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Abstract 27 

In this paper, we identified seven ecological network analysis (ENA) metrics that, in our 28 

opinion, have high potential to provide useful and practical information for 29 

environmental decision-makers and stakeholders. Measurement and quantification of the 30 

network indicators requires that an ecosystem level assessment is implemented.  The ENA 31 

metrics convey the status of the ecological system state variables, and mostly, the flows 32 

and relations between the various nodes of the network.  The seven metrics are: 1) 33 

Average Path Length (APL), 2) Finn Cycling Index (FCI), 3) Mean Trophic level (MTL), 34 

4) Detritivory to Herbivory ratio (D:H), 5) Keystoneness, 6) Structural Information (SI), 35 

and 7) Flow-based Information indices.  The procedure for calculating each metric is 36 

detailed along with a short evaluation of their potential assessment of environmental 37 

status. 38 

 39 

Keywords: Ecological Network Analysis; Cycling; Trophic Length; Marine and Coastal 40 

Environment; Food web 41 

 42 

1.0 Introduction 43 

Ecological network modeling and analysis is used to characterize and compare the organization 44 

and functioning of ecosystems, and it is most often applied to study food webs (Ulanowicz 45 

1986, Baird and Ulanowicz 1993, Fath and Patten 1999, Borrett et al. 2018).  A strength of 46 

Ecological Network Analysis (ENA) is the generation of multiple whole-network metrics that 47 

may be useful for food web assessment and management (Niquil et al. 2012, Tomczack et al. 48 

2013, Heymans et al. 2016, Heymans and Tomczack 2016, Lau et al. 2017, de Jonge et al. 49 

2012, accepted).  The Schleswig-Holstein Agency for Coastal Defence, National Park and 50 

Marine Conservation and the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und 51 

Meeresforschung Wattenmeerstation hosted a workshop on ENA from 25–27 September 2017 52 

on the barrier Island of Sylt between the North Sea and the Wadden Sea.  The focus of the 53 

workshop was to determine how to reach a broader audience, specifically environmental 54 

managers and decision-makers, with network tools and perspectives.   55 
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To reach this broader audience, it was evident that the managers must be amenable and 56 

receptive to the ‘ecosystem approach’.  We also recognized that because it is holistic and 57 

comprehensive it requires an expensive and elaborate data gathering approach, which may or 58 

may not have already been part of the standard monitoring.  Therefore, if only quick and crude 59 

answers are solicited for individual species or interactions, perhaps this is not the best approach.  60 

However, history shows that fragmented solutions from reductionistic approaches that do not 61 

take ecosystem effects into account tend to spawn numerous unpleasant and unintended 62 

consequences (e.g., fossil fuels as energy source led to climate change, fertilizers for agriculture 63 

led to eutrophication, CFC as a refrigerant led to ozone depletion, etc.).  The benefits of an 64 

ecosystem approach are further considered here, and we take for granted that managers 65 

appreciate the advantages of such comprehensive approaches as they facilitate understanding 66 

of ecosystem function.  Therefore, management aims toward viable ecosystems and the 67 

sustainability of ecosystem services. However, such approaches are not always easy to 68 

understand or implement in management (Helsenfeld and Enserink 2008), and this prompted 69 

the authors to provide information on how to use a network approach for this purpose.  70 

The field of ecosystem service indicators is well developing (e.g., Layke et al. 2012, Vo et al. 71 

2012, van Oudenhoven et al. 2018), partially due to their prominence in the Millennium 72 

Ecosystem Assessments (MEA 2005, Acosta et al. 2016). The provisioning of such services 73 

depends on functioning ecosystems, and this functionality may be indicated and explained 74 

through ecosystem network metrics. Biotic and abiotic ecosystem parts, their interlinkages and 75 

connectivity to other ecosystems provide the information to calculate numerous metrics, which 76 

have been broadly described in the literature in terms of their descriptive capacity of ecosystem 77 

functioning, health, development, or state in general. The applicability of these metrics to 78 

characterize ecosystems is underpinned by theory (e.g., Odum 1969, Patten 1978, Ulanowicz 79 

1986). However, to facilitate their incorporation into management, they need to fulfill certain 80 

criteria to become robust indicators. This includes sensitivity to change, having a sound 81 

theoretical basis, describing directional change, being easily communicable to managers and 82 

policy makers, and being integrative and indicative to a known response to a disturbance (Dale 83 

and Beyeler 2001).  84 

The workshop was structured around framing presentations about the current state of ecological 85 

network analysis in marine systems.  These were followed by break-out sessions to brainstorm 86 

on specific network indicators and to select the most useful and appropriate for application in 87 

marine ecosystem management.  We first started with a long, but not exhaustive, list of network 88 
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indicators (Table 1, for a more comprehensive list of network indicators see Borrett and Lau 89 

2014 or Kazanci and Ma 2015).  From this break-out session emerged a short list of 7 network 90 

indicators (Table 2) that all build on the basic properties of ecosystem networks such as flow, 91 

connections, throughflow, and biomass.  Another plenary session was used to discuss in depth 92 

the definition and meaning of these indicators specifically as though they would be 93 

communicated to a decision-maker.  That session was organized around the following question: 94 

“The objective of this discussion is to put ENA in a management perspective and to discuss 95 

how, and if, (selected) ecosystem indices provide insight into ecosystem functioning and 96 

ecosystem services, which are collectively a function of complex interactions among species 97 

and their abiotic environment. Is it possible to identify an index, or a suite of indices, useful 98 

for management purposes?  This follows from the broader question: Can the indices be 99 

operationalized?  In other words, are the metrics responsive enough to serve as indicators of 100 

change and thereby inform decision-makers how to better manage their systems?” 101 

Table 1. Step one. List of network properties that emerged from workshop brainstorming 102 
session 103 

- Number of compartments (n) 

- Connectance (%) 

- Mean Node degree, In degree, Out degree 

- Average Path Length (APL) 

- Finn Cycling Index (FCI) 

- Mean Trophic Level (MTL) 

- Relative Ascendency (ASC) 

- Relative Overhead (Φ) 

- Robustness 

- Relative Redundancy (R) 

- Total Systems Throughflow (TSTflow) and Total System Throughput (TSTput) 

- Indirect/direct relationships 

- Network homogenization 

- Network aggradation  

- Mutualism and Synergism ratios 

- Keystoneness 

- Structural Information (SI) 
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- Flow Diversity  

- Detritivory/Herbivory ratio (D:H) 

 104 

Table 2.  Step two. Refined list of network indicators as having most relevance and importance 105 

for decision makers implementing an ecosystem approach, with primary reference for each – 106 

see below for more detail on each metric. 107 

1. Average Path Length (APL)  Finn 1976 

2. Finn Cycling Index (FCI) Finn 1980 

3. Mean Trophic Level (MTL) Pauly et al. 1998 

4. Detritivory Herbivory ratio (D:H) Ulanowicz and Kay 1991 

5. Keystoneness Libralato et al. 2005 

6. Structural Information (SI) Ludovisi 2009 

7. Flow-based Information indices Ulanowicz et al. 2009 

 108 

This paper is a summary of those results.  The first section is an overview of the network 109 

mathematics used later in the paper.  This is followed by a description and application of each 110 

of the indicators in the management sphere, ending with a discussion of the application of each 111 

metric for environmental management, specifically, ocean and coastal management. 112 

 113 

2.0 Background to networks: 114 

Every system of compartments and connections can be realized as a network of nodes and arcs.  115 

There are numerous papers providing an overview to the network methods described herein.  116 

We refer the reader to Ulanowicz (1986), Fath and Patten (1999), and Fath et al. (2007).  A 117 

brief overview is given here to provide a common notation for discussion within this paper.  118 

Consider a network with n compartments or nodes, which can be represented as xi, for i=1 to 119 

n.  The flow or transaction of the energy–matter substance moving from node i to node j is 120 

given by fij and can be arranged into a matrix F containing all pairwise flows in the network1.  121 

                                                           
1 In some of the literature the flows are arranged from node j to node i for ecological reasons 
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In addition, these ecological or environmental systems are open to receive new input and thus 122 

generate also new output. Such flows that cross the system boundary are labelled zi and yi, for 123 

i=1 to n, respectively. In some ecosystem studies, yi is divided into export (ei) and respiration 124 

