimates derived from electronic devices, i.e., FM and TLS, overestimated the
reference measurement (Figure 8, Figure A3) by 8.4% and 6.6%, respectively. However, when
calculating AGB estimates derived from electronic devices versus traditional inventory techniques
within each of the allometric equations, the electronic devices underestimated the AGB estimates
(Figure 8, Figure A3) due to a systematic error of —2.4% and —2.6% (Table 3). For all of the allometric
equations considered in this study (Table A1), FM underestimated AGB by 7.0%, 3.0%, and 2.9% for
Higuchi et al. 1998 (D), Feldpausch et al. 2012, and Chave et al. 2014 respectively, whereas TLS
underestimated AGB by 5.0%, 0.7%, and 0.6% for Higuchi (D), Feldpausch, and Chave, respectively
(Figure A3).
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Table 3. The metrics of error among the local and pantropical equations estimating tropical
aboveground biomass: For each allometric equation, we used input data from respective instruments
evaluated in this study, i.e., diametric/metric tape (TM), Field-Map bundle (FM), and terrestrial laser
scanner (TLS). The Mean Absolute Error (MAE) is the difference between the respective estimate and
the reference estimate based on the destructive sampling of local tree individuals. D, input is only
diameter; DH, input is diameter and height; DHp, input is diameter, height, and wood density.

Total Error Systematic Error Random Error MAE
Allometric Equation

Technology Et(kg)  Etprop (%) Es(kg) Esprop (%) Er(kg) Erprp (%)  (kg)

iguchi 1998 PH M 403.1 31.0 —28.1 —24 405.9 31.2 179.2
Higuchi 1998 PH TLS 277.3 26.6 —36.1 —26 274.9 26.8 125.4
Higuchi 1998 P ™ 209.75 41.42 66.25 12.86 77.5 6.1 384
Higuchi 1998 P FM 191.9 39.7 29.9 6.4 200.6 26.3 70.9
Higuchi 1998 P TLS 182.3 52.1 404 10.9 200.8 243 104.5
Feldpausch 2012 PHe ™ 286.3 4238 107.5 14.8 143.4 24.6 724
Feldpausch 2012 PHe M 268.3 41.7 90.7 10.7 190.3 26.9 82.4
Feldpausch 2012 PHe TLS 288.7 56.8 103.8 17.5 2337 33.6 102.3
Chave 2014 PHe ™ 3514 51.4 157.8 27.6 192.3 27.2 106.7
Chave 2014 PHe M 328.5 492 139.8 23.0 2241 29.6 105.0
Chave 2014 PHe TLS 347.8 66.4 154.0 30.5 263.6 37.0 132.6

4. Discussion

LiDAR-based remote sensing techniques provide an important toolbox for analyzing terrestrial
vegetation structure and associated plant biomass across different scales. At the global and regional
scales, spaceborne and airborne LiDAR provide useful biomass estimates across large geographic
areas. At the local scale, terrestrial laser scanning (TLS) provides highly detailed information of
structural vegetation parameters. Nonetheless, both methods might lack crucial information on other
spatially variable parameters, as tree allometry and maximum height are altered by environmental
conditions, affecting forest structure and wood density [38]. Because each of the methods and evaluated
vegetation parameters may be associated with measurement errors, it is crucial to evaluate systematic,
random, and cumulative errors that could propagate to large uncertainties when incorporated into
general biomass equations [1,3,71]. In this study, we evaluate relative sources and magnitudes of
uncertainty associated with measurements obtained from traditional forest inventory and remote
sensing techniques and report the respective error metrics for commonly surveyed vegetation
parameters in order to derive tropical biomass estimates.

