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ABSTRACT 13 

We present a network model of the United 14 

States (U.S.) interstate food transfers to 15 

analyze the trade dependency with respect to 16 

participating regions and embodied irrigation 17 

impacts from a food-energy-water (FEW) 18 

nexus perspective. To this end, we utilize 19 

systems analysis methods including the 20 

pointwise mutual information (PMI) measure to provide an indication of interdependencies by 21 

estimating probability of trade between states. PMI compares observed trade with a benchmark of 22 

what is statistically expected given the structure and flow in the network. This helps assess whether 23 

dependencies arising from empirically observed trade occur due to chance or preferential 24 
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attachment. The implications of PMI values are demonstrated by using Texas as an example, the 25 

largest importer in the US grain transfer network. We find that strong dependencies exist not just 26 

with states (Kansas, Oklahoma, Nebraska) providing high volume of transfer to Texas, but also 27 

with states that have comparatively lower trade (New Mexico). This is due to New Mexico’s 28 

reliance on Texas as an important revenue source compared to its other connections. For Texas, 29 

import interdependencies arise from geographical proximity to trade. As these states primarily rely 30 

on the commonly shared High Plains aquifer for irrigation, over-reliance poses a risk for water 31 

shortage for food supply in Texas. PMI values also indicate the capacity to trade more (the states 32 

are less reliant on each other than expected), and therefore provide an indication of where the trade 33 

could be shifted to avoid ground water scarcity. However, some of the identified states rely on 34 

GHG emissions intensive fossil fuels such as diesel and gasoline for irrigation, highlighting a 35 

potential tradeoff between crop water footprint and switching to lower emissions pumping fuels. 36 

 37 

KEYWORDS: Food-Energy-Water nexus, food trade, irrigation, information theory, ecological 38 

network analysis 39 

 40 

INTRODUCTION 41 

The United Nations General Assembly adopted the Sustainable Development Goals (SDGs) in 42 

2015 to provide a roadmap for tackling seventeen distinct issues with the overarching theme of 43 

human health and well-being, economic security, and environment sustainability. While diverse 44 

in subjects, these goals are termed as an “indivisible whole”, and require managing for overlap in 45 

policymaking to avoid suboptimal outcomes.1 For instance, SDG 2 outlines ending hunger, 46 

providing nutrition, achieving food security, and promoting sustainable agriculture. It directly ties 47 
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in with Goal 12 of sustainable production and consumption of resources, which in turn requires 48 

planning for quality and plentiful supply of water (Goal 6), and renewable, affordable energy (Goal 49 

7). As such, a single goal cannot be achieved in isolation while disregarding effects of others as it 50 

may result in unintended consequences. Instead, a holistic systems perspective is required that 51 

considers the complexity of interconnections. A crucial dilemma in applying a systems perspective 52 

is to avoid falling into an abyss of an infinitely connected system. Therefore, an appropriate 53 

boundary can help constrain the system and limit relevant interactions within and with the system. 54 

The study of interactions within food, energy, and water resources, termed as food-energy-water 55 

(FEW) nexus, can be seen as an example of drawing such a system boundary from many other 56 

interwoven and equally important SDGs. Albeit, FEW nexus itself represents a complex web of 57 

interconnections as energy and water are consumed across the entire food supply chain, energy is 58 

needed for abstraction, treatment, and distribution of water, and a large amount of water is 59 

consumed for power generation. Therefore, systems analysis needs to be complemented with a 60 

context-specific study at specific geographic scales and sectors to understand effects of 61 

interconnections. Recently, many such studies have adopted nexus approach to assess variety of 62 

interactions at different spatial scales2-5 including wastewater management to simultaneously 63 

reduce water-energy demand and boost nutrient cycling for London6, developing a scenario 64 

analysis for competing water use in transboundary Brahmaputra River Basin7, impact of city-level 65 

FEW nexus actions in Delhi8, and China’s increasing environmental impacts due to focus on 66 

international exports.9 67 

 68 

The FEW nexus challenges associated with an agriculture-centric nation such as the United States 69 

(U.S.) are different from developed countries that rely on agriculture imports or developing agro-70 
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economies. For the U.S., one critical piece in understanding FEW nexus challenges is the energy 71 

and greenhouse gas (GHG) emission burden of irrigated food production.10 Irrigation adds 72 

significant value to food and feed production in the U.S.11, providing a crucial link to study the 73 

domestic FEW systems. Irrigation is the second largest freshwater withdrawal sector in the U.S.,12 74 

while irrigation pumping accounts for substantial agricultural energy expenses.13 Additionally, 75 

regional variation exists between agricultural resources availability and densely populated food 76 

demand centers. For instance, the high plains in the U.S. is labeled the “breadbasket region” due 77 

to significant grain production; and California provides a sizable portion of fruits, nuts, and 78 

vegetables for domestic and international consumption. On the other hand, Illinois, Louisiana, 79 