(ri) flows because the former is usable material outside the system, whereas the latter is heat 125 

lost which is unable to due further work.  Knowing the total amount of material or energy 126 

moving through each node and the entire network is an important indicator of the scale of 127 

activity within that system.  From the flow matrix and input/outputs, we can find this total 128 

activity going through any node as either the sum of all the flows into the node or all the flows 129 

out of the node.   130 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖 + ∑ 𝑓𝑓𝑗𝑗𝑗𝑗𝑛𝑛
𝑗𝑗=1       (1) 131 

𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑦𝑦𝑖𝑖 + ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1       (2) 132 

At steady state,  133 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑖𝑖      (3) 134 

The Total System Throughflow (TSTflow) is the sum of all the individual nodal flows, given 135 

by: 136 

𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1       (4) 137 

This differs from the measure of Total System Throughput (TSTput) which is the sum of all 138 

nodal inflows and outflows, including the boundary flows (or sum inputs): 139 

𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝑧𝑧𝑗𝑗𝑛𝑛
𝑗𝑗=1 + ∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 + ∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1      (5) 140 

The main difference is that TSTput includes both the input and output plus the internal flows, 141 

whereas TSTflow is the sum of all the inflows or the sum of all the outflows (this avoids double 142 

counting the same flow as inflows and also as outflows).  One advantage of the TSTput approach 143 

is that it is not required for the system to be in steady state to calculate it (but see also de Jonge 144 

et al. accepted A who demonstrate that balancing of the flows of living and non-living 145 

compartments or nodes is always preferred).  Note that by definition TSTput ≥ TSTflow.   146 

As stated above, node throughflow (Ti) is the contribution of each node to the system activity.  147 

When the network model represents a food web, Ti is equivalent to the gross production of the 148 

node (Ulanowicz and Puccia 1990), and when the model currency is energy, Ti has been 149 
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interpreted as the node power in thermodynamic terms (Patten 1995).  Further, it can be used 150 

as a global centrality metric that indicates the relative importance of each node in a system 151 

(Borrett 2013). TSTflow and TSTput are then network-level indicators of the size and activity of 152 

the system, and depending on the model specifics they indicate the amount of production or 153 

power the system contains (Finn 1976; Ulanowicz and Norden 1990). 154 

The flows in the Flow matrix (F) capture the direct transactions, but network analysis can be 155 

used to determine indirect flow paths and influences as well.  Indirect impacts refers to flows 156 

between nodes that are not in direct exchange but that influence each other through paths of 157 

length 2 or greater.  The matrix algebra of network analysis allows us to calculate these indirect 158 

contributions, accordingly when the network is at steady state. First, we calculate a non-159 

dimensional, output oriented flow intensity matrix designated by B, where bij=fij/Ti.  A 160 

complementary input-oriented non-dimensionalized flow matrix can also be constructed, 161 

where b′ij=fij/Tj.  Ecological Network Analysis (ENA, see Fath and Patten 1999) tells us that 162 

taking powers of this matrix gives the flow intensities along path lengths commensurate with 163 

the power, i.e., B2 are two-step pathways, B3 three-step, etc.  Another important discovery of 164 

ENA is that it is possible to simultaneously consider all powers in one term by summing the 165 

infinite series which converges to a composite matrix, we call, N, such that  166 

𝑁𝑁 = ∑ 𝐵𝐵𝑚𝑚∞
𝑚𝑚=0 = 𝐵𝐵0 + 𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3 + 𝐵𝐵4 + ⋯  (6) 167 

The N matrix is termed the integral flow matrix because it sums or integrates the flow along 168 

the direct and all indirect pathways.  Due to the open and dissipative thermodynamic nature of 169 

ecosystems and food webs, the infinite series in eq (6) converges.  The exact value of this 170 

convergent infinite series is given by the identity in eq (7), which highlights the similarity of 171 

the N matrix to the Leontief inverse in economic input-output analysis (Hannon 1973). 172 

𝑁𝑁 = ∑ 𝐵𝐵𝑚𝑚∞
𝑚𝑚=0 = (𝐼𝐼 − 𝐵𝐵)−1     (7) 173 

These basic network building blocks identifying direct and indirect pathways are used to 174 

develop the specific network metrics described below.   175 

 176 

3.0 Network Metrics 177 

3.1 Average Path Length 178 
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Average Path Length (APL) is defined as the total system throughflow divided by the total 179 

boundary input into the system (Finn 1976): 180 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
∑ 𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1

       (8) 181 

In Finn’s original interpretation (1976), this is the average number of paths a given unit of input 182 

(often carbon) will travel in the system before exiting the system.  More generally, it is an 183 

indicator of the amount of system activity (TSTflow) generated by each unit input into the 184 

system.  Since cycling contributes to overall system flow, a higher degree of cycling equates 185 

to a larger APL.  Thus, it is an indicator of the organization of the system and the system’s 186 

ability to do more work with given resources (the boundary input).  This is why Jørgensen et 187 

al. (2000) interpreted it as an indicator of system growth and development, which they renamed 188 

network aggradation. 189 

 190 

3.1.1 Relevance for stakeholders 191 

Assuming that most resource flows are scarce, the more impact each unit of boundary flow has 192 

within a system, the more the system will benefit.  APL is easy to measure and calculate.  It is 193 

intuitively easy to understand and communicate the meaning to others.  For example, in 194 

ecological terms the indicator shows that the higher the boundary flows are, the more external 195 

carbon is available for an ecosystem.  In this situation, APL will be lower when the internal 196 

TSTflow remains stable.  In contrast, if the internal TSTflow increases when the boundary inputs 197 

stay the same, then the system organization has developed in a way to make more or better use 198 

of the initial resource input.  In economic terms, this is conceptually similar to the multiplier 199 

effect, which is a measure of how many times a unit of currency that enters into a market will 200 

be exchanged before exiting that market.  The market boundaries are akin to the network system 201 

boundaries.  High multiplier values indicate healthy levels of cross-scale circulation and a 202 

robust internal economy. APL is expected to be higher in systems with higher diversity of flows 203 

and cycling (Christensen 1995) and decrease in the face of stress as found by Tecchio et al. 204 

(2015) and Schückel et al. (2015).  In ecosystems, a higher APL value does not necessarily 205 

indicate health, but the ability to generate flows within the system per a given boundary input. 206 

Changes in this relation may indicate increased or decreased boundary flows, or changes in the 207 

flow structure of the system, or both.   208 
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 209 

3.2 The Finn Cycling Index 210 

Finn (1976, 1980) proposed a method to calculate precisely the fraction of the total system 211 

throughflow (TSTflow) that is cycled in the network, in other words, how much of the flow 212 

would revisit the same node multiple times before exiting the system.  Cycled flow of node i 213 

(TSTci) can be calculated by the following formulation: 214 

𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑖𝑖 = ((𝑛𝑛𝑖𝑖𝑖𝑖 − 1) 𝑛𝑛𝑖𝑖𝑖𝑖⁄ )𝑇𝑇𝑖𝑖    (9) 215 

Finn Cycling Index can be calculated by the total cycling throughflow divided by total system 216 

throughflow: 217 

𝐹𝐹𝐹𝐹𝐹𝐹 = ∑𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

       (10) 218 

 219 

3.2.1 Relevance for stakeholders 220 

Cycling is tied to the average path length (APL) because greater cycling is one mechanism to 221 

increase TST without increasing boundary inputs.  Increased cycling means that the energy or 222 

material stays in the system longer.  For resources that have a positive impact on the system, 223 

cycling indicates that the internal flow organization allows for some degree of self-reliance 224 

(Ulanowicz 1983).  Other cases show a stressed system also exhibits higher levels of cycling 225 

(Scharler and Baird 2005, Tecchio et al. 2015). Systems with a low FCI but high throughflow 226 

are dependent on boundary flows to sustain a high level of throughflow (e.g., agricultural 227 

systems, systems that receive lots of waste (POC and DOC) such as Dollard in de Jonge et al. 228 

accepted and de Jonge and Schückel, submitted to OCMA).  Flows across the system boundary, 229 

in addition to the inner system structure, are therefore important determinants of whether 230 

changes in FCI are within a natural variability (stochastic impact of diurnal, seasonal, or 231 

ecological parameters), or may indicate a change in system state.  Although the property is 232 

dimensionless, some researchers urge caution when comparing FCI across systems (Heymans 233 

et al. 2014) because the chosen degree of aggregation of cycling during the network 234 

construction process influences the extent of the cycling. 235 

 236 

3.3 Mean Trophic Level (MTL), Mean Trophic Level of the Catch (MTLC) 237 
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The trophic level of an organism is the average position it occupies in a food chain.  Food 238 

chains start at trophic level 1 with primary producers such as plants, move to herbivores at level 239 

2, and predators at level 3 and typically finish with carnivores or apex predators at level 4 or 5. 240 

