
 1 

 2 

 3 

 4 

Optimizing functional groups in ecosystem models: Case study of the Great 5 

Barrier Reef 6 

 7 

Vanessa Haller-Bull1,2 and Elena Rovenskaya2,3 8 

1. School of Mathematical Sciences, Queensland University of Technology,  9 

2 George St, Brisbane, 4000, Qld, Australia; 10 

2. International Institute of Applied System Analysis (IIASA), 11 

Schlossplatz 1, Laxenburg, 2361, Austria   12 

3. Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State 13 

University, Leninskie Gory, 1(52), GSP-1, Moscow 119991, Russia 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

Corresponding author: Vanessa Haller 27 

          v.haller@hdr.qut.edu.au 28 

          +614 2099 3214 29 

  School of Mathematical Sciences, QUT, 2  George St, Brisbane, 4000, Qld,       30 

           Australia 31 

  32 

  33 

mailto:v.haller@hdr.qut.edu.au


V Haller-Bull and E Rovenskaya / Optimizing the functional groups in ecosystem models 

2 

 

Abstract:   34 

Uncertainty is inherent in ecosystem modelling, however its effects on modelling results are often 35 

poorly understood or ignored. This study addresses the issue of structural uncertainty or, more 36 

specifically, model resolution and its impact on the analysis of ecosystem vulnerability to threats. 37 

While guidelines for node assignments exist, they are not always underlined with quantitative 38 

analysis. Different resolutions of a coral reef network are investigated by comparing the simulated 39 

network dynamics over time in various threat scenarios. We demonstrate that the error between a 40 

higher-resolution and a lower-resolution models increases, first slowly then rapidly with increased 41 

degree of node aggregation. This informs the choice of an optimal model resolution whereby a finer 42 

level of a food web representation yields only minimal additional accuracy, while increasing 43 

computational cost substantially. Furthermore, our analysis shows that species biomass ratio and the 44 

consumption ratio are important parameters to guide node aggregation to minimize the error.   45 

 46 

Keywords: structural uncertainty, resolution, node aggregation, ecosystem models, foodweb model, 47 

coral reefs 48 

 49 

 50 

1 Introduction 51 

 52 

Simplification of reality and related uncertainty is unavoidable in any applied research aiming to 53 

support decision making; what influences the quality of analysis is how that uncertainty is 54 

incorporated into management decision processes. This issue was highlighted by Ludwig et al. (1993), 55 

who said: “effective policies are possible under conditions of uncertainty, but they must take 56 

uncertainty into account”. Walker et al. (2003) defines uncertainty as “any deviation from the 57 

unachievable idea of completely deterministic knowledge of the relevant system”. Another way of 58 

thinking about uncertainty is that “uncertainty reflects the probability that a particular estimate, piece 59 

of advice, or management action may be incorrect” (Lek, 2007). According to Menditto et al. (2007) 60 
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uncertainty is the quantitative expression of the performance characteristic accuracy with accuracy 61 

being defined as “Closeness of agreement between a quantity value obtained by measurement and the 62 

true value of the measureand”. While these definitions describe uncertainty well, they do not 63 

differentiate between different types of uncertainty.  64 

 65 

Uncertainty can arise at different instances in a modelling process. For the purpose of this paper, we 66 

will concentrate on two types of uncertainty. Parameter uncertainty is defined as the difference 67 

between the true value of a parameter and the mean value estimated using the data available and 68 

statistical techniques (Skinner et al., 2014). Structural uncertainty refers to a mismatch between the 69 

simplified mathematical equations of a model and the true complex ecological relationship observed 70 

in situ (Refsgaard et al., 2006). One type of structural uncertainty, which is the one we focus on in this 71 

study, is model resolution. In an ecological network, given a true number of species in the network, 72 

the resolution refers to the level of aggregation within each node which is reflected in the total number 73 

of nodes in the network. A node within the network represents an ecological unit that can be at 74 

different aggregation levels incorporating one or more species. Generally, it is believed that low-75 

complexity models reduce parameter uncertainty by reducing the number of parameters, while more 76 

complex models reduce structural uncertainty since they more closely describe the natural system 77 

(Iwasa et al., 1987). This leads to a hump shape between the level of complexity and the accuracy, 78 

with medium complexity models often performing best (Håkanson, 1995, Costanza and Sklar, 1985, 79 

Jester, 1977). 80 

 81 

Even though it has been acknowledged for a long time that different types of uncertainties are crucial, 82 

their role is often not thoroughly understood, especially in complex models (Milner-Gulland and 83 

Shea, 2017, Link et al., 2012). Previous attempts at addressing node aggregation in ecosystem models 84 

(Fulton, 2001, Iwasa et al., 1987) have not been taken up by the average user of these kind of models. 85 

As shown by Weijerman et al. (2015) who completed an extensive review of ecosystem models and of 86 
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the 27 ecosystem models reviewed only one addressed structural uncertainty as well as parameter 87 

uncertainty. Instead, general guidelines are used to aggregate species (Heymans et al., 2016). 88 

 89 

Ecosystems are complex due to the combination of multifaceted species interactions, which are often 90 

nonlinear, which may result in multiple equilibria (Gordon, 2007, McClanahan et al., 2009). 91 

Furthermore, ecosystem models are often faced with many threats which when included add to the 92 

model complexity. Informing the management of systems under threat is often one of the main 93 

modelling goals. Ecosystem models always involve high uncertainties, especially when attempting to 94 

predict the effects of interventions and management actions (Costanza et al., 1993, Hill et al., 2007). 95 

If uncertainty is larger than believed, the results are more likely to be misleading, and are therefore 96 

more likely to generate an inefficient or incorrect management decision (Weijerman et al., 2015). Lek 97 

