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ABSTRACT
The importance of building/maintaining soil carbon, for soil health and CO2 mitigation, is of
increasing interest to a wide audience, including policymakers, NGOs and land managers.
Integral to any approaches to promote carbon sequestering practices in managed soils are
reliable, accurate and cost-effective means to quantify soil C stock changes and forecast soil
C responses to different management, climate and edaphic conditions. While technology to
accurately measure soil C concentrations and stocks has been in use for decades, many chal-
lenges to routine, cost-effective soil C quantification remain, including large spatial variabil-
ity, low signal-to-noise and often high cost and standardization issues for direct
measurement with destructive sampling. Models, empirical and process-based, may provide
a cost-effective and practical means for soil C quantification to support C sequestration poli-
cies. Examples are described of how soil science and soil C quantification methods are being
used to support domestic climate change policies to promote soil C sequestration on agri-
cultural lands (cropland and grazing land) at national and provincial levels in Australia and
Canada. Finally, a quantification system is outlined – consisting of well-integrated data-
model frameworks, supported by expanded measurement and monitoring networks, remote
sensing and crowd-sourcing of management activity data – that could comprise the core of
a new global soil information system.

KEYWORDS
Soil carbon; carbon
sequestration; measurement
methods; SOC models; soil
monitoring; soil health

Take Home messages:

� Increasing soil organic carbon (SOC) stocks would improve
the performance of working (managed) soils especially
under drought or other stressors, increase agricultural resili-
ence and fertility, and reduce net GHG emissions from soils.

� There are many improved management practices that can
be and are currently being applied to cropland and grazing
lands to increase SOC.

� Land managers are decision makers who operate in larger
contexts that bound their agricultural and financial deci-
sions (e.g. market forces, crop insurance, input subsidies,
conservation mandates, etc.).

� Any effort to value improvements in the performance of
agricultural soils through enhanced levels of SOC will
require feasible, credible and creditable assessment of SOC

stocks, which are governed by dynamic and complex soil
processes and properties.

� This paper evaluates currently accepted methods of quanti-
fying and forecasting SOC that, when augmented and
pulled together, could provide the basis for a new global
soil information system.

Introduction

In recent years, soils have garnered increased
attention for their crucial roles in food security and
delivering key ecosystem services (e.g. primary
production, clean water, nutrient cycling), includ-
ing their capability and potential to help mitigate
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climate change by sequestering carbon – against a
backdrop of widespread soil degradation across
much of the globe [1–4].

Soils contain one of the largest organic carbon C
stocks on the planet, with ca. 1500Pg C (1 Pg ¼ 1015

g¼ 1 billion metric tonnes) to a depth of 1m and
2400Pg C to 2m depth [5]. This carbon actively
exchanges with the atmosphere via the processes of
photosynthesis and respiration. As such a large and
active C pool, small percentage changes in these
stocks can greatly affect the amount of C as CO2 in
the atmosphere and the C balance at a global scale.

At the local scale, there are multiple ramifications
when soils gain or lose soil organic carbon (SOC).
When SOC stocks are reduced, it is typically coinci-
dent with other forms of soil degradation (e.g. top-
soil loss, compaction, reduced aggregate structure)
[6]. In general, agricultural soils are degraded rela-
tive to their pre-agricultural condition and therefore
have a capacity for SOC stocks to be rebuilt if man-
aged appropriately [7]. Observations from field
experiments suggest that agricultural operations
that have been managed to improve SOC levels
also improve physical soil quality (‘tilth’) [8], reduce
susceptibility to erosion [9] and outperform more
conventionally managed systems with respect to
agricultural yields and yield stability, especially
under drought stress [10,11].

Soils have a crucial and obvious role to play in the
global response to climate change. In the most
recent IPCC assessment [12], many of the integrated
assessment models for GHG reduction strategies sug-
gest that aggressive fossil fuel reductions must be
supplemented with negative emission or C seques-
tration options to contain warming below 2 �C as
laid out in the 2015 Paris climate accords. This find-
ing has been further supported by the recent analysis
of Hansen et al. [13] on the need for C negative emis-
sions, as well as Rockstr€om et al.’s [14] roadmap for
decarbonization. It has been suggested that, relative
to other negative emission options, soil C sequestra-
tion may offer one of the least expensive and most
readily implementable near-term options [15]. With
widespread adoption of best soil management practi-
ces, soils can act as a global carbon sink to help
achieve a net removal of CO2 from the atmosphere
[15,16]. Thus, soil C sequestration is a negative-emis-
sions option that must be considered with the dou-
ble win of improved soil properties (chemical,
physical and biological) and associated agro-ecosys-
tem health, resilience and productivity [17].

Early studies on how management might be
used to increase soil organic matter (SOM) for the

purpose of removing more CO2 from the atmos-
phere [18] relied on field experiments [19] and
models [20,21] that were originally designed to
study SOM as a soil fertility factor. These early field
studies and models remain relevant, and, in many
ways, still represent core knowledge of SOC dynam-
ics. However, over the past two to three decades,
the development of sensitive analytical instruments
allowing quantification of SOC at the biomolecular
scale, along with new applications of isotopic label-
ling, have illuminated the myriad factors that con-
trol SOC dynamics [22–24]. While many fine-scale
details regarding SOM dynamics remain to be eluci-
dated, it is fair to say that, in general, the basic con-
trols on gross SOC stock changes are understood
and it is reasonably well known which management
practices can be used to increase SOC storage
across a wide range of environments. Furthermore,
in spite of the complexity of SOC dynamics at the
micro scale, scientists are now beginning to under-
stand the relationship between microscale soil proc-
esses and macroscale soil structures (e.g. aggregate
to peds), that respond to managed changes in SOC
such that they can be used as indicators in soil
health assessment protocols.

The fact that many agricultural land managers
do not currently employ practices that optimize C
storage, despite the widely described potential
benefits, indicates the need to more explicitly
incentivize these practices. Clearly, land managers
can be expected to maximize economic returns
and thereby focus on yields/commodity produc-
tion as the conventional income-generating strat-
egy. Increasing SOC may, in some cases, ‘pay for
itself’ through reducing the need for purchased
inputs and improving long-term soil health, thus
boosting productivity even in times of relative
stress, such as drought [25–27]. However, other
factors such as lack of knowledge, training or tech-
nical capacity may still inhibit implementation of
such ‘negative-cost’ improvements. In many cases,
farmers do incur real, increased costs for imple-
menting better C sequestering practices, in terms
of higher input costs (e.g. seed and operations
costs for sowing cover crops) and/or increased risk
of declines in yield. Thus, opportunities for monet-
ary benefits to the farmer are needed to balance
the potential added costs and to drive widespread
adoption of improved practices.

Currently, there are three main ways in which
the value of soil C sequestration can potentially
be included in direct financial returns to
land managers.
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First, government subsidies as direct payments
or as cost sharing can incentivize farmers; exam-
ples include the U.S. Department of Agriculture’s
Environmental Quality Incentives Program (EQIP)
and Conservation Stewardship Program (CSP) in
the US [28]. Although these programs were origin-
ally designed to meet general resource conserva-
tion objectives, the practices they promote are
generally compatible with C sequestration and
GHG emission reductions [29], and thus enhancing
the promotion of C sequestration through such
programs can be accomplished with relative sim-
plicity. Reduced rates for government-supported
crop insurance programs offer an additional incen-
tive mechanism [30]. Similarly, the European
Union’s Common Agricultural Policy (CAP) provides
incentives for protecting soil health and function,
including maintenance of SOM (and hence soil car-
bon storage) [31].

