1	A Systems Approach to Measure Trade Dependencies in
2	U.S. Food-Energy-Water Nexus
3	
4	Nemi Vora ^{1,2} , Brian D. Fath ^{2,3*} , and Vikas Khanna ^{1*}
5	¹ Department of Civil and Environmental Engineering, University of Pittsburgh, 3700 O'Hara
6	Street, 742 Benedum Hall, Pittsburgh, Pennsylvania 15261, United States
7	² Advanced Systems Analysis Program, International Institute for Applied Systems Analysis
8	(IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria.
9	³ Department of Biological Sciences, Towson University, 8000 York Road, Towson, Maryland,
10	21252, United States
11	* Address correspondence to <u>bfath@towson.edu</u> and <u>khannav@pitt.edu</u>
12	
13	ABSTRACT

We present a network model of the United
States (U.S.) interstate food transfers to
analyze the trade dependency with respect to
participating regions and embodied irrigation
impacts from a food-energy-water (FEW)
nexus perspective. To this end, we utilize
systems analysis methods including the

21 pointwise mutual information (PMI) measure to provide an indication of interdependencies by 22 estimating probability of trade between states. PMI compares observed trade with a benchmark of 23 what is statistically expected given the structure and flow in the network. This helps assess whether 24 dependencies arising from empirically observed trade occur due to chance or preferential 25 attachment. The implications of PMI values are demonstrated by using Texas as an example, the 26 largest importer in the US grain transfer network. We find that strong dependencies exist not just 27 with states (Kansas, Oklahoma, Nebraska) providing high volume of transfer to Texas, but also 28 with states that have comparatively lower trade (New Mexico). This is due to New Mexico's 29 reliance on Texas as an important revenue source compared to its other connections. For Texas, 30 import interdependencies arise from geographical proximity to trade. As these states primarily rely 31 on the commonly shared High Plains aquifer for irrigation, over-reliance poses a risk for water 32 shortage for food supply in Texas. PMI values also indicate the capacity to trade more (the states 33 are less reliant on each other than expected), and therefore provide an indication of where the trade 34 could be shifted to avoid ground water scarcity. However, some of the identified states rely on 35 GHG emissions intensive fossil fuels such as diesel and gasoline for irrigation, highlighting a 36 potential tradeoff between crop water footprint and switching to lower emissions pumping fuels.

37

38 KEYWORDS: Food-Energy-Water nexus, food trade, irrigation, information theory, ecological
 39 network analysis

40

41 **INTRODUCTION**

The United Nations General Assembly adopted the Sustainable Development Goals (SDGs) in 2015 to provide a roadmap for tackling seventeen distinct issues with the overarching theme of human health and well-being, economic security, and environment sustainability. While diverse in subjects, these goals are termed as an "indivisible whole", and require managing for overlap in policymaking to avoid suboptimal outcomes.¹ For instance, SDG 2 outlines ending hunger, providing nutrition, achieving food security, and promoting sustainable agriculture. It directly ties 48 in with Goal 12 of sustainable production and consumption of resources, which in turn requires 49 planning for quality and plentiful supply of water (Goal 6), and renewable, affordable energy (Goal 50 7). As such, a single goal cannot be achieved in isolation while disregarding effects of others as it 51 may result in unintended consequences. Instead, a holistic systems perspective is required that 52 considers the complexity of interconnections. A crucial dilemma in applying a systems perspective 53 is to avoid falling into an abyss of an infinitely connected system. Therefore, an appropriate 54 boundary can help constrain the system and limit relevant interactions within and with the system. 55 The study of interactions within food, energy, and water resources, termed as food-energy-water 56 (FEW) nexus, can be seen as an example of drawing such a system boundary from many other 57 interwoven and equally important SDGs. Albeit, FEW nexus itself represents a complex web of 58 interconnections as energy and water are consumed across the entire food supply chain, energy is 59 needed for abstraction, treatment, and distribution of water, and a large amount of water is 60 consumed for power generation. Therefore, systems analysis needs to be complemented with a 61 context-specific study at specific geographic scales and sectors to understand effects of 62 interconnections. Recently, many such studies have adopted nexus approach to assess variety of interactions at different spatial scales²⁻⁵ including wastewater management to simultaneously 63 reduce water-energy demand and boost nutrient cycling for London⁶, developing a scenario 64 65 analysis for competing water use in transboundary Brahmaputra River Basin⁷, impact of city-level FEW nexus actions in Delhi⁸, and China's increasing environmental impacts due to focus on 66 international exports.⁹ 67

68

69 The FEW nexus challenges associated with an agriculture-centric nation such as the United States
70 (U.S.) are different from developed countries that rely on agriculture imports or developing agro-

71 economies. For the U.S., one critical piece in understanding FEW nexus challenges is the energy and greenhouse gas (GHG) emission burden of irrigated food production.¹⁰ Irrigation adds 72 significant value to food and feed production in the U.S.¹¹, providing a crucial link to study the 73 domestic FEW systems. Irrigation is the second largest freshwater withdrawal sector in the U.S.,¹² 74 while irrigation pumping accounts for substantial agricultural energy expenses.¹³ Additionally, 75 76 regional variation exists between agricultural resources availability and densely populated food 77 demand centers. For instance, the high plains in the U.S. is labeled the "breadbasket region" due 78 to significant grain production; and California provides a sizable portion of fruits, nuts, and 79 vegetables for domestic and international consumption. On the other hand, Illinois, Louisiana, 80 Texas, and Florida import a large amount of food due to their large population or geographically strategic position as ports.¹⁴ As the imbalance between consumption and production increases, 81 82 understanding the patterns of trade dependencies becomes an important consideration for regional 83 food security.

84

85 Trading partner selections, and the subsequent dependencies, economic pressures, and vulnerabilities of such preferences, have been discussed widely in the trade literature.¹⁵⁻¹⁷ Specific 86 87 to food trade, dependency is a complex issue as it may strengthen food security (through 88 diversifying trade partners) or harm food supply (reducing self-sufficiency). Prior work has 89 investigated dependencies arising from indirect resource use to produce traded food commodities (referred to as virtual/embodied trade of resources).¹⁸⁻²⁰ Virtual resource trade (popularized by the 90 virtual water concept²¹) refers to the trade of resource that is not physically embedded but used in 91 92 producing the traded food commodity. Through virtual resource trade, regions can sustain greater 93 food demand than local production capacity by depending on external virtual water and land

imports to meet the demand.^{22, 23}Dependencies can also arise due to the structure and arrangement 94 of how trade links are formed. Prior work has investigated community patterns²⁴, central players¹⁰, 95 ²⁵, robustness and resilience^{26, 27} and dynamics of the networks^{28, 29} by quantifying structural 96 97 properties of trade networks through graph theory based approaches. However, the dependencies 98 arising from interlinkages between food, energy and water resources and trading partners has been 99 understudied due to the complexity of the issue. Additionally, prior work addressing these issues have focused on larger components and backbones,^{28, 30} central players¹⁰, and dominant flows in 100 101 the network.^{10, 31} However, little emphasis has been placed on examining weaker links and their 102 role in the network structure.