(2007)’s definition of uncertainty emphasizes this possibility of decision-makers being misled by 98 

models.  99 

 100 

Ecosystem models are usually created at a functional group level to reduce the number of nodes and 101 

therefore parameters (Fulton et al., 2003). A functional group refers to a group of species that are 102 

assumed to be so similar in a defined set of characteristics that they can be investigated as one unit. In 103 

the literature, species are commonly grouped according to their trophic status and diet (e.g., herbivore, 104 

or detritivore) (Stoddart, 1969). In ecosystem modelling a functional group is often used as the basis 105 

of one node: Instead of treating each species as different and assigning a different dynamic equation 106 

and parameters to each species, the functional group is assumed to be homogenous enough to be 107 

represented by a single equation. Reducing resolution by considering functional groups only of course 108 

reduces the total number of nodes in the system, which consequently, reduces the complexity and the 109 

number of parameters that needs to be estimated. Guidelines about which species to group together 110 

have existed for a long time (Gardner and Ashby, 1970, Wiegert, 1975, O'Neill, 1975, Cale Jr and 111 

Odell, 1980), however, they never used to have any quantitative foundations and were based purely 112 

on experience. In the more recent time, there have been a few , but not always thorough studies 113 
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(Fulton, 2001, Fulton et al., 2003, Pinnegar et al., 2005) that explore the uncertainty that is caused by 114 

the introduction of functional groups as suggested in the literature. Thus, we lack an understanding of 115 

the magnitude and even distribution of structural uncertainty in the threat response of ecosystems 116 

(Bellwood and Fulton, 2008). 117 

 118 

One ecosystem under threat that benefits from a whole ecosystem analysis is the marine environment, 119 

specifically coral reefs. Coral reefs (here we will consider the Great Barrier Reef) are often made up 120 

of thousands of species, making this system a great example for high level aggregation. A common 121 

tool for ecosystem modelling in the marine environment, especially for the evaluation of fisheries 122 

management, is Ecopath with Ecosim (Colléter et al., 2015). Ecopath is based on the estimation of 123 

biomasses and food consumption to create a mass-balanced food web. It has been reviewed and 124 

extended on over the past 40 years to enable dynamic simulations (Ecosim) and spatial analysis 125 

(Ecospace) (Christensen and Walters, 2004). Since its inception, over 800 studies have used it to 126 

investigate questions related to fisheries management. However, even though used extensively it does 127 

not include a formal strategy to include structural uncertainty in its outputs or management 128 

recommendations. In terms of designing the structure, specifically the resolution, of an Ecopath the 129 

only guidance available to a new user are a few published guidelines (Heymans et al., 2016). These 130 

guidelines are mostly based on experience and only underlined by a few selected and non-131 

comprehensive analysis (Fulton, 2001).  132 

 133 

In this study, we develop and apply a new approach of varying the resolution of an ecological network 134 

while simulating the food web response to a species degradation. This will enable a comparison with 135 

some of the guidelines and give them a quantitative foundation. The aim of this study is threefold: 136 

1) We want to show that uncertainty introduced due to lowering the system resolution even 137 

slightly can be substantial and should not be neglected. 138 

2) We want to propose a basis for choosing an optimal resolution to balance parameter and 139 

structural uncertainty. 140 
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3) We want to suggest ways to improve the guidelines and techniques used to group species in 141 

ecosystem models while also generalising these techniques for other types of networks. 142 

These objectives are achieved by extensive simulations of a reef within the Great Barrier reef, 143 

considering different levels of aggregation and threat scenarios. Followed by the evaluation of these 144 

using visual examination, basic statistics as well as a machine learning algorithm.  145 

 146 

2 Methods 147 

 148 

The goal of this study is to understand how the ecosystem resolution affects the model’s predictive 149 

power in what concerns the effects of species degradation onto the entire ecosystem. To do so, we will 150 

examine a number of “threat” scenarios, in which a fraction of a biomass of a focal species is removed 151 

giving rise to changes in biomasses of other species because of feeding relationships. We will 152 

evaluate the variation between threat impacts modelled based on a network at species level versus a 153 

network at a functional group level, which has a coarser resolution. For a single simulation we 154 

calculate the error to reflect the accuracy of the simulation in relation to the reference model with full 155 

resolution. Then we look at the distributions of the error over several simulations as a measurement of 156 

uncertainty. To calculate errors, it is assumed that the high-resolution model reflects nature closely 157 

and thus the error between the high- and low- resolution models can be used as an estimate of the 158 

accuracy of a model structure. As the resolution of a model is a discrete characteristic, in this study, 159 

nodes within a chosen functional group are being merged, one by one, to “imitate” a step-by-step 160 

formation of the functional group. This enables a comparison of the response dynamics under the 161 

same input (a particular threat scenario) and an estimation of the difference that each particular 162 

merger entails. On this basis, a thorough understanding of the changes in the error and, consequently, 163 

the uncertainty with a reduction in resolution can be obtained.  164 

 165 

Naturally, one expects that a model should become more accurate with a finer resolution. However, it 166 

comes at a cost. This cost is made up of two components. First, a finer scale could result in more 167 
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parameter uncertainty, because the data underlying the parameters is not known well enough to 168 

support this scale. Second, there is a cost of computing power that is required. In this study, we refer 169 

to an “optimum” in terms of good overall accuracy (including both, parameter and structural 170 

uncertainty) without an explosion of computational power.  171 

 172 

2.1 Ecosystem simulation model and calibration  173 

The dynamic ecosystem model used in this study is based on a network of interacting nodes that 174 

represent a single or a group of species. The interactions considered between the nodes resemble 175 

predation, i.e., the consumption of biomass of one node by another. This means that the connection 176 

between two nodes indicates organic matter being transported from one node to the other and 177 

travelling generally up the food chain. Organic matter can be lost from the living nodes to the external 178 

environment through energy spent in respiration. Egestion and other mortality that add to the detritus 179 

close the loop from high to low trophic levels of the food chain.  180 

 181 

The network model used for this study is based on the Ecopath with Ecosim toolbox. We use Ecopath 182 

to calibrate our ecosystem network model and then we adopt Ecosim equations to simulate the 183 

ecosystem dynamics in response to a shock. We re-code the model in MATLAB for convenience of 184 

running simulations. In what follows, we present a general approach towards achieving the goal of 185 

this study as discussed above, and then we apply it to Great Barrier Reef as a case study.  186 

 187 

First, we describe the modelling framework. Ecopath is a static mass-balanced ecosystem model 188 

describing the network through linear equations that connect biomasses, diet preferences, mortalities 189 

and productions in an ecosystem. The static equations of Ecopath can then be extended to differential 190 

(difference) equations to allow for dynamic manipulations of the system (Ecosim extension). 191 