4.1. Performance of Laser-Based Electronic Devices for Analyzing Horizontal Vegetation Structure

In general, the difference between tape measurements and caliper measurements increases with
tree size as the non-circularity of trunks is more pronounced for large trees with large diameters
(Figure 5, Table 1). Hence, a systematic underestimation of measurements obtained with a caliper
compared to a diameter tape has been reported for temperate forests [72-74] as well as tropical
forests [75]. The explanation given is that any deviation from the true circular shape of a given tree
trunk will increase the ratio of circumference to area according to the magnitude of the deviation of the
circular shape of the perimeter. This implies that irregularly shaped trees, if measured with a diameter
tape, will report larger diameters than would be obtained by doing perpendicular stem measurements
with a caliper [73]. Interestingly, estimates of stem circumference extracted from the LiDAR point
cloud showed the same trend as estimates obtained with an electronic caliper (Figure 5). Because the
resulting error for the DBH estimates is related to the correct fit of the circle to the tree trunk, both
methods underestimated DBH due to a higher systematic error compared to traditional inventory
measurements using a diameter tape (Table 1). However, while the systematic error of the caliper was
related to irregularities of the tree stem, the greater random error of the TLS was related to the effect of
occlusion by vegetation present in the scanning zone and, therefore, related to the identification of a
geometric form when extracting tree circumference from the point cloud [24,28,32,34,46]. This might
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have led to the observed increasing measurement errors with larger tree diameters (Figure 5), which
also corresponded to a greater systematic error and a slight underestimation of DBH with increasing
tree size (Table 1). Interestingly, DBH measurements obtained with the electronic caliper showed less
total and random error than conventional tape measurements but a higher systematic error due to a
slight underestimation of DBH in the large size classes (Figure 5). Accordingly, Calders et al. reported
that in contrast to traditional methods, where measurement error typically increases exponentially
with increasing DBH, novel laser-based techniques are not dependent on DBH, as TLS does not rely on
indirect relationships with tree parameters or calibration data and, therefore, showed better agreement
with the reference data [46]. Nonetheless, associated parameters will be biased if not based on the same
sample size, i.e., number of tree stems within a given diameter inclusion limit (often DBH > 10 cm),
and thus, typically extracted attributes, such as stem volume (Figure A1) and basal area (Figure A2),
are related to the number of individual tree stems recorded [76,77]. Hence, a direct comparison among
studies using different methodologies is often hindered by the fact that measurement uncertainties are
based on different numbers of individuals investigated, as well as different errors metrics obtained by
respective method.

4.2. Performance of Laser-Based Electronic Devices for Analyzing Vertical Vegetation Structure

Although it has been suggested that it is not feasible to accurately estimate tree height (Ht) in
natural forests from the ground-level [55,78], our results suggest that laser-based electronic devices
can and should be used to estimate Ht in natural forests [46,56,79,80]. For traditional inventories, tree
climbing is often used to characterize vegetation structure in tropical forests [55,81,82], which typically
results in an underestimation of total tree height as even a professional tree climber cannot easily
reach the very top of a given tree. In contrast, we found that estimates obtained from laser-based
electronic devices tend to overestimate Ht when compared to traditional forest inventory measurements
(Figure 7). Such a discrepancy between in situ measurements and remotely sensed estimates typically
results from the fact that measurements based on trigonometry usually overestimate total Ht because
the apex of a tree crown cannot be spotted from the ground by the observer [55]. Therefore, the
accuracy of height estimates in tropical forests has been shown to highly depend on the measurement
method applied (i.e., tangent vs. sine method) and experience among different operators [55] because
the laser beam, in fact, hits the outer edge of the tree crown, which increases the vertical angle and
systematically overestimates Ht. Hence, a direct comparison between laser-based estimates and vertical
tape measurements is hindered by differences in error metrics. While random errors are typically
associated with statistical variability due to the reproducibility of the measurement (i.e., precision),
systematic errors typically refer to a statistical bias between a result and a “true” value (i.e., accuracy).
In this regard, methods assessing Ht presented in this study showed a relatively high precision
but not necessarily a high accuracy compared to traditional measurement techniques found in the
literature [56,80,83]. However, as a high accuracy requires both high precision and high trueness,
both methods may only be outperformed by destructively harvesting and measuring felled trees,
which is laborious and time consuming. Nevertheless, laser-based technologies have been recently
used to create locally derived height—diameter relationships, which was shown to result in improved
allometric equations estimating aboveground biomass for specific geographic regions [84].

So far, most studies comparing height estimates with TLS have been conducted in temperate
regions and reported that TLS estimates were better predictors for Ht compared to estimates based
on trigonometry with a hypsometer [46]. For tropical regions, estimates of Ht obtained via TLS have
usually been compared to estimates obtained from trigonometric techniques [28,31,85,86], which
present measurement uncertainties of 0.1 to 7.9 m depending on the method and characteristics
of the site [62,87-89]. A more robust analysis of natural eucalyptus forest by Calders et al. [46]
compared laser-based estimates of Ht to measurements from trees felled after completing the scan,
and the associated error metrics showed that TLS estimates were actually more accurate than
conventional methods (RMSE 0.55 and 1.28 m, for TLS and LR respectively). This highlights that
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direct and individual measurements are extremely important for the calibration and validation of
remotely sensed vegetation parameters, such as those obtained from airborne LiDAR [90-93] and
spaceborne LiDAR [15,94-96]. In particular, terrestrial LIDAR has been highlighted as a promising
tool replacing destructive sampling methods [97,98], as local plot-level measurements can be used for
the calibration and validation of indirectly assessed allometric relationships to estimate aboveground
plant biomass [2]. Furthermore, TLS can derive many more relevant ecological vegetation metrics not
commonly assessed by other methods, such as leaf area index, gap fraction, leaf and branch volume,
canopy architecture, planar projection, volume, and habitat characterization for fauna or detailed
ecophysiological modelling [20,44,63,99]. Nevertheless, each of the estimated parameters will be
subject to measurement errors, such that it is crucial to evaluate cumulative errors that could propagate
to large uncertainties when incorporated into biomass models [1,41,94]. This calls for studies that
determine respective error metrics by comparing multiple methodological techniques at the plot-scale
in order to identify relative sources and magnitudes of measurement uncertainties associated with
respective method applied in situ [2].

