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A B S T R A C T

We develop a novel approach for quantitatively analysing future storylines of change by combining econometric
analysis and Monte Carlo simulation for four different storylines of change in the EU's energy innovation system.
We explore impacts on three key innovation outcomes: patenting (innovation), co-invention (collaboration), and
technology cost reduction (diffusion). We find that diverse mixes of policy instruments stimulate collaborative
innovation activity. We find that both RD&D expenditure and trade imports support knowledge generation and
exchange, and that these relationships are largely robust to future uncertainty. Conversely, we find that policy
durability and stability are only weakly linked to innovation outcomes, suggesting that adaptive policy re-
sponding to rapidly changing innovation environments should play an important part of the EU's energy future.

1. Introduction

The European Commission has stated “the ambition to achieve … a
fundamental transformation of Europe's energy system” [1]. This trans-
formation requires solutions and policies informed by systemic analysis
of energy innovation. As the Organisation for Economic Co-operation
and Development (OECD) explains: “Parts of the system … cannot be
assumed to be effective in delivering their prescribed functions …. The root of
the failure is usually assumed to be the inability or unwillingness to co-
ordinate. Responsibility or agency for this failure is distributed throughout
the system rather than resting with a particular set of stakeholders” [2]. A
systemic perspective on innovation emphasises the influence that wider
social, institutional, and economic processes have on innovation out-
comes.
In 2008 the Strategic Energy Technology (SET) Plan was launched

to provide strategic planning and coordination of energy research &
innovation activities within the European Union (EU). The SET Plan
was designed to support EU policy objectives on climate change, energy
efficiency, and renewable energy, as well as energy security, energy
union, growth, jobs, and global competitiveness [1,3]. The SET Plan
was implemented through a range of activities including European In-
dustrial Initiatives for technologies with near-term market impact (to
2020), and longer-term research actions to 2050.
In 2015 the Commission proposed a revised SET Plan that was more

targeted, and that used a whole systems approach to ensure better

integration across sectors and technologies [1]. The revised Integrated
SET Plan set out four priority areas (renewable energy and storage,
smart systems and consumers, energy efficiency, sustainable transport)
and two additional areas (carbon capture and storage, nuclear power).
These six priority areas correspond to discrete technology fields or
clusters of inter-related technologies.
The future of complex systems like the EU's energy innovation

system is unknown. Scenarios provide a way of exploring and better
understanding salient uncertainties. Scenario analysis is a widely-ap-
plied technique for systematically varying a small number of critical
uncertainties to explore how they may affect future outcomes. Scenario
analysis assesses potential risks, informs decision making, identifies
strategies robust to uncertainty, and tests linkages from near-term ac-
tions to long-term outcomes. For the EU's energy innovation system,
important branching points include the extent of decentralisation (or
centralisation) and the extent of cooperation (or fragmentation). How
these drivers of change play out in the future will shape the decisions
and activities of innovation actors, from technology developers and
investors to the European Commission and national regulators. Future
uncertainties will therefore impact innovation system processes and
resulting outcomes, from codified outputs (e.g., numbers of patents) to
knowledge exchange (e.g., patent co-inventions) and technology per-
formance (e.g., learning rates).
Future uncertainties can be analysed both deterministically (e.g.,

using narrative storylines to vary drivers of change) and stochastically
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(e.g., using probability distributions to characterise future performance
of influential variables). Monte Carlo simulation is a commonly-used
tool for stochastic uncertainty analysis [4,5]. Probability distributions
are assigned to key uncertain variables (based on historical data or
expert judgement), and then propagated through explanatory models
which determine uncertain outcomes.
In this paper we develop a novel approach for understanding future

innovation outcomes by combining empirical analysis of innovation
system processes with scenario analysis and Monte Carlo simulation of
future uncertainty. We show how this approach can be applied to map
narrative storylines onto quantitative analysis of innovation system
performance into the future. We distinguish and combine two streams
of analysis: narrative and empirical.
In an initial narrative stream, we interpret storylines of future

change in terms of how specific innovation system processes and re-
sulting innovation outcomes are affected. We use four storylines to
explore a possibility space defined by 2 orthogonal axes: extent of de-
centralisation and extent of pan-EU cooperation.
In a subsequent empirical stream, we estimate quantitative re-

lationships between innovation system processes and innovation out-
comes using econometric models, and then vary key uncertain future
parameters using Monte Carlo simulation to project innovation out-
comes. The outcome variables in both the empirical analysis and the
Monte Carlo simulation are patents, co-invention and technology costs.
These are proxy measures of innovation or knowledge generation and
codification (patents), knowledge exchange and actor interaction (co-
invention), and market deployment and learning (technology costs).
The rest of this paper is structured as follows. First, we describe a

framework characterising key processes in the energy innovation
system. We construct standardized indicators for measuring these pro-
cesses, and collect data for each of the six technology fields or ‘priority
areas' of the EU's SET Plan across the full set of indicators. Second, in
the narrative stream of analysis, we describe four broad storylines of
future change in the EU energy innovation system which explore cri-
tical uncertainties. We then identify specific innovation system pro-
cesses which may be either strengthened or weakened under each
storyline. Third, in the empirical stream of analysis, we estimate
baseline econometric models describing relationships between innova-
tion system processes and innovation outcomes observed historically.

We then simulate how future uncertainties affect the econometric
models. Finally, we combine the simulation results with the narrative
storylines to generate both quantitative and qualitative insights about
the EU's future energy innovation system.

2. Background

Fig. 1 illustrates a heuristic framework of the energy technology
innovation system (ETIS) which is explained and evidenced in detail in:
[6–8]. The innovation system comprises: (1) a technology lifecycle from
research and development (R&D) through to diffusion; (2) four di-
mensions describing the enabling conditions for successful innovation
outcomes; (3) specific processes associated with each of these dimen-
sions.
The four dimensions of the ETIS framework are: knowledge, re-

sources, actors & institutions, and adoption & use. First, knowledge
generation, spillovers and learning are engines of innovation [9–12].
However, knowledge generation can be depreciated due to staff turn-
over, business volatility or technological obsolescence [6]. Second, re-
sources mobilised to support innovation activity emphasise public
policy and the specific portfolio of instruments used [8,13]. Third, the
actors & institutions dimension characterises the participation and in-
teraction of diverse innovation actors including private firms, govern-
ment organisations and civil society [14–16]. Fourth, the adoption &
use dimension points to the importance of consumer uptake and market
demand for innovation outcomes [17].
Table 1 (leftmost column) shows the main innovation system pro-

cesses corresponding to each of the four dimensions: knowledge, re-
sources, actors and institutions, and adoption and use (Fig. 1). Each of
these processes can be measured by indicators which are generalisable
across technologies [18]. A standardized set of quantitative indicators
enables cross-technology analysis. Table 1 (rightmost columns) shows
the set of indicators used including the main data source.
We collected data characterising innovation system processes across

the six technology fields prioritised in the EU's SET Plan: renewable
energy, smart grid, energy efficiency, sustainable transport, carbon
capture and storage, and nuclear power [19]. Time series data from
2001 to 2015 were collected at the EU level for all the indicators in each
of these six technology fields.

Fig. 1. The energy technology innovation system (ETIS) framework in simplified form, adapted from: [6].
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3. Methodology

3.1. Narrative stream I: developing storylines of future change

Future change in the EU energy system is unknown, but can be
usefully characterised by scenarios and translated into quantitative
pathways by simulation modelling. Four storylines of change were
developed as part of a broader project on ‘Navigating the Roadmap for
Clean, Secure and Efficient Energy Innovation’ in the EU (www.set-nav.
eu). A 2×2 typology was used to combine two main dimensions of
uncertainty into four storylines spanning a wide possibility space. Fig. 2
(left panel) shows the scenario typology which varies two critical un-
certainties: the extent of decentralisation (x-axis); and the extent of
European cooperation (y-axis). The poles of each axis can therefore be
characterised as: decentralisation vs. path dependency (x-axis); and
cooperation vs. entrenchment (y-axis).
Path dependency describes the shaping and constraining of future

development trajectories by accumulated historical precedent. The
energy system is strongly path dependent as it is large, complex, has
many interdependencies, and is characterised by long-lived infra-
structure with slow turnover rates [20]. Through the 20th century,
technical and economic returns to scale have given rise to a strongly
centralised energy system in both physical terms (e.g., GW-scale power
plants distant from end users) and in economic terms (e.g., national or
regional monopoly utilities) [21–23]. However, there is an increasingly
strong technological and business case for decentralisation, under-
written by systemic forces of change ranging from market liberalisation,
environmental standards and policies, technological innovation in re-
newables and storage, continued end-use efficiency improvements, and
the convergence of information technologies and digital control systems
with energy infrastructure and hardware [24,25]. This is already
creating major challenges for incumbent energy companies whose
business models and balance sheets are linked to centralised assets
[26,27].1 By enabling smaller increments of capital investment,

smaller-scale technologies from shale gas to solar Photovoltaics (PV)
have opened up markets to the destabilising force of new entrants [28].
This tension between path dependency and decentralisation is a major
uncertainty for the future development of the EU energy system, af-
fecting technological innovation and deployment, policy and regulatory
environments, business strategies and investments, and social accep-
tance and engagement.
The second critical uncertainty is the more familiar and more ex-

istential question for the EU of ever-closer union, and specifically in this
context, ever-closer cooperation and integration in energy markets,
policies, and infrastructures. The European Commission's communica-
tion in 2015 on the Energy Union Package opens with: “Our vision is of
an integrated continent-wide energy system where energy flows freely
across borders, based on competition and the best possible use of re-
sources, and with effective regulation of energy markets at EU level
where necessary” [1]. To enact this vision, the communication argues:
“We have to move away from a fragmented system characterised by
uncoordinated national policies, market barriers and energy-isolated
areas.” In the current political climate of Brexit, national populism, and
external threats to political and social cohesion within the EU, it is
uncertain whether the Commission's vision for a cooperative and in-
tegrative energy system will be achieved. A future in which national
interests become increasingly entrenched, and member states exploit
comparative advantages as well as local resources while prioritising
their own energy interests, remains a possible alternative.
These two dimensions of uncertainty shown in the left panel of

Fig. 2 combine to create a possibility space which can be explored by
the four contrasting storylines shown in the right panel of Fig. 2.
Working clockwise, the four storylines are:

• Diversification = decentralisation + cooperation
• Directed Vision = path dependency + cooperation
• National Champions = path dependency + entrenchment
• Localisation = decentralisation + entrenchment

3.2. Narrative stream II: mapping storylines onto innovation system
processes

Fig. 3 summarises the headline features of each of these four
storylines and their corresponding impacts on possible development

Table 1
Technology-specific indicators of innovation system processes in the ETIS framework.