The importance of considering ties with weaker strength was outlined by Granovetter³² in 103 104 his essay on social networks. Granovetter noted that weak ties between individuals (i.e., 105 acquaintances) are instrumental in maximum diffusion of information, mobility, and community 106 organization. From a trade perspective, this translates to the fact that dependency exists in 107 both directions and weaker links may be important when all connections are considered. 108 Therefore, we combine the resource and structure dependency narrative and examine the 109 importance of weak ties in the network. Specifically, we analyze the pattern of regional food trade 110 dependencies in the U.S. food trade. Here, a dependency denotes level of preferential attachment 111 (structural dependency) and reliance on resources (embodied resource dependency). We do this 112 by comparing observed trade to a null model of trade. The null model represents the most probable 113 trade given each state's import needs and export supply with no other specific preference in how links are formed.³³ The emergent patterns in actual trade, not observed in the null model, provides 114 115 insights on dependence (level of preferential attachment) in the network. Additionally, we extend 116 the analysis to quantify virtual water (accounting for only irrigation), irrigation-related embodied energy (referred to as embodied energy in the manuscript), and irrigation energy-related embodied GHG emissions (referred to as embodied GHG emissions) to assess a state's indirect dependency on resources through trade. While trade typically refers to international exchanges, we limit the analysis and discussion to the U.S. and refer to interstate trade as transfers.²⁵

121

Specifically, we leverage empirical data and compare existing patterns of domestic transfers with calculated probabilities of association between participating states. To this end, we create four distinct networks: 1) interstate physical food flows (US tons), 2) virtual water (m³),

125 3) embodied energy (MJ), and 4) embodied GHG emissions (kg CO₂ equivalent). Building on the 126 framework for the network analysis of physical food trade and embodied impacts first presented in our previous work¹⁰, we limit the focus of the present study to grain and feed crop transfers with 127 128 states representing nodes in the network and volume of transfers and embodied environmental 129 impacts represented by links (edges) between nodes. In this study, we assess how much more often than chance do two events occur together.³⁴ This is valuable information to gain for an extremely 130 131 well-connected network such as the U.S. domestic trade. Our previous analysis noted that on average a state is connected to 36 other states out of 51 states.¹⁰ Therefore, if a state produces a 132 133 specific crop, unlike international trade, it is not restricted to trade with a particular state (no 134 political conflicts, trade agreements etc.).¹⁴ Therefore, by comparing observed trade connections 135 (empirical network) to those that may occur by chance (null model), we highlight the presence of 136 preferential attachment. Instead of purely empirical analysis, this provides statistical support to 137 understand significance of what we are observing and provides valuable contribution to the 138 literature. The rest of the article is organized as follows: material and methods section discusses 139 the data behind constructing four networks and introduces the PMI measure. Result and discussion

section applies the PMI measure to the system under study and discusses insights with the case of
Texas as an example. Details regarding the PMI measure, including relevant derivations are
provided in the supporting information (SI).

143

144 Materials and Methods

145 Domestic food transfer network. We built the domestic food transfer and embodied impact 146 networks using existing empirical datasets. The framework along with data sources are detailed in 147 the supporting information (SI) table S1. The bi-lateral domestic food transfer data were obtained from the Freight Analysis Framework (FAFv4).³⁵ FAF provides estimates for tonnage and value 148 149 of freight transported by origin and destination, commodity type, and transportation mode. The 150 latest available data are for 2012 and serve as the base year for this analysis. FAF data are for 151 groups of commodities based on Standard Classification of Transported Goods (SCTG) 152 classification system. The US agriculture is quite oligopolistic in terms of mass producing select 153 agriculture crops, with cereal and animal feed alone constituting 53% of national agricultural production.³⁶ Additionally, compared to fruits and vegetables, grains are widely produced by many 154 155 states, providing sufficient data to compare production practices and assess resulting dependencies 156 arising from embodied impacts. Therefore, in this work, we focused on commodities covered by 157 SCTG 02 (cereal grains) and SCTG 04 (animal feed, eggs, honey, and products of other origin). 158 For SCTG 04, we specifically focus on only the animal feed related commodities as they comprise 159 the majority of this group.^{25, 35} We included wheat, corn, rice, sorghum, rye, barley, and oats for 160 grains and corn silage, sorghum silage, alfalfa hay, and hay for animal feed. Corn diverted to bioethanol production was excluded based on national corn use statistics for 2012.³⁷ We note that 161

some of the grains from the cereal grains category may end up as animal feed for non-ruminantlivestock, however, accounting for all final uses falls outside the scope of this study.

164

165 The embodied impacts are estimated for specific commodities, while the trade data exists for 166 aggregated groups of commodities. To disaggregate shipments data, we assumed that composition 167 of grains in a shipment is similar to composition of production at origin. Therefore, if rice 168 production in Arkansas was 80% of total grains production, the grain shipments coming out of 169 Arkansas would consists of 80% rice. While transport based surveys provide a best available 170 substitute for interregional transfers accounting, they suffer from several limitations such as over-171 assigning inflows to transport hubs, and not distinguishing between point of production vs. point of last value added.³⁸ We corrected for this limitation as follows: we limited the analysis to transfer 172 173 of raw grains, animal feed, and associated impacts and did not track processed products. Therefore, 174 food transfers to a particular location may not represent the final consumption of a food item, but 175 the first-set of consumers (e.g., processing plants) in the supply chain. As such, the discussion on 176 dependency still remains relevant but we avoid overestimating environmental impacts of processed 177 goods. Additionally, by disaggregating transfers based on state production data, we overcome the 178 possibility of incorrectly attributing production to non-producing states. Similar approach for interregional disaggregation has been employed previously.^{10, 25, 39} A brief discussion on regional 179 180 commodity transfer limitations and reconciliation issues is provided in the SI Section S2. Next, we 181 constructed weighted and directed matrices of food transfer referred to as flow matrices (T). Each 182 matrix element (T_{ij}) represents flow of mass of grains and animal feed from origin (i) state to 183 destination (i) state. The focus of this work is limited to irrigation impacts of food trade. By 184 irrigation impacts, we specifically mean irrigation water, embodied energy, and embodied GHG

185 emissions related to irrigation. A discussion on GHG impacts of U.S. food transport can be found
 186 elsewhere.⁴⁰⁻⁴²

187

188 Embodied energy and GHG emissions networks. First, we calculated the fraction of irrigated food 189 transfers by assuming proportional shares to irrigated production. We converted food transfer 190 matrices into distinct matrices of virtual water, embodied energy, and embodied GHG emissions 191 by using data from the Farm and Ranch Irrigation Survey⁴³, U.S. agriculture census⁴⁴, Energy Information Administration data⁴⁵ combined with life cycle assessment methods. In particular, we 192 use cumulative energy demand⁴⁶ and IPCC 100 year global warming potential to calculate our life 193 cycle impacts.⁴⁷ The detailed methodology and assumptions were first described by framework 194 195 provided by Vora et al.¹⁰

