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23 Abstract: This study analyzed ammonia reduction potential and related costs and benefits 

24 of several ammonia emission reduction technologies applicable for dairy production from 

25 cattle in China. Specifically, these included diet manipulation, manure acidification, 

26 manure/slurry covers and solid manure compaction. Ammonia emissions for China were 

27 estimated using the GAINS and NUFER models, while mitigation potential of 

28 technologies was determined from laboratory studies. Ammonia reduction potentials 

29 from dairy production in China, ranged from 0.8 to 222 Gg NH3 yr-1 for the selected 

30 technologies. Implementation costs ranged from a saving of 15 US$ kg-1 NH3 abated to 

31 expenditure of 45 US$ kg-1 NH3 abated, while the total implementation costs varied from 

32 saving of 1.5 billion US$ in 2015 to expenditure of a similar size. Best NH3 reduction 

33 technology was manure acidification, while the most cost-effective option was diet 

34 optimization with lower crude protein input. For most abatement options, material costs 

35 were the critical element of overall costs. The fertilizer value of manure could partly offset 

36 the implementation cost of the options tested. Furthermore, benefits due to avoided health 

37 damage, as a result of reducing NH3 emissions, could turn all abatement options (except 

38 for manure compaction) to being profitable on the scale of a national economy.

39
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42 1. Introduction

43 Over 50% of ammonia (NH3) emission in China was caused by livestock manure during 

44 2000-2008,1 which was about 4.1-5.1 Tg N yr-1 and much higher than that for the United 

45 States or the European Union (1.7-3.2 Tg N·yr-1 during 2000 to 2008).2-4 An important 

46 source of NH3 emissions in China is dairy production from cattle at nearly 8.9% of the 

47 total in 2009.5 Based on predicted changes, the contribution of dairy production to the 

48 total NH3 emission in China will increase to 15% by 2030.5 Ammonia in the atmosphere 

49 is not only a pollutant itself, but it also contributes to many other environment problems. 

50 As a precursor compound to inorganic aerosols, atmospheric NH3 contributes to the 

51 formation of particulate matter with diameter less than 2.5 L3 (PM2.5) due to its reaction 

52 with nitric and sulfuric acids, causing severe haze pollution and adverse effects on human 

53 health in China.6-11 Furthermore, NH3 deposition to soil and water and subsequent 

54 conversions contribute to acidification of lakes, eutrophication of natural ecosystems and 

55 formation of the greenhouse gas N2O.9, 12-14 Because of the high emission rate and 

56 negative effects on the environment, NH3 emission mitigation is urgently required in 

57 China. At the same time, emissions of NH3 represent the loss of a valuable resource of 

58 nitrogen (N) for agriculture.

59

60 In manure, hydrolysis of urea or decomposition of organic N produces NH3, which 

61 diffuses to the surface and is released to ambient air. This process of NH3 emission is 
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62 influenced by many factors, including the equilibrium between NH4
+ and NH3 in aqueous 

63 environments, pH, temperature, wind speed, and turbulence over the manure surface.15 

64 Hou et al.16 summarized previous studies exploring NH3 emission abatement options, 

65 including dietary manipulation, reducing volatile NH3 in manure, urine-faeces 

66 segregation and binding ammonium-N with chemical additives. The most effective NH3 

67 emission reduction options were reducing N excretion, addition of acids to manure or 

68 covering manure during storage. However, most of the underlying studies were conducted 

69 in Europe, and there is a large difference between manure management systems in dairy 

70 farms in China and Europe, including in dairy housing, manure collection and storage 

71 practices.17-20 Moreover, the cost of the mitigation options could limit their 

72 implementation and application in dairy farms. However, current practices of manure 

73 treatment in China are inefficient and offer many opportunities for greater recycling of 

74 manure and nutrient utilization.17, 21 This illustrates that it is important to get local data 

75 both on the NH3 reduction potential from relevant mitigation options for dairy production 

76 in China and on their related costs or benefits. In this study, we aimed to 1) assess the 

77 NH3 reduction potential of several abatement options from dairy production in China, 2) 

78 explore implementation of the abatement measures and estimate the related economic 

79 costs, and 3) discuss future pathways for NH3 emission abatement from dairy production 

80 in China. 