The path along the chain can form a one-way food “flow” (chain), or a food "web." Highly 241 

evolved and unstressed systems often have higher abundances and biomasses of high trophic 242 

level species. Most ecosystems feature considerable levels of omnivory, where omnivores feed 243 

on different trophic levels and therefore occupy themselves a trophic level somewhere in 244 

between (Raoux et al. in press). The trophic level, TL, for any consumer species (i) is calculated 245 

as:  246 

𝑇𝑇𝑇𝑇𝑖𝑖 = 1 + ∑ �𝑇𝑇𝑇𝑇𝑗𝑗 ∗ 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖�𝑗𝑗       (11) 247 

where, TLj is the fractional trophic level of the prey j, and DCij represents the fraction of j in 248 

the diet of i. 249 

The Mean Trophic Level of a system is calculated from the trophic positions of each system 250 

compartment and its relative contribution to the system biomass: 251 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝐵𝐵𝑖𝑖∗𝑇𝑇𝑇𝑇𝑖𝑖)𝑖𝑖
∑ 𝐵𝐵𝑖𝑖𝑖𝑖

       (12) 252 

where Bi and TLi are the biomasses and trophic levels of each of the contributing groups (i) of 253 

the system (Branch et al 2010, Shannon et al. 2014). 254 

While we recommend the use of MTL as a holistic indicator of the ecosystem functioning, the 255 

mean trophic level is often difficult to estimate.  It is often easier to calculate the Mean Trophic 256 

Level of the Catch, which is usually comprised of some species only, for which the landed 257 

biomass is, moreover, easily determined. For its calculation the yield replaces the biomass in 258 

the above formula: 259 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝑌𝑌𝑖𝑖∗𝑇𝑇𝑇𝑇𝑖𝑖)𝑖𝑖
∑ 𝑌𝑌𝑖𝑖𝑖𝑖

       (13) 260 

and Yi and TLi are the yields and trophic levels of the species that comprise the catches.  261 

Furthermore, the indicator is sensitive to the way the ecosystem is partitioned into functional 262 

groups (i.e., model topology), therefore the field will benefit with common and good standards 263 

in network creation (see e.g., Fath et al. 2007). 264 
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3.3.1 Relevance for stakeholders 265 

This index is often (see, e.g., Pauly et al. 1998) used in the assessment of sustainability in 266 

fisheries as its decrease over time this is considered to reflect the phenomenon of “fishing down 267 

the food web”, since fishing pressure depletes top-predators more severely than low-trophic 268 

level species. This concept, which assumes that the catch composition reflects general trends 269 

in the considered ecosystem, has been adopted by the Convention of Biological Diversity 270 

(CBD) to be “ready for global use” (BDI partnership 2010).  However, factors that determine 271 

the trophic composition of landings are complex and it may well be that a simple catch increase 272 

in low-trophic level species leads to lower MTLC values, while the top predator populations 273 

may still be doing well (see Essington et al. 2006).  MTL estimates derived from sound 274 

ecosystem surveys may provide a good picture of the ecosystem state. In this case, a higher 275 

MTL of an ecosystem indicates a higher proportion of higher trophic level species, which is in 276 

concordance of ecosystem succession to include comparatively more k-strategists (larger, 277 

slower growing species) as part of the ecosystem. The loss of toothed whales, large carnivorous 278 

sharks and fish, for instance, would decrease the MTL, and such a decrease could also be 279 

achieved by eliminating carnivorous fauna within any other invertebrate or vertebrate group.  280 

 281 

 3.4 Detritivory : Herbivory (D:H) ratio 282 

MTL describes how the consumers organize into food chains of various lengths, but does not 283 

describe to what extent these chains rely on the first trophic levels for energy and nutrients.  284 

The second trophic level of a food web can rely on two feeding modes, herbivory and 285 

detritivory. Herbivory is the consumption of autotrophic organisms, which are responsible for 286 

the carbon incorporation into the ecosystem through the process of photosynthesis, provide an 287 

important link between inorganic dissolved nutrients and biomass. These autotrophic 288 

organisms are in turn consumed by herbivorous consumers (grazers). Detritivory is the 289 

consumption of non-living organic matter, which can be composed of locally produced matter, 290 

through the processes of dejection and mortality, or it can be from allochthonous origin, 291 

through the process of importation of non-living material from adjacent environments (Postma 292 

1967). In most models, this non-living matter is either gathered into one compartment or 293 

separated into size-based or habitat-based compartments (e.g., Allesina et al. 2005). For 294 

example, to show the impact of classifying detritus, we refer to some specific studies.  The 295 

“particulate detritus” or “particulate organic matter” is usually composed of the matter whose 296 
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size is practically greater than 0.7 µm, and the “dissolved organic matter” is composed of those 297 

less than 0.7 µm (see Strickland and Parsons 1972 and Grasshoff et al. 1983).  The lower size 298 

limit corresponds to the lower pore diameter of, e.g., the GFF filters, GFC filters, or Millipore 299 

filters as widely used in oceanographic research. The compartment “particulate organic matter” 300 

(POC) should be divided into “suspended” (susPOC) and “sediment” particulate organic matter 301 

(sedPOC) since POC alternately can occur as sediment or be resuspended in association with 302 

inorganic sediment (e.g., Postma 1967, de Jonge 1995) and sediment inhabiting micro-algae 303 

(de Jonge 1995, de Jonge and van Beusekom 1995). 304 

To calculate the D/H ratio, the sum of all flows from non-living compartments within the 305 

system to consumers are divided by the sum of flows from all autotrophic compartments to 306 

consumers. Only internal consumers are considered (those belonging to the considered system). 307 

This can be done either using the matrix of flows directly or using the Lindeman spine (1942). 308 

A Lindeman spine is a linear chain, summarizing the food web, were each species is allocated 309 

to a discrete level (Baird and Ulanowicz, 1993). Because autotrophs and non-living detrital 310 

pools are separated at the first trophic level, the Lindeman spines identifies the flows entering 311 

the food web, originating from these 2 sources. In the example of two subsystems of the Sylt-312 

Rømø Bight given in Figure 1 (Baird et al., 2007), the flow of detritivory is 1523 mgC m–2 d–1 313 

in the mussel bed and 550 mgC m–2 d–1 for the Arenicola flat, and herbivory is respectively 314 

5350 and 599 mgC m–2 d–1 resulting in a D/H ratio of 0.28 and 0.9, respectively.  For the full 315 

food webs of three main reaches (Lower, Middle, Dollard) representing the main part of the 316 

Ems estuary, de Jonge et al. (accepted) found values ranging from 3.1 (Lower) – 4.3 (Middle) 317 

– 9.0 (Dollard) from the sea in an upstream direction indicating greater reliance on detritus 318 

based resources moving inward. 319 

 320 
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Figure 1. Lindeman spine of two subsystems of the Sylt-Rømø Bight. Flows are in mgC m–2 321 

d–1.  The boxes indicated D refer to the detrital pool in each subsystem, and the Roman 322 

numerals in the boxes of the Spine to discrete trophic levels. Percent values in Spine boxes 323 

refer to the efficiency of energy transfer between the integer trophic levels. From Baird et al., 324 

2007. 325 

 326 

3.4.1 Relevance for stakeholders 327 

Wiegert and Owen (1971) were first to publish on the importance of two parallel pathways 328 

fueling the food webs, one which relied on the consumption of living organisms (grazing-329 

predation base) and the other on the consumption of non-living material (detrital base). The 330 

D/H ratio is a means to describe which one of these two sources dominates. Some examples 331 

show that the ratio D/H reflects the availability of primary producers as a food source, with 332 

higher herbivory (low D/H) being associated with higher primary production (e.g., Chrystal 333 

and Scharler 2014, de Jonge et al. accepted), but this is not always the case. The example of 334 

the graminoid marshes ecosystem of the South Florida Everglades (Heymans et al., 2002) 335 

shows that a high D/H ratio can also be associated with a high primary production, when the 336 

plant material is not consumed directly, but only after breaking down and forming detritus.  337 