Texas, and Florida import a large amount of food due to their large population or geographically 80 

strategic position as ports.14 As the imbalance between consumption and production increases, 81 

understanding the patterns of trade dependencies becomes an important consideration for regional 82 

food security.  83 

 84 

Trading partner selections, and the subsequent dependencies, economic pressures, and 85 

vulnerabilities of such preferences, have been discussed widely in the trade literature.15-17 Specific 86 

to food trade, dependency is a complex issue as it may strengthen food security (through 87 

diversifying trade partners) or harm food supply (reducing self-sufficiency). Prior work has 88 

investigated dependencies arising from indirect resource use  to produce traded food commodities 89 

(referred to as virtual/embodied trade of resources).18-20 Virtual resource trade (popularized by the 90 

virtual water concept21) refers to the trade of resource that is not physically embedded but used in 91 

producing the traded food commodity. Through virtual resource trade, regions can sustain greater 92 

food demand than local production capacity by depending on external virtual water and land 93 
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imports to meet the demand.22, 23Dependencies can also arise due to the structure and arrangement 94 

of how trade links are formed. Prior work has investigated community patterns24, central players10, 95 

25, robustness and resilience26, 27  and dynamics of the networks28, 29 by quantifying structural 96 

properties of trade networks through graph theory based approaches. However, the dependencies 97 

arising from interlinkages between food, energy and water resources and trading partners has been 98 

understudied due to the complexity of the issue.  Additionally, prior work addressing these issues 99 

have focused on larger components and backbones,28, 30 central players10, and dominant flows in 100 

the network.10, 31 However, little emphasis has been placed on examining weaker links and their 101 

role in the network structure.  102 

The importance of considering ties with weaker strength was outlined by Granovetter32 in 103 

his essay on social networks. Granovetter noted that weak ties between individuals (i.e., 104 

acquaintances) are instrumental in maximum diffusion of information, mobility, and community 105 

organization. From a trade perspective, this translates to the fact that dependency exists in 106 

both directions and weaker links may be important when all connections are considered. 107 

Therefore, we combine the resource and structure dependency narrative and examine the 108 

importance of weak ties in the network.  Specifically, we analyze the pattern of regional food trade 109 

dependencies in the U.S. food trade. Here, a dependency denotes level of preferential attachment 110 

(structural dependency) and reliance on resources (embodied resource dependency). We do this 111 

by comparing observed trade to a null model of trade. The null model represents the most probable 112 

trade given each state’s import needs and export supply with no other specific preference in how 113 

links are formed.33 The emergent patterns in actual trade, not observed in the null model, provides 114 

insights on dependence (level of preferential attachment) in the network. Additionally, we extend 115 

the analysis to quantify virtual water (accounting for only irrigation), irrigation-related embodied 116 
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energy (referred to as embodied energy in the manuscript), and irrigation energy-related embodied 117 

GHG emissions (referred to as embodied GHG emissions) to assess a state’s indirect dependency 118 

on resources through trade. While trade typically refers to international exchanges, we limit the 119 

analysis and discussion to the U.S. and refer to interstate trade as transfers.25  120 

 121 

Specifically, we leverage empirical data and compare existing patterns of domestic transfers with 122 

calculated probabilities of association between participating states. To this end, we create four 123 

distinct networks: 1) interstate physical food flows (US tons), 2) virtual water (m3), 124 

 3) embodied energy (MJ), and 4) embodied GHG emissions (kg CO2 equivalent). Building on the 125 

framework for the network analysis of physical food trade and embodied impacts first presented 126 

in our previous work10, we limit the focus of the present study to grain and feed crop transfers with 127 

states representing nodes in the network and volume of transfers and embodied environmental 128 

impacts represented by links (edges) between nodes. In this study, we assess how much more often 129 

than chance do two events occur together.34 This is valuable information to gain for an extremely 130 

well-connected network such as the U.S. domestic trade.  Our previous analysis noted that on 131 

average a state is connected to 36 other states out of 51 states.10 Therefore, if a state produces a 132 

specific crop, unlike international trade, it is not restricted to trade with a particular state (no 133 

political conflicts, trade agreements etc.).14 Therefore, by comparing observed trade connections 134 

(empirical network) to those that may occur by chance (null model), we highlight the presence of 135 

preferential attachment. Instead of purely empirical analysis, this provides statistical support to 136 

understand significance of what we are observing and provides valuable contribution to the 137 

literature. The rest of the article is organized as follows: material and methods section discusses 138 

the data behind constructing four networks and introduces the PMI measure. Result and discussion 139 
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section applies the PMI measure to the system under study and discusses insights with the case of 140 