Second, agricultural land managers could be dir-
ectly compensated for CO2 removal and storage as
SOC as a C ‘offset’, in which the sequestered C
could be sold as a commodity to companies
engaged in GHG emission reductions, in either a
voluntary marketplace or a compliance cap-and-
trade system. Some offset projects that include
SOC are ongoing, including through dedicated
registries (e.g. Verified Carbon Standard, VCS:
https://verra.org/project/vcs-program/registry-system/;
American Carbon Registry, ACR: https://american-
carbonregistry.org/) operating in the voluntary
market space. However, low C prices (often < $5/
tonne CO2) have limited project development to
date [32]. Government-sponsored, incentive-based
offset projects and trading involving soil C seques-
tration are ongoing in Australia and Canada, as dis-
cussed in detail in case studies below.

Third, companies that produce and market
products that are based on agricultural commod-
ities, including food, beverages and fibers, are
increasingly interested in developing more sustain-
able supply chains, including reducing their prod-
ucts’ ‘carbon footprint’. Diverse practice-based
standards, tools and certification schemes, in add-
ition to brand and company pledges, have prolifer-
ated to meet this demand. Hence agricultural
producers could be incentivized to implement C
sequestering practices by earning a premium price
for producing agricultural products to achieve sus-
tainable supply chain goals.

Critical to the success of any of these three
approaches to incentivize soil C sequestration is the
possibility to reliably and cost-effectively quantify

SOC stock changes and affirm that they are occur-
ring. However, depending on the accuracy
required, the acceptable level of uncertainty, and
the allowable costs for measurement and monitor-
ing, the quantification approach will vary. In gen-
eral, the level of rigor required and the associated
cost for quantification will be greatest for offset
projects in which SOC has a defined per-tonne
value as a fungible commodity, whereas the least
stringent requirements likely exist for participants
in government programs, where payments are jus-
tified based on overall conservation benefits, not
just SOC [33]. In general, there is an inverse rela-
tionship between the cost and the uncertainty of
the measurements, and thus designing the most
appropriate quantification approaches will to some
degree involve determining the acceptable trade-
off between accuracy/precision and cost.

This paper provides an overview of current
methods and approaches for quantifying SOC
stock change and the associated removals of CO2

from the atmosphere. The aim is to illustrate how
these methods currently apply to quantifying SOC
stock changes at field to national scales, including
examples of such methods applied to ongoing
programs in Australia and Canada. A concept is
then outlined for a comprehensive global soil
information system that could support quantifica-
tion, monitoring and reporting of SOC stock
changes for a scaled-up effort to promote wide-
spread adoption of soil management strategies to
remove and sequester CO2 and improve
soil health.

Quantification methods

Associating CO2 removals with soil C
stock changes

Biotic carbon stocks exist in a dynamic balance
between continual inflow and outflow of carbon.
For promoting carbon sequestration, the net
amount of CO2 that is removed from the atmos-
phere and incorporated into the soil is the metric
that matters. However, this value is the difference
between two large fluxes of CO2: the uptake of
CO2 by plants and emissions of CO2 via respiration
from plants and the soil biota. Since the net flux of
CO2 on an annual basis is often very small relative
to the gross fluxes, net gains or losses of C from
the ecosystem are difficult to measure accurately
and routinely, requiring sophisticated research
instrumentation (see the section below). An alter-
native approach is to track the changes in
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ecosystem C stocks over time. Since the predomin-
ant C exchange in terrestrial ecosystems is
between the atmosphere and the plant/soil sys-
tem, an increase in biotic organic C stocks over
time is a close proxy for the net uptake of C (as
CO2) from the atmosphere. Conversely, in the
absence of erosion or other lateral transport proc-
esses, a decrease over time in ecosystem C stocks
indicates a net flux of C to the atmosphere. In for-
ests and shrubland, considerable C may be stored
in woody biomass that can accumulate and persist
over many decades, and so plant biomass C
must be considered in any net CO2 accounting
approach. In agricultural systems that lack long-
lived woody biomass (e.g. annual cropland and
non-wooded grassland), plant biomass stocks are
relatively small and mostly ephemeral due to
annual harvesting and grazing. Thus, the only large
and persistent (from year to year) organic C stock
is in the soil. Therefore, SOC stock accounting is
what matters for assessing whether agricultural
ecosystems are a net source or sink of C. Here, the
direct measurement of CO2 fluxes is only briefly
discussed, and most of the discussion is focused
on determining SOC stock changes over time.

Direct measurement – CO2 fluxes

The most direct means to determine whether
ecosystems are functioning as a net C sink and
therefore acting to reduce atmospheric CO2 con-
centrations is by measuring the net CO2 exchange
between the atmosphere and the ecosystem.
Recent decades have seen the development,
refinement and deployment of flux measurement
systems, based on principles of micrometeorology,
in all kinds of terrestrial ecosystems [34]. The most
widely used technique, eddy covariance (EC), relies
on very frequent and highly accurate measure-
ments of CO2 concentrations and air movements,
that can be used to estimate the net gas exchange
between the atmosphere and the land surface, as
a result of photosynthesis (CO2 uptake) and eco-
system respiration (CO2 release). When combined
with measurements of harvested and exported
biomass, and assuming other C losses (e.g. erosion,
leaching) are negligible, EC can provide an inte-
grated estimate of net ecosystem C stock changes
and valuable information on its temporal dynam-
ics. These approaches are particularly useful for
making ecosystem C balance estimates for grazed
grasslands [35,36], in which livestock activities
make other on-the-ground sensors difficult to

maintain, particularly at the levels of replication
needed to account for grazer influence on spatially
varying vegetation and soil C stocks. EC techniques
are also well suited for estimating net C fluxes
from peat soils [37,38], which have varying density
and depth of organic layers that make SOC stock
changes difficult to measure. However, EC and
other micrometeorological methods are (at present
at least) restricted to the research environment.
The techniques involve sophisticated and expen-
sive instruments and require highly trained tech-
nical staff to manage and maintain them and to
process and analyze the data. They also require
several assumptions including relatively homoge-
neous study plots and level topography that are
not always possible in manipulative field experi-
ments or privately managed working lands. While
these types of measurements are very useful for
developing and validating ecosystem C models,
they are not practical for routine deployment for C
offset projects or in extensive farm/ranch-based
measurement and monitoring networks. Rather, to
meet such needs, soil sampling and measurement
of SOC stock change is typically the most feasible
field quantification approach.

Direct measurement – soil C stock changes

Take Home messages:

� Calculation of SOC stocks require volumetric soil samples
(to estimate bulk density) which are more laborious to col-
lect than soil samples collected for routine nutri-
ent analyses.

� Soil samples must be dried and processed (crushed, sieved,
ground) to ensure representative samples are analyzed.

� Ideally, sample preparation is followed by analysis via auto-
mated dry combustion in the laboratory. For soils that con-
tain inorganic forms of carbon, acidification may be
required to determine organic C concentration.

