

Changing risks of simultaneous global breadbasket failure

Franziska Gaupp

International Institute for Applied Systems Analysis (IIASA)

Ecosystems Services and Management (ESM)/ RISK group

Dec 13, 2018

AGU 2018

Russia, 2010

Background

SPEI Global Drought Monitor: October 2010

Wheat prices in US Dollars (Worldbank)

The global breadbaskets

Global wheat, maize, soybean and rice breadbaskets

Simultaneous climate risks in the global breadbaskets

Literature review:

crop and region specific climate indicators

Correlation analysis with observed subnational detrended yields and re-analysis climate indicators

Selection

One temperature, precipitation and/or solar radiation based **climate indicator** per crop and region

Definition of **climate indicator threshold** (~25 detrended yield percentile)

Regional and global **copula** analysis

→ Joint climate risks

Maize-climate relationship in Santa Fe, Argentina

Changes in climate risks between 1967-1990 and 1991-2012

Changes in climate risks between 1967-1990 and 1991-2012 (cont.)

Copulas

- Combine univariate distribution functions in order to form multivariate, joint distributions
- Flexible tool as it allows marginal distributions from different families to model dependence between random variables
- Sklar's Theorem (1951):

$$H(x,y) = C[F_X(x), F_Y(y)]$$
 $x,y \in R$ -> C, F_X and F_Y are uniquely defined if H is

Two steps: 1. univariate marginal distribution parameters are estimated
 2. the copula dependence parameter is derived

Wheat yields in Uttar Pradesh and Haryana in India

Gumbel copula:

with u and v as cumulative distribution functions such as $F_{CH}(ch)$ and $F_{US/IN}(us/in)$ and α as copula parameter.

Uttar Pradesh and Haryana yield deviations follow the **normal distribution**.

$$P(UP \le -0.118, H \le -0.2)$$

= $C[F_{CH}(-0.118), F_{US/IN}(-0.2)]$
= 0.075

Compared to independence: $P(UP \le -0.118, H \le -0.2)$ $= F_{UP}(-0.118) \cdot F_{H}(-0.2)$ = 0.024

-> risks would be underestimated by a factor of three!

more copula families...

Pham (Ed) (2006).

Multivariate vine copulas

RVine structure of the Indian breadbasket

Tree 1

More information on vine copulas: Aas (2004), Aas et al. (2009), Czado et al. (2010), Dißmann et al. (2013)

Simultaneous climate risks in the global breadbaskets

Figure 1: Likelihood of simultaneous climate risks: defined as relevant climate indicators exceeding the value that corresponds to the to the lower 25% yield deviation percentile. Likelihood of climatic conditions simultaneously threatening crop losses in multiple global (a) wheat (b) maize (c) soybean and (d) rice breadbaskets

Gaupp et al., in revision

Thank you for your attention!

gaupp@iiasa.ac.at