Texas as an example. Details regarding the PMI measure, including relevant derivations are 141 

provided in the supporting information (SI). 142 

 143 

Materials and Methods 144 

Domestic food transfer network. We built the domestic food transfer and embodied impact 145 

networks using existing empirical datasets. The framework along with data sources are detailed in 146 

the supporting information (SI) table S1. The bi-lateral domestic food transfer data were obtained 147 

from the Freight Analysis Framework (FAFv4).35 FAF provides estimates for tonnage and value 148 

of freight transported by origin and destination, commodity type, and transportation mode. The 149 

latest available data are for 2012 and serve as the base year for this analysis. FAF data are for 150 

groups of commodities based on Standard Classification of Transported Goods (SCTG) 151 

classification system. The US agriculture is quite oligopolistic in terms of mass producing select 152 

agriculture crops, with cereal and animal feed alone constituting 53% of national agricultural 153 

production.36 Additionally, compared to fruits and vegetables, grains are widely produced by many 154 

states, providing sufficient data to compare production practices and assess resulting dependencies 155 

arising from embodied impacts. Therefore, in this work, we focused on commodities covered by 156 

SCTG 02 (cereal grains) and SCTG 04 (animal feed, eggs, honey, and products of other origin). 157 

For SCTG 04, we specifically focus on only the animal feed related commodities as they comprise 158 

the majority of this group.25, 35 We included wheat, corn, rice, sorghum, rye, barley, and oats for 159 

grains and corn silage, sorghum silage, alfalfa hay, and hay for animal feed. Corn diverted to 160 

bioethanol production was excluded based on national corn use statistics for 2012.37 We note that 161 
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some of the grains from the cereal grains category may end up as animal feed for non-ruminant 162 

livestock, however, accounting for all final uses falls outside the scope of this study.  163 

 164 

The embodied impacts are estimated for specific commodities, while the trade data exists for 165 

aggregated groups of commodities. To disaggregate shipments data, we assumed that composition 166 

of grains in a shipment is similar to composition of production at origin. Therefore, if rice 167 

production in Arkansas was 80% of total grains production, the grain shipments coming out of 168 

Arkansas would consists of 80% rice. While transport based surveys provide a best available 169 

substitute for interregional transfers accounting, they suffer from several limitations such as over-170 

assigning inflows to transport hubs, and not distinguishing between point of production vs. point 171 

of last value added.38 We corrected for this limitation as follows: we limited the analysis to transfer 172 

of raw grains, animal feed, and associated impacts and did not track processed products. Therefore, 173 

food transfers to a particular location may not represent the final consumption of a food item, but 174 

the first-set of consumers (e.g., processing plants) in the supply chain. As such, the discussion on 175 

dependency still remains relevant but we avoid overestimating environmental impacts of processed 176 

goods. Additionally, by disaggregating transfers based on state production data, we overcome the 177 

possibility of incorrectly attributing production to non-producing states. Similar approach for 178 

interregional disaggregation has been employed previously.10, 25, 39 A brief discussion on regional 179 

commodity transfer limitations and reconciliation issues is provided in the SI Section S2. Next, we 180 

constructed weighted and directed matrices of food transfer referred to as flow matrices (T). Each 181 

matrix element (Tij) represents flow of mass of grains and animal feed from origin (i) state to 182 

destination (j) state. The focus of this work is limited to irrigation impacts of food trade. By 183 

irrigation impacts, we specifically mean irrigation water, embodied energy, and embodied GHG 184 
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emissions related to irrigation. A discussion on GHG impacts of U.S. food transport can be found 185 

elsewhere.40-42  186 

 187 

Embodied energy and GHG emissions networks. First, we calculated the fraction of irrigated food 188 

transfers by assuming proportional shares to irrigated production. We converted food transfer 189 

matrices into distinct matrices of virtual water, embodied energy, and embodied GHG emissions 190 

by using data from the Farm and Ranch Irrigation Survey43, U.S. agriculture census44, Energy 191 

Information Administration data45 combined with life cycle assessment methods. In particular, we 192 

use cumulative energy demand46 and IPCC 100 year global warming potential to calculate our life 193 

cycle impacts.47 The detailed methodology and assumptions were first described by framework 194 

provided by Vora et al.10 195 

Pointwise mutual information (PMI). We analyze state-wise trade dependencies through 196 

pointwise mutual information (PMI) measure. The PMI measure is based on concepts from 197 

information theory, graph theory, probability, and statistics.48 Commonly applied in linguistics34, 198 

49, 50, PMI calculates the probability of co-occurrence or co-location of two words (events). A 199 

classic example involves comparing two synonym adjectives “strong” and “powerful” from 200 

English language. A set of specific words are used more commonly with one or the other. As an 201 

example, “strong tea” and “powerful car” have a higher probability of appearing together than 202 

“powerful tea” and “strong car”; although the adjectives convey the same message.51 In a set 203 

containing these four, if the information of the first word being “strong” is known, then “tea” has 204 

a higher probability of being the next word. Thereby, reducing indeterminacy of the system.52 We 205 

extend the same logic to assess trade dependencies by asking, for example, if we know a state is 206 

importing food, can we predict any information about its partners given the set of data? We 207 
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perform this exercise not to predict new links but as a way of assessing statistical significance of 208 

empirically observed data. PMI is defined by the following eq. 1). The complete derivation of PMI 209 

measure is provided in the SI,   210 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙2

𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖.𝑝𝑝.𝑖𝑖

 

 

 (1) 

pij  is the probability of i and j co-occurring. k is a scalar constant. If events i and j are independent 211 

of each other, then the probability of their co-occurrence is given by their marginal probability of 212 

occurrences. Marginal probability of occurrence for event i is pi. (eq. 2) and for j is given as p.j 213 

(eq. 3) 214 

 215 

 𝑝𝑝𝑖𝑖. = �𝑝𝑝𝑖𝑖𝑖𝑖
𝑖𝑖

 
(2) 

 

 

 

𝑝𝑝.𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑖𝑖
𝑖𝑖

 
(3) 

For flow networks such as the system under consideration, we can replace the probabilities of 216 

occurrence with measured frequency of flow in the network. Tij represents flow of trade from 217 

origin (i) to destination (j).  A “dot” notation is used to represent summation over that index such 218 

that Ti. gives the total outgoing flows of i, T.j gives the total incoming flows to j, T.. gives the total 219 

trade in the network, referred to as total system throughput. 220 

 221 

 𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑇𝑇𝑖𝑖𝑖𝑖

𝑇𝑇..
�  ;    𝑝𝑝.𝑗𝑗 = 𝑇𝑇.𝑗𝑗

𝑇𝑇..
� ;   𝑝𝑝𝑖𝑖. = 𝑇𝑇𝑖𝑖.

𝑇𝑇..
�  

(4) 
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Therefore, PMI can be re-written as, 222 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = log

𝑇𝑇𝑖𝑖𝑖𝑖𝑇𝑇..

𝑇𝑇𝑖𝑖.𝑇𝑇.𝑖𝑖
 

  (5) 

In network trade studies, null modes or random networks have been used as a benchmark to 223 

compare significance of structural properties of the observed/actual trade. If a random network can 224 

generate higher order properties similar to those in observed trade, then observed structure of the 225 

trade network is a result of random formation and estimating its properties does not give us any 226 

useful information.33 PMI measure essentially compares observed trade network with a pseudo-227 

random network (which is referred to as a null model). We use the term pseudo-random because 228 

trade cannot be random, therefore comparing observed network to a completely random network 229 

would not yield any meaningful insight. To make the null model comparable to the observed 230 

network, some of the bare minimum properties of the observed network need to be preserved to 231 

an otherwise randomly formed network. Here, the null model used to generate PMI values 232 

constrains the network to keep the total inflow (demand) and outflow (supply) from each state 233 

constant. This is an important constraint from sustainability perspective as it prevents states from 234 

supplying more than their current reported capacity. This constraint results in a singular solution. 235 

The flow matrix M, representing the null model of trade can be given by the following equation 236 

 𝑃𝑃 =  𝐹𝐹𝑙𝑙𝑜𝑜𝑜𝑜𝐹𝐹𝑖𝑖𝑖𝑖𝑇𝑇.. 

 

(6) 
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𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇1∙

𝑇𝑇∙∙�
𝑇𝑇2∙

𝑇𝑇∙∙�
⋮

𝑇𝑇𝑛𝑛∙
𝑇𝑇∙∙� ⎦
⎥
⎥
⎥
⎥
⎤

    𝐹𝐹𝑖𝑖𝑛𝑛 = �𝑇𝑇∙1 𝑇𝑇∙∙�   𝑇𝑇∙2 𝑇𝑇∙∙�   ⋯  𝑇𝑇∙𝑛𝑛 𝑇𝑇∙∙�  � 

 

(7) 

Here, Fout (51×1) and Fin (1×51) represent vectors of out-flows from and in-flows to each state 237 

respectively, normalized by the total flow in the system. Therefore, M is calculated by re-wiring 238 

network flows amongst each trade connection. A unique property of the null model is that it re-239 

distributes flow in a way that the trade becomes more equitable (not equal) while considering 240 

current sending and receiving capacity of each state. Therefore, PMI values indicates how far each 241 

trade interaction is from being more equitable. An example of how the null model divides flow 242 

equitably is provided in SI section S4. 243 

 244 
The PMI measure can potentially take positive, negative, or zero values. If states i and j are 245 

completely independent (basis for null model), the value of PMI becomes 0. When i and j have a 246 

high probability of trading, but their actual trade is low, PMI values become negative (eq. 8). 247 

Similarly, a positive PMI indicates that states are more dependent than expected. 248 

  

log (𝑝𝑝𝑖𝑖𝑗𝑗) < log (𝑝𝑝𝑖𝑖.𝑝𝑝.𝑗𝑗) 

 

 

(8) 