� Other less expensive and less precise methods of lab analy-
ses may be considered, but often the incremental expense
associated with using a modern analyzer is small relative to
the costs of collecting and processing the soil samples.

� Spectroscopic methods (lab- and field-based) offer the
potential for more rapid, cheaper analyses but at the cost
of reduced accuracy and usually require extensive
calibration.

� The main challenges to measuring SOC stocks at field-scales
are high spatial variability and small changes relative to
‘background’ SOC stock.

� Efficient, fit-for-purpose sampling designs that employ
georeferenced benchmark sites that optimize the balance
between sampling intensity and reduced uncertainty can
lower the cost and improve accuracy of direct
measurements.

Determining the concentration of C in a soil sam-
ple is not technologically challenging or especially
difficult. However, large aggregated mitigation and
soil C valuation projects and policies require more
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than simply C concentrations determined in the
laboratory; they require an estimate of SOC in
mass per unit area to a specified depth, and the
capability to estimate temporal changes in SOC
stock associated with improved management. The
main challenges in applying direct measurement
methods to accurately and cost-effectively quantify
soil C stock changes over time are in designing
effective sampling methods and reducing the time
and effort in sample processing and analysis.

Sampling methods

A major challenge in determining SOC stocks and
changes at field scales is the high degree of spatial
heterogeneity. Even in seemingly ‘uniform’ fields,
SOC content may vary by as much as 5-fold or
more [39]. Using conventional approaches with
simple randomized and/or stratified sampling
schemes, accurate estimation of the ‘average’ SOC
contents across fields of tens of hectares might
require tens to hundreds of samples [40]. In add-
ition to lateral variability, organic C usually
decreases markedly with soil depth, with the high-
est concentrations in the top few cm and then usu-
ally declining sharply below the topsoil layer. In
some cropland soils, SOC content may be fairly
homogeneous from 0 to 20 or 30 cm due to mixing
by tillage, but in unplowed soils (e.g. pastures, no-
till cropland) SOC typically declines more continu-
ously from the surface. Detecting overall changes in
SOC requires accounting for this vertical gradient,
so measurements are usually taken from multiple
depth increments (e.g. 0–10 cm, 10–20 cm and so
on), and appropriate analyses to account for inor-
ganic C, especially in sub-surface layers, are required
in many regions. Thus, the full depth to which sam-
ples should be taken depends on the type of man-
agement system being evaluated because different
practices (e.g. crop and tillage type) can manifest
changes over different soil depth intervals. The 0 to
30 cm soil layer specified by the IPCC [41] for soil C
inventories probably captures most short-term
land-use and management-induced changes in SOC
stocks, although some practices (e.g. cropland con-
version to grassland with deep-rooted species) can
have impacts deeper in the soil profile [42]. Over
decadal time scales, relatively minor changes to
subsoil SOC stocks that manifest under many crop-
ping systems can constitute non-trivial quantities of
C at the farm scale [43]. Because variability in SOC
stocks tends to increase as a function of depth,
while the impacts of most management practices

on stocks tends to decrease with depth, efficient
analyses of SOC changes should evaluate SOC
stocks sequentially, from the surface to increasing
cumulative depth layers, to the full depth of sam-
pling [44]. This enables statistically significant differ-
ences, which may be confined to surface layers, to
be revealed without diluting the signal by including
non-significant differences at depth.

Finally, the amount of SOC already present in
most soils, versus the amount and rate of change
that typically occurs from adopting C sequestering
practices, represents a typical signal-to-noise prob-
lem. Many practices advocated to increase SOC
stocks do so at rates of less than 0.5–1Mg C
ha�1 yr�1, whereas ‘background’ SOC stocks in
many soils, just in the top 20–30 cm, can be in the
range of 30–90Mg C ha�1. Therefore, with poten-
tial annual stock changes of 1% or less of the exist-
ing stocks, measurement intervals of 5 years or
more are generally required to detect statistically
significant cumulative SOC stock changes with a
moderate sampling density.

Rather than using sampling designs that aim to
quantify the total amount of SOC in a field, a more
efficient and less costly approach is to measure
SOC stock change over time at precisely located
benchmark sites [45–47]. These can be resampled
over time, reducing sample requirements by as
much as 8-fold compared to simple random or
stratified random sampling designs [48].

In addition, because much of the variability of
soils occurs at fine spatial scales, per unit area sam-
ple size requirements decrease greatly as the area
of inference increases in size. In other words, while
tens of samples might be needed to adequately
quantify SOC stocks for a single field, only 2 to 3
times as many samples might suffice to quantify
SOC stocks for an aggregate area of several thou-
sand hectares [49]. Accordingly, quantification
approaches that require direct field measurement
will be more feasible for implementation in C off-
set projects with many farms and aggregated
areas of many thousands of hectares. Schemes
that optimize the sampling intensity by taking into
account the value of reduced uncertainty (i.e. as
monetized in a C offset project), which is related
to the number of samples taken, can further
reduce costs [50].

Sample processing and analysis

Modern methods to measure SOC concentrations
using dry combustion analyzers are the ‘gold
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standard’ in soil science. These automated instru-
ments are highly accurate and widely used in soil
and environmental research.

With current technology, accurate direct meas-
urement of SOC requires ‘destructive sampling’ (i.e.
soils taken from the field and then sent to a
laboratory for processing and analysis). There are
two main reasons for this. First, conventional ana-
lysis methods to determine C content as a percent-
age of total soil mass – that is, both dry and
wet oxidation methods – require laboratory-scale
instruments and facilities that are not practical to
bring to the field. Soils have to be carefully proc-
essed and standardized (i.e. sieved, homogenized,
dried and finely ground) for the analyses. Second,
accurate measurement of soil bulk density (i.e.
mass per unit soil volume) requires a known
volume of soil to be weighed under standard
oven-dry moisture conditions, necessitating soil
collection from the field. The collection, transporta-
tion and processing of soil add considerable time
and costs to the operation.

There is active research, ongoing for many
years, to reduce the need for destructive sampling
and laboratory-based soil processing and combus-
tion-based analysis. Various spectroscopic techni-
ques, such as near- and mid-infrared spectroscopy
(NIRS and MIRS, respectively), which measure how
soils interact with light radiation of various wave-
lengths, can yield information on SOC content as
well as other chemical and physical properties of
the soil [51]. Since the instrumentation consists of
a light source and detectors, much faster through-
put of samples is possible compared to wet or dry
combustion methods. Also, analysis costs are
much cheaper and the smaller, less demanding
equipment can potentially be deployed in field
labs and in developing countries [52]. However,
results from spectroscopic methods must be care-
fully calibrated for different geographic areas and
soil types using dry combustion methods as a ref-
erence. Various other non-conventional technolo-
gies (e.g. laser-induced breakdown spectroscopy,
LIBS; diffuse reflectance Fourier transform infrared
spectroscopy, DRIFTS; inelastic neutron scattering,
INS) have been tested [53] but none has yet
emerged as a viable replacement for conventional
analysis methods. The most ambitious techno-
logical goals are to develop spectroscopic methods
that can be used as ‘on-the-go sensors’, that can
be drawn through the soil by tractors or dedicated
sampling vehicles to continuously map soil C con-
centrations [54]. However, such technologies are

still at an early stage of development and their
utility for quantification in support of soil C offset
projects has yet to be determined. Moreoever,
these spectroscopic-based estimates of SOC con-
centrations still require appropriate calibration
curves (most likely from conventional destructive
sampling) and measures of soil bulk density in
order to calculate SOC stocks.