 192 
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Ecopath is based on two master equations. The first master Equation (1) focuses on the mass balance 193 

within each nodes, while the second master Equation (2) describes the mass balance between nodes; 194 

the first master equation is as follows  195 

𝑃𝑖 = 𝑄𝑖 − 𝑅𝑖 − 𝑈𝑖,                 (1) 196 

where 𝑃𝑖 represents the total biomass production of node 𝑖 (𝑡 𝑘𝑚−2𝑦𝑒𝑎𝑟−1) and 𝑄𝑖  represents the 197 

total biomass consumption of node 𝑖 (𝑡 𝑘𝑚−2𝑦𝑒𝑎𝑟−1), 𝑅𝑖 represents the respiration of node 𝑖 198 

(𝑡 𝑘𝑚−2𝑦𝑒𝑎𝑟−1), which is a loss of a part of biomass to the environment and 𝑈𝑖  represents the 199 

amount of unassimilated food for each node 𝑖 (𝑡 𝑘𝑚−2𝑦𝑒𝑎𝑟−1) for all 𝑖 = 1, … . 𝑛 with 𝑛 being the 200 

number of nodes in the ecosystem network. Unassimilated food refers to the amount of biomass lost 201 

through excretion, i.e., the amount of biomass input into the lowest trophic level node called detritus. 202 

 203 

The second master equation unfolds the node production of all nodes (besides detritus) that consists of 204 

the amount of its biomass consumed by other nodes plus the amount of biomass that emigrates and the 205 

amount of biomass that is lost due to natural mortality, here called other mortality or excretion. The 206 

flow from one node to another is assumed to be proportional to the total consumption of the node-207 

recipient, which is sometimes called top-down or recipient control:   208 

𝑃𝑖 = ∑ 𝑄𝑗𝐷𝐶𝑖𝑗𝑗 + 𝐸𝑖 + 𝑃𝑖(1 − 𝐸𝐸𝑖),          (2) 209 

where 𝐷𝐶𝑖𝑗 = proportion of the consumption by predator 𝑗 that is made up of prey 𝑖 (unitless), 𝐸𝑖 = 210 

net emigration (emigration – immigration; 𝑡 𝑘𝑚−2𝑦𝑒𝑎𝑟−1); and 𝐸𝐸𝑖 = ecotrophic efficiency 211 

(unitless). The ecotrophic efficiency is the proportion of production that is passed onto the next 212 

trophic level. This parameter is smaller than one due to natural mortality.  213 

 214 

Compared to the standard form of the second master equation found in many publications 215 

(Christensen et al., 2005, Heymans et al., 2016),this formulation of the second master equation has 216 

been modified already to assume that there is no biomass accumulation (in Ecopath notations 𝐵𝐴𝑖 =217 

0) to ensure a steady state and as a baseline it also assumes that there was no fishing (𝑌𝑖 = 0).  218 

 219 
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Combining (1) and (2) one obtains  220 

𝐸𝐸𝑖(𝑄𝑖 − 𝑅𝑖 − 𝑈𝑖) = ∑ 𝑄𝑗𝐷𝐶𝑖𝑗𝑗 + 𝐸𝑖           (3)  221 

which means that the surviving production of one group (the left-hand side of this equation) is equal to 222 

the consumption of that group by all predators and the biomass that is leaving through emigration  and 223 

other forms of losses not otherwise explicitly represented in the model (see Figure 1). 224 

 225 

 226 

Figure 1. Visualisation of Equation (3), the mass-balance of a single node within the network 227 

 228 

The data requirements for Ecopath encompass at a minimum the input of parameters 𝐷𝐶𝑖𝑗 and 𝐸𝑖, as 229 

well as any three out of four variables 𝑃𝑖 , 𝑄𝑖, 𝐵𝑖 and 𝐸𝐸𝑖 for each node in the model. The missing 230 

parameters are then estimated using the mass-balance Equations (1) and (2). This process is called 231 

balancing the Ecopath model.  232 

 233 

For some nodes we might have information on all four parameters. However, since they have often 234 

been estimated during different studies and any such parameters contain uncertainty, we often cannot 235 

reach a mass-balance directly by just calculating the remaining unknown parameters (which are fewer 236 

than 𝑛). In this case, we conduct another step called the model calibration. For the model calibration, 237 

i.e. to find “free” parameters that ensure mass-balance, all parameters are varied according to the 238 

parameter uncertainty underlying their estimates until a mass-balance is reached. For example, the 239 

production of a species might have been investigated and confirmed by several studies, so the 240 

parameter uncertainty is low and the bound in which it is varied for calibration might be set at 10%. 241 

On the other hand, a production estimate of a different species might not be available for the study 242 
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region and needs to be inferred from a different region. This would result in a higher parameter 243 

uncertainty and hence a variation bound of 20% would be used. Rules to identify these uncertainty 244 

bounds have been established and are called pedigrees within the Ecopath software (Christensen et al., 245 

2005). In practice this means that we can often find several possible parameterizations that ensure 246 

mass-balance. To identify robust conclusions for a study utilising these models several/ all of these 247 

parameterizations should be evaluated. We elaborate more on how we used them in this study in 248 

section 2.5. 249 

 250 

Equation (2) motivates a differential equation in which species biomass evolves over time as a 251 

response to external shocks and pressures, such as harvesting. Let 𝐵𝑖 be the biomass of a group 𝑖. 252 

From here on out we no longer consider the total production (𝑃𝑖) or consumption (𝑄𝑖), but rather the 253 

production (𝑝𝑖) and consumption (𝑞𝑖) per unit of biomass. Since (2) has the assumption of a steady 254 

state, we can rearrange it to refer to the population change of zero as follows  255 

0 = − ∑ 𝑞𝑗𝐵𝑗𝐷𝐶𝑖𝑗𝑗 +𝑝𝑖𝐵𝑖 − 𝐸𝑖 − 𝑝𝑖𝐵𝑖(1 − 𝐸𝐸𝑖);       (4) 256 

or generally as change in population size over time  257 

𝑑𝐵𝑖

𝑑𝑡
 = − ∑ 𝑞𝑗𝐵𝑗𝐷𝐶𝑖𝑗𝑗 +𝑝𝑖𝐵𝑖 − 𝐸𝑖 − 𝑝𝑖𝐵𝑖(1 − 𝐸𝐸𝑖).       (5) 258 

Furthermore, we consider that immigration 𝐼𝑖 into the group is independent of the population sizes 259 

within the system, while emigration 𝑒𝑖 out from the group depends on the population size of group 260 