Innovation system processes Technology-specific indicators Main data sourcea

KNOWLEDGE
Generation & Codification Public energy research development & demonstration (RD&D) expenditure 1

Number of patents 2
Spillover Energy technology imports (international trade) 3
Learning Technology costs 4
Depreciation Stability in public energy RD&D expenditure 1
RESOURCES
Policy Durability Durability of policy instruments (cumulative years in place) 5
Policy Mix (or Diversity) Diversity of policy instruments (innovation, regulatory, market-based, and strategic - including targets, roadmaps, and action

plans)
5

Policy Stability Stability of policy instruments (frequency of revisions, amendments or cancellations) 5
ACTORS & INSTITUTIONS
Exchange & Interaction Patent co-inventions 2
ADOPTION & USE
Market Share Actual market size as % of potential market size 4

a Main data sources for six technology fields in the EU: 1 – International Energy Agency (IEA) energy RD&D statistics; 2 – United States Patent and Trademark
Office (USPTO) PatentsViews database; 3 – Eurostat EU trade statistics; 4 – Secondary data from peer-reviewed studies; 5 – IEA ′Addressing Climate Change’ policy
database.

1 The IEA's recent energy investment outlook summarises the uncertain future
for centralised utilities: “Decentralised solar PV, battery storage and charging EVs
blur the distinction between consumers and producers, while demand-side response
programs have the potential to provide flexibility in balancing supply and demand in
real time at a lower cost than utility-owned generating capacity. In addition, digi-
talisation is opening up opportunities for new entrants to the supply of energy services
and is changing the interaction of consumers with the electricity system ….
Regulatory frameworks will need to adapt to these models providing the appropriate
arrangements to allow them to contribute to the overall efficiency and dec-
arbonisation of the energy system. The implications of all these changes for future

(footnote continued)
investment are still very unclear” (p178 [82], World Energy Investment. Inter-
national Energy Agency, Paris, France).
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pathways for the EU's energy system. These short descriptions empha-
sise only the most salient features that help distinguish the storylines
from one another. As an example, digitalisation is explicitly noted in the
Diversification and Localisation storylines, but this does not mean it is not
also important in the futures depicted by the Directed Vision and Na-
tional Champions storylines. It simply means that digitalisation is not
one of the stand-out features of these storylines which distinguish them
from the others.
The Diversification storyline describes a decentralising trajectory

for the EU energy system in the context of cross-border cooperation and
integration (Fig. 3, top left). This signals the entry of new, hetero-
geneous actors, challenging the dominance of centralised asset-owners
and incumbent service-providers. Open digital platforms become es-
sential for coordinating the activity of this diversified energy economy,
facilitated by regulatory experimentation and opening. The Diversifi-
cation storyline describes a diverse set of new actors becoming involved
in energy innovation throughout the EU, particularly from the digital
and tech sectors. This storyline places emphasis on strong, collaborative
exchange and interaction between these actors, enabled by open digital
platforms. However, diversification and experimentation also means
that innovation policy frameworks become less stable and durable.
The effects of the Diversification storyline on energy innovation in

the EU can be captured by changes in specific quantitative indicators of
innovation system processes (shown here in italics):

1. Patent co-invention (intra-EU) is strengthened as more diverse in-
novation actors interact and collaborate.

2. Diversity of policy instruments is strengthened as policy frameworks
open up to support new innovations in multiple ways.

3. Durability of policy instruments is weakened as existing policy fra-
meworks are revised to support experimentation and regulatory
opening.

4. Stability of policy instruments is weakened as an emphasis on policy
experimentation and learning leads to revisions and improvements.

The Directed Vision storyline describes a path-dependent trajectory
for the EU energy system which is directed by the Commission's vision
set out above for an ever-closer energy union (Fig. 3, top right). The EU
together with large stakeholders with the capacity to operate at an EU
level are guided by strong and shared expectations for future goals and
the directions of travel required to meet these goals. This broad buy-in
becomes enshrined in stable policy frameworks which are coordinated
between member states to ensure a consistent European-wide playing
field. The Directed Vision storyline places emphasis on strong, clear and

Fig. 2. A possibility space for EU energy futures. Left panel shows a 2×2 scenario typology varying two critical uncertainties; right panel represents four storylines
spanning the possibility space.

Fig. 3. Headline features of four storylines of the EU's future energy system.
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stable expectations shared by both public and private actors. However,
the centralising pan-European leadership also means that only large
stakeholders have the capacity to remain directly involved with SET
Plan activities so innovation actors become more homogeneous.
The effects of the Directed Vision storyline on the innovation system

for energy technologies in the EU are captured by changes in specific
quantitative indicators of innovation system processes (shown here in
italics):

1. Public energy R&D expenditure and demonstration budgets are
strengthened in line with strong central coordination and prior-
itisation of energy innovation as an EU policy area.

2. Durability of policy instruments is strengthened under clear and stable
expectations for the direction of future change.

3. Diversity of policy instruments is weakened as the Commission's vision
for an ever-closer energy union is implemented through a preferred
set of instruments including roadmaps, targets, and strategic plans.

The National Champions storyline describes a path-dependent EU
in which historical incumbency and national interests grow in influence
(Fig. 3, bottom right). This continuity in development minimises tran-
sitional risks and costs, at least in the near-term. Incumbent firms and
organisations, including current or former national monopolies, play a
leading role particularly in the design, finance, construction and op-
eration of large-scale energy infrastructure. The National Champions
storyline describes member states supporting their distinct comparative
advantages through innovation and industrial policy. This storyline
places emphasis on strong and stable innovation policy frameworks,
even if at the national rather than EU level. However, the influence of
national champions including in the traditional energy industries also
mean regulatory capture by incumbent fossil-fuel companies dam-
pening support for strategic development of alternatives.
The effects of the National Champions storyline on energy innovation

in the EU are captured by changes in specific quantitative indicators of
innovation system processes (shown here in italics):

1. Stability in energy RD&D expenditure is strengthened as member states
commit resources to build long-term competitive advantage in se-
lected innovation fields.

2. Durability of policy instruments is strengthened as member states align
policy frameworks with long-term national priorities.

3. Stability of policy instruments is strengthened to ensure consistent
support and enabling conditions for dominant national firms.

4. Energy technology imports are weakened as member states support
their comparative advantage through innovation and industrial
policy.

The Localisation storyline describes how the decentralising forces
emerging in the EU start to chip away more forcefully at the centralised
infrastructures, firms, and regulatory environments, but with marked
national and local variation (Fig. 3, bottom left). Member states seek to
maximise their use of locally-available resources, giving rise to differ-
entiated energy strategies and policy frameworks across the EU. Re-
sistance to pan-European infrastructure and integration projects opens
up space for smaller-scale experimentation and diversity. Digitalisation
becomes essential for supporting coordination and effective system
management, but with an emphasis on national competitive advantage
in the returns to scale of a single dominant platform. The Localisation
storyline describes increasingly differentiated energy strategies across
the cities, regions and countries of the EU. This storyline places em-
phasis on high levels of innovation investments (R&D expenditure) at
multiple scales in pursuit of locally-resilient energy developments.
However, the proliferation of local actors and innovation activities also
means that knowledge exchange and collaborations weaken due to
coordination difficulties and mismatches of scale.
The effects of the Localisation storyline on the innovation system for

energy technologies in the EU are captured by changes in specific
quantitative indicators of innovation system processes (shown here in
italics):

1. Public energy RD&D expenditure and demonstration budgets are
strengthened as cities and regions look to build knowledge stocks for
successfully exploiting local resources.

2. Energy technology imports are strengthened as locally-focused in-
novation strategies focus only on key growth areas, relying on active
trade to supply other areas.

3. Diversity of policy instruments is strengthened as national and local
innovation policy frameworks are tailored to suit specific innovation
environments throughout the EU.