Model-based estimates of soil C stock changes

Models provide a means to predict SOC stock
changes, taking into account the integrated effects
of different management practices, as well as
impacts of varying soil and climate conditions.
Mathematical models may be stochastic or deter-
ministic, and some are designed to represent and
amalgamate the underlying processes contributing
to terrestrial carbon cycling, while others consist of
empirical relationships. Models are, of course, an
embodiment of theory, experiments and measure-
ment, and particularly for models of soil C dynam-
ics, measurements from long-term field
experiments are a primary source of the informa-
tion upon which these models are based [55].

Take Home messages:

� Both empirical (statistical) and process-based models are
widely used to predict/estimate soil C stocks as a function
of environmental and management variables.

� Process-based models have potential for a broader range of
applicability across gradients of soil, climate and manage-
ment conditions, but are more complex and difficult to use
than empirically based models.

� Model-based quantification systems, if supported by robust,
distributed measurement and monitoring networks, have
the capability to improve the cost-effectiveness and stand-
ardization of estimates of soil C stock change.

Broadly speaking, there are two types of models
used to predict SOC stock changes: empirical mod-
els, which are based on statistical relationships
estimated directly from sets of field experiment
observations; and process-based models, in which
the model algorithms are based on more general
scientific understanding, derived from laboratory-
and field-based experiments, as well as a variety of
field-based observations of SOC distribution along
climatic, vegetation, topographic and geological
gradients. Most process-based models aim to
achieve a more general understanding and predict-
ive capacity, based on the biogeochemical proc-
esses that control SOC dynamics and the impacts
and interactions of management and environmen-
tal factors on those processes. Empirical models
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are, by definition, restricted to making inferences
within the range of conditions represented by the
observations used to build the model, whereas
process-based models are (in theory at least) more
suitable for extrapolation and representation of
conditions that might not be well represented in
the observational data.

Empirical models
The most well-used and widely known empirical-
based model for predicting SOC stock changes is
the model developed for the IIPCC national GHG
inventory guidelines. The so-called Tier 1 method
was developed to provide an easy way for coun-
tries (especially developing countries) to estimate
national-scale SOC stock changes as a function of
changes in land-use and management practices
[41,56]. The model uses a broad classification of cli-
mate and soil types to derive reference SOC stocks
for native (‘unmanaged’) ecosystems, based on
many thousands of measured soil pedons [5].
Then, a set of scaling factors, estimated from statis-
tical estimates of extensive field data sets [57,58],
are applied to represent management impacts on
stocks (i.e. land-use type, relative C input level,
soil management). SOC stock changes are then
computed for the stratified (i.e. clima-
te� soil�management) land area being consid-
ered, as a function of observed land-use and
management changes over a given time period.
The model for mineral soil C stock change is given
by:

DSC ¼ SC0– SC 0�Tð Þ
� �

=D (1a)

SCi ¼ SCR� FLU� FMG� FI� A (1b)

where:
DSC¼ annual soil carbon stock change, Mg C yr�1;
SC0 ¼ soil organic carbon stock at time 0, Mg

C ha�1;
SC(0-T) ¼ soil organic carbon stock at time

t¼ 20 years, Mg C ha�1;
A¼ land area of each parcel, ha;
SCR ¼ the reference carbon stock, Mg C ha�1;
FLU ¼ stock change factor for land-use type

(dimensionless);
FMG ¼ stock change factor for management/dis-

turbance regime (dimensionless);
FI ¼ stock change factor for carbon input level

(dimensionless);
D¼ Time dependence of stock change factors,

which is the default time period for transition
between equilibrium SOC values (in years). The
default is 20 years but it depends on assumptions

made in computing the factors FLU, FMG and FI. If T
exceeds D, the value for T is used to obtain an
annual rate of change over the inventory time
period (0–T years).

Constraints for the IPCC method include the
lack of field experiment data for many climates,
soil types and management combinations. The
very broad climate, soil and management
classes (and consequently the high degree of
aggregation of global data sets) from which the
model was developed were intended to support
national-scale inventory and reporting. For use
in more local application such as for C offset
projects, additional data from regional and local
field studies would be needed to re-estimate
model parameters.

Process-based models
Process-based models generally take the form of
computer simulation models that employ sets of
differential equations to describe the time and
space dynamics of SOM. Most of the models that
are currently used to support GHG inventory and/
or project-scale quantification were originally
developed for research purposes, to analyze the
behavior of SOM as a function of environmental
and edaphic variables (e.g. temperature, moisture,
pH, aeration, soil texture) and land-use and
management practices (e.g. vegetation type and
productivity, crop rotation, tillage, nutrient man-
agement, irrigation, residue management). These
types of models attempt to integrate these various
factors, and knowledge about the intrinsic controls
on decomposition and organic matter stabilization,
into generalized models of SOC (and often soil
nitrogen) dynamics. This comprehensive approach
makes process-based models attractive as predict-
ive tools to support SOC quantification at mul-
tiple scales.

Examples of widely used process-based models
that simulate SOC dynamics are shown in Table 1.
The table includes references to specific instances
of site- and landscape-level testing as well as model
intercomparisons. Some of these models include
additional capabilities to simulate changes in non-
CO2 GHG emissions associated with changes in land
management (e.g. DayCent, DNDC).

While process-based models are still used pri-
marily to support basic research, they are increas-
ingly being utilized at local to national scales for
soil C and soil GHG inventory purposes. For
example, the RothC soil C model is used to esti-
mate soil C stock changes as a component of the

CARBON MANAGEMENT 7



Full-CAM national GHG inventory system [58],
and the DayCent model is used for soil C stocks
changes and soil emissions of N2O and CH4 in
the US national GHG inventory and reporting
system [81].

Most model-based decision support systems
(DSSs) for soil C estimation employ empirical
models, often derived from the IPCC Tier 1
method described above [82], although COMET-
Farm, a web-based full GHG accounting DSS,
employs both empirical models for some GHG
emission sources as well as the dynamic process-
based DayCent model for estimates of soil C stock
changes and soil N2O emissions [83]. Combining
biogeochemical process models, global position-
ing system (GPS) sensors and financial calculators
can further elaborate decision-support systems
for the fine spatial scales employed in precision
agriculture [84].

To further develop the capabilities of process-
based models for soil C accounting purposes, it
will be essential to better integrate models with
supporting measurements [55], for example from
networks of soil C monitoring sites [85], flux
measurement networks and existing long-term
field experiments [86]. Continued efforts are
needed to extend and evaluate the capabilities of
process-based models to predict soil C changes
and GHG emissions, to provide full-cost account-
ing in GHG offset projects and, when possible, to
compare performance in model intercomparison
experiments [87].