196 Pointwise mutual information (PMI). We analyze state-wise trade dependencies through 197 pointwise mutual information (PMI) measure. The PMI measure is based on concepts from information theory, graph theory, probability, and statistics.⁴⁸ Commonly applied in linguistics³⁴, 198 ^{49, 50}, PMI calculates the probability of co-occurrence or co-location of two words (events). A 199 200 classic example involves comparing two synonym adjectives "strong" and "powerful" from 201 English language. A set of specific words are used more commonly with one or the other. As an 202 example, "strong tea" and "powerful car" have a higher probability of appearing together than "powerful tea" and "strong car"; although the adjectives convey the same message.⁵¹ In a set 203 204 containing these four, if the information of the first word being "strong" is known, then "tea" has a higher probability of being the next word. Thereby, reducing indeterminacy of the system.⁵² We 205 206 extend the same logic to assess trade dependencies by asking, for example, if we know a state is 207 importing food, can we predict any information about its partners given the set of data? We

208 perform this exercise not to predict new links but as a way of assessing statistical significance of 209 empirically observed data. PMI is defined by the following eq. 1). The complete derivation of PMI 210 measure is provided in the SI,

$$PMI_{ij} = k \log_2 \frac{p_{ij}}{p_{i.} p_{.j}}$$
(1)

211 p_{ij} is the probability of *i* and *j* co-occurring. *k* is a scalar constant. If events *i* and *j* are independent 212 of each other, then the probability of their co-occurrence is given by their marginal probability of 213 occurrences. Marginal probability of occurrence for event *i* is $p_{i.}$ (eq. 2) and for *j* is given as $p_{.j}$ 214 (eq. 3)

215

$$p_{i.} = \sum_{j} p_{ij} \tag{2}$$

$$p_{,j} = \sum_{i} p_{ij} \tag{3}$$

For flow networks such as the system under consideration, we can replace the probabilities of occurrence with measured frequency of flow in the network. T_{ij} represents flow of trade from origin (*i*) to destination (*j*). A "dot" notation is used to represent summation over that index such that $T_{i.}$ gives the total outgoing flows of *i*, $T_{.j}$ gives the total incoming flows to *j*, $T_{..}$ gives the total trade in the network, referred to as total system throughput.

$$p_{ij} = {^T}_{ij} / T_{..}; \quad p_{.j} = {^T}_{.j} / T_{..}; \quad p_{i.} = {^T}_{i.} / T_{..}$$
⁽⁴⁾

222 Therefore, PMI can be re-written as,

$$PMI_{ij} = \log \frac{T_{ij}T_{..}}{T_{i.}T_{.j}}$$
(5)

223 In network trade studies, null modes or random networks have been used as a benchmark to 224 compare significance of structural properties of the observed/actual trade. If a random network can 225 generate higher order properties similar to those in observed trade, then observed structure of the 226 trade network is a result of random formation and estimating its properties does not give us any useful information.³³ PMI measure essentially compares observed trade network with a pseudo-227 228 random network (which is referred to as a null model). We use the term pseudo-random because 229 trade cannot be random, therefore comparing observed network to a completely random network 230 would not yield any meaningful insight. To make the null model comparable to the observed 231 network, some of the bare minimum properties of the observed network need to be preserved to 232 an otherwise randomly formed network. Here, the null model used to generate PMI values 233 constrains the network to keep the total inflow (demand) and outflow (supply) from each state 234 constant. This is an important constraint from sustainability perspective as it prevents states from 235 supplying more than their current reported capacity. This constraint results in a singular solution. 236 The flow matrix M, representing the null model of trade can be given by the following equation

$$M = F_{out}F_{in}T_{..} \tag{6}$$

$$F_{out} = \begin{bmatrix} T_{1} \cdot / T_{..} \\ T_{2} \cdot / T_{..} \\ \vdots \\ T_{n} \cdot / T_{..} \end{bmatrix} \quad F_{in} = \begin{bmatrix} T_{.1} / T_{..} & T_{.2} / T_{..} & \cdots & T_{.n} / T_{..} \end{bmatrix}$$
(7)

Here, F_{out} (51×1) and F_{in} (1×51) represent vectors of out-flows from and in-flows to each state respectively, normalized by the total flow in the system. Therefore, M is calculated by re-wiring network flows amongst each trade connection. A unique property of the null model is that it redistributes flow in a way that the trade becomes more equitable (not equal) while considering current sending and receiving capacity of each state. Therefore, PMI values indicates how far each trade interaction is from being more equitable. An example of how the null model divides flow equitably is provided in SI section S4.

244

The PMI measure can potentially take positive, negative, or zero values. If states *i* and *j* are completely independent (basis for null model), the value of PMI becomes 0. When *i* and *j* have a high probability of trading, but their actual trade is low, PMI values become negative (eq. 8). Similarly, a positive PMI indicates that states are more dependent than expected.

$$\log\left(p_{ij}\right) < \log\left(p_{i.p_{.j}}\right) \tag{8}$$

Previously, Kharrazi and Fath discussed the value of utilizing PMI measures to evaluate preferential trade policies within the context of international oil trade.⁵³ Based on PMI values, the aforementioned formulae can help evaluate policies for (un)desired trade relationships. It is to be noted that the goal is to not move towards a null model, as trade can never be random, but to understand more deeply the relations between dyads and to reverse the PMI value signs depending on policy objectives, when desired. If a move from positive PMI to a negative PMI value is desired (reduced trade) for a particular trade relationship, then trade volumes can be recalculated to identify partners that can meet the additional demand. However, re-arranging even one pair would alter the entire pattern of network flows indicating importance of considering interactions within the entire system.

259

260 **RESULTS**

261 *Network Indicators.* We consider food transfers between 50 states plus District of Columbia, 262 creating a 51-node size (n) network. There are 1145 links (L) within these states dedicated to cereal grains and animal feed trade. The density (L/n^2) of the network is 0.44 and reciprocity (proportion 263 264 of bi-directional connections (links in both directions/total number of links) of 0.64, indicating a 265 well-connected structure with high level of flow between states. The total flow in the network amounts to 613 million US tons, with 166 billion m³ of virtual water, 633 billion MJ of embodied 266 267 energy, and 42 billion kg CO₂ equivalents of GHG emissions embodied within the flows. Cereal 268 grains represent 75% of total food transfers by mass and subsequently represent a larger portion 269 of embodied irrigation impacts (SI Table S3). Figure 1 provides a visualization of irrigated 270 transfers within the U.S. The segments are arranged in a descending order based on their total out-271 going activity. For a majority of the states, the highest volume of transfers are their within-state 272 flows. Nebraska's irrigated agriculture primarily includes corn for grain, corn silage, and alfalfa 273 hay. The large self-loop may indicate shipments going towards feeding the large cattle and hog 274 industry.⁵⁴ The largest (out of state) outgoing transfers are from Kansas, Nebraska, Minnesota, 275 Indiana, and Iowa. The largest inflows are to Texas, California, Nebraska, Illinois, and Iowa. The 276 largest out of state transfer is from Kansas to Texas of 18 million US tons and primarily consists

277 of corn, corn silage, alfalfa hay, and wheat in shipments.