4. Patent co-invention (intra-EU) is weakened as innovation activity
becomes increasingly differentiated and localised.

3.3. Empirical stream I: estimating baseline econometric models

The ETIS framework shown in Fig. 1 describes a complex, dynamic
system constituted by diverse processes. It is not possible to express
ETIS functioning as a single causal model. However, specific linkages
among subsets of relationships can be hypothesized and tested based on
available literature.
Here we estimate empirically the influence of selected innovation

system processes on three distinct innovation outcomes: patents (as a
measure of knowledge generation and codification); co-inventions (as a
measure of knowledge exchange and actor interaction); and technology
cost (as a measure of deployment experience and user uptake).
Equations (1)–(3) show the baseline econometric models. Each model
hypothesises the effect of specific innovation system processes mea-
sured by the ETIS indicators shown in Table 1. The one exception is
market share (in the adoption & use dimension of the ETIS framework)
which is strongly dependent on a range of market, institutional and
infrastructural conditions exogenous to innovation systems.
We set up the econometric models by drawing on the literature as

follows. In the first model, we hypothesise that generated and codified
knowledge, proxied by the number of patents, is affected by: (1) lagged
RD&D expenditure [29–31] and stock of knowledge [9]; (2) stability in
RD&D expenditure [32]; (3) exchange and interaction between het-
erogeneous actors [14–16]; and (4) policy instruments which are both
durable [33,34] and stable [35,36]. Based on the literature, we expect
the signs of the independent variable coefficients in equation (1) to be
positive.
In the second model, we hypothesise that knowledge exchange and

actor interaction, proxied by patent co-inventions, is affected by: (1)
lagged RD&D expenditure, (2) stability in RD&D expenditure, (3) dur-
able and diverse policy instruments [8,13,37,38] and (4) international
knowledge spillovers [39]. Based on the literature (see also previous
paragraph), we expect the signs of the independent variable coefficients
in equation (2) to be positive.
In the third model, we hypothesise that cost of technology, which is

related to learning-by-doing and market deployment, is affected by: (1)
cumulative capacity as a measure of experience [40–44]; (2) cumula-
tive RD&D expenditure [45–48]; (3) durable and diverse policy in-
struments; (4) international knowledge spillovers through trade. Based
on the literature (see also previous paragraphs), we expect the signs of
the independent variable coefficients in equation (3) to be negative.
The three baseline econometric models are

Patents RDD RDD Coinvention

Stock Patent Policy Policy_
t stability

durability stability

i i t

1 2 1 3 4

5 6 7

,

= + × + × + ×

+ × + × + ×

+ + (1)
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Coinvention RDD RDD Policy

Policy Trade
t stability durability

diversity i i t

1 2 1 3 4

5 6 ,

= + × + × + ×

+ × + × + + (2)

Cost of technology Capacity RDD

Policy Policy

Trade

cumulative cumulative

durability diversity

i t i t

1 2 3

4 5

6 ,

= + × + ×

+ × + ×

+ × + + + (3)

where Patents is the number of patents, RDDt 1 is one-year lagged RD&
D expenditure, RDDstability is the stability in RD&D expenditure (mea-
sured as the inverse of volatility), Coinvention is the number of patent
co-inventions, Stock Patent_ is the cumulative stock of patents,
Policydurability is the durability of policy (measured as the cumulative
length of policies in place), Policystability is the stability of policy (mea-
sured as the cumulative length of policies in place divided by the total
number of times policies have been changed), Policydiversity is the di-
versity of policy instruments (measured by Shannon's diversity index
across three types of policy instrument - innovation, market and reg-
ulatory), Trade is the total import value of energy technologies,
Capacitycumulative is the cumulative installed capacity, RDDcumulative is the
cumulative RD&D expenditure, i is a technology fixed effect, t is a
time fixed effect, and is residuals. A detailed explanation of how each
indicator is constructed is provided in Appendix A2.
To estimate equations (1) and (2), we use Poisson models with ro-

bust standard errors as the dependent variable is count data. The con-
ditional fixed effects negative binomial estimator should be avoided
because it is not a true fixed-effects estimator [49,50]. We use the
Poisson fixed-effects estimator based on the method in Ref. [51].
Poisson models estimated by pseudo-maximum likelihood as is the case
in Stata are perfectly capable of dealing with both under and over-
dispersion [52]. To estimate equation (3), we use an ordinary least
square model with robust standard errors as the dependent variable is a
continuous variable and non-count data.
Equations (1)–(3) are generalisable hypotheses linking innovation

system processes to specific innovation outcomes. For the analysis in
this paper, we estimate the coefficients for equations (1)–(3) using
historical data describing each variable across the six technology fields
of the EU's SET Plan. Each variable corresponds to a technology-specific
ETIS indicator shown in Table 1, and quantified for the EU: patents are
those filed by innovators from an EU country; co-inventions are patents
filed by innovators from at least two different EU countries; policy
durability, diversity, and stability are based on policy instruments at
both EU member state level and EU level; and so on. A detailed ex-
planation of how the data used for each variable is provided in
Appendix A2.

3.4. Empirical stream II: introducing stochastic components into the baseline
econometric models

To use the baseline econometric models for exploring future un-
certainty, we draw on the narrative stream of analysis described above.
As shown in Table 2, each storyline of the future EU energy system can
be interpreted as having both positive and negative effects on certain
innovation system processes. Some innovation system processes are
strengthened, others are weakened. (Note that market share as an in-
dicator of the adoption & use dimension of the ETIS framework is not
included in our storyline analysis as it is affected by a large number of
conditions exogenous to the energy innovation system).
We assign probability distributions to the coefficients for each of the

variables in the baseline econometric models affected by future un-
certainty. Specifically, we use truncated standard normal distributions
which cut off both tails (Table 3). This is a first-order approximation of
how to incorporate future uncertainty into the econometric models as a
result of the strengthening or weakening of innovation system processes
in each of the four storylines.
We then use Monte Carlo simulations to introduce these un-

certainties into the baseline econometric models. We generate 10 000
random draws from the probability distributions and rerun the models
for each draw. We then compare the Monte Carlo simulation results
with the baseline econometric model results to see whether the effects
of strengthened or weakened coefficients (independent variables) has
impacted innovation outcomes (dependent variables).
Our overall approach therefore combines changes in innovation

system processes from the storylines (Table 2) with empirical estima-
tions (equations (1)–(3)) to characterise the resulting effect of each
storyline on innovation outcomes.

4. Results

4.1. Baseline econometric models

Table 4 shows the estimation results on the effect of innovation
system processes on three key innovation outcomes historically in the
EU: (1) the number of patents, (2) patent co-inventions, and (3) cost of

Table 2
Indicators of innovation system processes which are strengthened or weakened in four storylines of future change in the EU energy system.

Innovation system processes ETIS indicators (and variables in panel regression) Diversification Directed Vision National Champions Localisation

KNOWLEDGE
Generation Public energy RD&D expenditure strengthened strengthened

Number of patentsa

Spillover Energy technology imports weakened strengthened
Learning Technology costsa

Depreciation Stability in public energy RD&D expenditure strengthened
RESOURCES
Policy Durability Durability of policy instruments weakened strengthened strengthened
Policy Diversity Diversity of policy instruments strengthened weakened strengthened
Policy Stability Stability of policy instruments weakened strengthened
ACTORS & INSTITUTIONS
Exchange & Interaction Patent co-inventionsa strengthened weakened

a These are outcome (dependent) variables and so are not directly affected by a storyline assumption. However, patent co-inventions also are an explanatory
(independent) variable in equation (1).

Table 3
Stochastic components of innovation system processes.

Innovation System Processes Random Variable Interval

Strengthened X N(µ, )i 2 X ε (1,2)
Weakened X ε (0,1)
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technology. Applied to future EU energy innovation, the baseline
econometric models represent a business-as-usual scenario in which
historical relationships remain consistent. For data reasons, historical
data for the patents and co-inventions models covered the period
2001–2013, and for the cost of technology model, 2011–2015 (see
Appendix A2 for details).
In the first column of Table 4 corresponding to equation (1), we

confirm the positive and significant effect of RD&D expenditure, co-
invention and knowledge stock on the number of patents. However, we
find three unexpected results relating to RD&D stability, policy dur-
ability and policy stability. First, the negative and significant effect of
RD&D stability on the number of patents can be explained by the global
financial crisis which negatively affected RD&D expenditure in all
countries midway through the study period.2 Consequently RD&D sta-
bility follows a skewed U-shaped curve. One interpretation is that RD&
D volatility due to the financial crisis did not adversely affect patent
applications due to the credible and strong EU commitments to low-
carbon technologies (e.g., SET Plan, 20-20-20 Directive and EU Emis-
sions Trading System). Second, the negative effect of policy durability
on the number of patents is contrary to expectations but is not statis-
tically significant. Third, the negative and significant effect of policy
stability on the number of patents is associated with a downward trend
in policy stability over the period 2000–2015. This is largely explained
by more frequent revisions, updates or amendments to policy instru-
ments in the period 2010- onwards. One interpretation of the regression
result could be that the effect of policy instability on patenting will be
time-lagged and so only become evident in more recent data. An

alternative interpretation is that policies were being revised in a way
which strengthened incentives for innovators (the stringency of policies
is not captured in the indicators and is an important area for further
research).
In the second column of Table 4 corresponding to equation (2), we

confirm the positive and significant effect of RD&D expenditure and
trade imports on patent co-inventions. We also find a positive but non-
significant effect of policy diversity. However, we find two unexpected
results relating to RD&D stability and policy durability which both have
negative although non-significant coefficients (see previous paragraph
for possible explanations).
In the third column of Table 4 corresponding to equation (3), we

confirm the negative and significant effect of cumulate deployment and
cumulative RD&D expenditure on cost of technology. This is consistent
with a two-factor learning curve. We also find negative but non-sig-
nificant effects of policy durability and trade imports on cost of tech-
nology. The one unexpected result is the positive but non-significant
effect of policy diversity. One interpretation is that sustained learning is
more dependent on a stable set of market-pull instruments signalling
clear payoffs to innovators, and that an emphasis on policy diversity
across different types may undermine this relationship.
To check the robustness of the models, we tested longer RDD time

lags in line with [53,54] and found no material impact on the regression
results (see Appendix Table A4). We included one-year, two-year and
three-year time lags for RD&D spending gradually in models (1) and (2)
and found the one-year time lag is only statistically significant. As this
exercise further reduces data availability, we consider thee-year time
lags as a sensitivity analysis.
Year fixed effects are used in model (3) to reduce selection bias, but

not in models (1) and (2) due to non-convergence issues. Technology
fixed effects are used in all three models to reduce selection bias.

Table 4
Baseline models of innovation system outcomes.

