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Integrated assessment models are extensively used in the analysis of climate change mitigation and are
informing national decision makers as well as contribute to international scientific assessments. This
paper conducts a comprehensive review of techno-economic assumptions in the electricity sector among
fifteen different global and national integrated assessment models. Particular focus is given to six major
economies in the world: Brazil, China, the EU, India, Japan and the US. The comparison reveals that
techno-economic characteristics are quite different across integrated assessment models, both for the
base year and future years. It is, however, important to recognize that techno-economic assessments
from the literature exhibit an equally large range of parameters as the integrated assessment models
reviewed. Beyond numerical differences, the representation of technologies also differs among models,
which needs to be taken into account when comparing numerical parameters. While desirable, it seems
difficult to fully harmonize techno-economic parameters across a broader range of models due to
structural differences in the representation of technology. Therefore, making techno-economic param-
eters available in the future, together with of the technology representation as well as the exact
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definitions of the parameters should become the standard approach as it allows an open discussion of
appropriate assumptions.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the past few years, integrated assessmentmodels (IAMs) of
climate change have become increasingly influential in informing
the climate policy debate. Beyond assessment reports that sum-
marize the findings of the scientific literature (e.g., Refs. [1,2]), they
are used in policy impact assessments [3] and in environmental
legislative analysis reports of government institutions (e.g., [4,5]).
In addition, many national level IAMs have been used to inform the
decision of governments in preparing their intended nationally
determined contributions (INDCs) submitted to the climate nego-
tiations prior to COP21 in Paris in 2015 [6]. Given the ambition to
explore the possibility of limiting global temperature change to
1.5 �C and the associated ratcheting up process of national contri-
butions agreed upon in the Paris Agreement, it is expected that
there will be a continuous demand for analysis from both global
and national IAMs over the coming years to inform this process.
Examples of such recent studies include Fragkos et al. [7], Grubler
et al. [8], Gu andWang [9], van der Zwaan et al. [10] and van Vuuren
et al. [11].

IAMs are not a homogenous group of tools, but use quite
different methodological approaches and apply different system
boundaries (for a review see Ref. [12]). In many cases, these dif-
ferences originate back to the historical roots of the different IAMs.
For example, some have their origins in energy systems analysis
and were then expanded to include other human and natural sys-
tems (e.g., agriculture and forestry, climate) while others were
originally designed to look at economic questions in an environ-
mental context.

On the one hand, there is widespread agreement across e na-
tional as well as global e IAMs on high-level characteristics of
mitigation strategies (see IPCC TAR, [13]; or IPCC AR4, [14]). On the
other hand, significant differences at finer resolution exist which
can be highly relevant for deriving more specific policy recom-
mendations. As an example for both agreements and differences,
the electricity sector which is responsible for roughly 40% of global
greenhouse-gas (GHG) emissions is robustly projected to decar-
bonize first under climate policy consistent with the 2 �C target.
Despite this high-level agreement on the de-carbonization of the
electricity sector, the speed of the transition and in particular the
resulting technology mix in power generation can be very different
across IAMs (e.g., Ref. [14,35]). This can be attributed to three
important differences across models, (i) the applied methodologies
(e.g., simulation vs. optimization) as well as the associated model
structure (e.g., production function with elasticities, discrete tech-
nology representation, logit sharing), (ii) the representation of
different technology options, and (iii) the parameterization of
technologies, typically referred to as techno-economic assump-
tions, both within the power sector and in other sectors (e.g.,
resource extraction, energy end-use). This study focuses on the
representation of technologies (model structure) and the associ-
ated numerical techno-economic assumptions in fifteen national
and global IAMs. Beyond comparing among the IAMs, the techno-
economic parameters used in a given set of scenarios are also
compared to the wider literature on technology evaluation,
including IEA [15,16], DIW [17] and GEA [18]. Finally, we also
respond to calls for increased transparency of energy-economic and
integrated assessment models (e.g., Ref. [19]) and make the full
dataset reviewed in this study available as part of the
supplementary material.

The comparison reveals methodological differences in how
techno-economic characteristics are projected into the future,
which provides important background information for the inter-
pretation of model results. Moreover, the comparison between
national and global IAMs is particularly interesting for two reasons.
First, national models may have a more accurate representation of
costs and performance of technologies actually built in the recent
past in a given country. Second, technology development typically
does not happen in a single country in isolation, but is increasingly
interlinked and driven by multi-national companies [20] which is
more consistently represented in global IAMs. So there are mutual
benefits of sharing techno-economic assumptions within the
modeling community.