Case studies of soil C quantification for
GHG offsets

Soil carbon accounting systems are gaining
momentum in several developed countries that
are including agricultural GHG offset options as
part of their mitigation portfolios. Three examples
of soil C accounting systems that have been devel-
oped to support agricultural soil C offset projects
are those implemented by the national govern-
ment of Australia and the provincial governments
of both Alberta and Saskatchewan (Canada). These
three systems are presented as case studies that
illustrate the diverse ways in which information
from field measurement and monitoring systems
can be combined with model-based quantification
systems to support programs that promote SOC
sequestration and improve function of managed
soils. These examples focus on the quantification
methods, and other issues associated with offset
protocols such as additionality, leakage and per-
manence are not discussed in detail.

Australia

The Australian government has established the
Emissions Reduction Fund (ERF) to encourage the
adoption of management strategies that result in
either the reduction of GHG emissions or the
sequestration of atmospheric CO2. The ERF is
enacted through the Carbon Credits (Carbon
Farming Initiative) Act 2011 (CFI). Under the ERF,

Table 1. Some widely used process-based models that include soil carbon, providing examples of their application at
different scales and in model inter-comparisons. NA denotes instances where articles were not found for the category
of application.

Model Website
Key reference –

model development

Model testing/
application at
site scale

Model application
at regional scale

Multi-model
evaluation

Multi-model
application at
regional scale

DNDC http://www.dndc.sr.
unh.edu/

Li et al. (1992) [107] Li et al. (1997) [108] Grant et al.
(2004) [59]

Smith et al. (1997) [109] Wattenbach
et al. (2010) [60]

ROTHC† http://www.rothamsted.
ac.uk/sustainable-
soils-and-grassland-
systems/rothamsted-
carbon-model-rothc

Jenkinson
(1990) [61]

Coleman et al.
(1997) [110]

Cerri et al.
(2007) [111]

Smith et al. (1997) [109] Falloon and
Smith (2002) [62]

APSIM www.apsim.info Mccown et al.
(1995) [63]

Luo et al.
(2011) [112]

O’Leary et al.
(2016) [64]

Moore et al. (2014) [65],
Basso et al.
(2018) [98]

NA

DAYCENT http://www.nrel.
colostate.edu/
projects/daycent/

Del Grosso et al.
(2001) [66]

Del Grosso et al.
(2008) [113]

Nocentini et al.
(2015) [67]

Del Grosso et al. (2016)
[114], Basso et al.
(2018) [98]

Smith et al.
(2012) [96]

DSSAT http://www.dssat.net Jones et al.
(2003) [68]

Gijsman et al.
(2002) [69]

De Sanctis
(2012) [70]

Yang et al. (2013) [71] NA

ECOSYS http://ecosys.
ualberta.ca/

Grant (1997) [72] Grant et al.
(2001) [73]

Mekonnen et al.
(2016) [74]

Lokupitiya et al. (2016)
[75], Basso et al.
(2018) [98]

NA

EPIC http://epicapex.
tamu.edu/

Izaurralde et al.
(2006) [115]

Apezteguia et al.
(2009) [76]

Zhang et al.
(2015) [77]

Lokupitiya et al.
(2016) [75]

NA

SOCRATES http://socrates.n2o.net.
au/main

Grace et al.
(2006a) [78]

Grace et al.
(2006b) [79]

NA Izaurralde et al.
(2001) [116]

NA

†For soil C inventory applications, the ROTHC model soil C model can be imbedded within a full ecosystem-scale model framework, such as FullCAM
[67] which is used for soil C accounting purposes in Australia.
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businesses, farmers and community groups can
earn C credits by undertaking projects to reduce
emissions or sequester carbon. A range of mitiga-
tion activities have been approved for all sectors
of the economy; here, the focus is on activities
that increase SOC stocks. Projects must comply
with the Offsets Integrity Standards, which ensure
that any emission reductions, in this case seques-
tered carbon, are additional, measureable and veri-
fiable, eligible, evidence-based, material and
conservative. Once approved and implemented,
the methods can be used to generate Australian
Carbon Credit Units (ACCUs). One ACCU equates
to an emission avoidance or sequestration of 1
tonne of carbon dioxide equivalent (CO2-e) and
can be sold to the Australian government or in a
secondary market to generate income.

Initially, two methods for quantifying soil C
sequestration were endorsed by the Emissions
Reduction Assurance Committee and adopted by
the Minister for the Environment and Energy:
‘Sequestering carbon in soils in grazing systems’
and ‘Estimating sequestration of C in soil using
default values’. The first method was based on dir-
ect measurement of changes in SOC stocks
obtained through sampling and analysis over time,
whereas the second method was based on the use
of default rates of soil C change predicted using
the FullCAM process-based model that was
designed to be nationally applicable [88,89].

Common to both soil C methods are the defini-
tions of a project, a project area and carbon esti-
mation areas (CEAs) (Figure 1).

‘Sequestering C in soils in grazing systems’ was
the first soil C quantification method developed
for use in the ERF. It was designed to quantify the
magnitude and certainty of soil C change within
CEAs of any size. Under this method, a project
proponent measures baseline soil C stocks to a
minimum depth of 30 cm, implements new man-
agement activities that would not have occurred
under a business-as-usual condition and measures
future soil C stocks at nominated intervals
through time.

The second soil C quantification method,
‘Estimating carbon sequestration in soil with
default values’, offers three project types that can
receive ACCUs: sustainable intensification, stubble
retention and conversion to pastures. Eligible lands
and associated default rates of soil C sequestration
associated with each project type were defined
using an updated version of the FullCAM model
and its associated data tables that were used to
prepare Australia’s 2015 submission to the
UNFCCC [88]. The RothC soil carbon model
(Table 1) is a submodel contained within the
broader scope of the FullCAM system model.

For the model-based method, there are three
defined classes of soil C sequestration rates: mar-
ginal benefit, some benefit and more benefit.
These rates were determined by a series of simula-
tions and statistical tests to generate a histogram,
enabling the three-class regionalization (Table 2;
Figure 2). Provided a project meets its reporting
obligations and remains eligible, the amount of C
sequestered is defined by multiplying the duration
of the project by the respective rate of carbon
sequestration provided in Table 2. More informa-
tion on allowable activities and conditions can

Figure 1. Schematic representation of the relationship among land title boundary, project area and carbon estimation
areas. Source: Author

Table 2. Default values for soil carbon sequestration
defined for each of the three project types for carbon
payments in Australia.

Project type

Sequestration value (t CO2-e ha�1 year�1)

Marginal
benefit

Some
benefit

More
benefit

Sustainable intensification 0.11 0.59 1.65
Stubble retention 0.07 0.29 0.73
Conversion to pasture 0.22 0.44 0.84
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be found at www.environment.gov.au/climate-
change/emissions-reduction-fund/methods/seques-
tration-carbon-modelled-abatement-estimates.

For the direct measurement approach, uncer-
tainty associated with measured soil C stock
change was addressed in two ways. First, statistical
approaches were used to define the level of car-
bon sequestration associated with a probability of
exceedance equal to 60%. This approach applied a
discount to measured values, with the size of the
discount being linked to the variance of measured
soil carbon stock values. Additionally, to help
insure against initial over-crediting until such time
as a long-term trend is established, credits for any
carbon sequestered between the baseline meas-
urement and the first temporal measurement were
reduced by 50%. As the number of temporal meas-
urements increased, the potential for spatial and
environmental variations to impact the derivation
of carbon sequestration values diminished and a

regression approach was applied in an attempt to
move toward the ‘true’ temporal trend of soil car-
bon stock change associated with the applied
management practices.