The measure is also high in cases when POC and DOC is transported into the system from 338 

algae production elsewhere – as is the case in the Florida Everglades and North Sea estuaries 339 

such as the Ems estuary.  This demonstrates the need for using this index in complement to 340 

flow information (e.g., primary production) to ascertain the relative importance of flows from 341 

primary producers and non-living modes. Odum (1969) describes the evolution of ecosystems 342 

from a linear chain to a complex web where flows do not rely only on direct primary producers 343 

but also on indirect detritus consumption. For this reason, detritivory has been considered as 344 

an indicator of maturity (Christensen 1995).  345 

 346 

3.5 Keystoneness 347 

There are multiple definitions of keystones in the ecological literature (Valls et al. 2005) with 348 

the main concept being that certain species play a particular role that is fundamental in 349 

structuring an ecosystem or exerts a strong impact on its function.  Paine (1969) defined 350 

keystoneness as species with a relatively small range of biomass that influences the community 351 
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structure by its predation on other species and thus has an outsized effect on diversity on 352 

community structure, functioning, and function.  Ecosystem engineers, on the other hand, alter 353 

the abiotic environment and thus enable many other organisms to develop a community that is 354 

adapted to these special conditions (Jones et al. 1994). Organisms such as reef building corals, 355 

bivalves, or macrophytes often form large aggregations and dominate a community in biomass 356 

or abundance attracting many organisms to settle because of offering shelter, food, and 357 

substrate.  In this way, the organisms provide opportunity for new organisms in a self-358 

reinforcing cycle that promotes biodiversity (Cazzolla Gatti et al. 2018).  These engineers, 359 

although of great relevance in terms of ecosystem structuring, are generally not considered 360 

keystone species due to their high biomass. 361 

 362 

Keystoneness has been identified on both a qualitative and a quantitative base. In experimental 363 

studies, mainly qualitative criteria such as the impact of a predator on species richness and 364 

species presence/absence were used to assess this special role (Paine 1994; Menge et al. 1995; 365 

Power et al. 1996; Estes et al. 1998). Since keystone species for a given system may change in 366 

space and time, the concept was criticized, and a general and consistent definition was 367 

postulated (i.e., Mills et al. 1993; Bond 2001). To support this effort, quantitative aspects of 368 

the definition were applied especially in energy flow models such as EcoPath (Ulanowicz and 369 

Puccia 1990, Christensen and Pauly 1992) or Ecological Network Analysis (ENA) (Fath and 370 

Patten, 1999, Jordán 2009) or some dynamic applications of these modelling tools such as 371 

Ecopath with Ecosim (EwE) (Libralato et al. 2005; Heymans et al. 2014; Valls et al. 2015).  372 

 373 

Within these models the trophic niche overlap of certain species was defined and formulated 374 

as an index. While there are a few different approaches to calculate keystoneness, here, we use 375 

the one by Libralato et al. (2005), which combines the indirect network relations proportional 376 

to the total biomass (i.e., big effects are offset if the biomass is also big).  This approach relies 377 

on the network-based methods described above: 378 

𝐾𝐾𝐾𝐾 = 𝑙𝑙𝑙𝑙𝑙𝑙[𝜀𝜀𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)]       (14) 379 

where, 380 

𝜀𝜀𝑖𝑖 = �∑ 𝑚𝑚𝑖𝑖𝑖𝑖
2

𝑖𝑖≠𝑗𝑗        (15) 381 

where, mij are the elements of the mixed trophic impact matrix (Ulanowicz and Puccia 1990). 382 
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The parameter pi relates to the relative biomass of species i with respect to the total biomass of 383 

all the components in the food web and is calculated from the following: 384 

𝑝𝑝𝑖𝑖 = 𝐵𝐵𝑖𝑖
∑ 𝐵𝐵𝑘𝑘𝑛𝑛
𝑘𝑘=1

        (16) 385 

In ENA the mixed trophic impact analysis was formulated as a special tool that compares the 386 

impacts a certain species has on all food web compartments (Ulanowicz and Puccia, 1990). 387 

Related to the target species the mixed trophic impact can be positive or negative. The target 388 

species can be involved in both direct (such as predation) or indirect (cascading, competition) 389 

processes and can thus exert bottom up or top down effects by positive and negative 390 

interactions (Bondavalli and Ulanowicz 1999). This technique is usable to any “focal” species, 391 

but for the identification of a keystone species further selection criteria are needed.  Although 392 

keystone species have been defined as those whose effect is disproportionately large relative 393 

to their abundance (Power et al. 1996), it appears that a threshold of abundance and time must 394 

be reached to result in strong cascading community effects (Konar, 2000). 395 

 396 

3.5.1 Relevance for stakeholders 397 

Food webs display the myriad interactions of different species or groups by their trophic 398 

interactions. These interactions relate to direct feeding or indirect feeding via cascading effects. 399 

Ranking species with the highest proportion of overlap identifies those exerting the highest 400 

impact on others in the ambient food web or ecosystem. If this degree of overlapping is 401 

combined with a relatively low biomass, then we can measure the interaction strength between 402 

a target species and all other species and denominate this particular species as a keystone 403 

species (Araújo et al. 2011).  From a stakeholders’ perspective, a keystone species may be of 404 

particular interest for conservation or sustainable management efforts, knowing, in fact, that 405 

the ‘species oriented’ keystone emerged from an analysis of whole ecosystem interactions. 406 

 407 

Entropy based indicators 408 

From a thermodynamic standpoint, ecosystems can be viewed as self-organizing systems able 409 

to maintain themselves in a far-from-equilibrium condition by exploiting the entropy 410 

exchanges with the surrounding environment (Nicolis and Prigogine 1977; Schrödinger 1944; 411 

Ulanowicz and Hannon 1987). A flow of low-entropy energy is needed in order to sustain the 412 

self-organization of organisms, the trophic network and the matter cycling (Morowitz 1968). 413 
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Several entropy/information-based functions have been proposed as ecological indicators 414 

and/or orientors (Fath et al. 2004; Jørgensen et al. 2007) and they have been used to describe 415 

the developmental state of an ecosystem, as well as its complexity. Among them, we can 416 

mention Structural Information (Ludovisi 2009) and flow-based information indices (Average 417 

Mutual Information and related indicators such as Flow Diversity and Overhead (Ulanowicz 418 

1986). 419 

3.6. Structural Information 420 

Structural Information (SI) refers to the food web relations and connections, such that a more 421 

complex structure (more feeding pathways and levels – see Figure 2) has more information.  422 

One approach to measure this has been derived within the framework of the exergy concept.  423 

Starting from the basic formulation of exergy for ecosystems (Mejer and Jørgensen 1979): 424 
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where R is the gas constant, T the absolute temperature and ci the concentration of the i-th 426 

ecosystem component in suitable units (with the subscript e indicating the reference 427 

equilibrium state). Ludovisi (2009) proposed to express exergy as a function of three terms, as 428 

follows: 429 
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 432 

where C=Σici is the total concentration of components, pi=ci/C is the relative abundance of the 433 

i-th component.  434 

The three terms of the expression are the total concentration of components (the size term, C), 435 

a term accounting for the change in the total concentration of components (the concentration 436 

term, X), and the Structural Information (SI), which expresses the relative information arising 437 

from the change in the matter apportionment between equilibrium (the reference state) and the 438 

actual state. The calculation of the terms of the equation requires that the equilibrium 439 

concentration (ci) of all the relevant ecosystem components are estimated. The estimate of these 440 

Size (C) 

 

 

Structural Information (SI) Concentration (X) 
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values for organisms and particulate organic matter in general represents the most troublesome 441 

step of the calculation. To face this issue, Ludovisi (2009) suggested applying the condition of 442 

thermodynamic equilibrium to the ultimate reaction (e.g., oxidation) which leads a system to 443 

thermodynamic equilibrium. Such a calculation leads to virtual equivalent concentration at 444 

equilibrium (VECE) values, which are inversely dependent on the body size of organisms. For 445 

example, in a surface water environment, the VECE values can be estimated as 10−12 cells l−1 446 

for bacteria and 10−26 Ind. l−1 for fish.  447 

Therefore, the three terms of the exergy, and particularly SI, are strongly dependent on 448 

community composition, especially in terms of size spectrum, community structure, and 449 

diversity (Figure 2). Since large-sized organisms typically dominate in late stages of ecological 450 

succession (Odum 1969), SI is expected to increase along with ecosystem development. The 451 

soundness of SI as ecological orientor has been shown in theoretical studies (Jørgensen et al. 452 

2010; Ludovisi 2009; Ludovisi and Jørgensen 2009), and its effectiveness as ecological 453 

indicator has been tested by application to simulated (Ludovisi 2009) and real case studies, also 454 

in comparison with other thermodynamic orientors (Ludovisi 2014; Ludovisi et al. 2012). 455 