4.3. Performance of Laser-Based Electronic Devices for Estimating Forest Biomass

Tropical AGB varies across geographic regions in association with the diameter-height
relationship among tropical regions, such that Asian forests although exhibiting higher biomass
were underestimated globally due to higher-than-average tree height observed in palaeotropical
forests [5]. Due to high variation of allometrical DBH:Ht relationships within tropical forests [6,100],
conducting Ht measurements at the local level is of fundamental importance to improve estimates
of aboveground biomass [4,10]. For instance, to overcome chronic underestimation of AGB of very
large trees, some studies derived local diameter-height allometric models in areas where trees are
shorter but have large crowns [70]. However, it has been recently suggested that a relatively simple
procedure would be to identify the ten largest diameter trees in a plot for measurements of total height
and then take a diameter size-class stratified random sample of an additional forty trees to build a
local DBH:Ht model that minimizes uncertainty in estimates of aboveground biomass [84]. Hence,
the instruments investigated in this study could and should be used to survey Ht locally in a practical
and economically viable way.

We furthermore assessed several commonly applied allometric equations to estimate AGB,
as some of the differences in biomass estimates might be related to differences in parameterization
among allometric equations. For instance, the pantropical equations by Feldpausch et al. [5] and
Chave et al. [10] are based on a database compiled from trees felled in the tropics around the world,
thus containing trees from different climatic, edaphic, and resource availability gradients [6,7,10,101-103].
Even over continental-wide gradients, such as across the Amazon basin, applying adjusted equations
for central Amazonia was reported to result in a high bias when estimating tree biomass in the south
and southwest of the Amazon [101]. While this was mainly due to differences in wood density [102]
and DBH:Ht ratios [91], other studies reported that the use of metrics related to crown volume reduces
uncertainties for areas where trees are small statured but have large crowns [70]. This high variation of
environmental conditions affecting forest structure among tropical regions implies that local allometries
based on locally felled trees and quantifying the biomass of different compartments of the tree [69] are
expected to better capture local vegetation characteristics than more general pantropical equations [10].

Hence, in this study, we considered the local allometric equation as the local reference estimate [69].
Compared to the local reference equation (including DBH and Ht), the local diameter-only
equation [69], as well as the pantropical equations [5,10], overestimated the aboveground biomass
regardless of the technology used (Figure 8). Although both of the pantropical equations were derived
from felled trees harvested from forest communities across different tropical regions, the local estimates
excluding tree height were still closer to the reference estimate (including DBH and Ht). Surprisingly,
in three out of four allometric equations tested, we found an underestimation of biomass by the
laser-based electronic devices tested in this study in comparison with conventional measurements
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(Figure 8). Nonetheless, in comparison TLS-based estimates (TLS) showed a slightly better performance
than that based on measurements obtained with the electronic caliper and hypsometer (FM), such
that biomass was overestimated by 8.4% and 6.7% by FM and TLS respectively (Figure A3). Whereas
laser-based techniques on average overestimated AGB by 16.5% and 18.2% for FM and TLS caused by
a systematic overestimation of tree height compared to conventional tape measurements, AGB was
underestimated by 4.3% and 2.1% for FM and TLS because of a systematic underestimation of tree
diameters with increasing tree size class. Hence, our findings of inverse effects on biomass estimates
due to error metrics derived from measurements based on DBH and/or Ht should be of importance for
analysis of large-scale AGB estimates derived from remote sensing, particularly applications mapping
the forest canopy height to derive biomass estimates across large spatial areas.