Previously, Kharrazi and Fath discussed the value of utilizing PMI measures to evaluate 249 

preferential trade policies within the context of international oil trade.53 Based on PMI values, the 250 

aforementioned formulae can help evaluate policies for (un)desired trade relationships. It is to be 251 

noted that the goal is to not move towards a null model, as trade can never be random, but to 252 

understand more deeply the relations between dyads and to reverse the PMI value signs depending 253 
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on policy objectives, when desired. If a move from positive PMI to a negative PMI value is desired 254 

(reduced trade) for a particular trade relationship, then trade volumes can be recalculated to 255 

identify partners that can meet the additional demand. However, re-arranging even one pair would 256 

alter the entire pattern of network flows indicating importance of considering interactions within 257 

the entire system. 258 

 259 

RESULTS 260 

Network Indicators. We consider food transfers between 50 states plus District of Columbia, 261 

creating a 51-node size (n) network. There are 1145 links (L) within these states dedicated to cereal 262 

grains and animal feed trade. The density (L/n2) of the network is 0.44 and reciprocity (proportion 263 

of bi-directional connections (links in both directions/total number of links) of 0.64, indicating a 264 

well-connected structure with high level of flow between states. The total flow in the network 265 

amounts to 613 million US tons, with 166 billion m3 of virtual water, 633 billion MJ of embodied 266 

energy, and 42 billion kg CO2 equivalents of GHG emissions embodied within the flows. Cereal 267 

grains represent 75% of total food transfers by mass and subsequently represent a larger portion 268 

of embodied irrigation impacts (SI Table S3). Figure 1 provides a visualization of irrigated 269 

transfers within the U.S. The segments are arranged in a descending order based on their total out-270 

going activity. For a majority of the states, the highest volume of transfers are their within-state 271 

flows. Nebraska’s irrigated agriculture primarily includes corn for grain, corn silage, and alfalfa 272 

hay. The large self-loop may indicate shipments going towards feeding the large cattle and hog 273 

industry.54 The largest (out of state) outgoing transfers are from Kansas, Nebraska, Minnesota, 274 

Indiana, and Iowa. The largest inflows are to Texas, California, Nebraska, Illinois, and Iowa. The 275 
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largest out of state transfer is from Kansas to Texas of 18 million US tons and primarily consists 276 

of corn, corn silage, alfalfa hay, and wheat in shipments. 277 

 278 

 279 

Figure 1. Cereal and feed grains transfer amongst the U.S. states. For visualization purpose, links 280 
with at least 1% of maximum link weight are shown.19 Each circular segment represents 281 
participating states. The white gap indicates in-coming transfers, while the same colored links 282 
originating from the segment represents out-going transfers. The segments are arranged in 283 
descending order based on their total out-going (both within state and out of state) transfers. The 284 
figure is prepared using circos visualization tool.55  285 
 286 

Next, we visualize flow values according to null model in the system (figure 2). These values are 287 

re-arranged in a more uniform fashion considering mass of the product of total flow going and 288 

coming out of states. It should be noted that the flows are not re-distributed to become equal in 289 

volume but based on equity in distribution. The degrees (number of connections) distribution and 290 
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weighted degree distributions for the observed flow and null model are provided in Figure S4 and 291 

indicate maximum connectivity of the null model while preserving total throughput from each 292 

state. Additionally, the density of the null model network is 0.9 with reciprocity of 0.79, indicating 293 

an overly connected structure with more flows being reciprocated. When we compare the structure 294 

of observed flow with the null model, the observed flow presents a preference in their transfers. 295 

As there are no political boundaries compared to international trade,14 the preference represents 296 

presence of “additional information” in how ties are formed.    297 

 298 

Figure 2. Cereal and feed grains trade between U.S. states for null model(zero dependency). The 299 
flow structure is redistributed considering network flow constraints such that total throughput 300 
(both incoming and outgoing transfers) in each state remains constant. For consistency, links with 301 
at least 1% of maximum link weight are shown. Each circular segment represents participating 302 
states. The white gap indicates in-coming transfers, while same colored links emanating from the 303 
segment represent out-going transfers.  304 
 305 
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Dependencies in the network. Generally, direct dependencies of trade relationships are identified 306 

listing top importers/exporters for each trading partners. However, direct relationships do not 307 

incorporate the role of considered relationship in the context of other relationships out of the two 308 

states. This translates to how overall connections in the network (the system) affects one 309 

relationship being studied. Additionally, a large volume of inflows may not translate to a higher 310 

dependency for the pair, but low inflows may be more valuable to the network.32, 53 This is 311 

explained in more detail next. 312 

PMI values are calculated for each interaction between the dyads and therefore result in a 51×51 313 

matrix for each network. As an example, we focus on Texas- the largest importer and its trading 314 

partners to demonstrate the usefulness of considering system dependencies. Texas received 315 

incoming transfers amounting to 49 million US tons from 34 states including a large chunk of 316 

within-state transfers. Texas’s largest inflows (apart from within-state flows) are from Kansas, 317 