278

279

Figure 1. Cereal and feed grains transfer amongst the U.S. states. For visualization purpose, links with at least 1% of maximum link weight are shown.¹⁹ Each circular segment represents participating states. The white gap indicates in-coming transfers, while the same colored links originating from the segment represents out-going transfers. The segments are arranged in descending order based on their total out-going (both within state and out of state) transfers. The figure is prepared using circos visualization tool.⁵⁵

286

Next, we visualize flow values according to null model in the system (figure 2). These values are re-arranged in a more uniform fashion considering mass of the product of total flow going and coming out of states. It should be noted that the flows are not re-distributed to become equal in volume but based on equity in distribution. The degrees (number of connections) distribution and weighted degree distributions for the observed flow and null model are provided in Figure S4 and indicate maximum connectivity of the null model while preserving total throughput from each state. Additionally, the density of the null model network is 0.9 with reciprocity of 0.79, indicating an overly connected structure with more flows being reciprocated. When we compare the structure of observed flow with the null model, the observed flow presents a preference in their transfers. As there are no political boundaries compared to international trade,¹⁴ the preference represents presence of "additional information" in how ties are formed.

298

Figure 2. Cereal and feed grains trade between U.S. states for null model(zero dependency). The flow structure is redistributed considering network flow constraints such that total throughput (both incoming and outgoing transfers) in each state remains constant. For consistency, links with at least 1% of maximum link weight are shown. Each circular segment represents participating states. The white gap indicates in-coming transfers, while same colored links emanating from the segment represent out-going transfers.

306 *Dependencies in the network.* Generally, direct dependencies of trade relationships are identified 307 listing top importers/exporters for each trading partners. However, direct relationships do not 308 incorporate the role of considered relationship in the context of other relationships out of the two 309 states. This translates to how overall connections in the network (the system) affects one 310 relationship being studied. Additionally, a large volume of inflows may not translate to a higher 311 dependency for the pair, but low inflows may be more valuable to the network.^{32, 53} This is 312 explained in more detail next.

313 PMI values are calculated for each interaction between the dyads and therefore result in a 51×51 314 matrix for each network. As an example, we focus on Texas- the largest importer and its trading 315 partners to demonstrate the usefulness of considering system dependencies. Texas received 316 incoming transfers amounting to 49 million US tons from 34 states including a large chunk of 317 within-state transfers. Texas's largest inflows (apart from within-state flows) are from Kansas, 318 Oklahoma, Nebraska, Louisiana, and Indiana. Therefore, in a conventional sense, Texas highly 319 depends on these states for food flows. We rank PMI values from Texas's top ten import partners 320 in a descending order and compare with ranks of direct incoming transfer volume (Table 1). 321 Mismatches between PMI ranks and direct trade volume ranks show that associating dependencies 322 based on direct trade observations may not account for important, but less visible states. The PMI 323 value for New Mexico borders on zero, indicating the observed flow's proximity to null model 324 behavior. Considering all transfers from New Mexico, a substantial portion is already being 325 transferred to Texas, with a little room for increase (negative PMI), indicating a higher dependency 326 of the connection. On the other hand, Nebraska has a lower PMI rank and negative PMI value, 327 denoting that despite substantial volume of flows already going in to Texas, Nebraska has the 328 ability to send more, resulting in a lower bi-lateral dependence than possible. Kansas and

329 Oklahoma have the largest PMI values as Texas' exporting partners, indicating Texas's over 330 reliance on these two states. As observed from Table 1, majority of connections have negative PMI 331 values compared to positive values. This is consistent across the network in both import and export 332 connections for majority of states (SI Figure 3) indicating that at the network level, a few states 333 control the throughput of flow. This has important implications for local network structural 334 resiliency as reliance on a few states makes a state more prone to effect of shocks. Additionally, 335 some of the PMI rankings are consistent with mass/volume-based rankings denoting that the high 336 flows empirically observed are not by chance but statistically significant. A visualization of the 337 null model and observed flows along with extended PMI table for Texas is provided in the SI 338 section S5. We emphasize that by providing comparison of rankings, our motive is not to 339 recommend PMI method over traditional approaches, but to provide complementary insights along 340 with other commonly used measures.

341

342 Negative PMI values indicate a state's capacity to trade more (as the states are less reliant on each
343 other than expected), and therefore provide a first indication of where the trade could be rewired
344 without extensive economic and physical system modeling (such as used in crop displacement
345 studies ^{56, 57}

346

- 348
- 349
- 350

Table 1. Texas' top 10 importing partners ranked by their PMI value in a descending order,

352 compared with observed incoming transfers and respective rank. Positive PMI indicates higher

than expected dependency and negative PMI indicates lower than expected dependency.

354

Incoming		PMI	Flow	Flow
flow	PMI	Rank	(US tons)	Rank
Texas	3.31	1	3.23E+07	1
Kansas	1.61	2	1.77E+07	2
Oklahoma	1.10	3	2.76E+06	3
Louisiana	0.23	4	9.38E+05	5
New Mexico	-0.05	5	1.19E+05	11
Indiana	-1.59	6	6.60E+05	6
Missouri	-2.17	7	4.06E+05	7
Tennessee	-2.51	8	5.99E+04	16
Nebraska	-2.76	9	1.37E+06	4
Arizona	-2.81	10	6.01E+04	15

355

Embodied Impacts and Implications for FEW Nexus. Next, we analyze trade interactions and
 dependencies within a FEW nexus context focusing on virtual water, embodied energy, and
 embodied GHG emissions.

Figure 3. PMI values for virtual water transfers to Texas (also included in inset for clearer visualization). The pie chart indicates portion of virtual surface and groundwater in food trade. The scale of pie chart represents total virtual water transfer out of each state (within-state flows included). The states colored in white represent absence of virtual water transfer to Texas. The primary groundwater aquifers of USA are overlaid in the graph with associated groundwater stress obtained from Gleeson et al. Aqueduct water risk atlas.^{58, 59}

367

368 A spatial display of the PMI values for virtual water transfers to Texas shows the pattern of near 369 neighbors being higher ranked (figure 3). The dark grey shaded states represent high PMI values, 370 and therefore higher dependence. Previous work has discussed the prevalence of gravity law^{60, 61} based relationship of distance enabling trade in international virtual water trade.⁶² The size of the 371 372 pie chart represents total virtual water transfers out of each state. The scale of the pie chart accounts for irrigation intensity of crops (m³/ton) as well as volume of transfers. Statewide irrigation 373 374 intensities are provided in the SI. Nebraska, Kansas, Louisiana, and Missouri have lower irrigation 375 water application intensity, but overall higher volume of transfers. This may be attributed to

metering of groundwater due to regulations⁶³ along with high crop yields in the area. However,
high PMI ranked states New Mexico, Arizona, Colorado, and Utah have high water application
intensities, indicating virtual water hotspots in Texas' imports.