 456 

 457 

Figure 2. Structural Information increases with increasing abundance of large-sized species, 458 

which mostly appear at high trophic levels. 459 

 460 
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 461 

 462 

3.6.1 Relevance for stakeholders 463 

Besides contributing to fill the gap between indication based on network composition (type and 464 

importance of network compartments) and flow structure (type and importance of flows among 465 

compartments), the integration of the above entropy/information measures is also suitable to 466 

be implemented for the purposes of the Water Framework Directive (WFD) and the Marine 467 

Strategy Framework Directive (MSFD), as the data needed for calculation are collected 468 

according to the current standard protocols used for the assessment of the ecological status of 469 

water bodies or habitats. In particular, the use of SI could help to overcome drawbacks entailed 470 

in the methodologies currently used to assess the ecological state of ecosystems, as explained 471 

further below.  472 

 473 

3.7 7. Flow-based Information indices 474 

There are several information based indicators that rely on the configuration of flow 475 

interactions between pairs of nodes.  Here, we consider Flow diversity (H), Development 476 

Capacity (DC), Average Mutual Information (AMI), Ascendency (ASC or A), Overhead (Φ), 477 

Redundancy (R), and Robustness.  These indicators are used to assess the growth and 478 

development of an ecosystem, the balance between levels of diversity and flexibility 479 

(resilience), and streamlining of energy flows (efficiency). Both measures are combined into 480 

one robustness metric using Ulanowicz’ Window of Vitality for networks (Ulanowicz et al. 481 

2009). Ulanowicz (2009) showed that the organization of flows in empirical ecosystem 482 

networks exhibit a robust trade-off – hypothesized as a result of long-term adaptive and 483 

evolutionary pressures – such that an extremely high efficiency, or an extremely high flow 484 

redundancy is not reached. Biodiversity, in networks revealed as the number of nodes and 485 

flows, and in food web (or other weighted) networks the diversity of connections between 486 

nodes, are important concepts for the resilience and efficiency of ecosystems. The flow 487 

diversity is calculated by applying Shannon’s diversity index to flows (MacArthur 1955):  488 
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where Tij denotes a flow from source i to recipient j, T.. a summation over flows in the system, 490 

and the log is base 2. Note that in the calculation of all information based flow indices, T.. 491 



19 
 

equates to TSTput. Due to the skewed distribution of flow magnitudes in weighted networks, 492 

the flow distribution in ecosystem networks is such that about 20% of flows contribute 80% to 493 

H (Scharler and Fath 2012). To scale the diversity index to the size of the ecosystem, k can be 494 

replaced with T.., which results in the metric Development Capacity (DC):  495 
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Most often, T.. is several orders larger than H, and consequently variations in the value of H 497 

may be masked by a trend in T... To focus on trends in the diversity of flows, it is therefore 498 

advisable to report H rather than DC.  499 

A more detailed description of information generated from pairwise interactions of nodes is 500 

revealed by the Average Mutual Information (AMI) (Ulanowicz 1986). The information is 501 

generated by the joint probability of a certain flow occurring (Tij/T..), the marginal probability 502 

of a flow entering the consumer j (T.j/T..), and the conditional probability that Tij leaves its 503 

source node i (Tij/T.i) (Scharler 2008). The three different parts join to the AMI index:  504 
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 Also, this index may be scaled to the system size by replacing k with T.., resulting in the 506 

Ascendency (ASC, or A) (Ulanowicz 1986, 1997):  507 
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The same considerations apply as to the interpretation of DC, since also this metric consists of 509 

two parts with very different magnitudes (AMI and T..).  510 

The two metrics H and AMI are related such that H reflects the upper boundary to AMI in each 511 

ecosystem (Ulanowicz 1986). There is always a difference between H and AMI, or DC and 512 

ASC, and this difference is important for the resilience of ecosystems. It represents redundant 513 

flows, which are additional (parallel) pathways between nodes. These can be calculated for 514 

internal flows, respiration, and other boundary flows (imports and exports), collectively called 515 

Overhead. The unscaled and scaled version are calculated as follows:  516 
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This overhead is important to the resilience of a network, as highly efficient ones (high AMI 519 

value) are perceived to be prone to disturbance. Redundancy measures the useful array of 520 

parallel pathways along which biomass may exchange between the compartments (Ulanowicz, 521 

1986). Due to the larger number of parallel pathways, greater redundancy corresponds to a 522 

system that should be able maintain stability when it is perturbed (See Figure 3 for variation in 523 

food webs that display high ascendency versus high overhead). 524 

  525 

Figure 3. On the left, the food web with mostly simple “food chain” connections will be more 526 

predictable than the flows on the right; and therefore, the ascendency (AMI) is higher.  527 

However, the lack of redundancy on the left makes the overhead lower.  The figure on the right 528 

shows multiple pathways that lowers the proportion of ascendency (AMI) and raises that of 529 

overhead. 530 

 531 

 532 

In fact, the ratio AMI/H, or ASC/DC has been widely used to characterize efficiency, 533 

resilience, and even health of ecosystems (Christian et al. 2005, Ulanowicz 2009), and this ratio 534 

is known to be resilient to uncertainty in model parameterization (Kaufman and Borrett 2010). 535 

The ratio has subsequently been incorporated into a single measure, a system robustness index, 536 

to capture these opposing tendencies in system organization (Ulanowicz 2009). This index has 537 
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previously been called fitness, but also labelled sustainability, resilience, and robustness.   We 538 

prefer the name robustness which has a different connotation than the other terms already used 539 

for various other ecological concepts (Figure 4):  540 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  −𝑎𝑎 ln 𝑎𝑎 ,     (25)  541 

 542 

where 𝑎𝑎 = 𝐴𝐴
𝐷𝐷𝐷𝐷

       (26) 543 

 544 

Empirical networks (see de Jonge et al. accepted B) revealed that ecosystems tend to 545 

congregate on top of the resulting curve showing highest robustness values (Figure 4).  This 546 

led to an interpretation that viable ecosystems consist of different types of pathways, some of 547 

which are efficient, and others that are redundant in the sense of representing parallel, or 548 

additional, pathways. Networks with flow constraints that are on the whole intermediate, but 549 

consist of efficient and redundant pathways are therefore thought to be optimal.  550 

 551 

 552 

Figure 4. Theoretical curve showing the information-based approach tradeoff between system 553 

efficiency and redundancies (Ulanowicz 2009).  Evidence from empirical ecological networks 554 

cluster around the optimum range and therefore do not exhibit maximization of efficiency or 555 

redundancy. 556 

 557 

3.7.1 Relevance for stakeholders 558 
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Such system level metrics give us additional information to species and community-level 559 

indicators and allow to gauge the overall structure and functionality of ecosystems. An increase 560 

or decrease in the value of AMI, H, or AMI/H is determined by the individual flows structure, 561 

such that changes in large flows result in a larger change of the indices compared to changes 562 

in small flows. A change in the indices therefore does not necessarily indicate a change in the 563 

health of an ecosystem, unless the metric change is caused by a decrease or extinction of several 564 

species producing small flows as opposed to a decrease in large flows (usually originating from 565 

bacteria, phytoplankton, or detritus). However, the metrics serve to identify the changing state 566 

of a system. Whether a state change is detrimental or beneficial depends on the present state 567 

(e.g., natural, impacted), and on which flows caused the change in the metrics (Ludovisi and 568 

Scharler 2017, de Jonge and Schückel submitted). Management actions are in general targeted 569 

at the node or species level, and these metrics show the consequences of such actions on the 570 

overall ecosystem robustness.  For instance through exploratory studies, such actions can be 571 

incorporated into the ecosystem to explore whether they will lead its robustness towards 572 

efficiency or resilience (e.g., Mukherjee et al. 2015, Ludovisi and Scharler 2017).  573 

 574 

4.0 Discussion 575 

The definition of indicators for describing changes in the functioning of ecosystems has been 576 

a central question for researchers in ecology and fisheries sciences during the last two decades. 577 

A good indicator should be simple, specific, and sensitive to changes (natural and human 578 

induced perturbations) in ecosystems caused by different pressures (eutrophication, dredging, 579 

fisheries, etc.) to define the pressure-state change relationships as exemplified by de Jonge and 580 

Schückel (submitted, their Fig. 1 and 3).  There is usually a clear tension and difference 581 

between what policy makers and decision makers ask for to facilitate their work process and 582 

what scientists deliver. Management decisions related to ecosystem assessments are more 583 

difficult compared with those related to single species assessments, but even then the decision 584 

makers need preferably clear-cut suggestions and ways of implementing them. They explicitly 585 

do not like to engage with the many versions, uncertainties, exceptions, pros and cons and 586 

caveats that scientists are very good in delivering. The difference between the demands and the 587 

offers easily leads to confusion and even friction. The crucial point is that, when asked for help, 588 

scientists typically stick to their own nuanced and detailed views while the decision makers 589 