Variables (1) (2) (3)

Poisson (Quasi-ML) with robust SE: Number
of patents, 2001–2013, 6 technologiesa

Poisson (Quasi-ML) with robust SE:
Co-inventions, 2001–2013, 6 technologiesa

OLS regression: Cost of technology,
2011–2015, 3 technologiesa

RDD(t-1) 0.001*** 0.002***
(0.000) (0.000)

RDD stability −0.033** −0.011
(0.015) (0.014)

Co-invention 0.000**
(0.000)

Cum_patent 0.000***
(0.000)

Policy durability −0.007 −0.009 −0.008
(0.007) (0.012) (0.014)

Policy stability −0.266***
(0.048)

Policy diversity 0.077 0.573
(0.177) (0.768)

Trade imports 0.000*** −0.000
(0.000) (0.000)

Cum_capacity −0.000**
(0.000)

Cum_RDD −0.000**
(0.000)

Time FE NO NO YES
Tech FE YES YES YES
- renewables 2.74 3.29 - (base)
- smart grid 1.62 2.33 n/a
- energy efficiency 3.35 4.23 −9.01
- sustainable transport 2.65 3.81 −5.12
- carbon capture & storage 0.98 1.78 n/a
- nuclear power - (base) - (base) n/a
Pseudo R square (models 1 & 2), R square (model 3) 0.971 0.957 1.000

Robust standard errors (SE) in parentheses, ***p < 0.01, **p < 0.0
a Patent and co-invention models span 2001–2013 due to patent data truncation issues with more recent data; cost of technology model covers 2011–2015 and

only applies to three technology fields (renewable energy, energy efficiency, electric vehicles) due to data availability.

2 https://www.oecd.org/sti/sti-outlook-2012-chapter-1-innovation-in-the-
crisis-and-beyond.pdf.
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Technology fixed effects eliminate time-invariant confounding factors
allowing the estimation of the independent variables’ effect on the
dependent variable using only within-unit variation (i.e., within each
technology field). In other words, the econometric estimation is in-
tentionally non-technology specific and so generalisable across tech-
nology fields. Coefficients for the technology fixed effect can be inter-
preted as follows: the higher the fixed effect coefficient for a given
technology, the weaker the baseline effect (and vice versa).
Coefficients for the technology fixed effects are shown in Table 4.

For models (1) and (2), the coefficient for energy efficiency is the
highest among five technology fields (relative to nuclear power which
is the base indicator with an implicit coefficient of zero). Our inter-
pretation is that the more mature the technology field, the weaker the
baseline effects as cumulative causation (path dependence) makes in-
novation outcomes less dependent on the full set of innovation system
processes [55]. As energy efficiency is arguably the most mature
technology field in the EU SET Plan, its coefficient for the technology
fixed effect is the highest, and the significant relationships between
independent variables and dependent variables in the baseline model
weakens. Conversely, the coefficient is lowest for carbon capture and
storage which is arguably the least mature technology field and so sees
a stronger baseline effect. Technology fixed effects in model (3) should
be interpreted with more caution as only three technologies are in-
cluded (with renewable energy as the base indicator which is therefore
dropped). Direct comparisons between models are also not possible due
to differences in time periods analysed.

4.2. Monte Carlo simulations

Table 5 summarises the findings of the Monte Carlo simulation
mean estimation results on the number of patents, co-inventions and
cost of technology. We focus on changes in significance from the
baseline estimation results to the Monte Carlo simulation results as
these changes indicate the impact of storyline uncertainty on innova-
tion outcomes (relative to a continuation of historical innovation
system performance). In Table 5, coefficients which change in sig-
nificance are shown in bold, with changes from non-significant to sig-
nificant also shown in grey highlight. Full details of the estimation re-
sults are provided in Appendix A1. In Table 5 we also show changes in
the size of coefficients, with ‘similar’ denoting the same coefficient to
three decimal places, and ‘strengthened’ and ‘weakened’ denoting an
increase or a decrease respectively in the size of coefficients.

5. Discussion

The final integrative step is to interpret how the strengthened or
weakened innovation system processes in each of the four storylines
impact innovation outcomes. We focus on coefficients whose sig-
nificance changes (from non-significant to significant or vice versa) in
the Monte Carlo simulation models relative to the baseline econometric
models. These changes are shown in bold text in Table 5 and represent
how uncertainties in the storyline may affect future energy innovation
in the EU.
In the Diversification storyline we assume (as inputs to the Monte

Carlo simulations) that patent co-invention and policy diversity are
strengthened but that policy durability and policy stability are wea-
kened (Table 2). This changes the significance of coefficients in the
baseline models in three ways: the effect of co-invention and policy
stability on patents becomes non-significant, and the effect of policy
diversity on co-invention becomes significant (Table 5).
First, the positive effect of policy diversity on co-invention becomes

significant in the Monte Carlo simulation. This would be consistent with
a diverse mix of policy instruments being more likely to influence
heterogeneous actors in the EU's energy innovation system. This in-
terpretation is in line with literature that finds policy mixes which are
mutually reinforcing can stimulate collaboration among innovation

actors [56,57] and also attract new actors into innovation networks
[58].
Second, co-invention has a positive and significant effect on the

number of patents in the deterministic model which becomes insignif-
icant in the stochastic model. This would be consistent with stronger co-
invention substituting for rather than adding to single inventor patents.
In other words, patenting activity would be diverted from innovators
within a single EU country (classified here as single inventor patents) to
innovators collaborating between EU countries (classified here as co-
invention). Consequently, stronger co-invention changes the type of
patenting activity but not the overall output or total number of patents.
This interpretation suggests that for the more heterogeneous innovation
actors in the Diversification storyline, there would be a trade-off be-
tween within-country innovation and between-country collaboration.
Third, the negative and significant effect of policy stability on the

number of patents becomes non-significant in the stochastic model.
Weaker policy stability in the Diversification storyline (i.e., more fre-
quent revisions or amendments to existing instruments) does not ne-
gatively affect patent output. The unexpected negative effect of policy
stability on patents in the baseline model (with more patents in less
stable policy environments) is therefore removed as policy stability
becomes less pronounced. This would be consistent with revisions,
amendments or cancellations of insufficiently stringent policies which
provide only limited incentives for innovation activity.
Overall, we can interpret the impact of uncertainties on future EU

energy innovation in the Diversification storyline as follows: a mix of
policy instruments positively affects collaboration among diverse in-
novation actors, but this does not affect the aggregate knowledge stock
measured by patents.
In the Directed Vision storyline we assume (as inputs to the Monte

Carlo simulations) that RD&D expenditure and policy durability are
strengthened but that policy diversity is weakened (Table 2). This
changes the significance of coefficients in the baseline models in two
ways: the effect of RD&D on co-inventions and of cumulative RD&D on
technology costs become non-significant (Table 5).
First, the positive and significant effect of RD&D expenditure on co-

invention becomes non-significant in the Monte Carlo simulation.
Possible interpretations are that there would be diminishing returns in
the role of RD&D expenditures for stimulating collaboration among
innovation actors, or that increased RD&D expenditures would be
concentrated in large incumbents who would have less need to colla-
borate with new actors. Another interpretation is that strengthened RD
&D would reinforce localised innovation capabilities [59] but would
not incentivize inter-country collaboration across the EU.
Second, the negative and significant effect of RD&D expenditure on

the cost of technology becomes non-significant in the Monte Carlo si-
mulation. Cumulative RD&D drops out of the two-factor learning curve
specification of the baseline model shown in equation (3) such that
increasing RD&D spending would not translate into a reduction in the
cost of technology. This would be consistent with additional RD&D
funding being prioritised for selected technologies so that a generalised
effect applicable to the full technology portfolio would not be detect-
able.
Overall, we can interpret the impact of uncertainties on future EU

energy innovation in the Directed Vision storyline as follows: strength-
ened public RD&D investments in line with EU strategic goals do not
induce further collaboration among innovation actors and also fails to
stimulate additional cost reductions across the SET Plan portfolio as a
whole.
In the National Champions storyline we assume (as inputs to the

Monte Carlo simulations) that RD&D stability, policy durability, and
policy stability are strengthened but that knowledge spillovers through
trade imports are weakened (Table 2). This changes the significance of
coefficients in the baseline models in three ways: the effects of RD&D
stability and policy stability on number of patents become non-sig-
nificant, as does the effect of trade imports on co-inventions (Table 5).
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Table 5
Monte Carlo simulation results in four storylines (relative to baseline estimations). Note: bold text with grey highlight denotes ‘has
changed to become significant’; bold text without highlight denotes ‘has changed to become non-significant'.
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First, the negative and significant effects of stability in both RD&D
spending and policy instruments on the number of patents become non-
significant in the stochastic analysis. As a result the Monte Carlo si-
mulation aligns more closely with prior expectations than the baseline
model which found that stability in both push (RD&D) and pull (policy)
support for innovation had the perverse effect of weakening innovation
activity. This finding was very much contrary to the literature [60,61].
Although this contrariness is removed in the Monte Carlo simulation,
strengthened RD&D and more stable policies would still not result in an
increased knowledge stock from patenting. One interpretation is that
innovation and industrial policies in the National Champions storyline
would support already mature technology fields with relatively lower
levels of patenting activity.
Second, the positive and significant effect of imports on co-inven-

tion becomes non-significant. This means that declining volumes of
energy technology imports would no longer increase collaboration in
patenting, which is contrary to literature on the benefits of trade for
collaborative activity [39]. One interpretation is that large incumbents
in the National Champions storyline would have fewer incentives to
collaborate on innovation activities with other countries.
Overall, we can interpret the impact of uncertainties on future EU

energy innovation in the National Champions storyline as follows:
strengthened RD&D expenditure and policy stability fail to stimulate
additional knowledge generation in mature technology fields, with
large incumbents also being less incentivised to pursue collaborative
innovation externally.
In the Localisation storyline we assume (as inputs to the Monte Carlo

simulations) that RD&D expenditure, imports, and policy diversity are
strengthened but that patent co-inventions are weakened (Table 2).
This changes the significance of coefficients in the baseline models in
five ways: the effects of RD&D expenditure on number of patents, on co-
invention and on cost of technology become non-significant, and the
effect of imports on co-inventions also becomes non-significant, but the
effect of policy diversity on co-inventions becomes significant (Table 5).
First, the positive and non-significant effect of policy diversity on

co-invention becomes significant. A similar effect was observed in the
Diversification storyline. One interpretation is that policy experimenta-
tion would respond to the heterogeneous needs of established and new
entrant innovation actors and so would stimulate collaborative activity.
Second, the positive and significant effect of RD&D spending on the

number of patents, on co-invention and on cost of technology become
non-significant. These are unexpected results because there is generally
a positive relationship between RD&D spending and knowledge gen-
eration. One interpretation is that innovators in a localised EU would
have diminished innovation capabilities so additional public RD&D
investments would no longer impact knowledge stocks. For example,
future innovators in the Diversification storyline would be interested in
exploiting locally available resources for smaller-scale projects rather
than investing in intellectual property and collaborative activity.
Third, the positive and significant effect of energy technology im-

ports on co-inventions becomes non-significant. One interpretation is
that imported manufactures would be needed to supplement local ca-
pacities, but for deployment rather than for fostering collaborative in-
novation.
Overall, we can interpret the impact of uncertainties on future EU

energy innovation in the Localisation storyline as follows: greater in-
vestment in RD&D expenditure does not feed into increase knowledge
generation activities, but a more diverse policy mix does support col-
laborative patenting activity.
To summarise the results in general terms across the storylines, the