81
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82 2. Materials and methods

83 Ammonia reduction potential of several selected ammonia abatement techniques and their 

84 costs and benefits were analysed using the GAINS (Greenhouse gas - Air pollution 

85 interactions and synergies) model22, 23 coupled with parameters derived from the 

86 NUFER24 model and laboratory trials. Based on the data for individual measures, the 

87 implications for cost-effective ammonia emission mitigation exploration in the future 

88 were determined. 

89

90 2.1 Estimation of ammonia emission and reduction from dairy production based on 

91 GAINS model

92 In the present study, estimation of NH3 emissions and reduction potential from dairy 

93 production in China were considered along the whole manure management chain 

94 including grazing, housing, storage, treatment and application. Total NH3 emissions from 

95 dairy production were the sum of NH3 emissions from all stages of the manure 

96 management chain, coupled with NH3 reduction efficiencies of the abatement options 

97 under different mitigation scenarios, using the GAINS model.22, 23 The calculations used 

98 the following equation:25

99                                (1)���3
= �

	

	���


�
5

� = 1
[����	��(1 � �	�
����)] 

100 Where  represents the total ammonia emission from dairy production; r is specific ���3

101 province; y is specific year; m is mitigation technique; s is emission stage (five stages 
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102 including grazing, housing, storage, treatment and application); L is animal population; 

103 ef is ammonia emission factor; M is reduction efficiency of specific mitigation technique. 

104 Ammonia emission factors were calculated using N excretion and volatilization rates at 

105 distinct stages, accounting for N-losses involving NH3, N2O, N2 and NO3
- emissions at 

106 previous stages. Provincial data for N excretion and volatilization rates were derived from 

107 the GAINS22, 23 and NUFER24 models, while NH3 reduction efficiency was derived from 

108 the laboratory trials described in the Supporting Information (optimized reduction 

109 potential are shown in Table S1), which is considered to be a reliable source of 

110 information about reduction efficiencies for application to Chinese dairy production 

111 systems as lack of data from previous studies.16 

112

113 2.2 NH3 mitigation scenarios

114 As there was a shortage of local research on NH3 emission mitigation from dairy 

115 production in China, 12 scenarios of mitigation measures for manure management in a 

116 dairy farm were considered, including current practice (control), low protein feed, 

117 acidification, cover and acid (slurry), cover (slurry), manure cover and acid (liquid), cover 

118 (liquid), plastic film cover, manure compaction, compaction & cover (liquid), manure 

119 compaction & cover and acid (liquid), based on surveys and experts� knowledge. �Slurry� 

120 was a mixture of urine and faeces without bedding materials. �Liquid� and �solid� were 

121 liquid and solid fractions separated from slurry using a screw-press separator. The details 
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122 of the scenarios are shown below. 

123 Scenario 0: control. This scenario assumes a dairy production system in China with no 

124 mitigation technique implemented. NH3 emission under this scenario was used as a 

125 baseline value. 

126 Scenario 1: low protein feed. In order to achieve higher milk production with better 

127 quality, dairy cows are fed with extra crude protein (CP) resulting in increased N 

128 excretion and posing a high risk for NH3 emission. Common practice is for 17% of the 

129 cow�s diet to be crude protein, based on experts� knowledge. For this low protein feed 

130 scenario, it was assumed the diet was reduced to 15% crude protein and this reduction in 

131 feed protein would not affect milk production. As no extra equipment was needed to use 

132 lower protein diets, there was no extra cost considered for its implementation.

133 Scenario 2: acidification. Acidification is an effective measure to reduce NH3 emission 

134 from manure management systems. For this scenario it was assumed that the dairy 

135 building was equipped with a slatted floor and diluted sulfuric acid (H2SO4 1:100) was 

136 sprayed to form a 3 mm layer on top of the manure surface under the slatted floor. To 

137 estimate the cost involved in acidification, the following general assumptions were made 

138 about dairy houses, acidification systems and application based on experts� knowledge: 

139 1) each dairy building was equipped with two stirring systems, which were used to dilute 

140 the H2SO4, and four sprinkler systems, which were used to apply the diluted H2SO4 to the 

141 surface of the slurry under the slatted floor; 2) each sprinkler system included 50 nozzles, 
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142 110 m of pipe and one pump; and 3) 3 L of tap water per square meter of manure was 

143 used to clean the spraying system after each operation (see Figure 1a). Acidification of 

144 the manure surface was expected to have little influence on the quality of the slurry and 

145 bio-availability of N in the manure as the amount of acid was small (3 mm surface layer) 

146 compared to the slurry volume.