𝑖, ,due to the effect of crowding, which means  261 

𝐸𝑖 =  𝑒𝑖𝐵𝑖 − 𝐼𝑖            (6) 262 

We denote  263 

 𝑀𝑖 = 𝑝𝑖(1 − 𝐸𝐸𝑖) .            (7) 264 

which refers to the non-predation mortality. So, all together we obtain  265 

 
𝑑𝐵𝑖

𝑑𝑡
= − ∑ 𝑞𝑗𝐵𝑗𝐷𝐶𝑖𝑗𝑗 +𝑝𝑖𝐵𝑖 + 𝐼𝑖 − (𝑒𝑖 + 𝑀𝑖)𝐵𝑖 .         (8) 266 

 267 

In the literature, Equation (8) is often described in a more general form   268 
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𝑑𝐵𝑖

𝑑𝑡
= − ∑ 𝑐𝑖𝑗(𝐵𝑖, 𝐵𝑗)𝑗 + 𝑔𝑖 ∑ 𝑐𝑗𝑖(𝑗 𝐵𝑖, 𝐵𝑗) + 𝐼𝑖 − (𝑒𝑖 + 𝑀𝑖)𝐵𝑖.      (9) 269 

Equation (9) has the advantage that 𝑐𝑖𝑗(𝐵𝑖 , 𝐵𝑗) can be chosen to represent bottom-up, top-down or 270 

mixed control. In this study, we investigate bottom-up control due to its inherent stability (Hearon, 271 

1963) and consequently, assign  272 

𝑐𝑖𝑗(𝐵𝑖, 𝐵𝑗) = 𝛽𝑖𝑗𝐵𝑖.           (10) 273 

Since each flow from 𝑖 to 𝑗 needs to be consistent between the static and the dynamic approach we 274 

define  275 

𝛽𝑖𝑗𝐵𝑖 = 𝑄𝑏𝑗𝐵𝑗𝐷𝐶𝑖𝑗.           (11) 276 

Consequently, 𝛽𝑖𝑗 is defined as  277 

𝛽𝑖𝑗 =
𝐵𝑗

𝐵𝑖
𝑄𝑏𝑗𝐷𝐶𝑖𝑗,            (12) 278 

where all entries in formula (12) are to be taken from the model calibration results.  279 

Thus, we have  280 

𝑑𝐵𝑖

𝑑𝑡
= − ∑ 𝛽𝑖𝑗𝐵𝑖𝑗 + 𝑔𝑖 ∑ 𝛽𝑗𝑖𝐵𝑗𝑗 + 𝐼𝑖 − (𝑒𝑖 + 𝑀𝑖)𝐵𝑖 − 𝑇𝑖𝐵𝑖 .     (13) 281 

where 𝑔𝑖 is the growth efficiency, which is a ratio between the production and consumption (unitless) 282 

and 𝛽𝑖𝑗 represent elements of the interaction matrix (Christensen et al., 2005). In (13), we also include 283 

threats (last term in the right-hand side) with 𝑇𝑖 being the proportion of the total biomass removed by 284 

threat 𝑖 in Ecopath usually only considered as fishing (𝑡 𝑘𝑚−2𝑦𝑒𝑎𝑟−1). Most threats remove part of a 285 

population so 0 < 𝑇𝑖 < 1, however it could also be −1 < 𝑇𝑖 < 0 in case of a threat that increases an 286 

unwanted population, for example the increase of algae, 287 

 288 

In the dynamic simulations, we initiate system (13) using initial values 𝐵𝑖,𝑡=0 equal to the steady-state 289 

values 𝐵𝑖 calculated using Ecopath. Emigration and immigration are also taken from Ecopath. As the 290 

dynamics is affected by a threat, the system is moving away from the initial steady state 291 

corresponding to an equilibrium in the absence of external disturbance. Due to the donor-control 292 

assumption, the dynamics converges to a new steady state.  293 

 294 
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2.2 Case study system and data 295 

The Great Barrier Reef (GBR) is the biggest reef system in the world. It is currently under a severe 296 

threat due to global warming and the resulting bleaching. One reef within this system is Rib reef (lat:-297 

18.48, long:146.88). It is located on the mid-shelf in the central Great Barrier Reef. Due to its 298 

location, Rib reef is a good template for other reefs within the system. Rib reef was previously 299 

investigated in a fisheries management assessment study using Ecopath (Tudman, 2001). This study 300 

used an Ecosim network with 25 nodes representing functional groups. However, data in this paper is 301 

simply a collection of studies and as such it is available from the original published sources at the 302 

species level for most fish species, allowing for a more complex network of 𝑛 =206 nodes. This 303 

makes Rib reef an ideal case study for evaluating the consequences of merging species into functional 304 

groups for modelling and management. Note that in this case only fish species are identified at a 305 

species level, while other functional groups (total of 15) are kept at a functional group level to reduce 306 

the data requirements and the model complexity and consequently to keep computational time feasible 307 

(in the absence of these limitations the model resolution could be increase to a few thousand nodes). 308 

When interpreting our results here, this limitation needs to be remembered, i.e., the actual error due to 309 

coarse model resolution is likely to be larger than estimated here. 310 

Following Tudman (2001), we adopt input parameters 𝑃𝑖 , 𝑄𝑖, 𝐵𝑖 for all 𝑖 = 1, … . 𝑛  and the net 311 

emigration 𝐸𝑖 as zero (this is a common assumption that immigration is roughly equal to emigration, it 312 

is also based on the original study the data is based on by Tudman (2001)).  Parameters 𝐷𝐶𝑖𝑗 for all 313 