Monte Carlo simulations used for stochastic analysis of future energy

innovation produce very cautious and mixed results. Many of the sig-
nificant effects in the baseline models (estimated on historical data)
become non-significant in the stochastic analysis. We consider three
possible explanations.
First, stochastic effects (strengthened or weakened) are estimated on

historical values of the independent variables., but with the in-
dependent variable in each model unchanged. As a result, the de-
terministic and stochastic effects can cancel each other and so have no
overall net effect on the independent variables (number of patents, co-
inventions and cost of technology). In other words, we are not using
Montel Carlo simulation to forecast future innovation outcomes. Rather
we explore what would happen if we changed a set of assumptions
about key innovation system processes in future storylines.
Second, future uncertainties relating to decentralisation and co-

operation in the EU energy system impact multiple innovation system
processes which have offsetting effects on innovation outcomes. This is
an inescapable result of the complex system dynamics of an innovation
system which resist singular causal hypotheses. In the context of the
future SET Plan, there were few systematic differences between story-
lines in the 2× 2 possibility space explored (Fig. 2). This implies there
is no single preferred or optimal storyline of future change in the EU
energy innovation system.
Third, the baseline models are not robust in the sense that relatively

small changes in specific independent variables can cause the main
effects (in line with the literature) to be weakened or reversed. One
example is that policy stability had a significant negative effect on
numbers of patents in the historical estimations, but this became non-
significant in all four storylines whether policy stability was strength-
ened, weakened, or unaffected. An even clearer example is with the cost
of technology model which has the form of a two-factor learning curve
in the historical estimations, with negative and significant effects for
cumulative capacity and cumulative RD&D as expected. In the sto-
chastic analysis of all four storylines, these two main effects become
non-significant regardless of whether RD&D is strengthened or left
unaffected. The cost of technology models are inherently weaker due to
due to the limited time series (2011–2015) across only three technol-
ogies.
These interpretations - complex causality and weak baseline models

- are closely inter-related: the difficulty of capturing innovation system
functioning in parsimonious regressions using proxy variables for hard-
to-observe innovation system processes means that resulting model fits
are weak. This is further exacerbated by our use of panel data across six
technology fields in an attempt to generate portfolio-level insights
(rather than insights specific to any given SET Plan technology with
characteristic maturity, innovation needs, market structure, and so on).

6. Policy implications

Strengthening policy diversity benefits patent co-inventions as a
measure of collaborative activity and actor interaction. This is observed
particularly in the Diversification and Localisation storylines which we
assume to be characterised by greater policy diversity as a response to
new entrants and more heterogeneous actors. Collaboration among new
entrants builds coalitions of interest and advocacy which help over-
come resistance from incumbents. Exchange and interaction among
producers and between producers and users also generate essential tacit
knowledge alongside the codified knowledge from RD&D activities
[62–64]. This insight on policy diversity, heterogeneous actors, and
collaborative innovation activity reflects the complexity of the energy
innovation system which cautions against singular, top-down, directed,
concentrated innovation systems. An implication for the future SET
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Plan is therefore to continue emphasising a strong collaborative ap-
proach by engaging industry, small and medium-sized enterprises, re-
search institutes, policymakers, and other innovation actors in between-
country activities.
The other policy variables in our analysis - durability and stability -

had no systematic effect. We found policy durability had non-sig-
nificant effects on patents, co-inventions, and cost of technology in the
baseline models and in all four storylines. We also found policy stability
had an unexpected negative and significant effect on numbers of pa-
tents, although this became insignificant in all four storylines. Counter
to expectations, we cautiously infer that policy durability and stability
are only weakly linked to innovation outcomes, suggesting the im-
portance of adaptive policy responding to rapidly changing innovation
environments in the future SET Plan.
In line with expectations, we did find that RD&D expenditure po-

sitively affects knowledge generation and codification (patents),
knowledge exchange and actor interaction (co-inventions), and tech-
nology performance (cost reductions). These positive effects in the
baseline models hold in all four storylines although became non-sig-
nificant. Maintaining and strengthening RD&D with supportive in-
novation policy environments should be an integral feature of the fu-
ture SET Plan.
Finally, with indirect relevance to innovation policy and the SET

Plan, in the baseline estimations we found that imports of energy
technologies positively and significantly affect co-inventions. Trade
enables the EU to access global knowledge stocks with standardized,
non-localised characteristics such as solar PV panels or electric vehicles.
Given the importance of such technologies for decarbonisation objec-
tives, maintaining and strengthening trade relationships is also an im-
portant supporting condition for the future SET Plan.

7. Conclusions

This paper develops and applies a novel approach for analysing
storylines of future change from an innovation systems perspective. The
stepwise approach combines econometric analysis of historical in-
novation system performance with a stochastic simulation of future

performance based on an interpretation of how specific innovation-
system processes are impacted under different future storylines.
Although applied here to energy innovation in the EU, the approach is
generalisable to any scenario analyses combining future narratives with
quantitative analysis based on econometric relationships.
Our empirical analysis of patent, co-invention and cost of tech-

nology as innovation outcomes under the EU's SET Plan finds broadly
expected results but with some exceptions. Numbers of patents are
positively affected by RD&D and co-inventions, but are negatively af-
fected by RD&D stability and policy stability. Co-inventions are posi-
tively affected by RD&D and trade imports. Cost of technology is ne-
gatively affected (i.e., cost reductions) by cumulative capacity and RD&
D.
Translating future storylines for the EU's innovation system into the

strengthening or weakening of specific innovation system processes, we
find that many of these significant effects observed historically fall
away. We interpret this to mean that the innovation system is complex,
so that the impact of one process on an outcome variable of interest
may be offset by the impact of another in way which are hard to isolate.
However we do find that diverse mixes of policy instruments stimulate
collaborative innovation activity measured by co-inventions between
different EU countries. This is particularly important in a decentralising
future which emphasises localised experimentation and a democrati-
sation of energy innovation away from large incumbents. We also find
that both RD&D expenditure and trade imports support knowledge
generation and exchange, and that these relationships are largely robust
to future uncertainty.
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Appendix A1

Tables A1a and A1b show the full estimation results for number of patents as an innovation outcome variable. Table A1a shows summarises the
signs and significance of coefficients in the both the baseline and stochastic analyses. The left columns show results of the baseline econometric
model estimated on 2001–2013 data across 6 technology fields in the EU SET Plan. The right columns show independent variables (IVs) strengthened
or weakened in narrative storylines, and the signs and significance of the Monte Carlo simulation model results. Table A1b provides the full results of
the Monte Carlo simulation models.

Table A1a
Baseline & Stochastic Analysis of Number of Patents (2001–2013, 6 technology fields).

DV=number of patents Baseline econometric model Stochastic analysis in future storylines

IVs Expected sign EU SET Plan 2001–2013 Diversification Directed Vision National Champions Localisation

RD&D expenditure + + *** + ns strengthened
+ **

+ ns strengthened
+ ns

RD&D stability + - ** - ns - ns strengthened - ns - ns

patent co-inventions + + ** strengthened
+ ns

+ ** + ns weakened
+ **

cumulative patents + + *** + ns + ** + ns + ns

policy durability + - ns weakened
- ns

strengthened - ns strengthened - ns - ns

policy stability + - *** weakened
- ns

- ns strengthened - ns - ns

IVs not used= cumulative capacity, cumulative RD&D, trade imports, policy diversity.
+ positive sign, - negative sign, ***p < 0.01, **p < 0.05.
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Table A1b
Monte Carlo Mean Estimation Results: Number of patents (2001–2013, 6 technology fields).

Independent Variables (IVs) Diversification Directed Vision National Champions Localisation

RDD(t-1) 0.001 0.001** 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

RDD stability −0.033 −0.034 −0.033 −0.033
(0.029) (0.031) (0.021) (0.031)

Co-invention 0.000 0.000** 0.000 0.000**
(0.000) (0.001) (0.001) (0.001)

Cum_patent 0.000 0.000** 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Policy durability −0.006 −0.007 −0.006 −0.006
(0.024) (0.020) (0.020) (0.020)

Policy stability −0.267 −0.266 −0.264 −0.261
(0.483) (0.260) (0.185) (0.260)

Robust standard errors in parentheses ***p < 0.01, **p < 0.05.

Tables A2a and A2b show the full estimation results for patent co-inventions as an innovation outcome variable. Table A2a shows summarises the
signs and significance of coefficients in the both the baseline and stochastic analyses. The left columns show results of the baseline econometric
model estimated on 2001–2013 data across 6 technology fields in the EU SET Plan. The right columns show independent variables (IVs) strengthened
or weakened in narrative storylines, and the signs and significance of the Monte Carlo simulation model results. Table A2b provides the full results of
the Monte Carlo simulation models.