147 Scenario 3: cover (slurry). During storage, slurry was covered with a vermiculite cover 

148 to a depth of 6 cm. It was assumed that a system would consist of a U-spiral conveyor 

149 with mesh on the bottom to be moved on tracks installed on the edge of the lagoon. 

150 Moving the conveyor along the tracks at a certain speed would distribute covering 

151 materials through the mesh. As the size of the tank influenced the costs of the equipment 

152 and operation, it was assumed that the lagoon used for storage was 10 m wide with a 

153 maximum depth for stored slurry and liquid manure of 4.5 m, based on general dairy farm 

154 practice (Figure 1b). 

155 Scenario 4: cover and acid (slurry). During storage, slurry was covered with a 6-cm-

156 thick mixture of vermiculite and lactic acid at a volume ratio of 1:5. The equipment used 

157 for this measure was the same as for scenario 3, plus a mixer for mixing lactic acid with 

158 vermiculite. 

159 Scenario 5: cover (liquid). This scenario was similar to scenario 3 replacing slurry in 

160 scenario 3 with liquid manure. 

161 Scenario 6: cover and acid (liquid). This scenario was similar to scenario 4 replacing 
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162 slurry in scenario 4 with liquid manure.

163 Scenario 7: plastic film cover. Solid manure was covered with plastic film during 

164 storage, and the implementation of the plastic film cover was mainly through manual 

165 operation (Figure 1c). The lifetime of the plastic film was assumed to be 1 year.

166 Scenario 8: manure compaction. This scenario assumed that solid manure was 

167 compacted until the volume of the manure halved. Implementation was via a road roller. 

168 To estimate the cost of technical implementation, we assumed that the depth of stored 

169 solid manure was 1.5 m, with 0.15 m solid manure being added per day. 

170 Scenario 9: manure compaction & cover (liquid). In order to account for additional 

171 emissions of compaction due to leaking liquid manure, this scenario was a combined 

172 measure with manure compaction and cover (liquid).

173 Scenario 10: manure compaction & cover and acid (liquid). This scenario was the 

174 same as Scenario 9 but combined with application of acid (liquid).

175 Scenario 11: combined measures. Considering the mitigation options from the 

176 perspective of the manure management chain, this scenario was a combination of the diet 

177 manipulation, acidification and cover (slurry) scenarios.
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195 S3. 

196

197 2.4 Benefit estimation

198 2.4.1 Benefit from mineral fertilizer saving

199 In addition to the cost of technical implementation of these abatement options, we also 

200 estimated the costs saved when manure (and N retained) was used as fertilizer. Cost 

201 saving from N abated from selected measures was calculated from the price of mineral 

202 fertilizer, the amount of N retained in manure and a use factor to describe the potential 

203 efficiency of manure N as a substitute for mineral fertilizer, which was assumed to be 

204 75%.

205

206 2.4.2 Benefit from reduced health damage and mortality

207 Quantification of health-related costs and attributing such costs to a single cause (air 

208 pollution) is inherently difficult. Hence, data are sparse and very uncertain. With 

209 increased mortality being the most significant impact, it seems useful to integrate a value 

210 judgement of human life. For Europe, Desaigues et al.27 have provided a framework, from 

211 Willingness-To-Pay studies but have also taken national GDP and life expectancy as well 

212 as information from medical practice into consideration. They have developed the 

213 concept of �Value of a life year� (VOLY), which, for Europe, is calculated at 40000 EUR 

214 (25000 EUR to 100000 EUR). The application to air pollution and related premature 
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215 deaths was the explicit aim of the study. The value of 40000 EUR has been further used 

216 in the European Nitrogen Assessment28 (and also related to other relevant parameters, 

217 like the Value of a Statistical Life) for a cost benefit analysis. Using the relationship 

218 between emissions and atmospheric PM concentrations on the one hand, and population 

219 density on the other hand, these authors quantify the resulting benefit in health-related 

220 costs of reducing one mass unit of reactive nitrogen in countries of the European Union 

221 (EU27). 