𝑖, 𝑗 = 1, … . 𝑛 are downloaded directly from Fishbase (Froese and Pauly, 2017), as these parameters 314 

were only given at a functional group level in Tudman (2001). Assuming that the ecosystem is 315 

initially in the steady state, using the available data for 𝑃𝑖, 𝑄𝑖 , 𝐵𝑖 and 𝐷𝐶𝑖𝑗 we derive the missing 316 

parameters 𝐸𝐸𝑖. This is possible if at least two parameters of each node are known. In this way, we 317 

fully calibrate our dynamic model, the resulting parameters for the following simulations can be found 318 

in the supplementary materials (S1). 319 

 320 

2.3 Threat implementation and threat scenarios 321 
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We model threats as a fixed proportional reduction of biomass of a node at each time step. This is a 322 

common way to represent fishing pressures in ecosystem models, and it can also represent other 323 

threats such as bleaching or nitrification via reducing or increasing the biomass of a lower trophic 324 

level.  325 

We implement a total of six threat scenarios in this study to prototype a range of alternatives from 326 

fishing on a variety of target species to coral bleaching and increased nutrition loading, choosing 327 

those scenarios which represent most typical and critical threats for coral reefs. Importantly, these 328 

scenarios represent threats impacting a variety of trophic levels from top predators to primary 329 

producers and consequently, enable a detection of potential differences in terms of uncertainty spread 330 

unevenly across trophic levels. However, it is important to keep in mind that the selected scenarios are 331 

theoretical and not directly based on data. The full list of scenarios is as follows:  332 

1. A reduction of the biomass of pelagic fish (fishing on a high trophic level) 333 

2. A reduction of the biomass of coral trout (fishing on a high trophic level) 334 

3. A reduction of the biomass of herbivores (fishing on a medium trophic level) 335 

4. A reduction of the biomass of sharks (fishing on a high trophic level) 336 

5. A reduction of the biomass of coral (indicative of bleaching, threat on low trophic level)  337 

6. An increase of the biomass of algae (indicative of increased nutrients, threat on low trophic 338 

level).  339 

All of these scenarios are introduced at different intensities ranging from 10 to 90% 340 

removal/introduction rate, i.e., 𝑇impacted node = 0.1,0.2, … ,0.9 (per year). 341 

 342 

2.4 Merging nodes and error calculation 343 

Merging nodes refers to pooling of biomasses of two nodes (here species or functional groups) into 344 

one node and corresponding uniting/reassignment of incoming and outgoing flows. The following 345 

describes the routine of consecutive mergers we use to evaluate the error for each of the 54 scenarios 346 

(six different threats and nine intensities per threat). In the first instance, we focus on merging nodes 347 

within each functional group from the original model (Tudman, 2001) individually, meaning that all 348 
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nodes outside the functional group in focus remain at species level. Then we merge the functional 349 

groups consecutively to fully recreate the original 25-node model. 350 

For each of the eight functional groups in the original model we run an “experiment”. Each 351 

experiment consists of a number of steps equal to the initial size of the functional group in terms of 352 

the number of nodes. At each experiment step, we reduce the number of nodes from the functional 353 

group by one from 𝑗 to 𝑗 − 1 (the calculations for all parameters after a merger can be found in S2). 354 

To do so, we implement all possible mergers of two nodes within this functional group into one, total 355 

𝑗!

2!(𝑗−2)!
  mergers. For every merger at a given experiment step, we consecutively run all six threat 356 

scenarios with nine intensity levels, total 54 scenarios. For each scenario, we simulate the ecosystem 357 

dynamics using (13) and initial conditions from Ecopath for up to 500 time steps (which is equivalent 358 

to 5 years) and compare it with the dynamics corresponding to the case without any mergers. To 359 

quantify the comparison we use the total relative error as follows 360 

 361 

Error =
√

∑
∑ (𝐵𝑖,𝑡−�̂�𝑖,𝑡)²𝑡

∑ 𝐵𝑖,𝑡
2

𝑡
𝑖

𝑛
,                (14) 362 

 363 

where �̂�𝑖,𝑡 refers to the merged biomass of a node (𝐵𝑛−1 + 𝐵𝑛 assuming that you merge the two last 364 

nodes 𝑛 and 𝑛 − 1 ) and 𝐵𝑖,𝑡 refers to the unmerged biomass of the two merged nodes added together 365 

after the simulations; 𝑛 here is the size of the considered ecosystem model version. Threats are 366 

implemented in the merged simulations as  367 

 �̂�𝑛−1 =
𝐵𝑛−1𝑇𝑛−1+𝐵𝑛𝑇𝑛

𝐵𝑛−1+𝐵𝑛
            (15) 368 

Where �̂�𝑛−1 is the threat on the new node. 369 

 370 

Since five years is a commonly used timeframe for management decision making, it is chosen as the 371 

length for the simulations. 372 

Actually, due to the linearity of the model equations, for a given threat (including none) the initial (or 373 

any given) steady state of the full system can be reproduced exactly by the reduced system (see 374 
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supplementary materials S2) by a choice of coefficients 𝐷𝐶𝑖𝑗, as well as 𝐵𝑖, 𝑃𝑖 and 𝑄𝑖 in the reduced 375 

system. But modellers and decision makers are interested in models which are able to process a 376 

variety of possible threats, hence we use a metric (14) to evaluate the “goodness” of a merger 377 

averaging over all nodes in the system. Also (14) focuses on the transient path instead of just the 378 

eventual steady state.  379 

At each experiment step, we save the “best” merger and a corresponding network, resulting in the 380 

lowest error (14). We use this “optimal” network configuration as a starting point for the next 381 

experiment step. Experiments continue until the considered functional group becomes a single node. 382 

 383 

2.5 Parameter and structural uncertainty 384 

In a study that would like to estimate the response of this coral reef to a given threat, the stepwise 385 

aggregation that we have done so far is of not much use. Managers would be interested in the total 386 

amount of uncertainty around the population size estimates that are provided with a given model. This 387 

situation is what we are exploring in this section. The total amount of uncertainty in the estimates is 388 

partly due to parameter uncertainty and party due to the structural uncertainty. Here, we are 389 

comparing how much uncertainty we would assign depending on if we consider both the structural 390 

and the parameter uncertainty or only one of them as it is often done in most previous studies 391 

(Weijerman et al., 2013). 392 

Parameter uncertainty can be easily estimated by simulating the system response with different 393 

parameter sets. As described in the previous section 2.1 we calibrate the model with different 394 

variations of the original parameters to create 10 separate parameter sets for the system. The 395 

parameter sets are then each simulated over 500 time steps (5 years) for each scenario and intensity. 396 