The paper is structured as follows. Section 2 provides a brief
overview of the IAMs, the data collection process and the methods
used in the comparison. In terms of region/country coverage, the
focus is on Brazil, China, the European Union, India, Japan, and the
USA. Section 3 highlights differences in the representation of
technologies and differences between the approaches of projecting
techno-economic assumptions into the future across the reviewed
IAMs. A detailed comparison of techno-economic assumptions is
the focus of Section 4, including capital cost, operation and main-
tenance (O&M) cost, conversion efficiency, lifetime and, derived
from the other indicators, levelised cost of energy (LCOE) e

excluding fuel costs. Due to data availability, electricity generation
technologies are in the center of the comparison. Insights from this
comparison and suggested next steps to improve our understand-
ing of differences in key input assumptions are presented in Section
5. The rich supplementary material includes the full data set
reviewed in this study and its visualization (Appendices C and E).

2. Methods and data

This section provides an overview of the IAMs that are covered
in the comparison, the data sources that were used in compiling a
comprehensive data set as well the methods used to harmonize
data across regions and models.

2.1. Methods

In this study, techno-economic assumptions from fifteen IAMs,
including eight global and seven national ones, are reviewed.
Detailed model descriptions of the fifteen IAMs and related refer-
ences are presented in Appendix A. The comparison of national/
regional results focuses on major economies in the world, namely
Brazil, China, the EU, India, Japan and the US. In 2015, these six
regions accounted for more than half of theworld population, some
70% of the global GDP (in current USD [22]), and about two-thirds
of global CO2 emissions from fuel combustion, [16]. It is worthwhile
to point out that, for all regions, at least one model developed in
that region is included in the comparison.

Fig. 1 present the comparison framework of this study in four
dimensions, namely models, their technology representation, the
techno-economic parameter assumptions and countries/regions of

http://creativecommons.org/licenses/by/4.0/


Fig. 1. Comparison framework of this study-models, technologies, assumptions, and regions.
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the comparison.
It is important to note that the numerical assumptions of

techno-economic parameters that form the basis of this compari-
son are, in general, scenario dependent. It is therefore not possible
to extrapolate the data set presented in this study to all other
scenario studies undertaken with the same models. However, our
comparison provides insights that hold beyond individual sce-
narios, for example on the different methods used to project
techno-economic assumptions into the future that have actually
important implications for the interpretation of techno-economic
assumptions.

2.2. Data source and harmonization

The data set used for the comparison has been collected from
the four ongoing or recently completed model inter-comparison
projects ADVANCE [23,24], AMPERE WP2 [25] and WP3 [26], CD-
LINKS [27], and MILES [28].

To enable a direct comparison of the data, some harmonization
was required to avoid systematic biases. The price and cost infor-
mation were collected from different sources which use either
constant USD or national currency, and thus need to be made
consistent regarding currency and base year. In this paper, all the
units are converted to constant 2010 USD (hereinafter referred to
briefly as 2010 USD). For this purpose GDP deflators from theWorld
Bank Database [21] are used (see details in Appendix B).

However, when it comes to regional definitions, an exact
matching of regions was sometimes not possible. More specifically,
in the case of global IAMs the comparison of country level techno-
economic parameters included also some model regions that
extend beyond the specific country (e.g., using data from the Latin
America region for Brazil).

3. Concepts of projecting techno-economic assumptions in
IAMs

Before focusing on the comparison of actual techno-economic
parameters in Section 4, the differences in how these parameters
are projected into the future will be discussed. The methods are to
some degree linked to the representation of technologies, most
notably whether a single or several technologies for converting a
given primary energy source to electricity are represented in the
model.

3.1. Projection of techno-economic parameters

The comparison of the different projection methods reveals
differences in how this is dealt with across the set of IAMs
considered. In summary, the projection strategies can be grouped
into four basic categories: 1) “static technology”with “static costs”;
2) “static technology” with “dynamic costs”; 3) “dynamic technol-
ogy” with “static costs”; and 4) “dynamic technology” with “dy-
namic costs”.

In this context, “static technology” refers to the fact that the
technical characteristics, most notably the conversion efficiency,
does not change over time, while “dynamic technology” implies a
variation of efficiency over time. Likewise, “static costs” implies
that capital and O&M costs of a technology do not vary over time
whereas they change under the “dynamic costs” category.