For the emission factor approach, the uncer-
tainty associated with activity data and the model
was determined using a Monte Carlo analysis in
conjunction with the IPCC ‘Approach 1’ propaga-
tion of error method as described in the IPCC
inventory guidelines [41] and reported in the
Australian Government Submission to the UNFCCC
(http://www.environment.gov.au/climate-change/cli-
mate-science-data/greenhouse-gas-measurement/
publications/national-inventory-report-2016). For
the emissions factors themselves, statistical analysis
applied to the derived data enabled a three-class
regionalization of the scenarios.

Implementing a soil carbon sequestration pro-
ject using either of the methods described above
may alter emissions of methane (CH4) and/or

Figure 2. Delineation of eligible and non-eligible lands for sustainable intensification projects, and the areas associated
with each of the three levels of soil C sequestration benefit predicted using the soil carbon component of the FullCAM
simulation model. Source: Author
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nitrous oxide (N2O) (Table 3). Changes in CH4 and
N2O emissions must be taken into account in add-
ition to the amount of C sequestered to derive the
total net abatement provided by a project. For
each of the management activities eligible under
the two methods, the net abatement is calculated
by considering each of the gases identified in
Table 3. The calculations for emissions incurred as
a result of undertaking the carbon sequestration
activities are consistent with those applied in the
Australian National Greenhouse Accounts.

The 2015–2016 method prioritization process
resulted in an agreement that a new soil carbon
method should be developed, building on the two
existing soil carbon methodologies. The need was
identified because there had been limited uptake of
the existing soil carbon methods. This outcome was
attributed to the narrow range of farming systems
that were able to participate and the high costs of
direct measurement. The Carbon Credits (Carbon
Farming Initiative – Measurement of Soil Carbon
Sequestration in Agricultural Systems) Methodology
Determination 2018 seeks to overcome these limita-
tions by introducing new components and adapting
some components from the two earlier soil carbon
methods. This provides proponents with the flexibil-
ity to respond to market forces, participate in the

Emission Reduction Fund and continue to make
land-management decisions enabling them to meet
their broader business objectives.

Alberta, Canada

In 2007, the Government of Alberta became the
first jurisdiction to enable agriculture offsets with an
amendment of the Climate Change and Emissions
Management Act (CCEMA) to require industrial
facilities with emissions exceeding 100,000 tonnes
per year of GHGs (CO2-e) to report and reduce their
emissions to established targets. Under the CCEMA,
large industrial emitters are required to reduce their
emissions by 12% below their baseline. They could
pick any of three options to meet their reduction
goal: emission performance credits, technology
fund credits or emission offsets.

The Alberta Offset System operates under an
extensive set of policies, rules and standards
(Offset Quantification Protocols and Guidance
Documents). to ensure that offsets are of the high-
est rigor and quality to meet regulated companies’
requirements. The development process for proto-
cols includes expert engagement, defensible scien-
tific methodologies, a rigorous peer-review
process, and documented transparency. A range of

Table 3. Greenhouse gases required to be included in net abatement calculations for the various potential agricultural
management activities that can be implemented in carbon sequestration projects in Australia.
Carbon pool or
emission source Greenhouse gas Include/exclude Justification and process for inclusion

Soil organic carbon CO2 Include (contained
within the default
sequestration values)

This is the primary emission sink associated with soil
carbon sequestration projects.

Livestock N2O
CH4

Include Emissions associated with enteric fermentation, dung and
urine change with increases or decreases in stocking rates.
Impacts of feed quality are excluded. National Greenhouse
Gas Inventory emission factors are to be used.

Synthetic fertilizer CO2

N2O
Include Application of synthetic nitrogen fertilizers result in

emissions of N2O, and in the case of urea also CO2.
National Greenhouse Gas Inventory (NGGI) emission
factors are to be used.

Non-synthetic organic-
based fertilizers

CO2

N2O
CH4

Exclude Non-synthetic fertilizers are derived from waste streams.
No additional emissions are required to be accounted
for since emissions from within a Carbon Estimation
Area (CEA) to which they have been applied would be
no greater than what would have occurred had the
materials not been applied.

Agricultural lime CO2 Include Application of agriculture lime has the potential to emit
CO2 as carbonates react with the soil to neutralize
acidity. National Greenhouse Gas Inventory emission
factors are to be used.

Irrigation energy CO2

N2O
CH4

Include Irrigating previously non-irrigated areas may involve an
increase in emissions due to the consumption of diesel
fuel or electricity and must be accounted for. NGGI
emission factors are to be used.

Residues – decomposition N2O Include Retention of residues fromcrops will result in the emission
of N2O when they decompose. NGGI emission factors
are to be used.

Residues – burning CO2

N2O
CH4

Exclude CO2

Include N2O and CH4

Any changes in the quantity of residue carbon not going
to CO2 will be reflected in the sequestered carbon
within the soil.

Net changes in N2O and CH4 emissions due to the
removal of burning in progressing from the baseline to
project conditions need to be accounted for. National
Inventory Report emission factors are to be used.
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science-based quantification protocols were devel-
oped transparently with a technical review to help
provide certainty to buyers and sellers and reduce
transaction costs. All verified tonnes are serialized
and are listed on a registry with oversight by the
Canadian Standards Association.

The Alberta market also relies on aggregator
companies, which aggregate credits from a num-
ber of sources (a group of farmers or land holders)
to assemble projects large enough to interest
buyers. NGOs and aggregators play a pivotal role
in reducing transaction costs so that individual
farms can participate in the carbon market and
generate revenues. Aggregators ensure all partici-
pants adhere to the protocol terms and conditions
and arrange for third-party verification of the
assembled project. All aggregation and verification
costs are borne by the carbon offset pro-
ject developer.

The Conservation Cropping Protocol (CCP) is a
2012 revision and upgrade of the previous Tillage
System Management Protocol. This protocol
focuses on sequestration of additional SOC attrib-
utable to a change from conventional to no-till
annual cropping practices or for reduction in sum-
mer fallow. It has been the most sought-after type
of agricultural GHG project, and conservation till-
age offsets have made up roughly 30% or more
of the annual market share, delivering over
1.5 million tonnes of offsets since 2007.

The protocol uses Canada’s National Emissions
Tier II methodology, which developed soil C
sequestration coefficients based on measuring and
modeling local crop rotations, soil/landscape types
and inter-annual climate variation for geo-specific
polygons in the national eco-stratification system.

This empirical model approach uses sequestration
coefficients to provide a low-range estimate of
increased SOC stocks that might be expected from
a change from conventional to no-till practices. It
presents a simplified way of estimating SOC
increases based on a verified change in manage-
ment practice, without direct measurement by soil
sampling and analysis. Alberta’s GHG regulations
require that all GHGs must be considered (aggre-
gate net CO2-e mass). Modeling is the most effi-
cient and cost-effective method for accounting for
all GHG changes over large, diverse areas. The
modeling tools are the same as those for national
inventory work and are anchored with verification
work using research plot data.