(and other stakeholders) look for clear cut answers. A better bridge is needed between the two 590 

worlds. 591 
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Ecosystem based management received a boost when its approach was woven into the 592 

Convention of Biological Diversity, which was signed in 1993.  There was a subsequent rise 593 

in demand for indicators to assess the ‘structure’ and the ‘functioning’ of ecosystems linked 594 

with the publication in 2000 of the European Water Framework Directive (WFD) and later in 595 

2008 of the European Marine Framework Directive (MSFD), which settled one descriptor 596 

based on the food-web and one on the species. Several actions are worth to be mentioned here. 597 

Some were individual such as de Jonge et al. (2003, 2012, accepted B, submitted to this SI) 598 

and de Jonge (2007) in connection to the WFD.  Patricio et al. (2009) have helped advance the 599 

use of indicators (particularly benthic ones) applied to estuarine water quality. Also, Baird 600 

(2012; et al. 2001) promoted the use of ecological network indicators in studies of the Sylt-601 

Rømø Bight.  Regarding the MSFD again, groups of researchers gathered to coordinate answers 602 

to this demand and published the results in the context of EU collaborative projects (e.g., 603 

Devotes, Lynam et al. 2016, Pirrodi et al. 2016), or ICES groups (e.g., Tam et al. 2017), or 604 

OSPAR groups (e.g. Rombouts et al 2013, Safi et al, submitted to this SI). One of the early 605 

coordinated efforts defined a list of indicators in ecosystem-based management using food web 606 

functioning of fishing activities (called EAF for Ecosystem Approach to Fisheries).  From the 607 

end of the 2000s, members of this consortium set up large inter-ecosystem comparisons of 608 

marine exploited systems through the group IndiSeas, whose work recently led to the 609 

publication of numerous articles (e.g., Fu et al. 2018, Reed et al. 2016, Coll et al. 2016, Bundy 610 

et al. 2016). Among the different indicators considered, the ENA indices appeared as a new 611 

way of describing the flows in the entire system (“functional” and “holistic” indicators), even 612 

if more research was still considered as needed to make them operational. 613 

Decision makers are looking for characteristic or SMART indicators (Doran, 1981) that at the 614 

same time are also quite specific and sound (ROARS; see e.g., www.mnestudies.com), are 615 

‘simple, cheap, easy to understand’ (de Jonge et al. 2012), and thus, appealing for the short-616 

term, high pressure needs of the decision-maker (de Jonge et al. 2003). The specifications of 617 

the required indicators are presented in Box #1. Some further requirements for indicators are 618 

that they i) are limited in number, ii) comprise a mix of quantitative and qualitative indicators, 619 

iii) are practical & simple (direct the problem and the solution), iv) are easily communicable, 620 

and v) inform human society about the situation. It is not possible to meet all these requirements 621 

in this paper, but a start will be made by confronting what we have available with the 622 

requirements set by the users. Based on the list of suggested indicators (Table 2), we attempt 623 

to test their suitability preliminarily against the presented requirements in Box #1. All of the 624 

http://www.mnestudies.com/
http://www.mnestudies.com/
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indicators presented are important, but they are at the moment not easily understandable to 625 

non-experts and thus also not all easily communicable (Table 3).  626 

Box #1 627 

Qualities of Good Indicators: ROARS 
Relevant:       It relates to an important part of an objective or output 
Objective:      Based on facts, rather than feelings or impressions and thus measurable 
Available:      Data should be readily available or reasonably measurable 
Realistic:        It should not be too difficult or too expensive to collect the information 
Specific:        The measured changes should be expressed in precise terms 

Characteristics of Good indicators are also SMART: 
Specific:        Measured changes should be expressed in precise terms and suggest the direction of actions 
Measurable:   Indicators should be related to things that can be measured in an unambiguous way 
Achievable:   Indicators should be reasonable and possible to reach, and therefore sensitive to changes 
Replicable:    Measurements should be the same when made by different people using the same method 
Time-bound: There should be a time limit within which changes are expected and measured 
 

 628 

Table 3. Assessment of indicators for aspects critical to management and communication with 629 

managers.  Table values generated from expert input of the paper authors. 630 

Indicator 1)  
APL 

2) 
FCI 

3) 
MTL 

4) 
D/H 

5) 
Keystone 

6) 
SI 

7) 
Φ/DC 
A/DC 

Relevant ++ ++ + + − + ++ 
Objective ++ ++ + + + ++ ++ 
Available + −/+ + + + − +/− 
Realistic + − − + − + + 
Specific2 + − − + +/− +/− + 
Measurable + + + + + +/− + 
Achievable + + + + +/− + + 
Replicable + + + ++ + + ++ 
Communicable3 ++ + + ++ ++ +/− + 

Most attractive of all the Table 3 indices is the fact that they are replicable and not subjective, 631 

given that the basic data set is good (flow matrix and energetics table). However, all are affected 632 

by the degree of aggregation of the network and the flow balancing of the living and the non-633 

living compartments.  634 

                                                           
2 Specific is the last aspect of ROARS and the first of SMART, and is only presented once here 
3 We have omitted the last aspect of SMART, Time-bound, which does not seem relevant here, but have 
instead included the characteristic if it is communicable. 
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4.1 Average Path Length 635 

The APL index is for general purposes very useful. It basically indicates what part of the 636 

boundary input is not used by the ecosystem and calculates an index based on ratio of 637 

throughflow to boundary flow. The maximum of this value is reached when the boundary flow 638 

approaches zero and the APL approaches infinity (∞). This occurs when there is significant 639 

cycling such that a high internal flow is maintained for a small input.  Thus, a high or increasing 640 

APL reflects a rather developed or developing system.  The index is thus dependent on good 641 

estimates of ecosystem boundary input values. One weakness, similar to any of the flow-based 642 

methods, is that if the study cannot provide accurate enough values for external carbon inputs 643 

then users should be careful in using the index. A second weak point for decision makers is 644 

that there is no generic optimum value or minimum value available, but that their magnitudes 645 

are system specific.  646 

4.2 Finn Cycling Index 647 

The recycling is a property of ecosystem functioning which is central in trophic ecology 648 

studies. The recycling is associated with the ability of a system to re-use material and avoid 649 

loss, leading to a better efficiency. It has also been associated with a buffer reaction to human 650 

induced system stress, with recycling leading to a greater resistance (Saint-Béat et al 2015). 651 

Observations are numerous of observed effects of pressures on the ecosystem leading to higher 652 

recycling. The concept was already proposed in Odum (1985), and was then quantified in 653 

numerous applications of the FCI calculation in inter-system comparisons with differences of 654 

pressures. Recently, de Jonge et al. (accepted A) demonstrated a strong increase of FCI in an 655 

estuary in upstream direction where the concentrations of non-living carbon and turbidity 656 

naturally increased. Tecchio et al. (2016) observed a higher FCI after the building of the 657 

Port2000 extension of the harbor of Le Havre, in the Seine estuary.   Higher FCI corresponds 658 

to higher re-use, but as stated above this may also occur when the system is stressed so it is 659 

necessary to know the context of the system which produces the FCI value.  A disadvantage of 660 

the indicator is that also here there is no clear reference value.  661 

4.3 Mean Trophic Level 662 

The MTL describes how the consumers organize in shorter or longer chains (Shannon et al. 663 

2014, Coll et al. 2016).  This is a simple and intuitive metric that gives an overall impression 664 
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of the complexity of the food web.  A system with a higher MTL implies a more complex 665 

ecosystem.  While the index does not have any immediate management implication on its own, 666 

it could be used for long term monitoring to indicate if there is a harmful disturbance in the 667 

system, which would result in a decreasing MTL of the catch (MTLC).  The “Fishing down the 668 

food web” paradigm (Pauly et al. 1998) is based on the assumption that increasing fishing 669 

pressure leads to a continuous reduction in MTLC since the high TL species are removed first. 670 

While this reduction in MTLC has been observed in many fisheries, the mechanism behind the 671 

observed decrease in MTLC may differ between systems. 672 

Often fishermen increasingly target the low trophic level species because of their higher overall 673 

productivity, which also results in a decrease in MTLC but does not necessarily mean 674 

overfishing of the high TL species (Sethi et al. 2010, Rehren et al. 2018, Tuda et al. 2016). 675 

Branch et al. (2010) show that the negative trend in global MTLC observed at the end of the 676 