222

223 Here we assume that the relationship between emissions and impacts (in terms of PM 

224 formation as well as impact of incremental PM on health) also hold for the conditions in 

225 China, except that the observed concentrations need to be weighted by population density. 

226 In order to account for a possibly different perception of VOLY, an approach was 

227 followed that had been used for China previously, allowing for a VOLY of 10% as 

228 �decreased health damage costs�.3 Calculation of health damage then can be performed 

229 according to Eq (2):3, 28, 29 

230                          (2)������ =
��
�� !"#

��
��$%&
× �

31

! = 1
�
!��!�"! × ��$%&((�!)

231 Where,  is the health damage cost of life year loss in US$ million yr-1; VOLYChina ������

232 is the value of a life year of air pollution mortality in China; VOLYEU27 is the value of a 

233 life year of air pollution mortality in EU27;  is an adjustment factor for the 
��
�� !"#

��
��$%&

234 VOLY of 100% (using European health data cost set)3, 28, 29 and 10% (decreased health 
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235 damage cost); 3, 29 i is a province in mainland China;  is the total NH3 emission �
!��!�"!

236 from the respective province in Gg yr-1;  is the equation for health damage ��$%&((�!)

237 cost per reactive nitrogen emission related to population density in Europe in US$ kg-1 

238 NH3-N; 28, 29  is the population density of the respective province in capita km-2. (�!

239 Population density was estimated from population and land area.30, 31 

240

241 2.5. Uncertainty and sensitivity analysis

242 To estimate the uncertainty of NH3 mitigation potential and economic benefits of the 

243 options tested, we performed Monte Carlo simulations using @RISK software (Palisade 

244 Corporation) by varying the parameters for NH3 emission estimation and cost-benefit 

245 analysis. Data for the variability of the input parameters were obtained from this study, 

246 literature review and a survey, and are presented in Tables S4. Careful differentiation was 

247 done between statistically dependent and independent elements, due to potential differing 

248 impacts on resulting probability parameters. Individual parameters that were derived 

249 separately were regarded as statistically independent, whereas if an identical parameter 

250 was applied to different statistical data, it was considered as statistically dependent, e.g., 

251 each element of Table S4 was considered statistically independent. We ran 1000 iterations 

252 to find the probability distributions of the baseline NH3 emissions in 2015, predicting 

253 NH3 reduction and net economic benefit from the selected mitigation measures in the 

254 present study. Output distributions of 1000 simulated data of each Monte-Carlo result 
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255 were approximated using the software�s built-in functionality to apply the Akaike 

256 information criterion for an idealized representation. The resulting distribution is termed 

257 the �best fit� distribution. This approach also allows derivation of the standard deviation 

258 of such idealized output distributions. Results are presented as +/- two standard deviations, 

259 with the uncertainty range covering 95% of the statistical outcomes. In addition, we 

260 analyzed the sensitivity of net economic benefit to the variation of health damage cost 

261 saving, total technical implementation cost and mineral fertilizer saving using @RISK 

262 software. The Monte-Carlo simulations did not account for the variation in accounting of 

263 health damage � instead the two discrete values developed above were maintained.

264

265 3. Results and discussion

266 3.1.1. Ammonia emission from dairy production under abatement options in China

267 In the present study, it was assumed that selected options were fully adopted (100%) to 

268 the respective stage of all dairy systems in China which obviously was an optimal 

269 assumption to achievable NH3 reductions. Unabated NH3 emissions (�Control�) were 

270 derived from data from dairy production systems in China to estimate total emission of 

271 458 Gg NH3 in 2015, of which 186, 93, 76, 85 and 19 Gg were from housing, storage, 

272 treatment, application and grazing, respectively (Figure 2). The annual NH3 emission 

273 estimated in the present study was lower than the 578 Gg NH3 in 2010 estimated by Zhang 

274 et al.21 The difference might be due to the different system boundaries of the two studies 
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275 and data from different years, and Zhang et al.21 also accounted for NH3 emission from 