379

380 The pie charts show distribution of virtual groundwater and surface water used for production of 381 food transfers. A majority of Texas' exporters, and Texas, rely on groundwater for food imports. 382 Therefore, groundwater depletion is an important aspect in considering regional virtual water flow 383 dependencies. We overlay the PMI map with a layer of groundwater stress in major groundwater basins, derived from Gleeson et al.⁵⁸ and Aqueduct database.⁵⁹ Groundwater stress represents 384 385 groundwater footprint over total aquifer area and is computed by setting up a water balance between groundwater withdrawal, recharge, and environmental flows.⁵⁸ From South Dakota to 386 387 Texas, eight states heavily depend on the Ogallala aquifer as an important common groundwater 388 source for irrigation. The Ogallala aquifer's current use exceeds natural recharge with significant decline in Kansas and Texas.⁶⁴ Scanlon et al.⁶⁵ estimate that if the current depletion rate continues, 389 390 then 35% of the southern plains would not be able to support irrigation in the next 30 years. 391 Therefore, despite lower water application intensity for some states, virtual water imports to Texas 392 from within-state flows, and neighbors Kansas, Oklahoma, and New Mexico may be affected by 393 groundwater depletion in the long run, especially as pressure on the shared Ogallala aquifer increases from population demand and changing climate.⁶⁶ 394

395

From a demand side, the possibility of groundwater shortage can be managed by re-structuring existing trade to explore alternate states that have a higher potential to trade by looking at negative PMI values. In such cases, states with policies that support sustainable irrigation can be given a

399 preference to build a water-scarcity resilient food supply chain. For example, lighter grey shaded 400 states such as Alabama, South Carolina, Florida, Kentucky, and Ohio have lower PMI value, low 401 water application intensity, and a balanced use of irrigation water sources, making them potential 402 candidates for increasing trade. However, the marginal environmental impact of increasing trade, 403 specifically on water quality in gulf states would have to be examined. From a supply side, majority 404 of Ogallala states have implemented state level groundwater management plans, along with some moving beyond conservation and planning for depletion targets.⁶⁷ Schipanski et al.⁶⁸ note that the 405 406 next set of Ogallala strategies will require managing adaptation challenges for all the stakeholders 407 involved. In such cases, the mutual dependence due to regional trade can act as an incentive for 408 negotiations towards sustainable management of common source.

410 Figure 4. PMI values for embodied GHG emissions in imports to Texas. The pie chart 411 indicates distribution of acreage using specific pumping fuel for on-farm irrigation pumps. 412 The size of the pie chart indicates GHG emissions intensity in kg CO_2 equivalent per m³ 413 of water abstracted. The states colored in white represent absence of GHG transfer to 414 Texas.

415

Figure 4 indicates PMI values for embodied GHG emissions transfers to Texas. Each pie chart represents the distribution of pumping fuels used in every state with all states employing electricity, and diesel-based pumps with a handful using natural gas (Texas, Oklahoma, Kansas, Nebraska), gasoline (Pennsylvania, Ohio, Rhode Island, New York) and LPG (Nebraska, Missouri) based pumps. The size of the pie chart indicates GHG emissions intensity in kg CO₂ equivalent per m³ of water abstracted. Barring electricity, natural gas-based pumps have the lowest

422 embodied GHG emissions intensity amongst all four fuels considered. Life cycle emissions 423 attributable to electricity-based pumping differ considerably across states due to differences in 424 regional grid mixes. Apart from electricity, all the states use diesel-based pumps in some capacity, 425 with eastern states using diesel pumps on significant acreage. In addition to fuel mix, pumping 426 energy requirements depend on other factors such as type of irrigation system (gravity vs. pressure based), system pressure, depth to water for lift, velocity, and pipe losses.⁶⁹ Contrarily to water 427 428 intensity for crops, California, Colorado, Arizona, Arkansas, and Utah have lower GHG emissions 429 intensity per m³ of water withdrawn. These states primarily use gravity-based irrigation or rely on 430 lower to medium pressure systems. Many of the Ogallala states, despite using substantial natural 431 gas in their pumping mix, have higher GHG emissions per m³ of water withdrawn. This could be 432 attributed to high coal-based electricity mix in their grid (e.g., Kansas, Nebraska, Oklahoma have 433 more than 60% coal-based generation), water depth for groundwater pumping, and use of water 434 efficient but energy intensive pressurized sprinkler systems. High use of diesel and/or gasoline-435 based pumps combined with pressurized irrigation systems could be contributing to high GHG 436 emissions intensity of states such as Pennsylvania, Ohio, Alabama, and Kentucky.⁴³ These states 437 represent a clear example of water scarcity vs. GHG emissions tradeoff and denote an area of farm 438 conservation policy focus for improving pumping energy and emissions profile of irrigation by 439 upgrading fuel pumps. As part of Ogallala conservation efforts, several programs have been 440 underway since 2008 to reduce irrigation withdrawals and, as a result have also reduced energy 441 requirements of farms suggesting that groundwater conservation and irrigation emissions reductions may not be mutually exclusive goals.⁷⁰ 442

443

445 **DISCUSSION**

446 This work provides a systems-level perspective in analyzing domestic food-energy-water 447 interactions (within regional transfers and between embodied systems) through interdisciplinary 448 methods spanning information theory, graph theory, water footprint, embodied energy, and 449 emissions quantification. We demonstrate the usefulness of considering interactions at a network 450 level to provide a comprehensive indication of trade dependencies. Using Texas as an example, 451 we show that major importing partners of Texas by volume may not rank high in expected trading 452 as expressed here in the index of PMI values and vice versa. A bi-lateral trade relationship consists 453 of an interaction between a dyad, with both partners playing an equally important role. Ranking 454 Texas' exporters by volume only showcases Texas' dependency of the transfer but not of its 455 partners. As PMI accounts for overall transfer activity and the potential to increase (or decrease) 456 activity between a dyad, it provides a thorough accounting of their mutual dependency. This is 457 clearly exhibited in importance of Texas-New Mexico trade connection despite being of a lower volume, and reiterates the importance of also considering weak ties.³² 458

459

460 When we compare the visual difference between flow in a null model and actual trade, the 461 heterogenous distribution in trade concertation becomes apparent with a few links/states 462 dominating the network (figure S3). Another visible trend is the importance of geographical 463 distance in forming trade relationships. Our results indicate that distance drives the grain and 464 animal feed trade preference for Texas, specifically as a significant portion may be dedicated to 465 providing cost-effective animal feed for Texas' sizable cattle industry or for food and beverage 466 manufacturing. By combining PMI results and a ground water stress indicator, we highlight the 467 regional reliance of Texas' and neighboring states on Ogallala aquifer for irrigation while engaging