Table A2a
Baseline & Stochastic Analysis of Patent Co-Inventions (2001–2013, 6 technology fields).

DV=patent co-inventions Baseline econometric model Stochastic analysis in future storylines

IVs Expected sign EU SET Plan 2001–2013 Diversification Directed Vision National Champions Localisation

RD&D expenditure + + *** + ns strengthened
+ ns

+ ns strengthened+ ns

RD&D stability + - ns - ns - ns strengthened- ns - ns

trade
imports

+ + *** + ns + ns weakened
+ ns

strengthened
+ ns

policy durability + - ns weakened
- ns

strengthened
- ns

strengthened- ns - ns

policy diversity + + ns strengthened
+∗∗

weakened
+

+∗∗ strengthened
+∗∗

IVs not used= cumulative capacity, cumulative RD&D, cumulative patents, co-inventions, policy stability.
+positive sign, - negative sign, ***p < 0.01, **p < 0.05.

Table A2b
Monte Carlo Mean Estimation Results: Co-inventions (2001–2013, 6 technology fields).

Independent Variables (IVs) Diversification Directed Vision National Champions Localisation

RDD(t-1) 0.002 0.002 0.002 0.002
(0.001) (0.001) (0.001) (0.001)

RDD stability −0.011 −0.011 −0.011 −0.011
(0.028) (0.028) (0.019) (0.029)

Policy durability −0.009 −0.009 −0.009 −0.009
(0.024) (0.019) (0.020) (0.040)

Policy diversity 0.078** 0.066 0.070** 0.076**
(0.322) (0.453) (0.589) (0.336)

Trade 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Robust standard errors in parentheses***p < 0.01, **p < 0.05.

Tables A3a and A3b show the full estimation results for cost of technology as an innovation outcome variable. Table A3a shows summarises the
signs and significance of coefficients in the both the baseline and stochastic analyses. The left columns show results of the baseline econometric
model estimated on 2011–2015 data across 3 technology fields in the EU SET Plan. The right columns show independent variables (IVs) strengthened
or weakened in narrative storylines, and the signs and significance of the Monte Carlo simulation model results. Table A3b provides the full results of
the Monte Carlo simulation models.
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Table A3a
Baseline & Stochastic Analysis of Cost of Technology (2011–2015, 3 technology fields).

DV= cost of technology Baseline econometric model Stochastic analysis in future storylines

IVs Expected sign EU SET Plan 2011–2015 Diversification Directed Vision National Champions Localisation

cumulative capacity – - ** - ns - ns - ns - ns

cumulative RD&D – - ** - ns strengthened
- ns

- ns strengthened- ns

trade
imports

– - ns + ns - ns weakened
+ ns

strengthened
- ns

policy durability – - ns weakened
- ns

strengthened
- ns

strengthened
- ns

- ns

policy diversity – + ns strengthened
+ ns

weakened
+ ns

+ ns strengthend
+ ns

IVs not used=RD&D expenditure, RD&D stability, cumulative patents, co-inventions, policy stability.
+ positive sign, - negative sign, ***p < 0.01, **p < 0.05.

Table A3b
Monte Carlo Mean Estimation Results: Cost of Technology (2011–2015, 3 technology fields).

Independent Variables (IVs) Diversification Directed Vision National Champions Localisation

Cum_Capacity −0.000 −0.000 −0.000 −0.000
(0.000) (0.000) (0.000) (0.000)

Cum_RD&D −0.000 −0.000 −0.000 −0.000
(0.000) (0.000) (0.000) (0.000)

Policy Durability −0.009 −0.008 −0.008 −0.009
(0.047) (0.043) (0.044) (0.045)

Policy Diversity 0.568 0.570 0.606 0.487
(1.169) (1.134) (9.836) (9.565)

Trade 0.000 −0.000 0.000 −0.000
(0.000) (0.000) (0.000) (0.000)

Robust standard errors in parentheses***p < 0.01, **p < 0.05.

Table A4
Robustness checks.

Variables (1) (2) (3) (4)

Poisson (Quasi-ML) with robust SE:
Number of patents 2001–2013 6 tech-
nologies†

Poisson (Quasi-ML) with robust SE:
Number of patents 2001–2013 6 tech-
nologies†

Poisson (Quasi-ML) with robust SE:
Co-inventions 2001–2013 6 technolo-
gies†

Poisson (Quasi-ML) with robust SE:
Co-inventions 2001–2013 6 technol-
ogies†

RDD(t-1) 0.001*** 0.001*** 0.002*** 0.002***
(0.000) (0.000) (0.000) (0.000)

RDD(t-2) 0.000 −0.000 −0.000* −0.000
(0.000) (0.000) (0.000) (0.000)

RDD(t-3) −0.000 −0.000
(0.000) (0.000)

RDD stability −0.031** −0.027 −0.008 −0.003
(0.015) (0.018) (0.016) (0.014)

Co-invention 0.000* 0.000*
(0.000) (0.000)

Cum_patent 0.000*** 0.000***
(0.000) (0.000)

Policy dur-
ability

−0.008 −0.011 −0.009 −0.010
(0.007) (0.007) (0.012) (0.012)

Policy stability −0.265*** −0.264***
(0.049) (0.064)

Policy diver-
sity

0.050 0.020
(0.197) (0.197)

Trade imports 0.000*** 0.000***
(0.000) (0.000)

Year FE NO NO NO NO
Tech FE YES YES YES YES

Robust standard errors (SE) in parentheses, ***p < 0.01, **p < 0.0† Patent and co-invention models span 2001–2013 due to patent data truncation issues with
more recent data; cost of technology model covers 2011–2015 and only applies to three technology fields (renewable energy, energy efficiency, electric vehicles) due
to data availability.

Y.J. Kim and C. Wilson Energy Strategy Reviews 24 (2019) 279–299

291



Appendix A2

This section explains how we construct each indicator.
Public energy RD&D expenditure. RD&D is the most readily available measure of knowledge generation. We used public energy RD&D

expenditure including demonstration budgets from the International Energy Agency (IEA) RD&D database.
Number of patents. We counted the number of relevant patent applications in 2015 using Cooperative Patent Classifications (CPCs) from the

U.S. Patent and Trademark Office (USPTO)3 [65].
Knowledge stock. A technological knowledge stock reflects the cumulative technological knowledge that a country possesses at a given point in

time [66,67].

Knt = (1− δ)n(t-1) + Rn(t-x)

where Knt is the knowledge stock in country n during time period t. Moreover, δ is the annual depreciation rate of the knowledge stock (0≤ δ≤1),
Kn0 represents each country's initial national knowledge stock, Rn0 is the number of a technology patent counts in the first year available, and x is
the number of years (lag) it takes before new patents add to the knowledge stock (J [68]. Typically, the time lag is assumed to be three years. Note
that we assume discount factor of 15% [69,70].

Energy technology imports. We used imports of related goods and Extra-EU collaboration in patenting as a measure of knowledge spillover into
the EU energy innovation system. We obtained data on the total import of energy technologies from EU trade data since 1988 by Harmonised System
(HS)6.4 We used the HS codes to attribute the import data to the different SET-Plan priority areas [71,72].

Technology costs. Learning describes cost reductions and performance improvements as a function of cumulative experience. Learning rates are
a simple measure of the % reduction in cost per doubling of cumulative capacity or production. We sourced learning rates per technology from
existing literature [47,73,74].

Stability in public energy RD&D expenditure. Knowledge depreciates more rapidly in stop-go environments associated with staff turnover and
investment volatility. We calculated the volatility of energy RD&D expenditure based on earlier work on market volatility [75] applied using a
method from the economics of energy innovation [32,76]. For the comparability of other indicators, we used the inverse of the coefficient of
variation so that lower volatility results in a higher score on the indicator:
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with i as a country, t as a year, and k= 0–4 (lagged year).
Policy Durability. The policy durability indicators are based on the cumulative length of policies in place in a particular technology field in each

year, defined as:

Durability
Startyear

n
(2015 )

s p
i
n

s p i s p

s p
2015, ,

1 , , ,

,
= =

(A3)

with i as one policy instrument (i=1, …,n), startyear as a year of policy introduction, p as types of policy instrument (p= innovation, market-based
and regulatory) and s as SET-Plan priority area (s= 1, …,6).

Policy Diversity. The policy diversity indicator measures whether different types of policy instrument are well-balanced within each of the six
SET-Plan priority areas [77,78]. Building on the energy literature [79,80], we used a statistical measure of diversity applied to the types of policy
instruments, i.e., Shannon's diversity index H (sometimes Shannon–Weiner or Shannon–Wiener index):

H p plns
i

i i=
(A4)

with pi as share of a type of policy instrument in the SET-Plan priority area. The higher the value of H, the more diverse the mix of policy instruments.
Policy Stability. As an aggregate measure of policy stability, we divided the cumulative duration of all policy instruments by the total number of

times policies had been changed, also using data from the IEA's Addressing Climate Change Database. Higher scores on the indicator denote fewer
changes to policy instruments overall and so greater stability:

Stability
Startyear
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(A5)

with i as one policy instrument (i=1, …,n), startyear as a year of policy introduction and s as SET-Plan priority area (s= 1, …,6).
Patent co-inventions. We identified Intra-EU collaboration as 1 if any inventors (authors) from EU countries who collaborated with EU

countries, otherwise 0. On a side note, we considered a single inventor or author as a 0.
Cost of technology. We calculated the cost of technology from below sources.

- Renewable energy: Total installed cost (2015 Euros/MW) (Source: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/
Jan/IRENA_2017_Power_Costs_2018.pd)
- Energy efficiency (appliance) (Source: Euromonitor Passport data(Total number of appliances and average unit retail price))
- Sustainable transport: Average price of electric vehicles: 32 500 Euros
(Source: http://www.theicct.org/sites/default/files/publications/ICCT_EU-pocketbook_2015.pdf)

3 USPTO's PatentsView database: http://www.patentsview.org/web/#viz/relationships.
4 https://data.europa.eu/euodp/en/data/dataset/PApkoFg8zsTS5CyokPyQ.
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Cumulative capacity. We calculated the cumulative capacity since 2000 (where data is available).