276 animal feed production. Results from all the scenarios, excluding compaction, showed a 

277 reduction efficiency in the range of 4-49% from the whole chain of dairy production in 

278 China (Figure 2 and S1). A Monte Carlo simulation with the uncertainty of input 

279 parameters showed that the baseline NH3 emission in 2015 was in the range of 375-680 

280 Gg NH3 (95% Confidence Interval) with a standard deviation of 84 Gg NH3 (Figure 3). 

281 The potential distribution of the simulated results of baseline NH3 emission (�control�) 

282 in 2015 based on Monte Carlo analysis is presented in Figure S2.
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284 Figure 2. Ammonia emission from selected abatement options for dairy production in 

285 China in 2015. The respective scenarios are described in Section 2.2.

286

287 Taking diet manipulation, acidification during housing, vermiculite cover on slurry and 

288 combined measures as examples, hotspots (Hebei, Henan, Shandong, Heilongjiang, 
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289 Inner-Mongolia, Xinjiang) of NH3 emission have been identified, which provide the 

290 greatest mitigation potentials (Figure S3). Uncertainty analysis, using the Monte Carlo 

291 simulation of the variation of input parameters, showed no large variation in reduction of 

292 NH3 emission from the tested options, excluding low protein feed. Details of the 

293 uncertainty range for NH3 emission reduction are presented in Figures 3 and S2. 

294

295 In practice, not all of the abatement options will be operating at full scale all the time. In 

296 order to account for possible malfunctions of equipment, inadequate upscaling from lab 

297 to farm scale, or specific situations where a given technology is just not applicable, we 

298 ran a sensitivity case with 80% of implementation achieved.32 Results of this sensitivity 

299 case are presented in the Supporting Information (Figure S4). This showed that annual 

300 NH3 reduction potentials under selected options ranged from -2-115 Gg NH3 in 2015, 

301 which was equivalent to -0.10-8.79 kg NH3 cow-1 yr-1 (Figure S4), and the combined 

302 measure with diet manipulation, acidification of manure under slatted floors and 

303 vermiculite cover on slurry during storage could remove 182 Gg of NH3 emission from 

304 dairy production in the case year. 
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306 Figure 3. Uncertainty of NH3 reduction potential of emission abatement options. The 

307 respective measures are described in more detail in Section 2.2.

308

309 The present study on the estimation of NH3 emission from the following manure 

310 management stages only accounted for the influence on N retained in manure and not the 

311 potential effect of changes in physical and chemical characteristics of manure.40 

312 Consideration of effects of physical and chemical properties on manure and emission 

313 factors for abatement options is necessary in future. 

314

315 3.2. Cost of the abatement options

316 3.2.1. Technical implementation of the abatement options 

317 Based on the technical implementation assumption and results of any economic data 

318 survey in the present study, the cost of the selected NH3 emission abatement options 

319 ranged from a saving of 15 US$ kg-1 NH3 abated to a cost of 45 US$ kg-1 NH3 abated, 

320 which was equivalent to a saving of 74 US$ cow-1 yr-1 to a cost of 74 US$ cow-1 yr-1 
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321 (Figure 4). The different ratios on kg NH3 abated and an animal basis were due to the 

322 difference of reduction potential per animal under the selected options.

323
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324 Figure 4. Cost of technical implementation of NH3 emission abatement options. Blue and 

325 orange bars are the cost values �on an individual cow basis� and �on a kilogram NH3 

326 abated basis�, respectively. The respective measures are described in more detail in 

327 Section 2.2. A negative cost value refers to cost saving from the selected abatement 

328 measures. 

329

330 For the diet manipulation option, adjusting diet protein would not need any extra technical 

331 equipment, labor or energy input. Therefore, there was no additional implementation cost 

332 for the diet manipulation option. However, a lower crude protein diet may change the cost 

333 of feed due to different ingredients. According to the diets used in the present study, a 

334 lower crude protein diet would be cheaper and the net economic benefit estimated from 

335 the diet manipulation was calculated at 15 US$ kg-1 NH3 abated, equivalent to 74 
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336 US$ cow-1 yr-1 (Figure 4), which is similar to the cost saving estimated in a study by 

337 VanderZaag et al.34 The cost of diet manipulation was determined by the composition of 

338 the feed, price of the ingredients, and the variability of feed costs based on market 

339 fluctuations rather than change of local conditions.26 Cost saving from lower crude 

340 protein in the diet is due to a greater choice of low-protein ingredients with lower prices. 