468 in substantial transfer amongst themselves and discuss alternate potential states with less stressed 469 irrigation systems. In fact, dependence through regional trade can serve as a motivation to manage 470 common water resources and help avoid water allocation disputes such as the recent one between New Mexico and Texas⁷¹ and between users of Colorado River basin.⁷² Further, considerable 471 geographic variation exists in recharge rates across the Ogallala aquifer due to its sub-surface 472 hydrology.⁶⁵ Therefore, our estimates can be improved in the future by characterizing the portion 473 474 of domestic food consumption attributed to nonrenewable groundwater withdrawals from U.S. aquifers.⁷³ 475

476

477 The analysis presented in this work has its limitations. An important limitation of this work is the 478 FAF dataset's inability to trace the final point of consumption (e.g., household consumption). This 479 would require integration and reconciliation of a larger scale of datasets to accurately track the supply chain, such as the recent study of corn supply chain by Smith et al.⁷⁴ Additionally, future 480 domestic trade analysis should involve employing origin tracing algorithms⁷⁵ used in international 481 482 trade studies to remove re-exports from the data. From a systems-level analysis, we emphasize that 483 no one method is universally superior over other methods including techniques such as life cycle 484 assessment, material flow analysis, network analysis etc. Additionally, we note that while PMI 485 provides information on structural dependency based on trade data, it cannot differentiate between 486 a (un)desirable option based on embodied impacts such as type of water resource, water scarcity, 487 and fossil fuel used as this information is not inherently built-into snapshot of trade. Therefore, it 488 needs to be supplemented with footprint approaches, life cycle assessment methods to provide a 489 complete picture.

491 Furthermore, we do not account for energy and emissions associated with off-farm water supply (prevalent in the western U.S.)⁷⁶ due to lack of national data, making our estimates conservative 492 493 and likely to increase. Therefore, if future policies internalize the cost of GHG emissions in trade, 494 states may look for cost-effective and cleaner energy options with natural gas currently being one 495 of the easily accessible choice. As our results demonstrate, this may be at odds with other equally 496 important goals to achieve a sustainable and resilient food supply. Specific policies have long been 497 in place under the U.S. Farm Bill to subsidize switching to water-efficient irrigation systems, but a rebound effect of over-pumping may lead to water depletion⁷⁷ and salinization.⁷⁸ At the same 498 499 time, the discussion on FEW nexus should incorporate electric utilities and authorities that can 500 devise demand-response programs for farmers to offer electricity at lower prices off-peak and potentially manage the emissions profile of generators.⁷⁹⁻⁸¹ Finally, PMI values demonstrate the 501 502 potential to trade less (positive PMI) or more (negative PMI) given the existing network constraints 503 compared to the situation of no preference. Therefore, it may serve as a valuable policy aid in 504 building sustainable and resilient food systems by indicating overall effect of potential trade 505 (dis)preferences for diversifying trade partners.

506

507 ASSOCIATED CONTENT

508 Additional information regarding data sources, code for PMI, and the modeling approach is

509 provided in the Supporting Information.

510

511 ACKNOWLEDGMENTS

This research is supported by the National Science Foundation (award number CBET 1803527).
NV was supported by the 2017 Young Scientists Summer Program (YSSP) at the International
Institute for Applied Systems Analysis with the financial assistance provided by Ferrero Trade

- 515 Lux S.A. Opinions, findings, or recommendations expressed in this material do not necessarily
- 516 reflect the views of these organizations.
- 517

518 **REFERENCES**

- 519 1. Nilsson, M.; Griggs, D.; Visbeck, M., Map the interactions between sustainable
- 520 development goals. *Nature* **2016**, *534*, (7607), 320-323.
- 521 2. Liu, J.; Hull, V.; Godfray, H. C. J.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu,
- 522 Z.; Chung, M. G.; Sun, J., Nexus approaches to global sustainable development. *Nature*
- 523 Sustainability **2018**, *1*, (9), 466.
- 524 3. D'Odorico, P.; Davis, K. F.; Rosa, L.; Carr, J. A.; Chiarelli, D.; Dell'Angelo, J.; Gephart,
- 525 J.; MacDonald, G. K.; Seekell, D. A.; Suweis, S., The global food-energy-water nexus. *Reviews* 526 of geophysics **2018**, *56*, (3), 456-531.
- 527 4. Scanlon, B. R.; Ruddell, B. L.; Reed, P. M.; Hook, R. I.; Zheng, C.; Tidwell, V. C.;
- 528 Siebert, S., The food-energy-water nexus: Transforming science for society. *Water Resources* 529 *Research* **2017**, *53*, (5), 3550-3556.
- 530 5. Cai, X.; Wallington, K.; Shafiee-Jood, M.; Marston, L., Understanding and managing the
- 531 food-energy-water nexus-opportunities for water resources research. Advances in Water
- 532 *Resources* **2018**, *111*, 259-273.
- 533 6. Walker, R. V.; Beck, M. B.; Hall, J. W.; Dawson, R. J.; Heidrich, O., The energy-water-534 food nexus: Strategic analysis of technologies for transforming the urban metabolism. *Journal of*
- *environmental management* **2014**, *141*, 104-115.
- 536 7. Yang, Y. E.; Wi, S.; Ray, P. A.; Brown, C. M.; Khalil, A. F., The future nexus of the 537 Brahmaputra River Basin: climate, water, energy and food trajectories. *Global environmental* 538 *change* **2016**, *37*, 16-30.
- 539 8. Boyer, D.; Ramaswami, A., What Is the Contribution of City-Scale Actions to the Overall
- Food System's Environmental Impacts?: Assessing Water, Greenhouse Gas, and Land Impacts
 of Future Urban Food Scenarios. *Environmental science & technology* 2017, *51*, (20), 1203512045.
- 543 9. White, D. J.; Hubacek, K.; Feng, K.; Sun, L.; Meng, B., The Water-Energy-Food Nexus
- 544 in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis.
 545 Applied Energy 2018, 210, 550-567.
- 546 10. Vora, N.; Shah, A.; Bilec, M. M.; Khanna, V., Food-Energy-Water Nexus: Quantifying
- 547 Embodied Energy and GHG emissions from Irrigation through Virtual Water Transfers in Food
 548 Trade. ACS Sustainable Chemistry & Engineering 2017.
- 549 11. Schaible, G.; Aillery, M., Water conservation in irrigated agriculture: Trends and
- challenges in the face of emerging demands. USDA-ERS Economic Information Bulletin 2012,
 (99).
- Maupin, M. A.; Kenny, J. F.; Hutson, S. S.; Lovelace, J. K.; Barber, N. L.; Linsey, K. S. *Estimated use of water in the United States in 2010*; 2330-5703; US Geological Survey: 2014.
- 554 13. Sands, R.; Westcott, P. C.; Price, M.; Beckman, J.; Leibtag, E.; Lucier, G.; McBride, W.;
- 555 McGranahan, D.; Morehart, M.; Roeger, E., *Impacts of higher energy prices on agriculture and* 556 *rural economies*. United States Department of Agriculture: 2011.
- 557 14. Lin, X.; Dang, Q.; Konar, M., A network analysis of food flows within the United States
- of America. *Environmental science & technology* **2014**, *48*, (10), 5439-5447.