IAM teams may only use one of the four strategies for projecting
techno-economic parameters of all technologies in their IAMs, or
they may adopt different strategies for different technologies.
Typically, those models that apply the concept of “dynamic tech-
nology” with “static costs” for fossil fuel technologies switch to
“dynamic costs” for non-combustible energy conversion technol-
ogies (e.g., wind turbines, photovoltaics (PV), nuclear power), given
that an efficiency parameter is a less useful concept in the techno-
economic characteristics for such technologies. For example, an
increase in the conversion efficiency of incoming radiation to
electricity in PV cells reduces the required area and therefore ma-
terial input to produce a given amount of electricity which lowers
levelized generation costs. It is worthwhile noting that the two
global models in this set that combine “dynamic technology” with
“static costs” for fossil conversion technologies utilize an
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endogenous technological change formulation in the projection of
costs of non-combustible renewable technologies (“REMIND 1.6”
and “WITCH-GLOBIOM 4.4”, see Fig. 3).

In addition, IAMs also vary with respect to representing a single
or multiple technology variants for converting a given primary
energy carrier (e.g., coal, gas) into a secondary energy form (e.g.,
electricity) (see Appendix C for more details). For example, while
some models include multiple coal power plant types such as
“pulverized coal (PC)” combustion with various steam cycle con-
figurations (e.g., sub-, super- and ultra-super critical) as well as
“integrated gasification combined cycle (IGCC)”, others include a
single representative technology per primary-to-secondary-energy
conversion route. The concept of single representative technology
is therefore more often combined with the “dynamic technology”
description for fossil-fuel conversion technologies, implicitly
assuming a transition from one (less efficient) type to the other
(more efficient) in the predominant technology mix. In models
with an explicit representation of multiple technology variants, this
transition is instead modeled explicitly by considering the trade-off
between more advanced variants with higher efficiency (and
therefore lower fuel costs) and higher capital cost on the one hand
and other variants with lower efficiency (higher fuel costs) and
lower capital cost on the other hand.

Using several combustion-based power generation technologies
as examples, Table 1 summarizes the adopted strategies for the
projection of techno-economic parameters in the selected IAMs.
3.2. Regional technology variation

In addition to the above-mentioned strategies to project techno-
economic assumptions into the future, techno-economic parame-
ters, such as capital cost, may also vary significantly across regions
in the global IAMs.

Using the capital cost of combined-cycle gas power plants as an
example, regional variation of capital costs is found in four global
models, “MESSAGEix-GLOBIOM_1.0”, “IMAGE 3.0”, “WITCH-GLO-
BIOM 4.4” and “DNE21þ V.12A” (see Fig. 2). It is worthwhile noting
that the regional variation of conversion efficiency is also found for
the MESSAGE, WITCH and IMAGE models, but not for the
DNE21 þ model. The other global models, “GCAM_4.2 ADVANCE”,
Table 1
Strategies of projecting techno-economic parameters into the future in IAMs.

IAMs Electricity generation technologies

coal power
plants

gas power
plants

biomass power
plants

Global DNE21 þ V.12A DT-DC DT-DC DT-DC
GCAM4.2_ADVANCE DT-DC DT-DC DT-DC
GEM-E3 DT-DC DT-DC n/a
IMAGE 3.0 DT-DC DT-DC DT-DC
MESSAGEix-
GLOBIOM_1.0

ST-DC DT-DC ST-DC

POLES MILES DT-DC DT-DC DT-DC
REMIND 1.6 DT-SC DT-SC DT-SC
WITCH-GLOBIOM 4.4 DT-SC DT-SC DT-SC

National BLUES ST-DC DT-DC ST-SC
IPAC-AIM/
technology_V1.0

DT-DC n/a n/a

PRIMES_2015 DT-DC n/a n/a
AIM/E-India [IIMA] DT-SC DT-SC DT-SC
India MARKAL ST-SC ST-SC ST-SC
AIM/Enduse[Japan] ST-SC ST-SC n/a

Note: ST-SC (static technology with static costs); ST-DC (static technology with
dynamic costs); DT-SC (dynamic technology with static costs); DT-DC (dynamic
technology with dynamic costs).
“GEM-E3”, “REMIND 1.6” and “POLES MILES”, adopt uniform
techno-economic assumptions across all regions for new vintages
of power plants. For comparison, capital cost projections from the
IEA [15,17] are also shown in Fig. 2.

In the “MESSAGEix-GLOBIOM_1.0”, “IMAGE 3.0”, and
“DNE21 þ V.12A” models, lower capital costs are assumed for
emerging economies (Brazil, China and India), while higher costs
are assumed for developed regions (the EU, Japan and the US). In
“MESSAGE ix-GLOBIOM_1.0”, the absolute cost gap between the
two regions gradually shrinks from 2010 (170 USD/kWe) to 2050
(65 USD/kWe), thus assuming some convergence of capital costs.

Qualitatively, this pattern is consistent with the IEA's assess-
ment (2016) that shows similar regional variants as the “MESSA-
GEix-GLOBIOM_1.0”, “IMAGE 3.0”, and “DNE21 þ V.12A” models,
namely higher capital cost for developed regions and lower for
emerging economy regions. However, a much larger absolute cost
gap is assumed by the IEA [15,17], about 350 USD/kWe until 2040.