341 Moreover, the feeding experiment used to provide manure for testing effects of the lower 

342 CP feed also showed milk production of cows with the low protein diet and standard diet 

343 were similar, with both approximately 30 kg day-1, and no significant differences in the 

344 protein content and milk yield between the two diet treatments.35 However, future studies 

345 of long-term effects on milk yield and the related indirect impacts on farm benefits are 

346 still needed to be confirmed.

347

348 Acidification of the manure surface under the housing was a highly efficient measure for 

349 NH3 abatement, with a cost of 1.5 US$ kg-1 NH3 abated, equivalent to 10 US$ cow-1 yr-1 

350 (Figure 4). The difference in the cost of abating the same amount of NH3, using the 

351 vermiculite or acidified vermiculite cover options between slurry and liquid manure 

352 storage, was due to differences in both the total amounts of slurry and liquid manure 

353 produced and in NH3 reduction efficiencies for stored slurry and liquid manure. A 

354 previous study summarized annual costs for a number of cover types, including natural 

355 crust, straw, floating permeable coverage (e.g., hexacover), floating impermeable 
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356 coverage such as clay balls, wood, a tent, concrete and a storage bag,34 and the results 

357 showed a range in costs from 2.2 to 9.8 US$ kg-1 NH3 abated. The price of the cover 

358 materials and the amount of coverage used were the main reasons for the difference in 

359 costs.

360

361 The plastic film cover was the cheapest NH3 abatement option, at only 0.3 US$ kg-1 NH3 

362 abated due to the low price of plastic film, low labor requirement and little investment 

363 input. The abatement cost of compaction of solid manure was highest among the options 

364 investigated at 45 US$ kg-1 NH3 abated. The costs per kg NH3 abated for compaction with 

365 the vermiculite cover or acidified vermiculite cover were much lower.  

366

367 The highest cost of the selected NH3 abatement options was 74 US$ cow-1 yr-1 for the 

368 acidified vermiculite cover for the slurry store, which corresponded to about 16% of the 

369 profit for dairy production in China.21, 36 In the present study, the total cost for technical 

370 implementation of the NH3 abatement options was divided into three parts including 

371 investment, fixed operation and variable operation costs. The variable operation cost of 

372 the selected NH3 abatement options accounted for the largest share of the total cost, 

373 ranging from 46 to 100% (Figure S5). In absolute number, the variable operation costs 

374 ranged from 0.3 to 72 US$ cow-1 yr-1. The investment cost for the acidification option in 

375 animal housing was very high at 4.8 US$ cow-1 yr-1, equivalent to 47% of the total cost. 
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376 Also the variable operation cost, including materials, labor and energy were high for the 

377 acidification option. Replacement of materials with similar chemical and physical 

378 properties with lower prices (e.g. using H2SO4 instead of lactic acid for acidifying the 

379 vermiculite cover) could be an option for consideration. 

380

381 Costs for technical implementation of the selected mitigation options were based on 

382 assumptions about the technical implementation and related economic parameters. As the 

383 equipment and materials were available locally or could be bought online at similar prices 

384 varying only slightly in shipping costs, variation in the cost for technical implementation 

385 on an animal basis could be negligible. For 2015 in China, the technical implementation 

386 of diet manipulation was estimated to directly save 1536 Million US$, while the cost 

387 under other scenarios ranged from 6 to 1538 Million US$ (Figure 5). 

388
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389 Figure 5. Costs and benefits of NH3 emission abatement options for dairy production in 

390 China in 2015. The respective measures are described in more detail in Section 2.2. A 
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391 negative value for �Total technical implementation cost� refers to cost saving from the 

392 implementation. A positive value for �Net economic benefit� refers to net benefit from 

393 the combined costs for technical implementation and cost saving from replacement of 

394 mineral fertilizer, while a negative value refers to a net cost from the cost for technical 

395 implementation and cost saving from replacement of mineral fertilizer.