The resulting responses are compared to the response of original parameter set using the same error 397 

estimates as for the structural uncertainty described in section 2.4. For these error estimates 398 

(10 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡𝑠 ∗ 6 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ∗ 9 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 = 540 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠) we then calculate the mean 399 

and standard error.  400 
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Structural uncertainty here is based on errors that are calculated similar to the previous methods in 401 

section 2.4. The only difference is that instead of calculating the error at each merger, we create three 402 

resolutions and only compare the error between these. The three resolutions are as follows (S3): First, 403 

we have the full resolution model (assumed to have no structural error) with 206 nodes. Second, we 404 

have the medium resolution model identified as the optimum from the previous sections with 49 405 

nodes. Third, we have the low resolution model based on the functional group in the original study by 406 

Tudman. This results in 54 error estimates (6 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ∗ 9 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠) for each resolution which 407 

are then averaged to calculate the structural uncertainty. 408 

Now we can combine both of these uncertainties by creating 10 parameter sets for each resolution and 409 

comparing the errors across all of them (10 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑡𝑠 ∗ 6 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ∗ 9 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 =410 

540 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). The parameter sets were identified using the pedigree 411 

approach build into Ecopath and Ecoranger. In this approach each variable is assigned a level of 412 

confidence (based on the data collection) followed by randomly selecting parameters within these 413 

confidence intervals and rebalancing of the model (Christensen et al., 2005). 414 

 415 

2.6 Regression tree analysis 416 

The previous sections show that there is a large spread between the errors introduced even when 417 

reducing the resolution by a single step. This spread of errors is caused by the differed species/ nodes 418 

that are merged, i.e. some species represent a “good” merger others a “bad’ merger. In order to make 419 

better decisions on which species/ nodes to merge we need to know which characteristics of each 420 

species/ node causes the error to increase. This is why we conduct this regression analysis. 421 

Characteristics of interest are related to parameters of each node, i.e., biomass, production, or specific 422 

to each combination of nodes in conjunction with the threat scenario, i.e., the difference in trophic 423 

level between nodes merged and nodes experiencing a threat (Table 1). We use the bagged regression 424 

tree analysis since input data, predictors and responses typically have different non-normal 425 

distributions. A regression tree analysis is a supervised (ie. there is a response variable) machine 426 

learning algorithm. At each step, the algorithm splits the samples according to one of the predictors to 427 
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form a more homogenous group of the response. This means that if we know the value for each 428 

predictor we can follow all of the splits and predict the likely response. An extension of this is used in 429 

this study by growing several trees (200) for more reliable results. In the bagged regression tree 430 

analysis we grow each regression tree while utilising all predictors but subsampling data from the 431 

initial sample (Prasad et al., 2006). Those trees are then combined in an ensemble to give more 432 

reliable predictions. We performed an analysis with replacement i.e. each subsample is placed back 433 

into the full sample after growing the tree and a new subsample is taken for the next tree. This 434 

provides an opportunity for internal validation at each tree level using the mean squared error (MSE) 435 

of predictions. Compared to other methods of growing ensembles of trees, bagged trees largely 436 

prevent overfitting. Another great feature about the bagged tree analysis is that it can calculate 437 

surrogate splits. At each split, when the tree is grown, the algorithm determines the next best split 438 

according to the MSE, this split is then known to be the surrogate split. Overall, this procedure 439 

enables comparing the optimal split (the split chosen by the algorithm to grow the tree due to the 440 

lowest MSE) and the surrogate splits for all variables. The variable association is then measured 441 

according to how different the MSE between the optimal and the surrogate split is. Variables that can 442 

be easily replaced by their surrogate splits are less important and could be excluded. Additionally, we 443 

also calculate the overall variable importance, which is the total reduction of the MSE that is due to 444 

splits based on that variable (Prasad et al., 2006). This means that if the variable importance is high, 445 

the splits based on that particular predictor have a large influence on the reduction of the MSE 446 

achieved by the analysis. Variables with a low importance only reduce the MSE a little, so could 447 

potentially be excluded from the analysis without much loss in overall performance. The variable 448 

importance calculated here is relative within the analysis, i.e. the magnitude of the importance can 449 

only be compared between variables of the same analysis not across different models. 450 

 451 

Table 1: Predictors utilised in the bagged tress analysis 

Variable name Explanations 
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Threat distance The difference in trophic level* between the threat and the average of the 

merged groups (𝑇𝐿threat −
𝑇𝐿1−𝑇𝐿2

2
) 

Node distance The absolute difference in trophic (TL*) level between the two groups to be 

merged (|𝑇𝐿1 − 𝑇𝐿2|) 

Predator overlap The proportion of the outflows that are the same in nodes to be merged 

(
Outflows that are the same

Total number of outflows
)  

Food overlap The proportion of the inflows that are the same in nodes to be merged 

(
Inflows that are the same

Total number of inflows
) 

Biomass ratio Ratio of the node sizes between two merged nodes (
𝐵1,0

𝐵2,0
)** 

Production ratio Ratio of the total production between two merged nodes  (
𝑃1,0

𝑃2,0
)** 

Consumption 

ratio 

Ratio of the total consumption between two merged nodes  (
𝑄1,0

𝑄2,0
)** 

*Trophic levels in Ecopath are continuous variables and based directly on the trophic levels of the 452 

species consumed. For more information Christensen et al. (2005) section 6.4.4 453 

**Considering that the designation of node 1 and 2 for these calculations is arbitrary, we allocate node 454 

1 and 2 so that the ratios calculated are between zero and one. This is achieved by allocating the larger 455 

value to node 1.  456 

 457 

3 Results 458 

 459 

3.1 Error due to model coarse-graining  460 

The error estimates after merging show a clear pattern, the error estimates start low then first slowly 461 

then rapidly increase. However we are also interested in differentiating between the maximum and 462 

minimum error at each merger. Since this represents the variation of errors that can occur depending 463 

on if we merge two similar or two very different species or nodes. For most scenarios, the minimum 464 

error is rather small when only few nodes are merged, however after a “tipping point” when a certain 465 
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“critical mass” of nodes is merged, it increases rapidly. The maximum error on the other hand starts 466 

relatively high and remains mostly stable with just a small increase at the final mergers. This also 467 

means that we can reduce the error when only merging a few species, however only if we are merging 468 

the correct species. Finally, the spread of errors across the 
𝑖!