Eligible actions for offsets typically must be new
and additional to business as usual. Since reduced
tillage and no-tillage practices were already being
adopted in western Canada, this proved particu-
larly challenging. The solution was to develop a
‘moving baseline’ to accommodate early adopters
as well as late adopters of the practice. The
sequestration coefficient was discounted according
to the observed rate of increase in the adoption of
no-till and reduced till practices as accounted for
by the national agriculture census taken every 5
years. To satisfy additionality, the quantification
uses a discounted or ‘adjusted baseline’ to subtract
out carbon accrued before the 2002 start year of
the offset eligibility criteria from the more recent
adoption rates of zero tillage from a region –
deriving regional discounted baselines. In this
manner, only the additional or incremental soil C
resulting from the continuation of the practice
post 2002 can count as an offset credit. Thus, the
adjusted baseline is only applied to activities that

Figure 3. Schematic of the adjusted regional baseline for the Dry Prairie Region – discount based on the adoption rate of
reduced till (RT) and no-till (NT) practice for the baseline year (2002). Source: Author

12 K. PAUSTIAN ET AL.



sequester C on a go-forward basis (Figure 3). Thus,
all tillage management projects get a ‘haircut’ off
their carbon tonnes, but early adopters are
allowed to participate to maintain the practice,
and late adopters get a smaller coefficient for their
C storage to satisfy additionality requirements with
the adjusted baseline.

The validity of sequestered soil carbon for no-till
projects in Alberta is ensured by a government-
backed policy approach known as an ‘assurance
factor’, which is applied to every tonne of carbon
offset created under the protocol. Each coefficient
is discounted by a percentage for the risk of man-
agement practice reversal derived for specific
regions in Alberta. This fraction of the credit is set
aside by the government (e.g. 10% discount on
every verified tonne), resulting in 0.1 t CO2-e col-
lected by the government for each verified tonne.
This reserve is held back to protect against soil car-
bon lost to the atmosphere if conventional tillage
practices are resumed in the future; the reserve is
operationalized through government policy.

Regardless of how good the scientific basis is, a
protocol can fail for a variety of other reasons
including escalating transaction and verification
costs. Governments focus on science-based sys-
tems and often do not consider transaction or
implementation costs when designing offset mar-
kets. To minimize risks and keep transaction costs
from escalating, Alberta Agriculture and Forestry
[90] has created and maintained a website to help
inform industry stakeholders of rules and guidance
materials for the sector. Another burden that
sometimes goes unseen is the cost of verification,
which does not align with discrete records of
financial transactions or recording meters on fac-
tory smokestacks. Non-metered biologic systems
do not conform easily to existing audit paths and
expectations. Similar to designing a project with
the end in mind, offset design should keep in
mind the verification needs and associated costs in
order to maximize revenues to the sources of
project tonnes.

What do participating farmers think of all this
after a decade? In late 2017 a producer survey was
conducted by Team Alberta, a consortium of the
wheat, canola, barley and pulse crop commodity
organizations. A private survey firm pre-certified
respondents with a telephone call to verify they
were not a hobby or niche market farm and that
they produced annual crops. A follow-up online
survey questioned 339 respondents on several
topics, one of which was the CCP.

Just over one third of respondents had partici-
pated in the CCP, and this proportion increased to
almost half of the larger acreage respondents.
Nearly three quarters of respondents were either
‘satisfied’ or ‘somewhat satisfied’. The top three
improvements suggested were better compensa-
tion for their time and effort, simplified program
forms and paperwork, and a wider range of avail-
able practices.

The compliance cost for mandatory GHG reduc-
tions in Alberta was CAD$15/tonne from 2007 to
2015. As of 2018 it became an economy-wide pric-
ing of CAD$30/tonne and is scheduled to move to
CAD$50 by 2022 in alignment with new federal
legislation, the Pan Canadian Framework on Clean
Growth and Climate Change. The higher pricing
with no expected increase in transaction costs
should make offsets more practical and more
attractive to agricultural producers.

A decade of experience plus new policy signals
and price changes will enable agriculture to con-
tinue in a regulated GHG market and perhaps par-
ticipate in more pragmatic voluntary offset
markets as well as programmatic and sustainability
markets for a range of industries and governments.
Scientific support and evidence will be needed to
fill gaps and provide assurance for future protocols
and delivery models.

Saskatchewan, Canada

The Prairie Soil Carbon Balance (PSCB) project was
a broad-scale feasibility assessment of direct meas-
urement of changes in soil C stocks in response to
a shift from conventional tillage to no-till, direct-
seeded cropping systems in Saskatchewan [91].
Although not designed to monetize soil carbon
offsets, the PSCB project was partially funded by
farm organizations with an interest in securing
financial recognition for GHG mitigation. In 1996, a
network of 137 benchmark sites was established
on commercial farm fields where a shift from con-
ventional to no-till and direct seeding had
occurred (in 1996 or 1997; Figure 4). The soil sam-
pling and analysis strategy utilized a benchmark
site approach designed for precision periodic
resampling as outlined by Ellert, Janzen, and
McConkey [92]. At each sampling time, six cores
7 cm in diameter were collected to a depth of
40 cm (sectioned into 10-cm depth increments). In
addition to the project establishment year in 1996,
soils were collected again in 1999, 2005 and 2011.
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This 15-year study illustrates some of the logis-
tical challenges of direct sampling of SOC through
time. During the study, there were numerous
changes in ownership or land management at the
study sites and some sites were lost to attrition. In
2005, 121 of the original 137 sites were sampled,
and at the last sampling in 2011, only 82 sites had
the required management data and manager
authorization for inclusion in the project.
Additionally, because of the heterogeneity of SOC
within fields (30–65 ha), it was prohibitively expen-
sive to collect enough samples to estimate the
average stock across the field.

Despite these challenges, this project yielded
valuable insights into SOC dynamics. Grouping of
the benchmark sites among contrasting fields
provided interpretable estimates of temporal
changes in SOC stocks associated with adoption
of no-till, direct-seeding practices (Figure 5). The
temporal changes varied among sampling inter-
vals, and in 2005 soil C stock changes following
no-till adoption were not significantly different
from zero, possibly because the 2001–2003
drought reduced C inputs to a greater extent
than decomposition did. However, by the 2011
sampling, SOC stocks had rebounded, and the
gains in soil C attributable to no-till adoption
increased with the cumulative depth or soil mass
considered (Figure 5). This was contrary to the
expectation that a majority of soil C accumulated
under no-till would reside in the surface soil
layers. Averaged over the 15-year study, no-till
practices increased soil C stocks in the 0–30 cm
layer by about 0.23Mg C ha�1 yr�1. The PSCB pro-
ject indicated that increases in soil C stocks in
response to the adoption of no-till practices were
measurable, but estimates were best made in
aggregate for 25 or more microsites distributed
across several fields; otherwise, measurement
costs for individual fields became prohibitive.