Oklahoma, Nebraska, Louisiana, and Indiana. Therefore, in a conventional sense, Texas highly 318 

depends on these states for food flows. We rank PMI values from Texas’s top ten import partners 319 

in a descending order and compare with ranks of direct incoming transfer volume (Table 1). 320 

Mismatches between PMI ranks and direct trade volume ranks show that associating dependencies 321 

based on direct trade observations may not account for important, but less visible states. The PMI 322 

value for New Mexico borders on zero, indicating the observed flow’s proximity to null model 323 

behavior. Considering all transfers from New Mexico, a substantial portion is already being 324 

transferred to Texas, with a little room for increase (negative PMI), indicating a higher dependency 325 

of the connection. On the other hand, Nebraska has a lower PMI rank and negative PMI value, 326 

denoting that despite substantial volume of flows already going in to Texas, Nebraska has the 327 

ability to send more, resulting in a lower bi-lateral dependence than possible. Kansas and 328 
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Oklahoma have the largest PMI values as Texas’ exporting partners, indicating Texas’s over 329 

reliance on these two states. As observed from Table 1, majority of connections have negative PMI 330 

values compared to positive values. This is consistent across the network in both import and export 331 

connections for majority of states (SI Figure 3) indicating that at the network level, a few states 332 

control the throughput of flow. This has important implications for local network structural 333 

resiliency as reliance on a few states makes a state more prone to effect of shocks. Additionally, 334 

some of the PMI rankings are consistent with mass/volume-based rankings denoting that the high 335 

flows empirically observed are not by chance but statistically significant. A visualization of the 336 

null model and observed flows along with extended PMI table for Texas is provided in the SI 337 

section S5. We emphasize that by providing comparison of rankings, our motive is not to 338 

recommend PMI method over traditional approaches, but to provide complementary insights along 339 

with other commonly used measures. 340 

 341 

Negative PMI values indicate a state’s capacity to trade more (as the states are less reliant on each 342 

other than expected), and therefore provide a first indication of where the trade could be rewired 343 

without extensive economic and physical system modeling (such as used in crop displacement 344 

studies 56, 57  345 

 346 

 347 

 348 

 349 

 350 
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Table 1. Texas' top 10 importing partners ranked by their PMI value in a descending order, 351 
compared with observed incoming transfers and respective rank. Positive PMI indicates higher 352 
than expected dependency and negative PMI indicates lower than expected dependency. 353 

 354 
Incoming 
 flow PMI 

PMI 
Rank 

Flow 
(US tons) 

Flow 
Rank 

Texas 3.31 1 3.23E+07 1 
Kansas 1.61 2 1.77E+07 2 
Oklahoma 1.10 3 2.76E+06 3 
Louisiana 0.23 4 9.38E+05 5 
New Mexico -0.05 5 1.19E+05 11 
Indiana -1.59 6 6.60E+05 6 
Missouri -2.17 7 4.06E+05 7 
Tennessee -2.51 8 5.99E+04 16 
Nebraska -2.76 9 1.37E+06 4 
Arizona -2.81 10 6.01E+04 15 

 355 

Embodied Impacts and Implications for FEW Nexus. Next, we analyze trade interactions and 356 

dependencies within a FEW nexus context focusing on virtual water, embodied energy, and 357 

embodied GHG emissions.   358 

 359 
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 360 

Figure 3. PMI values for virtual water transfers to Texas (also included in inset for clearer 361 
visualization). The pie chart indicates portion of virtual surface and groundwater in food trade. 362 
The scale of pie chart represents total virtual water transfer out of each state (within-state flows 363 
included). The states colored in white represent absence of virtual water transfer to Texas. The 364 
primary groundwater aquifers of USA are overlaid in the graph with associated groundwater stress 365 
obtained from Gleeson et al. Aqueduct water risk atlas.58, 59  366 

 367 
A spatial display of the PMI values for virtual water transfers to Texas shows the pattern of near 368 

neighbors being higher ranked (figure 3). The dark grey shaded states represent high PMI values, 369 

and therefore higher dependence. Previous work has discussed the prevalence of gravity law60, 61 370 

based relationship of distance enabling trade in international virtual water trade.62 The size of the 371 

pie chart represents total virtual water transfers out of each state. The scale of the pie chart accounts 372 

for irrigation intensity of crops (m3/ton) as well as volume of transfers. Statewide irrigation 373 

intensities are provided in the SI. Nebraska, Kansas, Louisiana, and Missouri have lower irrigation 374 

water application intensity, but overall higher volume of transfers. This may be attributed to 375 
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metering of groundwater due to regulations63 along with high crop yields in the area.  However, 376 

high PMI ranked states New Mexico, Arizona, Colorado, and Utah have high water application 377 

intensities, indicating virtual water hotspots in Texas’ imports.  378 

 379 

The pie charts show distribution of virtual groundwater and surface water used for production of 380 

food transfers. A majority of Texas’ exporters, and Texas, rely on groundwater for food imports. 381 