2!(𝑖−2)!
  possible networks at each merger is 469 

not even, but rather clustered. This clustering can aid the identification of the nodes (here species) that 470 

should or should not be merged to avoid large losses of accuracy. 471 

Figures 2 and 3 illustrate the typical patterns we observed in these experiments. Figure 2 depicts 472 

errors in one (of six) threat scenario with fixed intensity (0.5) for all eight functional groups. Figure 3 473 

illustrates the effects of all six threat scenarios with fixed intensity (0.5) on one selected functional 474 

group (lutjanids). Both figures represents the tendencies concerning the minimum and maximum 475 

errors described above from two different perspectives. The graphs of all functional groups across all 476 

six scenarios and intensities can be found in the supplementary materials (S4). One feature that can be 477 

observed in both figures and all panels is that there are two separate “clouds” of points. One is worse 478 

in terms of errors than the other. This cloud of bad mergers is made up of a few species that whenever 479 

they are added to the remainder spike the error. The regression analysis later in this section will 480 

outline characteristics that can help determine these species in the hope to avoid them. 481 

 482 
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 483 

Figure 2. Example of results: Error estimates for all eight functional groups under threat scenario 1) 484 

in which the biomass of pelagic fish is reduced with intensity 0.5. Panel A compares functional 485 

groups lutjanids, serranids, corallivores, lethrinids, small and large planktivores. Panel B shows 486 

herbivores and panel C the functional group other demersals. Each point represents one possible 487 

merger of two nodes originating from the model identified with the lowest error in the previous 488 

mergers.  489 

 490 
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 491 

Figure 3. Error estimates for threat scenario 1) to 6) of intensity 0.5 for lutjanids. Each point 492 

represents one possible merger of two nodes originating from the model identified with the lowest 493 

error in the previous amount of mergers.  494 

 495 

3.2 Parameter versus structural uncertainty 496 

To compare the balance of parameter and structural uncertainty we are looking at the combined 497 

uncertainty (Fig.4). Since 205 nodes is the highest resolution considered here (reference point for the 498 

structural uncertainty), it only includes parameter uncertainty with the structural uncertainty being 499 

zero (according to our assumption). The 49 and the 22 node model both include structural and 500 

parameter uncertainty. We found that the 49 node model was the optimal model in the sense that the 501 

overall (structural and parameter) was the lowest. This supports the hypothesis that there is an optimal 502 

resolution even when taking into account the parameter uncertainty. 503 
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 504 

Figure 4. Average error estimates with standard errors for the different resolutions. 505 

 506 

3.3 Variable Importance 507 

The bagged trees analysis shows that we can explain most of the variation in the error of a particular 508 

merger when considering how similar in in the predictor variables the two nodes are (𝑅2 = 0.89).  509 

The variable importance shows that the most effective predictors to determine a good merger are the 510 

biomass ratio (~ node size) and the consumption ratio (~total amount of inflow into the node) of the 511 

species (Fig. 5). The more similar (i.e. ratio of 1) biomass and consumption of the nodes are the lower 512 

the error, meaning the better the merger. Another variable of medium importance is the difference in 513 

trophic level between the threat scenario and the merged groups (Fig.5). In this case, the smaller the 514 

difference between the trophic level of both nodes the smaller the error, causing a better merger. It is 515 

interesting that the similarities in parental or child nodes between nodes to be merged (i.e. similarities 516 

in predators and food sources for the merged species) are of low value to determine the direction of 517 

merging. In fact, predator overlap is largely associated with all the other predictors (Fig.6), and hence 518 

it could be removed from the analysis without any loss of predictive power (𝑅2 = 0.8).  519 

 520 
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 522 

Figure 5. Predictor importance for the regression model  523 

(relative measure of importance within the model, no units) 524 

 525 

 526 

Figure 6: Association between predictors in the tree 527 

 528 

4 Conclusions and Discussion 529 
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This study provides insights into structural uncertainty and more specifically into what role the 531 

resolution plays in complex network-based models. Overall, the study gives a good indication of how 532 

structural uncertainty in form of the trophic resolution could be better integrated into the process of 533 

constructing the models based on complex networks. Here we considered an Ecopath model as a 534 

prominent example in ecological modelling. We found that different levels of model resolution can 535 

change the error in estimating model outcomes in response to exogenous shocks. While higher 536 

resolutions always reduce the structural uncertainty this might not be the best resolution overall. 537 

Besides the computational capacity needed for high resolution models, the overall (parameter and 538 

structural) uncertainty is lowest at a medium resolution. This resolution can be considered as an 539 

optimal resolution and can be found by merging species with the most similar parameters for biomass 540 

and total consumption. Note that there is no direct cut-off that can be applied here. The acceptable 541 

ratio between biomasses of both nodes depends on species and total network resolution. The study 542 

confirms that the distance in trophic level between the merged nodes and the threat can be of 543 

importance. Our results highlight that the common practice of putting high importance on the ratios of 544 

the size of the merged nodes and their biomasses, rather than on the rest of the network the nodes are 545 

connected to, and on the directions of in- and outflows may be warranted.  546 

 547 

A result that holds true across all considered functional groups, independently from the number of 548 

species or threats is that the minimum error grows with an increasing slope when the model resolution 549 

becomes coarser (i.e., with increasing the number of mergers). This means that at a medium resolution 550 

level the error is substantially lower than the error at the lowest resolution level (i.e., when a complete 551 

merger of all species into one group is achieved). This is not surprising since some species have 552 

common ecology, and hence they are even sometimes called “redundant species”, while others differ 553 

dramatically in size, food source or predator protection. Redundancy refers to different species full-554 

filling similar ecological roles (Naeem, 1998), hence not much difference can be found if these 555 

species are considered as one group in the analysis. While the existence of functional redundancy is 556 

still debated (Hoey and Bellwood, 2009), this analysis seems to support the hypothesis. Similar 557 
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analysis on different systems other than coral reefs might be useful to explore this concept further. 558 