- 15. Hirschman, A. O., *National power and the structure of foreign trade*. Univ of California
 Press: 1980; Vol. 105.
- 561 16. Gasiorowski, M.; Polachek, S. W., Conflict and interdependence: East-West trade and 562 linkages in the era of detente. *Journal of Conflict Resolution* **1982**, *26*, (4), 709-729.
- 563 17. Dixon, W. J., Trade concentration, economic growth, and the provision of basic human 564 needs. *Social Science Quarterly* **1984**, *65*, (3), 761.
- 565 18. Qu, S.; Liang, S.; Konar, M.; Zhu, Z.; Chiu, A. S. F.; Jia, X.; Xu, M., Virtual Water
- Scarcity Risk to the Global Trade System. *Environmental Science & Technology* 2018, 52, (2),
 673-683.
- 568 19. Dalin, C.; Wada, Y.; Kastner, T.; Puma, M. J., Groundwater depletion embedded in 569 international food trade. *Nature* **2017**, *543*, (7647), 700-704.
- 570 20. Marston, L.; Konar, M.; Cai, X.; Troy, T. J., Virtual groundwater transfers from
- 571 overexploited aquifers in the United States. *Proceedings of the National Academy of Sciences*572 2015, *112*, (28), 8561-8566.
- 573 21. Allan, J., *Fortunately there are substitutes for water otherwise our hydro-political futures* 574 *would be impossible*. Overseas Development Administration: London, 1993; Vol. 13, p 26.
- 5/4 *would be impossible*. Overseas Development Administration: London, 1993; Vol. 13, p 26.
- 575 22. Fader, M.; Gerten, D.; Krause, M.; Lucht, W.; Cramer, W., Spatial decoupling of 576 agricultural production and consumption: quantifying dependences of countries on food imports
- 577 due to domestic land and water constraints. *Environmental Research Letters* **2013**, *8*, (1),
- 578 014046.
- 579 23. Suweis, S.; Rinaldo, A.; Maritan, A.; D'Odorico, P., Water-controlled wealth of nations. 580 *Proceedings of the National Academy of Sciences* **2013**, *110*, (11), 4230-4233.
- 581 24. D'Odorico, P.; Carr, J.; Laio, F.; Ridolfi, L., Spatial organization and drivers of the
- virtual water trade: A community-structure analysis. *Environmental Research Letters* 2012, 7,
 (3), 034007.
- 584 25. Dang, Q.; Lin, X.; Konar, M., Agricultural virtual water flows within the United States.
 585 *Water Resources Research* 2015, *51*, (2), 973-986.
- 586 26. Fang, D.; Chen, B., Ecological network analysis for a virtual water network.
- 587 *Environmental science & technology* **2015,** *49*, (11), 6722-6730.
- 588 27. Kharrazi, A.; Rovenskaya, E.; Fath, B. D., Network structure impacts global commodity 589 trade growth and resilience. *PloS one* **2017**, *12*, (2), e0171184.
- 590 28. Dupas, M.-C.; Halloy, J.; Chatzimpiros, P., Time dynamics and invariant subnetwork
- 591 structures in the world cereals trade network. *PloS one* **2019**, *14*, (5), e0216318.
- 592 29. Gephart, J. A.; Pace, M. L., Structure and evolution of the global seafood trade network.
- 593 Environmental Research Letters **2015**, *10*, (12), 125014.
- 594 30. Konar, M.; Dalin, C.; Suweis, S.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I., Water 595 for food: The global virtual water trade network. *Water Resources Research* **2011**, *47*, (5).
- 595 101 100d: The global virtual water trade network. *water Resources Research* 2011, 47, (5). 596 31. Salmoral, G.; Yan, X., Food-energy-water nexus: A life cycle analysis on virtual water
- and embodied energy in food consumption in the Tamar catchment, UK. *Resources*,
- 598 *Conservation and Recycling* **2018**, *133*, 320-330.
- 599 32. Granovetter, M. S., The strength of weak ties. *American journal of sociology* 1973, 78,
 600 (6), 1360-1380.
- 601 33. Fagiolo, G.; Squartini, T.; Garlaschelli, D., Null models of economic networks: the case
- 602 of the world trade web. *Journal of Economic Interaction and Coordination* **2013**, *8*, (1), 75-107.
- 603 34. Church, K. W.; Hanks, P., Word association norms, mutual information, and
- 604 lexicography. *Computational linguistics* **1990**, *16*, (1), 22-29.

605 Hwang, H.-L.; Hargrove, S.; Chin, S.-M.; Wilson, D. W.; Davidson, D. Freight Analysis 35. 606 Framework Verson 4-Building the FAF4 Regional Database: Data Sources and Estimation 607 Methodologies; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States): 2016. 608 36. FAO, Food balance sheets. In 2012. 609 O'Donoghue, E.; Hansen, J., USDA Agricultural Projections to 2026. 2017. 37. 610 Sargento, A. L.; Ramos, P. N.; Hewings, G. J., Inter-regional trade flow estimation 38. through non-survey models: An empirical assessment. Economic Systems Research 2012, 24, 611 612 (2), 173-193. 613 39. Marston, L.; Konar, M., Drought impacts to water footprints and virtual water transfers of 614 the Central Valley of California. Water Resources Research 2017, 53, (7), 5756-5773. 615 40. Taptich, M. N.; Horvath, A., Freight on a Low-Carbon Diet: Accessibility, Freightsheds, and Commodities. Environmental Science & Technology 2015, 49, (19), 11321-11328. 616 617 Heller, M. C.; Keoleian, G. A., Exploring a water/energy trade-off in regional sourcing of 41. 618 livestock feed crops. Environmental science & technology 2011, 45, (24), 10619-10626. 619 Weber, C. L.; Matthews, H. S., Food-miles and the relative climate impacts of food 42. 620 choices in the United States. Environmental science & technology 2008, 42, (10), 3508-3513. 621 43. USDA, Farm and Ranch Irrigation Survey. In 2013. 622 44. USDA;, Census of Agriculture. In 2012. 623 Energy Information Administration, U. S. Monthly Energy Review 2014. 45. 624 46. Jungbluth, N.; Frischknecht, R., Cumulative energy demand. LCIA Implementation. CD 625 ROM. Final report ecoinvent 2000, (3). 626 Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, 47. 627 Y.; Bex, B.; Midgley, B., IPCC, 2013: climate change 2013: the physical science basis. 628 Contribution of working group I to the fifth assessment report of the intergovernmental panel on 629 climate change. 2013. 630 48. Ulanowicz, R. E.; Goerner, S. J.; Lietaer, B.; Gomez, R., Quantifying sustainability: 631 resilience, efficiency and the return of information theory. *Ecological complexity* **2009**, *6*, (1), 27-36. 632 633 49. Bullinaria, J. A.; Levy, J. P., Extracting semantic representations from word co-634 occurrence statistics: A computational study. Behavior research methods 2007, 39, (3), 510-526. 635 Recchia, G.; Jones, M. N., More data trumps smarter algorithms: Comparing pointwise 50. 636 mutual information with latent semantic analysis. Behavior research methods 2009, 41, (3), 647-637 656. 638 51. Halliday, M. A., Lexis as a linguistic level. In memory of JR Firth 1966, 148, 162. 639 Goerner, S. J.; Lietaer, B.; Ulanowicz, R. E., Quantifying economic sustainability: 52. 640 Implications for free-enterprise theory, policy and practice. *Ecological Economics* **2009**, *69*, (1), 641 76-81. 642 Kharrazi, A.; Fath, B. D., Measuring global oil trade dependencies: An application of the 53. 643 point-wise mutual information method. Energy Policy 2016, 88, 271-277. 644 54. NASS Nebraska state agriculture overview. 645 https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S. 646 55. 647 J.; Marra, M. A., Circos: an information aesthetic for comparative genomics. Genome research 648 2009, 19, (9), 1639-1645. 649 56. Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P., Water savings of crop redistribution in the United States. Water 2017, 9, (2), 83. 650