- Renewable energy: installed capacity (MW)
Infrastructure - electricity - annual data (MW)
Source: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_113a&lang=en
onshore wind (Source: https://www.eia.gov/electricity/generatorcosts)
solar PV actual installed capacity(peak) (Source: https://www.eurobserv-er.org/photovoltaic-barometer-2016)
Cumulative and annual offshore wind installations (Source: https://windeurope.org/wp-content/uploads/files/about-wind/statistics/
WindEurope-Annual-Offshore-Statistics-2016.pdf)
Solar thermal and concentrated solar power barometer (Source: https://www.eurobserv-er.org/solar-thermal-and-concentrated-solar-power-
barometer-2016/)
Goethermal (Source: https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_Geothermal_2016.pdf)
Ocean (Source: https://setis.ec.europa.eu/sites/default/files/reports/ocean_energy_report_2016.pdf)

- Energy efficiency (appliance): number of homes with A+++ rated appliances (#)
A weighted average of A+++ rated appliance sales including refrigerators, washing machines, and tumbler drier are based on 2014 data
(Source: http://www.topten.eu/uploads/File/WhiteGoods_in_Europe_June15.pdf)

- Sustainable transport: number of electric vehicles (#)
Electric vehicles in Europe (Source: European Environment Agency)

Scope of data search to match SET Plan priority areas

Data corresponding to each of the six priority areas of the SET Plan were identified either by searching databases using classifications (e.g.,
patents) or by allocating database-defined categories to priority areas (e.g., RD&D investments in IEA database). Wherever possible, the scope or
breadth of data corresponding to each priority area was kept consistent across all the indicators (Table A5). The aim was to maximise consistency of
scope across indicators to ensure comparability.

Table A5
Matching of Scope of Data for ETIS Indicators to SET Plan Priority Areas. Text in italics shows main deviations from SET Plan Priority Areas.

SET Plan priority area Target Scope of Data for ETIS indicators

1 RE Renewable energy & system integration all renewable energy (exc. fuels) (exc. stationary storage)
2 SG Smart technologies & grid all grid and power systems (inc. stationary storage) (exc. smart homes)
3 EE Energy efficiency in buildings & industry all energy efficiency in buildings and industry
4 ST Sustainable transport (EVs, renewable fuels) all alternative fuels and vehicles (inc. mobile storage) (inc. all H2)
5 CCS Carbon capture + storage or use all carbon capture (from large point sources), storage & use
6 NP Nuclear power all nuclear fission and fusion (inc. safety)

Some inconsistencies were unavoidable due to differences in database structure or in the database-defined categories. In these cases, it was not
possible to match the scope of the SET Plan priority area to the scope of the data for all indicators. As a result, a ‘lowest-common denominator’
approach to defining the scope of data was adopted to ensure consistency across all indicators. The main resulting mismatches between scope of data
and scope of SET Plan priority areas were:

• SG (Smart Grid) data over-estimates activity as includes all ‘non-smart' grid and power systems, but under-estimates activity as doesn't include
smart technologies & homes as consumer products;
• ST (Sustainable Transport) over-estimates activity as includes all H2 as fuel which may be for stationary applications and/or non-renewable;
• NP (Nuclear Power) over-estimates activity as includes all nuclear-related activity (not limited to safety).
Based on the target scope of data for all ETIS indicators defined in Table A5, specific sets of search terms and/or category allocations were used

for the different databases used for each indicator. The resulting scopes of data are summarised in Table A6, with the main inconsistencies shown in
italics. The remainder of this appendix includes additional details on data-collection methods. Table A7 shows the category of the IEA public RD&D
expenditure and SET-Plan priority areas respectively. Table A8 includes IPC classes to identify SET-Plan priority patents. Table A9 shows harmonised
system (HS) codes of low carbon goods.

Table A6
Scope of Data Collected for ETIS Indicators on each SET Plan Priority Area. Text in italics shows main inconsistencies (see table footnotes for details).

Target Scope (see Table A5) knowledge generation knowledge codification knowledge codification knowledge spillover

IEA RD&D $ Web of Science publications Patent CPC Harmonised System (HS codes

RE all renewable energy: solar, wind,
geo, wave, marine, ocean, hydro,
bioenergy (exc. fuels) (exc. sto-
rage)

Solar, wind, geo, ocean,
hydro, other renewable
sources (exc. Fuels, biofuels,
storage)

solar thermal, solar PV, wind,
geothermal, ocean, hydro, bio
energy (exc. Fuels, biofuels,
storage)

solar thermal, solar PV, wind,
geothermal, marine, hydro, inte-
gration technologies (exc. fuels)
(exc. storage)

Solar thermal, solar PV, wind,
bioenergy, ocean, wave, marine,
geothermal, hydro (exc. fuels)
(exc. storage)

(continued on next page)
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Table A6 (continued)

Target Scope (see Table A5) knowledge generation knowledge codification knowledge codification knowledge spillover

IEA RD&D $ Web of Science publications Patent CPC Harmonised System (HS codes

SG all grid and power systems (inc.
stationary storage, exc. smart
homes)

all grid and power systems
(inc. storage, exc. vehicle
storage)

all grid and power systems,
smart technologies and grids
(inc. storage, exc. vehicle sto-
rage)

all grid and power systems, smart
grids (inc. storage, exc. vehicle
storage)

electricity meters, smart grids
(inc. storage exc. vehicle storage)

EE all energy efficiency in buildings
and industry

energy efficiency (buildings,
industry)

energy efficiency (buildings, in-
dustry)

energy efficiency (buildings, in-
dustry)

thermostats, heat exchangers, in-
sulation, lighting, EE in heavy
industry 1

ST all alternative fuels and vehicles
(inc. mobile storage) (inc. all H2)

EV, mobile (vehicle) sto-
rage, H2, fuel cells, biofuel

biofuels, EVs, FCVs
H2, vehicle storage

biofuels, EVs, FCVs, H2, hybrid
vehicle,
vehicle storage, charging stations
and enabling technologies

EVs, energy storage(mobile), bio-
fuels, batteries 2

CCS all carbon capture (from large
point sources), storage & use

all carbon capture (from
anthropogenic point
sources)

all carbon capture and storage all carbon capture and storage CCS surveying equipment 3

NP all nuclear fission and fusion (inc.
safety)

all nuclear fission and fu-
sion, and other generic nu-
clear

all nuclear fission and fusion
(inc. safety)

all nuclear fission and fusion nuclear reactors 4

1 under-estimates activity as includes only specific subsets of energy efficiency in buildings & industry.
2 under-estimates activity as excludes H2 and other alternative fuels than biofuels and EVs.
3 strongly under-estimates activity as includes only a specific type of CCS equipment (for surveying).
4 under-estimates activity as includes only reactors and not componentry or balance of plants.

Table A7
IEA public RD&D expenditure (Total RD&D in Million Euro (2015 prices and exch. rates))

Category Sub-category SET-Plan areas

GROUP 1: ENERGY EFFICIENCY
11 Industry 3
12 Res. and comm. buildings, appliances and equipment 3
13 Transport
1311 Vehicle batteries/storage technologies 4
1312 Advanced power elecs, motors, EV/HEV/FCV sys 4
1314 Electric vehicle infrastructure 4
1315 Fuel for on-road vehicles (excl. hydrogen) 4
14 Other energy efficiency
19 Unallocated energy efficiency

GROUP 2: FOSSIL FUELS
21 Oil and gas
22 Coal
23 CO2 capture and storage 5
29 Unallocated fossil fuels

GROUP 3: RENEWABLE ENERGY SOURCES
31 Solar energy 1
32 Wind energy 1
33 Ocean energy 1
34 Biofuels (incl. liquids, solids and biogases) 4
35 Geothermal energy 1
36 Hydroelectricity 1
37 Other renewable energy sources 1
39 Unallocated renewable energy sources 1

GROUP 4: NUCLEAR
41 Nuclear fission 6
42 Nuclear fusion 6
49 Unallocated nuclear 6

GROUP 5: HYDROGEN AND FUEL CELLS
51 Hydrogen
511 Hydrogen production
512 Hydrogen storage 4
513 Hydrogen transport and distribution
514 Other infrastructure and systems
515 Hydrogen end-uses
519 Unallocated hydrogen
52 Fuel cells 4
59 Unallocated hydrogen and fuel cells 4

(continued on next page)
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Table A7 (continued)

Category Sub-category SET-Plan areas

GROUP 6: OTHER POWER AND STORAGE TECHNOLOGIES
61 Electric power conversion
611 Power generation technologies
612 Power generation supporting technologies 2
613 Other electricity power generation
619 Unallocated electric power generation
62 Electricity transmission and distribution 2
63 Energy storage 2
631 Electrical storage
632 Thermal energy storage
639 Unallocated energy storage
69 Unallocated other power and storage techs. 2

GROUP 7: OTHER CROSS-CUTTING TECHS/RESEARCH
71 Energy system analysis 2
72 Basic energy research not allocated
73 Other

GROUP 8: Unallocated

Table A8
Knowledge Codification: Patents.