396

397 3.2.2. Benefit from ammonia emission abatement options

398 Ammonia abatement options help retain more N in manure, and N retained in manure 

399 could replace mineral N fertilizers applied to crop systems. Considering cost saving as a 

400 result of reduction in mineral N fertilizers by using manure, the NH3 abatement options 

401 could potentially generate a profit. Cost saving from fertilizer benefit derived from the 

402 use of extra N retained in manure was estimated at US$0.3-54 million in 2015 in China 

403 (Figure 5). The largest fertilizer cost saving for a single mitigation was with acidification 

404 in housing and the least cost saving was with manure compaction. The large variance in 

405 the cost saving from mineral fertilizer was a direct result of the NH3 mitigation potential 

406 of the different reduction options.

407

408 In addition to the costs and benefits of implementing the selected mitigation options, we 

409 also analyzed the balance. Based on technical implementation costs and total mineral 

410 fertilizer cost saving for the manure management options, only the cost for plastic film 

411 cover on solid manure during storage was so low that the saving in mineral fertilizer cost 

412 would produce an economic benefit (US$ 2.0 Million yr-1) (Figure 5). Using the Monte 

413 Carlo simulation, uncertainties for net economic benefit of the selected abatement options 
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414 were assessed and are shown in Figure S6 in Supporting Information (SI). Taking diet 

415 manipulation, acidification during housing, vermiculite cover on slurry and combined 

416 measures as examples, the balance between technical implementation and total mineral 

417 fertilizer cost saving showed a large regional variation across China (Figure S7). Under 

418 the diet manipulation scenario, the net economic benefit was higher in the hotspots of 

419 NH3 emission (e.g. Hebei, Henan, Shandong, Heilongjiang, Inner-Mongolia, Xinjiang: 

420 Figure S3 and S7). The �combined measures� scenario showed the same pattern as diet 

421 manipulation, because cost saving from diet manipulation dominated the balance. 

422 Nevertheless, acidification of manure under slatted floors in housing and vermiculite 

423 cover on slurry during storage showed an opposite pattern with considerable net costs for 

424 the balance. 

425

426 Quantification of benefits due to avoided health damage costs has been dealt with 

427 separately and has not been analyzed in the uncertainty assessment, as critical additional 

428 assumptions need to be considered. Specifically, the �adjustment factor� describing 

429 potential different perceptions of human life values (expressed as VOLY) is critical. 

430 Using an adjustment factor of 10%, avoided damage costs ranged from 0.4 to 27 US$ kg-1 

431 NH3 emission in the different provinces (Figure S8), with an average of 3.5 US$ kg-1 NH3 

432 emission for all of China in 2015. Using the same cost set as used for Europe,28. 29 the 

433 health damage costs would be much higher at 3.9 to 268 US$ kg-1 NH3 emission in the 
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434 different provinces. Taking diet manipulation, acidification during housing, vermiculite 

435 cover on slurry and combined measures as examples, higher health damage costs occurred 

436 in eastern China, which coincided with higher population densities, reflecting a larger 

437 population exposure and a more developed economy with a potentially greater 

438 willingness to pay for health.37 

439

440 Taking health damage cost (VOLY from the European dataset) into consideration, all the 

441 abatement options investigated in this study, except for solid manure compaction, would 

442 be profitable (Table S5). However, large regional variation in the balance between 

443 technical implementation cost, mineral fertilizer cost saving and health damage cost 

444 saving can be seen in Figures S9 and S10. Except for Inner-Mongolia and Tibet, the 

445 balance for all regions showed a net economic benefit, which was highest in regions with 

446 greatest population and large NH3 reduction potential. With health damage costs reduced 

447 to 10%, rewards were much smaller and only some of the emission abatement options 

448 resulted in net economic benefit (Table S5 and Figure S10), i.e. the cover for liquid 

449 manure or slurry, plastic film cover, acidification and low protein feed. Acidified 

450 coverage of stored slurry and liquid manure showed no net economic benefit due to the 

451 high implementation costs of these options. 

