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Abstract  12 

Water scarcity has become a critical environmental issue worldwide. It has increased substantially in 13 

the last decades in many parts of the world, and it is expected to further exacerbate in the future 14 

driven by socio-economic and climatic changes. Several solution options could be implemented to 15 

address this growing water scarcity, including supply and demand-side management options that span 16 

the water, energy, and agricultural sectors. However, these options involve tradeoffs among various 17 

societal objectives, especially when the interactions between these objectives are not properly 18 

considered. This paper provides a review of the impending water scarcity challenges and suggests 19 

assessing water scarcity solution options using a nexus modeling framework that links well-established 20 

sectoral-oriented models.  21 
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Highlights  24 

- Water scarcity is expected to increase substantially in the coming decades 25 

- A nexus thinking approach is required for assessing water scarcity solutions 26 

- A nexus modeling framework linking well-established models is presented 27 
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1. Introduction  34 

Global water withdrawals have increased significantly throughout the twentieth century and during 35 

the first decades of this century. As a result, many basins around the world have experienced pervasive 36 

water scarcity conditions and related management challenges [1, 2]. These challenges are expected 37 

to become more critical in the coming decades, driven by impending socio-economic developments 38 

[3**]. At the same time, the supply of freshwater resources to meet the ensuing increase in water 39 

demand is subject to large uncertainties due to the impacts of changing climatic conditions, water 40 

quality degradation, and increasing demand for environmental flow protection. As such, policymakers 41 

in vulnerable basins need to adapt management practices for securing reliable future water supply 42 

that can meet the demands of different sectors. However, the choice of water management options 43 

is often associated with tradeoffs across multiple societal objective such as agricultural production, 44 

energy supply, and ecosystem health, as well as across space and time [4**].  45 

In recent years, the concept of nexus thinking has been gaining ground, providing an opportunity 46 

to shift from a sectoral focus on production maximization to improving cross-sector efficiencies [5]. 47 

The nexus approach is increasingly applied in the context of the linkages among water and food, but 48 

also including energy, ecosystems, and economy. This approach gives equal importance to each sector 49 

and aims to better understand the tradeoffs and synergies involved in meeting future demands of 50 

interconnected resources. Water is a key sector in the nexus system, given that all the other sectors 51 

are affected either directly or indirectly by water availability. Under such circumstances, future water 52 

modeling tools should be able to concurrently integrate the different sectoral objectives and resource 53 

constraints (i.e., a nexus view), rather than looking at the water sector in isolation.   54 

This paper provides a review of the water scarcity challenges in the coming decades and suggests 55 

a nexus modeling framework that could address the identified challenges in an integrated way across 56 

scales and sectors. Moreover, the paper describes the benefits of and challenges facing the 57 

development of such a framework. The paper is organized as follows. First, section 2 provides an 58 

overview of the future water scarcity challenges. Next, section 3 highlights the need for a nexus 59 

modeling approach to assess water scarcity solutions and section 4 describes the proposed modeling 60 

framework. Finally, section 5 summarizes the main conclusions.     61 

2. A challenging future for water resources   62 

Water scarcity has become a critical environmental issue worldwide. The reasons are the large 63 

increase in global water withdrawals in the last century from 600 to 3900 km3, driven by the intensive 64 

growth of population and income, coupled with a questionable performance by regional water 65 

governance [6, 7, 8]. This huge abstraction of water resources has resulted in many regions undergoing 66 
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pervasive water scarcity conditions such as in the western part of the United States, parts of the 67 

Middle East, northern Africa, southern Europe, parts of Australia, northern China, as well as many 68 

parts of Northwest India and Pakistan [9]. Water resources are being heavily depleted in these regions 69 

and their quality degraded, with obvious impacts on river and groundwater systems and valuable 70 

aquatic ecosystems [10]. The scarcity problems were induced at first by extractions of surface waters, 71 

with the level of over-extraction (i.e., extractions that occurred at the expense of environmental flow 72 

requirements) amounting to 270 km3 per year in 2010 [11]. But recently water scarcity is worsening 73 

because of the unprecedented depletion of groundwater. Between 1960 and 2010, global 74 

groundwater extractions increased substantially from 372 to 952 km3 per year, pushing depletion (i.e., 75 

extractions in excess of natural recharge) from 90 to 304 km3 [12]. The consequence of this overuse 76 

of water resources has been a severe biodiversity decline in aquatic ecosystems that exceeds by far 77 

that of terrestrial and marine ecosystems [13].  78 

Water scarcity is expected to further exacerbate in the coming decades due to the combined 79 

effects of growing water withdrawals, the impacts of climate change, increasing demand for 80 

environmental flow protection, and water quality degradation (Figure 1) [3**, 14*]. Future projections 81 

from the Shared Socioeconomic Pathways (SSPs) indicate that by 2050 the global population will grow 82 

to 8.5-10 billion people (Figure 2a) and income will be 2-4 times higher than it was in 2010 (Figure 2b) 83 