Technologies CPC SET-
Plan

4.1. Renewable energy generation
- wind energy
- Solar thermal energy
- Solar PV energy
- Solar thermal-PV hybrids
- Geothermal energy
- Marine energy
- Hydro energy

Y02E10 1

7.1. Integration of renewable energy sources in buildings
- Photovoltaic [PV]: Roof systems for PV cells; PV hubs
- Solar thermal: Evacuated solar collectors; Air conditioning or refrigeration systems
- Wind power
- Geothermal heat-pumps
- Hydropower in dwellings
- Use of biomass for heating
- Hybrid systems; Uninterruptible or back-up power supplies integrating renewable energies

Y02B10 1

4.5. Technologies for an efficient electrical power generation, transmission or distribution
4.5.1. Superconducting electric elements or equipment

Flexible AC transmission systems [FACTS]
Active power filtering [APF]
Reactive power compensation
Arrangements for reducing harmonics
Arrangements for eliminating or reducing asymmetry in polyphase networks
Smart grids

Y02E40 2

4.6.4. Smart grids in the energy sector Y02E60/70 2
4.7. Other energy conversion or management systems reducing GHG emissions Y02E70 2
4.6.1.2. Capacitors
- Ultracapacitors, supercapacitors, double-layer capacitors

Y02E60/13 2

4.6.1.3. Thermal storage
- Sensible heat storage, Latent heat storage, Cold storage

Y02E60/14 2

4.6.1.4. Pressurised fluid storage Y02E60/15 2
4.6.1.5. Mechanical storage
- Mechanical energy storage, e.g. flywheels

Y02E60/16 2

4.6.1.6. Pumped storage Y02E60/17 2
7.2. Energy efficiency in buildings Y02B20, Y02B30, Y02B40,

Y02B50, Y02B60, Y02B70
3

7.3. Architectural or constructional elements improving the thermal performance of buildings Y02B80 3
7.4. Enabling technologies in buildings

Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation:
- Applications of fuel cells in buildings
- Cogeneration of electricity with other electric generators
- Emergency, uninterruptible or back-up power supplies integrating fuel cells
- Cogeneration or combined heat and power generation, e.g. for domestic hot water
- Fuel cells specially adapted to portable applications, e.g. mobile phone, laptop
- Systems integrating technologies related to power network operation and ICT mediating in the improvement of the carbon footprint
of the management of residential or tertiary loads, i.e. smart grids as enabling technology in buildings sector (e.g.

Y02B90 3

(continued on next page)
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Table A8 (continued)

Technologies CPC SET-
Plan

related to uninterruptible power supply systems, remote reading systems, etc.)
4.3.1. Technologies for improved output efficiency (Combined heat and power, combined cycles, etc.)
Heat utilisation in combustion or incineration of waste
Combined heat and power generation [CHP]
Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Integrated gasification combined cycle [IGCC]

Y02E20/12
Y02E20/14
Y02E20/16
Y02E20/18

3

4.3.2. Technologies for improved input efficiency (Efficient combustion or heat usage)
- Direct CO2 mitigation: Use of synair, i.e. a mixture of recycled CO2 and pure O2; Use of reactants before or during combustion;
Segregation from fumes, including use of reactants downstream from combustion or deep cooling; Controls
of combustion specifically inferring on CO2 emissions
- Indirect CO2 mitigation, i.e. by acting on non CO2 directly related matters of the process, e.g. more efficient use of fuels:
Cold flame; Oxyfuel combustion; Unmixed combustion; Air pre-heating
- Heat recovery other than air pre-heating: at fumes level, at burner level

Y02E20/30-366 3

4.2.1. Biofuels
- CHP turbines for biofeed; Gas turbines for biofeed
- Bio-diesel
- Bio-pyrolysis; Torrefaction of biomass
- Cellulosic bio-ethanol; Grain bio-ethanol; Bio-alcohols produced by other means than fermentation

Y02E50/10 4

4.6.1.1. Batteries
- Lithium-ion batteries
- Alkaline secondary batteries, e.g. NiCd or NiMH
- Lead-acid batteries
- Hybrid cells

Y02E60/12 4

4.6.2. Hydrogen technology
Hydrogen storage: Storage of liquefied, solidified, or compressed hydrogen in containers; Storage in caverns; Reversible uptake of
hydrogen by an appropriate medium (e.g. carbon, metal, rare earth metal, metal alloy, organic compound)

- Hydrogen distribution
- Hydrogen production from non-carbon containing sources: by chemical reaction with metal hydrides, e.g. hydrolysis of metal
borohydrides; by decomposition of inorganic compounds, e.g. splitting of water other than electrolysis, ammonia borane; by
electrolysis of water; by photo-electrolysis

Y02E60/30-368 4

4.6.3. Fuel cells Y02E60/50-566 4
6.1.2. Hybrid vehicles Y02T10/62 4
6.1.3. Electric vehicles Y02T10/64–649, Y02T10/

70–7094, Y02T10/72-7291
4

6.5. Enabling technologies in transport
- Electric vehicle charging
- Application of fuel cell and hydrogen technology to transportation

Y02T90 4

Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT] combined with carbon capture and storage [CCS] Y02E20/185 5
5.1. CO2 capture and storage (CCS)
- Capture by biological separation
- Capture by chemical separation
- Capture by absorption
- Capture by adsorption
- Capture by membranes or diffusion
- Capture by rectification and condensation
- Subterranean or submarine CO2 storage

Y02C10 5

4.4. Nuclear energy
- nuclear fusion reactors
- nuclear fission reactors

Y02E30 6

Source: [81].

Table A9
Description and harmonised system (HS) codes of low carbon goods

Technology class HS code Description SET-
Plan

Hydro energy 841011 Hydraulic turbines & water wheels,of a power not >1 000 kW 1
841012 Hydraulic turbines & water wheels,of a power > 1 000 kW but not > 10 000 kW 1
841013 Hydraulic turbines & water wheels,of a power > 10 000 kW 1
841090 Parts (incl. regulators) of the hydraulic turbines

& water wheels of 8410.11–8410.13
1

Solar thermal 841919 Instantaneous/storage water heaters,non-electric (excl. of 8419.11) 1

Solar photovoltaic 854140 Photosensitive semiconductor devices, incl. photovoltaic cellswhether or not assembled in modules/made up
into panels; light emitting diodes

1

Wind energy 850231 Wind-powered electric generating sets 1
730820 Towers and lattice masts, of iron or steel 1

(continued on next page)
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Table A9 (continued)

Technology class HS code Description SET-
Plan

Bioenergy 840290 Steam or other vapour generating boilers (other than central heating hot water boilers capable also of
producing low pressure steam); super-heated water boilers. [Ca, J, NZ, K]

1

Bioenergy 840410 Auxiliary plant for use with boilers of heading 84.02 or 84.03 (for example, economisers, super-heaters, soot
removers, gas recovers'); condensers for steam or other vapour power units

1

Bioenergy 850164 AC generators (alternator), of an output exceeding 750 kVA 1

Bioenergy, Ocean, wave, marine Geothermal e-
nergy

850239 Biogas generator sets; Gas Generator
Small hydro, ocean, geothermal and biomass gas turbine generating sets. [US]

1

Smart grids 902830 Electricity meters 2

Energy storage 850720 Lead-acid electric accumulators except for vehicles 2

Automatic regulating or controlling instruments,
other. [Ca, J, NZ, K, Au, Ru, BD]

903289 2

Insulation 680610 Slag wool, rock wool & similar mineral wools(incl. intermixtures thereof), in bulk/sheets/rolls 3
680690 Mixtures & articles of heat-insulating/sound-insulating

/sound-absorbing mineral materials (excl. of 68.11/68.12/Ch.69)
3

700800 Multiple-walled insulating units of glass 3
701939 Webs, mattresses, boards &similar non-woven products of glass fibres 3

Heating 903210 Thermostats 3
Heating 841861 Compression-type refrigerating/freezing equip. whose condensers are heat exchangers, heat pumps other

than air conditioning machines of heading 84.15
3

Heating 841950 Heat exchange units, whether/not electrically heated 3

Lighting 853931 Electric discharge lamps (excl. ultra-violet lamps),fluorescent, hot cathode 3
853120 Indicator panels incorporating liquid crystal devices(chemically defined)/light emitting diodes (LED) 3

Energy efficiency in heavy industries 840410 Economizers, super-heaters, soot removers, gas recoverers and condensers for steam or other vapour power
units

3

Energy storage 850710 Lead-acid electric accumulators (vehicle) 4

Energy storage 850730 Nickel-cadmium electric accumulators 4
Energy storage 850740 Nickel-iron electric accumulators 4
Energy storage 850780 Electric accumulators 4
Energy storage 850790 Parts of electric accumulators, including separators 4
Energy storage 853224 Fixed electrical capacitors, other than those of 8532.10,ceramic dielectric, multilayer 4

Biofuels 220720 Ethyl alcohol, other spirits (denatured) 4
220710 Ethyl alcohol (alcoholic strength 80° or more) 4

Electric vehicles 870320 HEV, PHEV, biofuels, and etc. 4

Battery Electric vehicles 870390 BEVs 4

Carbon capture and storage 901580 Other surveying, hydrographic, oceanographic, hydrological, meteorological or geophysical instruments and
appliances, excluding compasses,not elsewhere specified in 90.15

5

Nuclear energy 840110 Nuclear reactors 6
840120 Machinery and apparatus forisotopic separation, and parts thereof 6
840140 Parts of nuclear reactors 6

Sources: http://documents.epo.org/projects/babylon/eponet.nsf/0/6A51029C350D3C8EC1257F110056B93F/$File/climate_change_mitigation_technologies_
europe_en.pdf.
https://www.ictsd.org/downloads/2013/12/info_note_list-of-environmental-goods_sugathan.pdf.
http://trade.ec.europa.eu/doclib/docs/2016/may/tradoc_154527.pdf (carbon capture and storage HS code).
http://personal.lse.ac.uk/dechezle/Promoting_the_international_transfer_of_low_carbon_techs.pdf (EE in heavy industry).
http://www.strongandherd.co.uk/files/apeclistof54environmentalgoods.pdf.
https://www.researchgate.net/publication/322570116_Intellectual_property_rights_protection_and_the_international_transfer_of_low-carbon_technologies?
enrichId=rgreq-cde75eb28125928f15cd42af22826452-XXX&enrichSource=
Y292ZXJQYWdlOzMyMjU3MDExNjtBUzo1ODQ0OTg2MzQ4NDIxMTJAMTUxNjM2Njc0MjcwNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf.
http://www.mra.mu/download/PresentationOnTariff2017.pdf (EVs).
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