- 57. Davis, K. F.; Rulli, M. C.; Seveso, A.; D'Odorico, P., Increased food production and
- reduced water use through optimized crop distribution. *Nature Geoscience* 2017, *10*, (12), 919924.
- 58. Gleeson, T.; Wada, Y.; Bierkens, M. F.; van Beek, L. P., Water balance of global aquifers revealed by groundwater footprint. *Nature* **2012**, *488*, (7410), 197-200.
- 656 59. Gassert, F.; Landis, M.; Luck, M.; Reig, P.; Shiao, T., Aqueduct global maps 2.0. *Water*
- 657 *Resources Institute (WRI): Washington, DC* **2013**, 202011-2012.
- 658 60. Bergstrand, J. H., The gravity equation in international trade: some microeconomic
- 659 foundations and empirical evidence. *The review of economics and statistics* **1985**, 474-481.
- 660 61. Anderson, J. E., A theoretical foundation for the gravity equation. *The American* 661 *Economic Review* **1979**, *69*, (1), 106-116.
- 662 62. Tamea, S.; Carr, J.; Laio, F.; Ridolfi, L., Drivers of the virtual water trade. *Water* 663 *Resources Research* **2014**, *50*, (1), 17-28.
- 664 63. OECD, Drying Wells, Rising Stakes: Towards Sustainable Agricultural Groundwater 665 Use. Paris, 2015.
- 666 64. McGuire, V., Water-level changes in the High Plains aquifer, predevelopment to 2007,
- 667 2005-06, and 2006-07. *Publications of the US Geological Survey* **2009**, 17.
- 668 65. Scanlon, B. R.; Faunt, C. C.; Longuevergne, L.; Reedy, R. C.; Alley, W. M.; McGuire, V.
- 669 L.; McMahon, P. B., Groundwater depletion and sustainability of irrigation in the US High
- 670 Plains and Central Valley. *Proceedings of the national academy of sciences* **2012**, *109*, (24),
- 6719320-9325.
- 672 66. Little, J. B., The Ogallala aquifer: saving a vital US water source. *Scientific American*,
 673 *March* 2009.
- 674 67. Schipansky, M.; Auvermann, B.; Gowda, P.; Guerrero, B.; Kremen, A.; Porter, D.; Rice,
- 675 C.; Sanderson, M.; Wagner, K.; Warren, J.; West, C.; Waskom, R., *The Future of the Ogallala* 676 *Aquifer*. 2017.
- 677 68. Jarvis, T.; Wolf, A., Managing water negotiations and conflicts in concept and in
- 678 practice. *Transboundary Water Management: Principles and Practice* **2010**, 125-141.
- 679 69. Kahn, E. Characterization of Uncertainty and Variability of Freshwater Consumption
 680 Impacts in Life Cycle Assessment. Ph.D. Dissertation, University of Washington, 2013.
- 681 70. Gollehon, N.; Winston, B., Groundwater irrigation and water withdrawals: the Ogallala 682 aquifer initiative. *USDA Economic Series* **2013**, *15*.
- Tory, S., A Southwest water dispute reaches the Supreme Court. *High Country News*Jan.23, 2018.
- 685 72. Rothberg, D., States accuse Arizona water agency of gaming Lake Mead, undermining
 686 Colorado River drought plans. *The Nevada Independent* April 17, 2018, 2018.
- 687 73. Wada, Y.; Beek, L.; Bierkens, M. F., Nonsustainable groundwater sustaining irrigation:
- 688 A global assessment. *Water Resources Research* **2012**, *48*, (6).
- 689 74. Smith, T. M.; Goodkind, A. L.; Kim, T.; Pelton, R. E.; Suh, K.; Schmitt, J., Subnational
- 690 mobility and consumption-based environmental accounting of US corn in animal protein and
- 691 ethanol supply chains. *Proceedings of the National Academy of Sciences* **2017**, *114*, (38), E7891-
- 692 E7899.
- 693 75. Kastner, T.; Kastner, M.; Nonhebel, S., Tracing distant environmental impacts of
- agricultural products from a consumer perspective. *Ecological Economics* 2011, 70, (6), 1032 1040.

- 696 76. Tidwell, V. C.; Moreland, B.; Zemlick, K., Geographic footprint of electricity use for
- water services in the Western US. *Environmental science & technology* 2014, 48, (15), 88978904.
- 699 77. Nixon, R., Farm Subsidies Leading to More Water Use. *The New York Times* June 6,2013.
- 701 78. Schoups, G.; Hopmans, J. W.; Young, C. A.; Vrugt, J. A.; Wallender, W. W.; Tanji, K.
- 702 K.; Panday, S., Sustainability of irrigated agriculture in the San Joaquin Valley, California.
- 703 Proceedings of the National Academy of Sciences **2005**, *102*, (43), 15352-15356.
- 704 79. Siler-Evans, K.; Azevedo, I. s. L.; Morgan, M. G., Marginal emissions factors for the US electricity system. *Environmental science & technology* **2012**, *46*, (9), 4742-4748.
- 706 80. Chambers, A.; Kline, D.; Vimmerstedt, L.; Diem, A.; Dismukes, D.; Mesyanzhinov, D.,
- 707 Comparison of methods for estimating the NOx. **2005**.
- 708 81. Marks, G.; Wilcox, E.; Olsen, D.; Goli, S. Opportunities for demand response in
- 709 California agricultural irrigation: A scoping study; Lawrence Berkeley National Lab.(LBNL),
- 710 Berkeley, CA (United States): 2013.
- 711