The regional variation in “WITCH-GLOBIOM 4.4” is different
from the others by assuming that the capital costs in Brazil and
Japan are significantly higher (around 25%) than those in the other
four regions,1 the gap between the two ends is as high as about 240
USD/kWe. It is also noteworthy that while in “WITCH-GLOBIOM
4.4” capital costs in the US are the lowest, whereas they are the
highest or second highest in the projections adopted by “MESSA-
GEix-GLOBIOM_1.0”, “DNE21 þ V.12A” and the IEA.
3.3. Endogenous technological change

As highlighted above, three IAMs reviewed here, “REMIND 1.6”,
“WITCH-GLOBIOM 4.4” and “IMAGE 3.0”, implement endogenous
technological change for a subset of the technologies, including PV
and wind turbines. These models assume that with increasing cu-
mulative installed capacity of a technology, the technology's capital
costs are decreasing which is described by a learning curve
[29,30,36].2 Given that climate policy leads to faster adoption of
these technologies, the endogenously derived capital costs tend to
be higher in a baseline scenario compared to a mitigation scenario.

Fig. 3 presents the resulting capital cost of PV in “REMIND 1.6”,
“WITCH-GLOBIOM 4.4” and “IMAGE 3.0” for Brazil. For the
“REMIND 1.6” model, the cost gap between the baseline and miti-
gation scenarios is about 130 USD/kWe in 2020, increases to about
400 USD/kWe in 2030 and 2040, but then decreases again to about
240 USD/kWe in 2050. The gap in “WITCH-GLOBIOM 4.4” is rela-
tively smaller than that in the “REMIND 1.6”, with a gap of about
180 USD/kWe after 2020 while in “IMAGE 3.0” under the same
baseline and mitigation scenarios the difference remains very
small.
4. Comparison of techno-economic parameters

The following section compares techno-economic assumptions
of electricity generation technologies, including capital and oper-
ating and maintenance (O&M) costs, conversion efficiencies, life-
times and the resulting levelised cost of energy (LCOE), of national
and global IAMs. In the remainder of this paper, parameters for PV
and natural gas combined cycle power plants are presented to
illustrate the main insights of this comparison. An overview of the
1 Note that in WITCH-GLOBIOM 4.4 both Brazil and Japan are part of the larger
regions Latin America, Mexico and Caribbean and Canada, Japan, New Zealand
respectively.

2 A basic description of the endogenous technological change formulation
adopted by the IMAGE, REMIND and WITCH models can be found in the common
IAM documentation online at https://www.iamcdocumentation.eu/.

https://www.iamcdocumentation.eu/


Fig. 2. Regional variation of capital costs across global IAMs (combined-cycle gas power plants as the example).

Fig. 3. Endogenous capital cost of PV in selected IAMs for Brazil.

Table 2
Capital cost patterns across the IAMs (for gas power plants).

IAMs Region Time (2010e2050)

Change across
regions

Change over
time

Change
trends

Global DNE21 þ V.12A Yes Yes increase
GCAM4.2_ADVANCE No Yes decrease
GEM-E3 No yes decrease
IMAGE 3.0 Yes Yes increase
MESSAGEix-
GLOBIOM_1.0

Yes Yes no uniform
trend

POLES MILES No Yes decrease
REMIND 1.6 No No constant
WITCH-GLOBIOM 4.4 Yes No constant

National BLUES N/A Yes decrease
IPAC-AIM/
technology_V1.0

N/A Yes decrease

PRIMES_2015 N/A Yes decrease
AIM/Enduse[Japan] N/A No constant
AIM/E-India [IIMA]
3.0

N/A No constant

India MARKAL N/A No constant
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full data set for capital costs, O&M costs and conversion efficiencies
is provided in Appendix C.
4.1. Capital cost

The capital costs of technologies used in the selected IAMs in
this report are all so-called overnight construction costs. Therefore,
Fig. 4. Capital cost of PV power plants
financing costs during the construction period are excluded from
the data presented in the comparison below.