1990s is no longer supported by the most recent decades of data. Looking at the Swedish 677 

fishery, Hornborg et al. (2012) also show that there was no correlation between landings and 678 

survey data MTL and conclude that the trend in landing MTL appears to be, at most, a weak 679 

measure of the ecosystem state and pressures on biodiversity in the area.  Shannon et al. (2014) 680 

further evaluated a number of trophic level indicators, including MTL, and conclude that they 681 

can be useful, especially when a trophic level threshold (excluding lower trophic levels) is 682 

used.  We may conclude from the above that the use of MTLC as an indicator of the state of an 683 

ecosystem can be meaningful if additional information is available on the relative contribution 684 

of the different species to the MTL. 685 

4.4 D/H ratio 686 

This ratio, indicating the importance of detritus compared to that of primary production 687 

products is very appealing because it can easily be explained to non-experts. However, the 688 

index should preferably be used in complement to other information to provide the required 689 

detail of interpretation. For example, the average path length will give valuable information on 690 

the residence time of the matter within the food-web, but it will not describe if this matter 691 

comes directly from primary producers or from detritus, produced locally (local recycling) or 692 

imported (allochthonous recycling). This is why several articles describing food web 693 

functioning in different situations have joined these indices together (e.g., Horn et al 2017, de 694 

la Vega et al., in press). In their article comparing three tidal ecosystems of the Wadden Sea, 695 

de la Vega et al. (in press) showed that main features of system functioning such as the D/H 696 
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ratio are influenced by the dominant habitat type of the studied area. Specifically, de la Vega 697 

observed that the Jade Bay system, dominated by mudflats relied on detritivory pathways (D/H 698 

ratio 2.44) whereas the Sylt-Rømø Bight and the Norderaue tidal basin are dominated by 699 

herbivory pathways (D/H ration 0.9 and 0.87, respectively) attributed due to high standing 700 

stocks of suspension feeding mussel beds. However, within any existing ecosystem, the typical 701 

flow configuration is a web, rather than a chain. An increase in the D/H ratio of an ecosystem 702 

between two points in time is to be interpreted as a relative change between that of natural 703 

variability and that caused by extreme events including human intervention. If primary 704 

productivity is low, then it also indicates that the system can sustain its activity (throughflow) 705 

only by increasing detritivory, which in turn will increase the internal cycling of material (and 706 

therefore the FCI). This also has implications for the detritivory as a buffering capacity as 707 

indicated by de Jonge and Schückel (submitted to OCMA for this SI).  If the main detritus 708 

producers are plants or algae, then the extent of detritivory will decrease with a decrease in 709 

primary productivity. It is therefore important to have good knowledge of the flow structure 710 

between individual nodes for the interpretation of network indices.  711 

4.5 Keystoneness 712 

This index represents the overlap of trophic interactions and indicates a mutual influence 713 

between species. It falls in the category ‘easy to understand and to communicate to decision 714 

makers’.  Sensitivity analysis regarding this parameter is an ongoing area of research.  The 715 

index, however, has potential when it comes to exploring effects of specific management or 716 

conservation measures where the composition of species and their key role capacities come 717 

into play. Some prominent examples for ecosystem changes due to man-made removal/addition 718 

of keystone species have been reported from terrestrial and marine systems. These are the 719 

extinction of wolves in Yellowstone Park in 1920 and its reintroduction as a management 720 

measure in 1995 (i.e. Berger et al. 2008; Berger & Smith 2005), and the extirpation of sea- 721 

otters at the American west coast from 1741 until 1910, its influence on the kelp beds and its 722 

recovery due to protection measures in 1911 (Estes and Palmisano, 1974; Kenyon 1969). In 723 

both cases the consequences of the recovery of the keystone species on the total ecosystem 724 

could have been predicted by using the proposed index and combining it with an ENA- impact 725 

analysis. 726 

Jordán (2009) describes three options to understand networks and their central players better. 727 

Aggregation of the network does not facilitate to find a keystone species because the bias of 728 
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the biological content is potentially large. The focus on an isolated subgraph of the network 729 

leads to problems explaining how the neglected external effects are influencing members of 730 

the subsystem. Another method is to consider the heterogeneity of the network, to determine 731 

critical nodes and deriving indices from it. Considering the number of neighbors leads to define 732 

the degree (D) as the number of neighbors of a graph node to define the positional importance 733 

or the “topological importance”. Some keystone species such as the Asteroid Pisaster 734 

ochraceus (Paine 1969) has only few direct partners but a rich indirect interaction system. 735 

Therefore, also the neighbors of these neighbors must be included in the assessment of 736 

keystoneness.  737 

Biologists are often faced to document a cascade effect in a food web after a species is removed 738 

by local extirpation or extinction. Decisions on measures about the re-colonization process of 739 

wolves in Europe as well as the conflict between fishermen and seals in the Wadden Sea or 740 

other coastal areas could be facilitated by using this special index combined with ENA models. 741 

4.6 Structural Information 742 

This index provides information complimentary to that of other entropy-based indicators.  743 

However, it also clearly adds a challenge for decision makers to fully understand them, in that 744 

the information provided is less easily interpretable than that of the structural indicators 745 

discussed so far. Structural Information provides an interpretation of the system’s organization 746 

from the biomass distribution between smaller r- and larger K-strategists, and insofar is a 747 

valuable contribution to understanding of its structure.  748 

In the context of Ecological Network Analysis, SI can be of particular interest, as it provides a 749 

complimentary information to that provided by other entropy-based indicators typically used 750 

to measure the information embedded in the flow structure of a network, i.e. Average Mutual 751 

Information (AMI) and Flow Diversity (H). Altogether, these indicators can give a 752 

comprehensive picture of an ecological network, describing the information embedded in 753 

network composition (SI), network connectivity and equitability (H) and network determinacy 754 

(AMI). Moreover, it has been shown (Ludovisi and Scharler 2017) that their responses along a 755 

putative successional pathway give rise to a pattern that conceptually agrees with the current 756 

ecosystem theory. Since these indices share the common currency of entropy/information, they 757 

lend themselves to be combined in order to obtain a comprehensive indicator of network 758 

complexity. As shown by Scharler and Ludovisi (Sylt ENA workshop, 2017), a particular 759 
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combination of these indicators can represent a promising orientor of network development, 760 

and thus a potential suitable indicator of ecosystem’s health state. 761 

 762 

The main focus of ecological state assessment is to reach a single, objective as possible and 763 

comprehensive figure able to express the condition of an entire ecosystem. The current standard 764 

protocols based on the bioindication concept use the abundance data of organisms belonging 765 

to various ecological categories (macrophytes, fish, macrobenthos, diatoms, etc.) to give partial 766 

judgements of ecosystem state. The partial judgements are then often weighted and averaged 767 

in order to reach a unique index representative of ecosystem state. Such a procedure entails 768 

several practical drawbacks for any single category, mostly dealing with the incomplete 769 

knowledge of ecological optimum/tolerance by species, uncertainty in taxonomic attribution, 770 

problems in extending bioindicator values to different biogeographical area. And, what if the 771 

partial judgments obtained for different ecological categories are very different from one 772 

another? Is it ecologically proper to average the response of different ecological categories as 773 

if they were independent of one another? 774 

 775 

Moreover, and more conceptually, is a judgement based on species tolerance of certain 776 

conditions a true indicator of ecological quality?  In this respect, indicators reflecting the 777 

distance covered by an ecosystem away from the ‘dead state’ (i.e. a state without life), such as 778 

SI, could represent useful and practical tools to reach a reliable assessment of ecosystem state 779 

and quality. A case study showing the potential effectiveness of SI as a tool for ecosystem state 780 

assessment is reported in Ludovisi (2014). The author calculated SI for three Byelorussian 781 

lakes, which are adjacent, connected to each other and have similar morphology, hydrology 782 

and hydro-chemical features, but very different trophic state and biocoenosis. The results 783 

showed that SI, calculated on the basis of the whole biocoenosis (from algae to fish and 784 

macrophytes), increased clearly from the hypereutrophic Lake Batorin to the mesotrophic Lake 785 

Myastro and to the oligotrophic Lake Naroch, reflecting the marked changes in the dominance 786 

of the various ecological categories. From a theoretical point of view, such results confirms the 787 

thought of Odum (1969) that eutrophication pushes an ecosystem back, in successional terms, 788 

to a younger or 'bloom' state”. From a more practical standpoint, SI gives a measure of how 789 

much an ecosystem has moved along the successional path, and thus represents one of the most 790 