Therefore, groundwater depletion is an important aspect in considering regional virtual water flow 382 

dependencies. We overlay the PMI map with a layer of groundwater stress in major groundwater 383 

basins, derived from Gleeson et al.58 and Aqueduct database.59 Groundwater stress represents 384 

groundwater footprint over total aquifer area and is computed by setting up a water balance 385 

between groundwater withdrawal, recharge, and environmental flows.58 From South Dakota to 386 

Texas, eight states heavily depend on the Ogallala aquifer as an important common groundwater 387 

source for irrigation. The Ogallala aquifer’s current use exceeds natural recharge with significant 388 

decline in Kansas and Texas.64 Scanlon et al.65 estimate that if the current depletion rate continues, 389 

then 35% of the southern plains would not be able to support irrigation in the next 30 years. 390 

Therefore, despite lower water application intensity for some states, virtual water imports to Texas 391 

from within-state flows, and neighbors Kansas, Oklahoma, and New Mexico may be affected by 392 

groundwater depletion in the long run, especially as pressure on the shared Ogallala aquifer 393 

increases from population demand and changing climate.66  394 

 395 

From a demand side, the possibility of groundwater shortage can be managed by re-structuring 396 

existing trade to explore alternate states that have a higher potential to trade by looking at negative 397 

PMI values. In such cases, states with policies that support sustainable irrigation can be given a 398 



 21 

preference to build a water-scarcity resilient food supply chain.  For example, lighter grey shaded 399 

states such as Alabama, South Carolina, Florida, Kentucky, and Ohio have lower PMI value, low 400 

water application intensity, and a balanced use of irrigation water sources, making them potential 401 

candidates for increasing trade. However, the marginal environmental impact of increasing trade, 402 

specifically on water quality in gulf states would have to be examined. From a supply side, majority 403 

of Ogallala states have implemented state level groundwater management plans, along with some 404 

moving beyond conservation and planning for depletion targets.67 Schipanski et al.68 note that the 405 

next set of Ogallala strategies will require managing adaptation challenges for all the stakeholders 406 

involved. In such cases, the mutual dependence due to regional trade can act as an incentive for 407 

negotiations towards sustainable management of common source.  408 
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 409 

Figure 4. PMI values for embodied GHG emissions in imports to Texas. The pie chart 410 
indicates distribution of acreage using specific pumping fuel for on-farm irrigation pumps. 411 
The size of the pie chart indicates GHG emissions intensity in kg CO2 equivalent per m3 412 
of water abstracted. The states colored in white represent absence of GHG transfer to 413 
Texas. 414 

 415 

Figure 4 indicates PMI values for embodied GHG emissions transfers to Texas. Each pie chart 416 

represents the distribution of pumping fuels used in every state with all states employing 417 

electricity, and diesel-based pumps with a handful using natural gas (Texas, Oklahoma, Kansas, 418 

Nebraska), gasoline (Pennsylvania, Ohio, Rhode Island, New York) and LPG (Nebraska, 419 

Missouri) based pumps. The size of the pie chart indicates GHG emissions intensity in kg CO2 420 

equivalent per m3 of water abstracted. Barring electricity, natural gas-based pumps have the lowest 421 
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embodied GHG emissions intensity amongst all four fuels considered. Life cycle emissions 422 

attributable to electricity-based pumping differ considerably across states due to differences in 423 

regional grid mixes. Apart from electricity, all the states use diesel-based pumps in some capacity, 424 

with eastern states using diesel pumps on significant acreage. In addition to fuel mix, pumping 425 

energy requirements depend on other factors such as type of irrigation system (gravity vs. pressure 426 

based), system pressure, depth to water for lift, velocity, and pipe losses.69 Contrarily to water 427 

intensity for crops, California, Colorado, Arizona, Arkansas, and Utah have lower GHG emissions 428 

intensity per m3 of water withdrawn. These states primarily use gravity-based irrigation or rely on 429 

lower to medium pressure systems. Many of the Ogallala states, despite using substantial natural 430 

gas in their pumping mix, have higher GHG emissions per m3 of water withdrawn. This could be 431 

attributed to high coal-based electricity mix in their grid (e.g., Kansas, Nebraska, Oklahoma have 432 

more than 60% coal-based generation), water depth for groundwater pumping, and use of water 433 

efficient but energy intensive pressurized sprinkler systems. High use of diesel and/or gasoline-434 

based pumps combined with pressurized irrigation systems could be contributing to high GHG 435 

emissions intensity of states such as Pennsylvania, Ohio, Alabama, and Kentucky.43 These states 436 

represent a clear example of water scarcity vs. GHG emissions tradeoff and denote an area of farm 437 

conservation policy focus for improving pumping energy and emissions profile of irrigation by 438 

upgrading fuel pumps. As part of Ogallala conservation efforts, several programs have been 439 

underway since 2008 to reduce irrigation withdrawals and, as a result have also reduced energy 440 