As illustrated in the previous section, IAMs may assume dy-
namic or static capital costs of technologies, and combine them
with the dynamic or static assumptions for conversion efficiency.
As previously, using the technology of gas power plants as an
example, Table 2 summarizes the capital cost patterns. For the
in selected regions across IAMs.
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global models, the capital costs in the “DNE21 þ V.12A”, “IMAGE
3.0”, and “MESSAGEix-GLOBIOM_1.0” change across regions as well
as over time, while in “REMIND 1.6” the cost is assumed to be
constant over regions and time. In the remaining three global
models (i.e., “GCAM4.2_ADVANCE”, “GEM-E3”, “POLES MILES”, and
“WITCH-GLOBIOM 4.4”) the capital cost is designed to change
either across regions or over time. Of the six national IAMs, the
Japanese model “AIM/Enduse[Japan]” and the two Indian models,
“AIM/E-India [IIMA]” and “India MARKAL”, assume that the capital
Fig. 5. Capital cost of gas combined cycle pow
costs remain constant over the period 2010 to 2050, while the other
three generally assume decreasing costs over time.

For the same region, capital cost of a technology vary signifi-
cantly among different IAMs (both global and national). To illus-
trate the capital cost range across IAMs for certain regions, Figs. 4
and 5 respectively show the capital cost of PV and gas combined
cycle (CC) power plants for the six studied regions. For comparison,
data from a range of technology assessments including IEA [16,17],
EIA [31], DIW [18] and GEA [19] are also shown in the figures.
er plants in selected regions across IAMs.
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Figs. 4 and 5 visually demonstrate the wide range of capital cost
adopted by the IAMs for the six regions. For both PV and gas CC
power plants, the highest cost is roughly about 3 times higher than
the low end.

Three observations emerge from this comparison. First, the
capital cost assumed in the different IAMs vary significantly. For
example, “MESSAGEix-GLOBIOM_1.0” for gas CC is relatively lower
than all the other IAMs and marks the lower end of the spectrum
while “DNE21þ” and “GCAM4.2_ADVANCE” show the highest
capital cost assumptions. The capital cost used in the two Indian
models “AIM/E-India [IIMA]” and “India MARKAL” fall into the
upper part and the middle of the range, respectively. Thus, a large
spread in cost assumptions across national models from the same
country is possible.

Second, for the PV technology, most models assume a quick
reduction of capital cost before 2020, generally converging to about
1000e1500 $/kW. The only exception is the Indian model “AIM/E-
India [IIMA]”, which adopt a constant capital cost for PV until 2050.

Third, the model “DNE21 þ V.12A” (a Japanese model with
global coverage) has two variants of CC technology (i.e., conven-
tional CC and advanced CC). The advanced CC has the highest
capital cost of CC for all the six regions, while the capital cost of
conventional CC quite represents the average cost of the rest global
models. If excluding the advanced CC in “DNE21 þ V.12A”, among
global IAMs the “GCAM4.2_ADVANCE” has the highest capital cost
for CC for almost all the regions except for Brazil.

These observations translate into two broader takeaways. First,
while the spread of capital cost assumptions across IAMs is large,
the variation across the other sources reviewed [16e19,31] is
almost as large. Second, in case of multiple national models, the
spread between them can be as large as between the global and
national IAMs.
4.2. O&M cost

O&M costs are usually assumed to be a fixed percentage of the
capital cost in IAMs that does not change over time. In the majority
of IAMs this percentage is identical in all regions, while in a few
Fig. 6. O&M cost as a percentage of capital cost fo
cases the percentage varies. Using the example of gas power plants
(without CCS), Figs. 6 and 7 demonstrate the two alternatives
respectively.

The ratio of O&M cost to capital cost ranges between 1% and 7%
among the IAMs. As a reference, IEA [16,17], DIW [18] and GEA [19]
report a percentage of 3e6%. While most IAMs assume that the
ratio of O&M cost to capital cost is uniform across regions, in
“WITCH-GLOBIOM 4.4” the ratios are region-dependent which
generally is in line with the IEA [16,17] assessment. From Fig. 7, one
interesting observation is that unlike for the other regions, this
ratio used by “WITCH-GLOBIOM 4.4” and IEA [16,17] assessment for
Brazil show a large difference, 1% for “WITCH-GLOBIOM 4.4” and
4e5% for the IEA.
4.3. Conversion efficiency

Conversion efficiency as reported by IAMs are so-called net ef-
ficiencies after subtraction of any internal losses due to fuel con-
ditioning, pumping, etc. In addition, it is important to note that the
efficiencies are typically not the design efficiencies, of e.g. a steam
cycle, but rather average efficiencies across all modes of operation.
For all reviewed IAMs, the conversion efficiency of technology is an
exogenous input to the model and evolves over time reflecting
expected efficiency improvements. However, the models then
choose between available technology options with different effi-
ciency, which can be interpreted as a form of endogenous tech-
nological change.

Similar to the capital cost, the conversion efficiency may also be
assumed variable or constant across regions and over time (for
some models, a convergence is assumed across regions in a certain
future time, e.g. 2025 in REMIND 1.6).