‘objective’ measures of ecological state and quality. 791 

 792 
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4.7 Information based indicators 793 

This category consists of several indices such as the flow diversity (H), the ascendency (A), 794 

the overhead or loss of information in redundant pathways (Φ), the development capacity (DC), 795 

the average mutual information (AMI), or the internal redundancy of the flows (R). Assessing 796 

the system functioning and structure (e.g., by the relative overhead, flow diversity H, or 797 

robustness) is something the EU Commission appreciates (EC, 2000, 2008). Apart from the 798 

flow diversity also the relative ascendency (A/DC and which is also related to the Robustness) 799 

and relative overhead (Φ/DC) are very interesting for decision making because they indicate 800 

the efficiency (A/DC) and the overall resilience (Φ/DC) of ecosystems. The latter two indices 801 

are even more interesting since they scale between 0 and 1 because 1 = A/DC + Φ/DC. This 802 

definite scale is something decision makers appreciate because it facilitates interpretation.  803 

Further, there are indications that the relative overhead (Φ/DC) can be related to the species 804 

diversity (de Jonge and Schückel in prep). Due to the work on the Robustness indicator we 805 

know that Φ/DC has an optimum (0.61, the highest point on the robustness curve) (Ulanowicz 806 

2009). The robustness indicator has the advantage of a known optimum value, which  facilitates 807 

studies related to the effects of system stress as well as foreseen measures to diminish it and 808 

makes it very attractive one for decision makers. Redundancy represents only part of the Φ/DC 809 

but indicates the system’s potential flexibility to respond to perturbations (Heymans 2003, 810 

Heymans et al. 2014, Heymans and Tomczak 2016, Tomczak et al. 2013). Both Φ/DC and 811 

A/DC seem thus very suitable as an overall characterization of the resilience of any ecosystem.  812 

Taken into the robustness metric, an optimum value is apparent, and a region where viable 813 

ecosystems exist (Ulanowicz 2009).  814 

Numerous studied have been led recently in order to test the hypothesis that such indices may 815 

be sensitive to different sources of stress. In the case of the Seine Estuary, where the pressure 816 

is forming a gradient from North (high pressure, close the harbor of Le Havre) to South (low 817 

pressure, protected area), the system showed in the same direction a rising activity (TSTflow) 818 

associated with a rising diversity of flows (H) (Tecchio et al. 2016). In neighboring Bay of 819 

Seine, the simulation of the reef effect, associated with the future building of offshore wind 820 

farms, was shown to increase the total activity of the system but to decrease the relative 821 

ascendency (A/DC) showing a less mature system associated to this new hard substrate 822 

appearance in the middle of a soft bottom habitat (Raoux et al, 2018).  Tam et al. (2017) 823 

evaluated MTL, FCI, and information based indicators within a long list of proposed indicators 824 
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and received good marks in “availability” and “conceptual” items but low rates in 825 

“communication” and “management”.  Lynam et al. (2016) reviewed available modelling 826 

methods applied to ecosystems and discussed ENA in the context of simulation of climate 827 

change effects on the distribution of species.  For example, the Bay of Biscay ecosystem was 828 

studied to investigate the effect of climate change on the distribution of small pelagic fish and 829 

its consequences on food web functioning (Chaalali et al. 2016).  There is also a growing 830 

literature to apply this information based approach to economic studies (Kharrazi et al. 2017, 831 

Kharrazi et al. 2013, Goerner et al. 2015). 832 

4.8 Future Directions 833 

While we intend that this paper provide useful overview and guidance to practitioners of 834 

ecosystem management, we recognize that application and implementation of these tools and 835 

metrics is still progressing.  There are several challenges that remain to be addressed to improve 836 

the use and communication of the metrics.  From a scientific perspective, future work should 837 

focus on further developing the underlying theory behind the indicators to better understand 838 

the causative factors that influence the values.  This should only help our ability to implement 839 

and communicate the metrics.  Second, there is also the question of model and empirical data 840 

sensitivity.  This gets to the question of conceptualizing the system, setting the system 841 

boundary, and selecting the nodes to be included.  For example, it is known that model 842 

aggregation (lower diversity of species represented in the model) can affect the metric values 843 

(Fath et al. 2013, Baird et al. 2009, Allesina et al. 2005, Abarca-Arenas and Ulanowicz 2002, 844 

de Jonge et al. accepted), and uncertainty in model parameterization (e.g., flow estimations) 845 

can also impact ENA results (Kones et al. 2009, Kaufman and Borrett 2010, Hines et al. 2018, 846 

Waspe et al. 2018). Heymans et al. (2014) demonstrate the difficulties that arise from modeler 847 

bias resulting in model topology when comparing across ecosystems.  While there is yet no 848 

settled theory of modelling about how to construct the model, some guidance is provided in 849 

Fath et al. (2007).   850 

A few studies (Heymans et al. 2007, Heymans and Tomczak 2016, Tomczak et al. 2013) have 851 

used network metrics to detect change of ecosystem state in terms of flipping from one regime 852 

to another.  However, this is an area of open research as thresholds for regime shifts are difficult 853 

to discern. For example, is it possible to say that an FCI = 0.25 is healthy, yet, 0.24 is not?  We 854 

are doubtful that this is the case given the “grey zone” in both the ecosystems and the indicators 855 

used to assess them and would warn against spending too much time looking for generic 856 
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thresholds.  A more fruitful approach is to use them for comparative analyses across time and 857 

space.  Benchmarks of healthy and unhealthy ecosystems could be used as well as observations 858 

of dynamic trends the ecosystem undergoes Lau et al. 2017).  859 

Lastly, we advise decision makers not to seek one magic bullet.  Ecosystems are not only 860 

complex but also at the same time adaptive (Levin, 1998).  It is only sensible that it would take 861 

multiple dimensions and methods to evaluate and interpret the high number of interactions and 862 

feedbacks.  Therefore, it should be recognized that not one indicator addresses all the concerns, 863 

but rather that they are complementary and should be used as a toolbox of approaches.  The 864 

advantage is that all are calculated from the same food web monitoring and datasets, such that 865 

once one has the data needed to calculate one the others will follow.  Data needed for 866 

calculation can be collected according to current protocols used for the assessment of the 867 

ecological status of water bodies or habitats.  For example, in the North Sea region, existing 868 

monitoring programs imposed by MSFD and other EU Directives, such as the Habitats 869 

Directive (92/43/EEC), the Birds Directive (2009/147/EC) and the Water Framework Directive 870 

(WFD, Directive 2000/60/EC) or the Trilateral Monitoring Assessment Program in the Wadden 871 

Sea (TMAP) are compatible with requirements to build up a network.  ENA software exists 872 

(Fath and Borrett 2006, Borrett and Lau 2014) to make these calculations all in one software 873 

package.  Therefore, a critical piece for success is continuous ecosystem-scale monitoring 874 

necessary to implement the Ecological Network Analysis metrics described herein, and the 875 

successful translation of scientific results to the management and policy realm. 876 

 877 

5.0 Conclusions  878 

There is a movement in the policy community to address the functional aspects of ecosystems 879 

using holistic frameworks such as the Water Framework Directive (WFD, Directive 880 

2000/60/EC), the Marine Strategy Framework Directive (MSFD), the Sustainable 881 

Development Goals (SDGs), and numerous other approaches from around the world.  The 882 

present paper contributes to the ongoing requirements in politics and management to assess 883 

and manage marine ecosystems in a holistic way specifically using food web indicators and a 884 

holistic ecosystems approach (Tam et al. 2017). 885 
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The short list of indicators provided here contains some indicators that can be applied more or 886 

less immediately as a first step to create a foundation for EBM by an unambiguous ecosystem 887 

assessment as demanded by the European Union (e.g. EC, 2000, 2008). These indicators are 888 

Φ/DC, A/DC, D/H, H, APL, MTL, and FCI because these can easily be communicated with 889 

decision makers. Because the other indicators presented here are more complex and/or more 890 

theoretical, they are seen as foundational for additional indices in future assessments.  891 

The metrics described here are not a complete not a definite list of the ecological network 892 

metrics, but they were singled out by experts at the workshop as metrics that have been widely 893 

applied and have the greatest potential to convey meaningful and understandable information 894 

to stakeholders and decision-makers.  These metrics have been used in numerous studies as 895 

described above and we have confidence that they provide useful and trustworthy information 896 

and insight for better ecosystem management.  We anticipate that with further application and 897 

discussion of additional network metrics more will be incorporated in environmental 898 

management.  This can only be ascertained following more use of the approaches, which we 899 

greatly encourage. 900 
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