452

453 Potential economic benefits of the abatement options presented in this study depend on 
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454 many factors that are also uncertain. Specifically, the costs of the options, animal numbers, 

455 NH3 emission rate and parameters determining that emission rate affect the overall 

456 economic valuation. Hence, the underlying uncertainties also affect the net economic 

457 benefit of the respective mitigation options. The Monte Carlo simulation and associated 

458 sensitivity tests, which are detailed in SI, help to understand these effects. It becomes 

459 evident that the conclusions remain robust under most conditions. Their impact is small 

460 compared to the assumptions about health damage cost saving based on NH3 reduction. 

461 As already noted, choosing the more health-conscious cost range with the European 

462 dataset may shift the overall cost balance toward selecting almost any of the mitigation 

463 options.

464

465 3.3 Implications

466 Dairy production is projected to contribute 15% of total NH3 emission in China by 2030,5 

467 which might lead to a great environmental and health risk. Previous studies have been 

468 conducted in Europe, mainly focusing on NH3 reduction, related cost and benefit for dairy 

469 production.16, 24, 28, 29 In this study we have made a comprehensive analysis of ammonia 

470 mitigation potentials, technical implementation costs of the selected technologies, and 

471 their related potential benefits based on the models of NUFER and GAINS and the data 

472 from experimental trials and local surveys. This is the first study for this kind of 

473 comprehensive analysis for dairy cattle production in China, which provides consolidate 
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474 support for controlling the air pollution from dairy farm manure management practices 

475 and contributes important knowledge for further developing cost-effective mitigation 

476 measures for NH3 emissions. Our results showed that diet manipulation, acidification of 

477 the manure surface and vermiculite coverage on slurry during storage could reduce 144, 

478 106 and 65 Gg NH3, respectively, with economic benefits of 4.4, 1.1 and 0.6 billion US$, 

479 respectively, from Chinese dairy production in 2015. However, our estimation of the 

480 benefits remains conservative and incomplete. 

481

482 Atmospheric NH3 is not only a precursor to particulate matter (PM), which negatively 

483 affects human health � an issue that has been considered in this analysis. It is also a 

484 precursor for tropospheric ozone, and can decrease plant productivity.38 Nitrous oxide 

485 (N2O), the third most important greenhouse gas, can be produced as a result of NH3 being 

486 deposited on soils.39 Also global warming effects on ecosystems are contributed to by 

487 ammonia emissions.39 These effects and the potential benefits of avoiding them have not 

488 been integrated in this study. Reducing protein levels in animal diets could directly lower 

489 the cost of animal production, while a change in diet ingredients also poses an opportunity 

490 to reduce potential environmental damage from the fodder production, processing and 

491 transportation sectors.40, 41 Considering all the elements mentioned above, benefits further 

492 increase over costs, consequently the mitigation measures might be even more profitable 

493 (population benefit rather than profit to farmers). Moreover, a regional analysis pointed 
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494 out that hotspots of NH3 reduction potential coincided with a higher net benefit, implying 

495 that mitigation of NH3 emission via most of the selected measures is cost-effective and 

496 needs urgent attention, especially in the more developed regions of China with large 

497 population densities. Based on the above, more effort to promote NH3 reduction from 

498 dairy production is needed and is also economically beneficial, even if only on a national 

499 scale rather than for an individual farm. It is likely that this statement holds true for 

500 livestock production in general. 

501

502 Uncertainties in our analysis are mainly related to the input values and parameters used 

503 in the GAINS and NUFER models used for emission calculations. As shown above, 

504 results are robust beyond these uncertainties. The translation of reduction efficiencies for 

505 the mitigation measures from lab scale to farm and regional scale is provided with 

506 uncertainty estimates in this study. Some studies on reduction efficiencies have been 

507 performed,16 but only few of them for Chinese conditions. Hence there is insufficient data 

508 at farm scale to provide accurate estimates for different regions of China. Therefore, the 

509 results from the laboratory trials were considered to be a reliable source of information 

510 about reduction efficiencies for application in Chinese dairy production systems, and the 

511 present study with uncertainty analysis provides an important contribution to close this 

512 knowledge gap. Based on the methods of technical implementation used in this study, all 

513 the selected measures should be able to be applied to all regions in China. For these 
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514 reasons the results from the present study could represent an optimized reduction potential 

515 for dairy production in China.

516
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