Using the technology of gas combined cycle power plants as an
example, Table 3 presents the conversion efficiency patterns across
the different IAMs. All the global IAMs assume that the conversion
efficiency of technologies increases over time with the magnitude
of change varying substantially. In contrast, most national IAMs
assume a constant efficiency, including “BLUES”, “AIM/Enduse
[Japan]”, “AIM/E-India [IIMA]” and “India MARKAL”. It is also worth
r gas power plants e constant across regions.



Fig. 7. O&M cost as a percentage of capital cost for gas power plants e varying across regions.

Table 3
Conversion efficiency patterns across the IAMs (for gas combined cycle power
plants).

IAMs Region Time (2010e2050)

Change across
regions

Change over
time

Change
trends

Global DNE21 þ V.12A No Yes Increase
GCAM4.2_ADVANCE No Yes Increase
GEM-E3 No Yes Increase
IMAGE 3.0 Yes Yes Increase
MESSAGEix-
GLOBIOM_1.0

Yes Yes[1] Increase

POLES MILES No Yes Increase
REMIND 1.6 Yes Yes Increase
WITCH-GLOBIOM 4.4 Yes Yes Increase

National BLUES N/A No Constant
IPAC-AIM/
technology_V1.0

N/A Yes Increase

AIM/Enduse[Japan] N/A No Constant
DNE21 þ V.MILES N/A Yes Increase
AIM/E-India [IIMA] N/A No Constant
India MARKAL N/A No Constant

Note: [1] for regions of Brazil, eastern Europe, Japan and the US, the “MESSAGEix-
GLOBIOM_1.0” assumes that the conversion efficiency remains the same over time.
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noting that in four of the global models, namely “DNE21 þ V.12A”,
“GCAM4.2_ADVANCE”, “GEM-E3” and “POLES MILES”, the effi-
ciency is assumed to be identical across regions for new vintages.

Fig. 8 presents the conversion efficiency of gas combined cycle
power plants assumed in the IAMs for the six studied regions.

From Fig. 8, it can be seen that three of the models
(“DNE21 þ V.12A”, “AIM/Enduse[Japan]”, “IPAC-AIM/tech-
nology_V1.0”) in contrast to the others include multiple types of
combined cycle power plants with different conversion efficiencies
which span almost the entire range of efficiencies of the other
models. The national models are usually found within the range of
the global models. One exception is the efficiency of advanced CC
power plants assumed in China's IPACmodel. To summarize, quite a
wide gap of conversion efficiencies across IAMs exists, roughly
ranging from 45% to 60% for technology of combined cycle. How-
ever, to a good degree the range can be associated with the
representation of different types of combined cycle plants in some
IAMs.

4.4. Technology lifetime

IAMs usually assume that the lifetime of a given technology does
not change over time. The only exception is “POLES MILES” for the
technology of biomass with CCS, assuming an increase of lifetime
from 20 years in 2010 to 25 years in 2050.

Typically, the models explicitly track individual vintages of po-
wer plants. For most models, after the lifetime the capacity of
certain technologies (e.g., power plants) falls to zero; in the model
“GCAM4.2_ADVANCE” the existing stock is assumed to retire ac-
cording to non-linear smooth functions over the lifetime;
“DNE21 þ V.12A” and “MESSAGEix-GLOBIOM_1.0” allow early
shutdown of power plants.

Table 4 summarizes the lifetime of various electricity generating
technologies across the reviewed IAMs. A wide spread of assump-
tions on technology lifetimes among these IAMs is observed. For
instance, “GCAM4.2_ADVANCE” tends to assume a significantly
longer technology lifetime than most of the other models. For
combustion-based electricity generation technologies (i.e., coal, gas
and biomass), “MESSAGEix-GLOBIOM_1.0” marks the lower end of
the spectrum, assuming relatively shorter lifetimes, corresponding
to only about two-fifth to two-thirds of those assumed by “GCA-
M4.2_ADVANCE”. The lifetimes assumed in the national IAMs
generally fall into the spread of lifetimes of the global models. In
other words, there is no systematic difference in the assumed
technology lifetimes between national and global IAMs.

The technology lifetimes assumed in global IAMs are usually
kept constant across regions. The only exception is that of nuclear
power plants assumed in “MESSAGEix-GLOBIOM_1.0” in which
three different lifetimes (40/50/60 years) are assumed for its eleven
regions, with longer lifetimes for developed regions and shorter for
emerging economies and developing regions.

It is worth noting that, in some IAMs, different lifetimes are
assumed for different technology variants, such as the gas power
plants (with CCS) in the model of “REMIND 1.6”, the gas (without
CCS) and hydro power plants in the Brazil model “BLUES”, and gas
power plants (without CCS) and CSP in the “POLES MILES”.