requirements of farms suggesting that groundwater conservation and irrigation emissions 441 

reductions may not be mutually exclusive goals.70 442 

 443 

 444 
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DISCUSSION 445 

This work provides a systems-level perspective in analyzing domestic food-energy-water 446 

interactions (within regional transfers and between embodied systems) through interdisciplinary 447 

methods spanning information theory, graph theory, water footprint, embodied energy, and 448 

emissions quantification. We demonstrate the usefulness of considering interactions at a network 449 

level to provide a comprehensive indication of trade dependencies. Using Texas as an example, 450 

we show that major importing partners of Texas by volume may not rank high in expected trading 451 

as expressed here in the index of PMI values and vice versa. A bi-lateral trade relationship consists 452 

of an interaction between a dyad, with both partners playing an equally important role. Ranking 453 

Texas’ exporters by volume only showcases Texas’ dependency of the transfer but not of its 454 

partners. As PMI accounts for overall transfer activity and the potential to increase (or decrease) 455 

activity between a dyad, it provides a thorough accounting of their mutual dependency. This is 456 

clearly exhibited in importance of Texas-New Mexico trade connection despite being of a lower 457 

volume, and reiterates the importance of also considering weak ties.32  458 

 459 

When we compare the visual difference between flow in a null model and actual trade, the 460 

heterogenous distribution in trade concertation becomes apparent with a few links/states 461 

dominating the network (figure S3). Another visible trend is the importance of geographical 462 

distance in forming trade relationships. Our results indicate that distance drives the grain and 463 

animal feed trade preference for Texas, specifically as a significant portion may be dedicated to 464 

providing cost-effective animal feed for Texas’ sizable cattle industry or for food and beverage 465 

manufacturing. By combining PMI results and a ground water stress indicator, we highlight the 466 

regional reliance of Texas’ and neighboring states on Ogallala aquifer for irrigation while engaging 467 
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in substantial transfer amongst themselves and discuss alternate potential states with less stressed 468 

irrigation systems. In fact, dependence through regional trade can serve as a motivation to manage 469 

common water resources and help avoid water allocation disputes such as the recent one between 470 

New Mexico and Texas71 and between users of Colorado River basin.72 Further, considerable 471 

geographic variation exists in recharge rates across the Ogallala aquifer due to its sub-surface 472 

hydrology.65 Therefore, our estimates can be improved in the future by characterizing the portion 473 

of domestic food consumption attributed to nonrenewable groundwater withdrawals from U.S. 474 

aquifers.73  475 

 476 

The analysis presented in this work has its limitations. An important limitation of this work is the 477 

FAF dataset’s inability to trace the final point of consumption (e.g., household consumption). This 478 

would require integration and reconciliation of a larger scale of datasets to accurately track the 479 

supply chain, such as the recent study of corn supply chain by Smith et al.74 Additionally, future 480 

domestic trade analysis should involve employing origin tracing algorithms75 used in international 481 

trade studies to remove re-exports from the data. From a systems-level analysis, we emphasize that 482 

no one method is universally superior over other methods including techniques such as life cycle 483 

assessment, material flow analysis, network analysis etc. Additionally, we note that while PMI 484 

provides information on structural dependency based on trade data, it cannot differentiate between 485 

a (un)desirable option based on embodied impacts such as type of water resource, water scarcity, 486 

and fossil fuel used as this information is not inherently built-into snapshot of trade. Therefore, it 487 

needs to be supplemented with footprint approaches, life cycle assessment methods to provide a 488 

complete picture. 489 

 490 
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Furthermore, we do not account for energy and emissions associated with off-farm water supply 491 

(prevalent in the western U.S.)76 due to lack of national data, making our estimates conservative 492 

and likely to increase. Therefore, if future policies internalize the cost of GHG emissions in trade, 493 

states may look for cost-effective and cleaner energy options with natural gas currently being one 494 

of the easily accessible choice. As our results demonstrate, this may be at odds with other equally 495 

important goals to achieve a sustainable and resilient food supply. Specific policies have long been 496 

in place under the U.S. Farm Bill to subsidize switching to water-efficient irrigation systems, but 497 

a rebound effect of over-pumping may lead to water depletion77  and salinization.78 At the same 498 

time, the discussion on FEW nexus should incorporate electric utilities and authorities that can 499 

devise demand-response programs for farmers to offer electricity at lower prices off-peak and 500 

potentially manage the emissions profile of generators.79-81  Finally, PMI values demonstrate the 501 

potential to trade less (positive PMI) or more (negative PMI) given the existing network constraints 502 

compared to the situation of no preference. Therefore, it may serve as a valuable policy aid in 503 

building sustainable and resilient food systems by indicating overall effect of potential trade 504 

(dis)preferences for diversifying trade partners.  505 

 506 

ASSOCIATED CONTENT 507 

Additional information regarding data sources, code for PMI, and the modeling approach is 508 

provided in the Supporting Information.  509 
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