These nondestructive techniques represent a powerful alternative to destructive tree felling and
can be used to estimate the biomass of large trees to within a few percent [2-4,44,97]. Recently, studies
on native forests of subtropical [46] and tropical climate [11,47] showed that TLS-based AGB estimates
were able to estimate the biomass of trees without bias and with shape accuracy when compared to
local allometric equations. This finding might be crucial as large-diameter trees (DBH > 60 cm) are
usually especially prone to measurement errors [104] but concomitantly represent large parts of the
forest ecosystem carbon budget by constituting half of the forest biomass worldwide [105]. Hence,
the propagation of measurement errors might introduce some uncertainty to the biomass estimate of
a particular site, especially if one single method is used to calibrate products from another platform,
e.g., spaceborne and airborne LIDAR, such that local uncertainty could potentially propagate to larger
areas. Overall, we conclude that it is crucial to combine several measurement techniques to improve
potential mismatches among pantropical allometric equations and local observations. Eventually,
further refined novel technologies will represent a valuable alternative to destructive conventional
sampling techniques, which should allow assessing the response of tropical plant biomass to projected
alterations in climatic signals.

5. Conclusions

Based on the results presented in this study, we conclude that laser-based electronic devices have
the potential to estimate tree size parameters commonly surveyed by traditional forest inventories.
The presented novel techniques exhibited error metrics comparable with traditional methods and
differences between respective devices were related to technical attributes of each instrument. Whereas,
estimates of horizontal vegetation structure, i.e., tree diameters obtained from the point cloud exhibited
relatively high total (11.1%) and random errors (11.0%) compared to measurements taken with a
diameter tape, perpendicular measurements with an electronic caliper were more consistent but
resulted in systematic underestimation (—2.3%) of individual tree diameters. For vertical vegetation
structure, the estimates of tree height based on hypsometer-triangulation gave better results than
previously reported (11.7%), while the estimates based on point cloud extraction yielded more
consistent results (10.1%) in comparison to vertical tape measurements. Albeit that laser-based
techniques systematically overestimated stand aboveground biomass (by 26.6% to 31.0%), this was
due to a relatively high precision (—2.5%) within methods but a low accuracy (26.8-31.2%) among
predicted and observed values. Most strikingly, the variation of estimated aboveground biomass
was larger among commonly applied allometries (39.7-66.4%) than between traditional and novel
measurement techniques (10.6-15.0%). This indicates that locally derived estimates based on relatively
low sample size (<50 individual stems) could be used to construct local height-diameter relationships
with lower error than regional or climate-based allometries. We therefore conclude that laser-based
electronic devices can and should be used to complement traditional forest inventories for monitoring
structural vegetation parameters in tropical forests.
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Appendix A

Table Al. The equations for estimating the aboveground biomass (in kg) with diameter (D in cm), total
height (Ht in m), and wood density (p in g/ cmd).

Diameter Interval

Regions (cm) Equations References

Central 5<D<20 Ln(W) = —1.754 + 2.665InD * . .

Amazon D > 20 Ln(W) = —0.151 + 2.170InD * Higuchi et al. 1998

Central 5<D<20 W = 0.0336*D>171H1.038 *+ . .

Amazon D > 20 W = 0.0009*D! 5852651 *¢ Higuchi et al. 1998
Pantropical D>5 AGB = 0.0673*(pD?Ht)?-976 Chave et al. 2014
Pantropical D>10 Lné%g;z;(gzz p9é:))5 " Feldpausch et al. 2012

* The equations from Higuchi et al. 1998 directly estimate dry biomass based on field measurements of destructively
harvested “fresh biomass” (W) and apply a correction factor of 0.6028 [70]. ** The equation used as a reference for
calculating the errors in biomass estimates among the equations evaluated.
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Figure A1l. The volume of the stem (Vsiem) using the formula (In V = —7.335 + 2.121 In DBH) proposed
by Higuchi et al. (1997) and the basal area for the respective methodologies, i.e., diameter tape
(Diameter tape), TLSgyt (RHT), TLS1sr (LSR), and electronic caliper (Caliper), used to estimate the
plot-level parameters for trees (DBH > 10 cm).
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Figure A2. The number of individuals identified within the diameter inclusion limit (DBH > 10 cm)
for respective methodology applied, i.e., diameter tape (D-tape), electronic caliper (Caliper), terrestrial

laser scanner circle fitted via Hough transformation (RHT), and least-squares method (LSR).
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Figure A3. The difference among estimates of the total aboveground biomass using data obtained from
tape measurements (TM) vs. Fieldmap bundle (FM) or terrestrial laser scanner (TLS) and respective
allometric equations (listed in Table Al).
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