Fig. 8. Conversion efficiency of gas combined cycle (CC) power plants in selected regions across IAMs.
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Only six models include the geothermal power generation
technologies, namely “GCAM4.2_ADVANCE”, “MESSAGEix-GLO-
BIOM_1.0”, “REMIND 1.6”, “POLES MILES”, “IPAC-AIM/tech-
nology_V1.0” and “AIM/Enduse[Japan]”.

4.5. Levelised cost

As mentioned before, some IAMs assume higher capital costs
along with longer lifetimes (e.g., “GCAM4.2_ADVANCE”) compared
to models with lower capital costs and shorter lifetimes (e.g.,
“MESSAGEix-GLOBIOM_1.0"). To take these partly counter-acting
effects into account and thus allow for a comparison of competi-
tiveness across IAMs, levelised cost of electricity (LCOE) e

excluding fuel costs e is calculated for twelve power generating
technologies, including coal IGCC and PC, gas combined cycle (CC),
gas combustion turbine (CT), nuclear, biomass, Hydro, PV, CSP,
wind offshore, wind onshore and geothermal.

To avoid confusion with the standard LCOE metric henceforth
this metric will be referred to as “Levelized Capital and O&M costs
of Electricity (LCOMCE)”. Fuel costs are excluded, because these



Table 4
Lifetime of electricity generation technologies across the IAMs.

IAMs Electricity generation technologies

Coal Gas Biomass PV CSP Wind Nuclear Hydro Geo-thermal

w/o CCS CCS w/o CCS CCS w/o CCS CCS

Global DNE21 þ V.12A 40 40 40 40 40 40 20 n/a 20 50 inf n/a
GCAM4.2_ADVANCE 60 60 45 45 60 60 30 30 30 60 inf 30
GEM-E3 30/40[1] 30/40[1] 30 30 n/a n/a 20 25 25 50 n/a n/a
IMAGE 3.0 40 40 40 40 40 40 25 25 25 60 80 n/a
MESSAGEix-GLOBIOM_1.0 30 30 30 30 25/30[2] 25 30 30 20/30[1] 40/50/60[3] 60 30
POLES MILES 30 30 25/30[1] 25 20/25[2] 20/25[2] 25 25/30[1] 20 40 50 30
REMIND 1.6 40 40 30/35[1] 35 40 40 30 30 25 40 70 30
WITCH-GLOBIOM 4.4 46 46 25 25 25 25 22 22 31 46 54 n/a

National BLUES 40 40 25/30[1] 40 30 n/a 25 30 25 50 40/50/60[1] n/a
IPAC-AIM/technology_V1.0 35 35 30 30 30 30 25 25 25 50 50 30
PRIMES_2015 30/40[1] 30/40[1] 30 30 n/a n/a 20 25 25 50 n/a n/a
AIM/E-India [IIMA] 35 35 30 30 25 n/a 25 25 25 40 70 n/a
India MARKAL 30 n/a 25 n/a 25 n/a 25 25 25 40 50 n/a
AIM/Enduse[Japan] 40 40 40 40 40 40 20 20 20 40/60[1] 40 40

Lifetime range 30e60 30e60 25e45 25e45 20e60 20e60 20e30 20e30 20e31 40e60 40e80 30e40

Note: [1] varying by technology variants; [2] varying across time; [3] varying by regions. inf means that the lifetime of a technology for modeling purposes is unlimited.
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have been shown to differ significantly across IAMs as well as across
different scenarios (e.g., Ref. [32]). LCOMCE is calculated based on
Equation (1) below [15]:

LCOMCE ¼
Pn

t¼0½ðCapitalt þ O&MtÞ � ð1þ rÞ�t �
Pn

t¼18760� CFt � ð1þ rÞ�t (1)

where “Capitalt” and “O&Mt”denote the capital cost and O&M cost
of that technology in year “t” respectively, with a unit of “USD/kWe”
(assuming constant annual O&M cost during the lifetime of a
technology); CFt is the capacity factor of that technology; “n”means
the lifetime of a technology; “r” is discount rate, 5% in this study.

Figs. 9 and 10 show the calculated LCOMCE for PV and gas
combined cycle (CC) technologies, respectively. In the calculation,
the capacity factors reported by EIA [33] for the six regions were
used for all models (see details in Appendix D). The calculated
LCOMCE for the other power generating technologies are presented
in Appendix D of this paper.

Two key observations are worth noting from the calculation of
LCOMCE. First, the overall range of LCOMCE across all models is
found to be smaller than their capital costs gaps (e.g. the range
across the models “GCAM4.2_ADVANCE”, “REMIND 1.6” and
“MESSAGEix-GLOBIOM_1.0”). However, the calculated LCOMCE
ranges are still quite wide. Using PV and gas combined cycle (CC) as
examples, the highest value is roughly twice the lowest on average
(except for the LCOMCE of advanced CC assumed in the
“DNE21 þ V.12A” model).