Figure 4. Locations of 137 sites established in 1996 to assess soil organic carbon change in the Prairie Soil Carbon
Balance (PSCB) project. The background map depicts the major soil zones of Saskatchewan. Source: Author

Figure 5. Changes in soil organic carbon (SOC) after adop-
tion of no-till in 1996 (n¼ 80 sites available in 2011 plot-
ted for all sampling years; 95% confidence interval
typically was ± 1.5 for the 30 and 40 cm depths; ± 0.5 in
1996; adapted from [70]).
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Toward a new global soil information system

There has been substantial progress toward
achieving a broader appreciation (e.g. among poli-
cymakers, environmental groups and the general
public) of the key role of SOC in relation to core
ecosystem services from working lands. The sci-
ence is also advancing, with improved understand-
ing of fundamental mechanisms controlling SOC
dynamics as well as in measuring and modeling
changes in SOC pools in response to both environ-
mental and management factors. As a result of this
progress, entrepreneurial programs and methods
are being developed that can help lead the way
toward a greater inclusion of soil carbon manage-
ment in farmers’ and ranchers’ decision-making
going forward.

However, to move toward an aggressive imple-
mentation of best land-use and management prac-
tices to promote soil health globally and to
incentivize CO2 removal and sequestration in soils
at gigatonne-per-year scales [15,17,93], a new soil
information system, with global reach and the cap-
acity to evolve as the science advances, is needed
(Figure 6).

While much of the data and many of the tools,
technologies and collaborations needed already
exist [85,94,95], the information is often frag-
mented and data availability is often limited [96].
More coordination, greater transparency and easier
accessibility to the tools and data, among and
between field scientists, remote sensing specialists,
modelers and land managers, is needed.

Figure 6 depicts a virtual data-model quantifica-
tion platform that could form the core of a new

soil information system. Starting on the left-hand
side of the diagram, key data sources to inform
and validate SOC estimates are depicted. The util-
ity of data from long-term field experiments to
help formulate, parameterize and validate predict-
ive models of soil carbon stock change has long
been acknowledged [e.g. 20,97]; expanding the
compilation of data from high-quality experiments
across the globe, and making the data easily avail-
able for modelers and analysts, can accelerate the
development and improvement of models [65].
Soil monitoring networks, in which periodic soil
measurements are made on actual working lands,
have been established in several countries [84]
and can play a vital role in reducing model uncer-
tainty [47]. However, such monitoring networks
are lacking in most countries, and where the data
do exist, they are often not readily available to the
research community. Developing data-sharing
agreements to combine country-specific SOC mon-
itoring data sets – with appropriate safeguards to
protect landowner privacy – could pave the way
toward a consolidated global in-field soil monitor-
ing network, the accessibility and utility of which
could incentivize other countries to join.

Both research site data and data from distrib-
uted soil monitoring networks can feed into
dynamic process-based models (such as those
listed in Table 1) that predict vegetation and soil
carbon dynamics and other ecosystem variables
(e.g. water dynamics, GHG fluxes). Such a platform
would support and facilitate the use of ensemble
modeling approaches. Advantages of an ensemble
approach are to provide ‘central tendency’ esti-
mates from a group of models [98] and to better

Figure 6. Overview of the components and information flow for an approach to quantify soil carbon stock changes (and
net GHG emissions) from field to national scales, purposed to support different implementation policies to remove atmos-
pheric CO2 and sequester soil carbon. Modified from [15]. DSS: Decision support system.
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assess model-associated uncertainty. Ensemble
modeling has become standard practice in other
fields that depend heavily on model-based predic-
tions, such as weather forecasting and integrated
assessment, but has yet to be routinely deployed
for soil carbon modeling [95].

Model assemblages are driven by spatially
resolved data sets (Figure 6, center) including cli-
matic variables (e.g. temperature, precipitation,
solar radiation), edaphic conditions (e.g. soil tex-
ture, mineralogy, soil profile depth, topographic
features) and land-use and management activity
data (e.g. crop rotations, tillage, nutrient manage-
ment). Provided that the models employed are
generalizable over a sufficiently broad range of
environmental conditions, the scale of inference
for predicted variables (e.g. DSOC) is largely deter-
mined by the spatial resolution of the data inputs.
While high-resolution soil maps and fine-scale
gridded weather data sets exist for a number of
countries, they are lacking for much of the tropics,
which constrains the capacity to perform local-
scale (i.e. sub-km2) analyses. Continuing efforts to
improve global soil mapping [99,100], particularly
in the tropics, is imperative, as is making existing
high-resolution soil maps (e.g. in Europe) more
easily available to the research community [101].

The paucity of fine-scale management activity
data (i.e. what is actually happening on the land-
scape) is a major constraint, even in developed
countries with well-funded agricultural survey and
census capacities. In the latter case, many survey
efforts result in highly aggregated management
activity data that have limited utility at local scales.
The situation is even more challenging in develop-
ing countries lacking the resources for extensive
land management and rural economic surveys,
where there are almost no comprehensive data
sets on management activities. However, a major
breakthrough to collect detailed and local-scale
management activity data is possible by engaging
land users themselves in providing local-scale
management activity data via a crowd-sourcing
model [102]. Initial efforts using the LandPKS sys-
tem [103] show promise in not only collecting
management activity data but also in mobilizing
local knowledge about soil characteristics at the
field scale, that could provide inputs to model-
based assessment.

Finally, remote sensing (RS) offers the potential
to provide low cost, fine-scale and globally avail-
able data on land cover and crop species as well
as information on crop residue coverage, tillage

and irrigation practices, which can both supplement
ground-based management activity data sources
and/or be used as independent verification of land
user-reported management activities. Data acquisi-
tion and analysis methods, from both satellite and
airborne platforms, have been shown to be feasible
for many categories of agricultural management
activity data [e.g. 104,105]. However, to date many
RS methods to assay agricultural practices are still
in a research mode and were often applied to lim-
ited test areas and without deployment of multiple
sensors [58,106]. Hence, there is a need to test
promising methods more widely and then build out
RS capabilities that can rapidly and routinely pro-
vide data on management practices at high spatial
resolution, anywhere on the globe.

Taken collectively, dynamic models, supported
by experimental and field-based monitoring data,
and driven by spatially distributed soil, climate and
management data – both ground-based and from
remote sensing – can provide robust and low-cost
quantification of soil C stock changes (and non-
CO2 GHG fluxes). A scalable system will be needed,
capable of analyses at the country level, to support
national policies and international agreements, as
well as quantification at farm and landscape scales,
to support sustainable supply-chain initiatives and/
or carbon finance schemes which can directly
incentivize farmers to adopt C-sequestering, soil-
building and GHG-reducing practices (Figure
6, right).

The two workshops on which this paper was
based, as well as recent papers and other meetings
convened by government, industry, individual phi-
lanthropists and non-profit organizations, reflect a
growing consensus among land managers, soil sci-
entists, government, and technology communities
of the need to build a new soil information service.
Such a service would fully leverage the techno-
logical capacity to capture, curate, share and
explore more granular and dynamic data and
knowledge resources in a learning, deeply inter-
active, open system. A new soil information service
must have a holistic perspective on current and
future needs for land and soil resource information
(e.g. across multiple scales and across all managed
lands) and be nimble, pluralistic and collaborative.
Recognizing that such a bold vision lies beyond
the capability of any individual entity, including
government, this community holds as a core value
that long-term success will only be achieved
through the coordinated collaboration of a diverse
group of motivated stakeholders across the globe.
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