The shape of the relationship between the degree of model coarse-graining and the model accuracy 559 

introduces a notion of an optimal grouping of species in terms of structural uncertainty and 560 

computational requirements.  561 

 562 

This study supports the previous assumption of an opposite hump shape or seesaw between structural 563 

and parameter uncertainty (Costanza and Sklar, 1985, Håkanson, 1995, Jester, 1977). When the 564 

structural uncertainty is reduced (according to our assumptions entirely removed) and only parameter 565 

uncertainty is considered (the 205 node resolution) then we have the highest overall uncertainty. The 566 

medium resolution model produced here with 49 nodes shows the lowest overall uncertainty, i.e. 567 

while the structural uncertainty is increased the lower amount of parameters resulted in a much lower 568 

parameter uncertainty. On the other hand, once the resolution is reduced too much (22 nodes), the 569 

structural uncertainty is so high that even combined with the now low parameter uncertainty, the 570 

overall uncertainty is increased again. This in conjunction with the shape of the uncertainty estimates 571 

across different numbers of mergers supports the hypothesis that an optimal resolution exists. This is 572 

not just the optimal across structural uncertainty and computing power required, but also parameter 573 

uncertainty. It should be considered here that we only considered errors introduced through the 574 

resolution, not other sources such as the formulation of equation. However, the introduction of such 575 

variations and their errors would generally only increase the structural uncertainty, not decrease it, 576 

consequently the hump shape would be more and not less pronounced. Another interesting finding 577 

here is that the species grouped in this optimal resolution model (here 49 nodes) are consistent for all 578 

of the threat scenarios and intensities. This is especially important when the management questions 579 

underlying the model are concerned with multiple threats.  580 

 581 

When it comes to the practical implementation of these results, we would like to caution that the 582 

errors calculated in this study should not be taken as an accurate measure of the true error. The error 583 

calculated here is only based on resolution and due to the reference system itself having a reduced 584 
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resolution (lower trophic levels are grouped substantially), it represents a minimum error that we 585 

would have to expect based on the merging of the fish species into functional groups. The error here is 586 

supposed to guide decisions in reducing the overall error and highlight the importance of getting this 587 

component “right”. The next few paragraphs will outline how we could more practically use the 588 

results gathered in this study. 589 

 590 

Common practice has often focused mainly on grouping together nodes with similar connections 591 

(Cale Jr and Odell, 1980, Fulton, 2001, Gardner and Ashby, 1970, O'Neill, 1975, Wiegert, 1975). This 592 

would be similar to the characteristic of predator and diet overlap in this study. However, this study 593 

shows that the actual similarities of the predators is not very influential in terms of the aggregation of 594 

species. Instead we found that similar abundances (here biomass) are the most important. One 595 

example of considering connections over abundance, is Tudman (2001) who groups all herbivores 596 

together irrespective of the large differences in their biomasses ranging from 0.01 to over 10 597 

𝑡 𝑘𝑚−2𝑦𝑒𝑎𝑟−1. On the other hand, it has been recognized that for some very rare species it is better 598 

to exclude them from the model than to merge with a species with another group (Fulton, 2001). The 599 

results presented here have to be taken with some caution, however, since the data the analysis is 600 

based on already assumes some similarity between then species merged, i.e. due to limitations related 601 

to computing time the method does not allow a shark and a goby to be merged purely because they 602 

have a similar biomass in the system. This restriction here was due to technical reasons mainly, 603 

however, it also represents another commonly applied guideline: “do not aggregate serially linked 604 

groups” (Fulton et al., 2003), i.e., expert knowledge should be used to provide the initial coarse 605 

groupings. 606 

 607 

In the literature, it is often suggested that Ecopath models should have as high as possible resolution 608 

of the foodweb nodes that are of special interest to the question asked (Heymans et al., 2016, 609 

Hollowed et al., 2000, Christensen et al., 2005). For example, if we are investigating fishing, we 610 

should differentiate fish groups more explicitly than other parts of the foodweb such as, for example, 611 
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algae. While this is common practice and might suit the manager’s needs, it has been pointed out that 612 

this method could cause biased results (Fulton et al., 2003). Our study found some support to this 613 

guideline, i.e., as we obtained that the difference between the trophic level of the threat and the 614 

merged group had some importance, however, it needs to be recognised that it was lower than that of 615 

the biomass and production. Furthermore, the optimal resolution, and specific species to group in the 616 

medium sized model did not change in all of our threat scenarios. Since the threats that were used here 617 

can represent anything from bleaching to high trophic level fishing, the results seem to indicate that it 618 

is not important which question we are trying to answer when deciding on the species grouped within 619 

each node. This contradicts some previous advice (Heymans et al., 2016) and should be further 620 

investigated, especially, since it is often used as a justification to represent lower trophic levels in 621 

massive groups that can represent hundreds or even thousands of species (Tudman, 2001). 622 

 623 

Overall, when constructing a new network to underlay a foodweb model we should first and foremost 624 

consider the biomass of species being merged. If a large difference exist we should rather exclude 625 

than merge that respective species. Second, we should consider the amount that each species 626 

consumes. Similar to biomass, we need to only merge species that are very similar in the amount they 627 

consume, per biomass unit and overall. Only after these characteristics are considered we should 628 

evaluate if the purpose of the individual study justifies a higher resolution at certain points within the 629 

network. Please not we would recommend to only increase resolution close to points of interest rather 630 

than decrease the resolution in other parts of the foodweb. 631 

 632 

The future use of this study is twofold. The study can have a direct use for coral reef models 633 

constructed in the future. The optimal groupings found here as well as the total amount of uncertainty 634 

found can be utilised for any model of this system. However, the results from this study can reach 635 

further since it provides information on how to aggregate nodes in any network model independent of 636 

its use. In conclusion, this study is a good foundation for further investigation and the better 637 

integration of structural uncertainty in ecosystem models, but also other network based models. As 638 
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long as merging nodes that are not serially linked, the most important determinant of uncertainty is the 639 

size ratio of the merged nodes and their total outflow. This can give guidance to future models to 640 

manage uncertainty caused by a coarser resolution which modellers have to accept in return for 641 

feasible computing resources.  642 
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