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Global Gridded Crop Models (GGCMs) are increasingly applied for assessing climate change impacts, adaptation,
environmental impacts of agricultural production. In combination with integrated assessment or economic
modeling they deliver data for projecting future land-use change. Even though global gridded crop models are often
based on detailed field-scale models or have implemented similar modeling principles in other ecosystem models,
global-scale models are subject to substantial uncertainties from both model structure and parametrization as well
as from calibration and input data quality (Müller et al. 2017). AgMIP’s Global Gridded Crop Model Intercomparison
(GGCMI) has thus set out to intercompare GGCMs in order to evaluate model performance, describe model
uncertainties, identify inconsistencies within the ensemble and (ideally) underlying reasons, and to ultimately
improve models and modeling capacities (Elliott et al. 2015).
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The CTWN-A data cube: Regular disturbances of 31-year AgMERRA
• C: 360, 510, 660, 810 ppm (nC=4)
• T: -1°C to +6°C, skipping 5°C (nT=7)
• W: -50 to +30, skipping -40 + fully irrigated (nW=9)
• N: 10, 60, 200 kgN/ha (nN=3)
• A: regain lost growing season under warming (yes/no)
• 12 GGCMs participated, for up to 5 crops with up to 1404 global 30-year simulations, 7 primary output variables
• 4 GGCMs contributed with small samples only (<100 simulations) and are ignored here (APSIM-UGOE, EPIC-IIASA, 

ORCHIDEE-crop)  for the others, gaps in the data sample (by protocol design (e.g. skipping T=5) or submitting 
less-dense data samples), have been filled with the GGCM-specific CTNW crop yield emulators (Franke et al., 
submitted).

The CTWN-A Experiment

Background

Impact Response Surfaces and Response types

Fig. 1: In the 4-dimensional CTWN space, model responses can be described with 6 impact response surfaces (IRS).
Examples for winter wheat simulations of LPJmL (left) and pDSSAT (right) at global-scale aggregation. All changes
relative to C360, T0, W0, N200.

Fig. 2: For each IRS, the response ratio (RR) is
computed as the average distance between the
smallest and largest values (percent changes to
baseline).
To avoid huge relative changes, response ratios are
defined relative to the sum of the response in both
dimensions (RT and RW in this example). A balanced
sensitivity in both directions is thus represented by
the value RR=0.5, no sensitivity to T relative to W
by RR=0 and no sensitivity to W relative to T by
RR=1.
The response ratio can be computed at global-scale
aggregation or for each 0.5° grid cell.

Fig. 3: IRS differ by model as shown for the T vs. W IRS (left) and the W vs. N (right) for maize. Not all GGCMs are
capable of computing crop yields at different N levels and are thus excluded in the right panel. For example, PEPIC
has a approximately balance sensitivity to changes in T and W (left panel) but little sensitivity to changes in W
compared to changes in N (right panel), whereas LPJmL is more balanced in both IRS.

Fig. 4 (right): Distribution and
median (green lines)
response ratios (RR) in the T
vs. W IRS for spring wheat.
Models differ in their median
sensitivity and the
distribution. pDSSAT has the
lowest sensitivity to changes
in T relative to W (median of
0.40) and also the widest
distribution; LPJ-GUESS,
CARAIB, and PROMET have
the highest sensitivity
(median of 0.53). A value of
0.5 indicates balanced
sensitivity to changes in T
and W across the T x W IRS.

The output data ensemble of the GGCMI CTWN-A simulations is an unprecedentedly rich data base for agricultural
analyses with global coverage. Data allow for emulation of model responses (Franke et al. submitted) for application
in e.g. IAMs and gap filling. With these data we can distinguish response types in models as well as regions,
understanding regional patterns of crop sensitivities to changes in climate. Even though the range of disturbances in
the different dimensions are not directly comparable, the structured, protocol-based analysis allows for identifying
regional and general model differences that can help to further identify reasons for model disagreement.
The GGCMI CTWN-A data set has been little explored so far. Beyond output data on crop yields, there are several
other variables that allow for analyses much beyond what is shown here. Some work is ongoing but more can be
done. If interested, please get in touch.

Conclusion and outlook
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Fig. 6: Different GGCMs show distinct spatial patterns in the dominant response dimension (CTWN). GEPIC,
LPJmL, and PEPIC show very good agreement in spatial patterns and dominant change dimensions. LPJ-GUESS is
most sensitive to changes in N and has hardly any dominant sensitivity to changes in the W dimension. Maps
show patterns for spring wheat.

Fig. 5: Spatial patterns of spring wheat response ratios (RRs) for EPIC-TAMU for the 6 IRS in the CTWN space. Yields
are less sensitive to changes in C compared to changes in T in all regions (at W0 and N200; top right) but can be
more sensitive to changes in C than to changes in N in some regions (bottom right).
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