Second, there is also a significant gap of calculated LCOMCE
among the selected technology assessments, namely the IEA
[16,17], the EIA [31] and the DIW [18]. The LCOMCE obtained from
the three references varies by a factor of about 2.8 for PV, and by a
factor of about 1.5 for the technology of gas combined cycle. The
wide range of techno-economic assumptions identified by these
studies may explain to some extent the significant difference of
such assumptions across the various IAMs.

5. Summary and concluding remarks

A comprehensive comparison and analysis of technology rep-
resentations and techno-economic assumptions for electricity
generation technologies across fifteen selected global and national
IAMs has been presented. The comparison includes capital cost,
operating and maintenance (O&M) costs, conversion efficiency,
lifetime and, as an aggregate quantity, Levelised Capital and O&M
costs of Electricity (LCOMCE) of technologies. Regionally, six major
economies, Brazil, China, the EU, India, Japan and the US, are
distinguished which are all among the top ten GHG emitting re-
gions in the world.

Large differences both in the structural representation of tech-
nology and its numerical parameterization across the national and
global IAMs were found. At the same time, the review makes clear
that just looking at the numbers is not enough, in particular when it
comes to comparing assumptions across different models, as this
may lead to wrong conclusions. In addition to the numbers, the
rationale of projecting techno-economic parameters into the future
is key to put the numbers into context and to enable a meaningful
comparison across different IAMs.

Also, it is important to keep in mind that a certain technology in
one model is not competing with technologies in other models, but
with other technologies within the same model. Thus, the relative
differences between different technologies in the same model are
important for the decision making within the model, not the dif-
ferences across models. In other words, if in one model technology
costs are a factor of 2 lower compared to another model across the
board, but the relative differences in costs across technologies are
similar in both models, the resulting technology portfolios can
actually be quite similar. Yet, the resulting total investments in the
electricity sector would be different by a factor of 2 in such a sit-
uation if demand levels are similar.

When it comes to developing harmonized quantitative techno-
economic assumptions across multiple models, caution should be
exercised. First, the methods of projecting technological change are
quite different across models which is in part related to the tech-
nology resolution of different models. For example, in somemodels
efficiency of coal power plants changes while it does not in others.
The latter case is often found in combination with representing
different variants of the same technology (e.g., different steam cycle
configurations of coal-fired power plants) such that the change in
the shares of the different power plant types leads effectively to a
change in the average efficiency. Similarly, costs are either assumed
to be static or change over time. Therefore, a harmonized set of
techno-economic assumptions would need to be customized to the
representation of technology and the associated projection method
used by a specific model. Second, given that cost and performance
of one technology compared to other technologies is what matters
in a model, taking into account the interaction of harmonized



Fig. 9. LCOMCE of PV power plants in selected regions across IAMs.
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technologies with non-harmonized technologies is important. As
an illustration, if techno-economic assumptions for power gener-
ation technologies should be harmonized, this will not only have an
implication for the competition among power plants, but also be-
tween power plants and technologies that use electricity and the
associated electricity saving measures. Thus, if cost and perfor-
mance of power plants is adjusted substantially, a sizeable effect on
the deployment of (possibly non-harmonized) energy efficiency
options might be found.
From a practical perspective, developing qualitative or semi-
quantitative guidelines on the direction of technological change is
a useful direction to take. Such an approach was chosen in the so-
called Shared Socio-economic Pathways (SSPs) with qualitative
tables providing guidance on the development of technologies in
different parts of the energy and also land-use system (see
supplementary material of Riahi et al. [34]). Going beyond this
qualitative approach by providing indicative quantitative infor-
mation to reduce the ambiguity of interpreting the qualitative



Fig. 10. LCOMCE of gas combined cycle (CC) power plants in selected regions across IAMs.
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guidance is a useful extension to consider.
Therefore, publishing techno-economic parameters together

with documentation of the technology representation as well as
the exact definitions of the parameters will allow an open discus-
sion of these assumptions. The latter seems particularly relevant for
improving comparability of assumptions across national and global
IAMs. On the one hand, including a regional differentiation of
techno-economic parameters that better reflects national circum-
stances at present will improve realism of global IAMs. On the other
hand, energy technologies are rarely developed and deployed at
scale in single countries in isolation. Therefore, it is valuable for
national modeling teams to connect the development of assump-
tions into the future to global storylines and scenario analyses that
reflect the international dimension of technology development and
diffusion.
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