[15, 16]. This considerable increase will bring a corresponding rise in global water demand [17]. Global 84 

water withdrawals of domestic and industrial sectors are projected to reach 1980-2700 km3 per year 85 

by 2050, depending on SSP scenarios, which is an increase of 55 to 113% compared to the present 86 

water withdrawals (1270 km3 per year in 2010) (Figure 2d) [18]. Moreover, food demand is also 87 

expected to increase. For example, worldwide cereal and meat demand is projected to increase 88 

between 2005 and 2050 by 50 and 80%, respectively. Agricultural production is thus required to 89 

expand and intensify to keep up with food demand, with irrigated agriculture playing a major role. At 90 

present, 17% of agricultural lands are irrigated, yet they account for 40% of global food production 91 

[19]. Irrigation water withdrawals amount to 2490 km3 per year, representing about 70% of the global 92 

water withdrawal [20] and accounting for about 90% of the global water consumption (i.e., water 93 

withdrawal minus return flow) [21, 22]. Recent projections of future change in irrigated area from the 94 

Global Agro-ecological Zones (GAEZ) model according to SSP scenarios indicate that global irrigated 95 

area will expand 12-20% by 2050 compared to 2010 (Figure 2c) [23]. This land expansion will increase 96 

irrigation water withdrawals that could reach between 2945 and 3200 km3 per year in 2050, which is 97 

an increase of 18-29% compared to 2010.  98 

At the same time, the water supply is subject to large uncertainties due to the impacts of changing 99 

climatic conditions, water quality degradation, and environmental flow requirements. Climate change 100 
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is expected to affect water resources availability in all parts of the world [9]. Significant reductions in 101 

freshwater supply are projected in Mediterranean area and in the Middle East, but also in Central and 102 

South America and parts of Australia. These reductions of water availability will be combined with 103 

increases of irrigation water requirements. In some other regions at high northern latitudes, in eastern 104 

Africa and the Indian subcontinent, climate change will likely increase water availability, which could 105 

in principle support the expansion of the water supply system, although substantial investments in 106 

infrastructure would be required [24]. Moreover, climate change is expected to bring more extreme 107 

and frequent droughts in many parts of the world [25]. During recent decades, global nutrient 108 

pollution from both diffuse (e.g., fertilizers) and point (e.g., sewage systems) sources has been 109 

increasing rapidly [26]. Considering future projections of cropland expansion and intensification, 110 

population growth, and urbanization, global nutrient pollution is expected to keep increasing, causing 111 

further degradation of downstream water quality and eutrophication of water bodies [27]. Emerging 112 

demands for environmental protection in the form of secured minimum flows for aquatic ecosystems 113 

will put additional pressure on water supply in the future. Jagermeyr et al. [28*] indicate that by 114 

satisfying environmental flow requirements, half of the globally irrigated cropland would face 115 

production losses of more than 10%, with losses reaching 20–30% of total production in some regions 116 

such as Central and South Asia.  117 

 118 
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Figure 1. Median of the Water Scarcity Index (WSI) for 2010 (top row) and 2050 (middle row) derived from a 149 
multi-model, multi-scenario ensemble of 45 global water scarcity projections. WSI is the ratio of total 150 
withdrawals for human use to total available surface water resources. Regions are considered water-scarce if 151 
the ratio is between 0.2 and 0.4, and severely water-scarce if the ratio is greater than 0.4. All grid points with 152 
the WSI being below 0.1 are considered as non-water scarce and are masked. Grid points with very low average 153 
water demand are also masked. Relative changes [%] in the median of the WSI between 2010 and 2050 are 154 
displayed in the bottom row. For irrigation water demand projections, historical values (the year 2000) are used 155 
for irrigated areas and irrigation efficiency [3**]. 156 
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 179 

Figure 2. a) Projections of global population between 2010 and 2050 by SSP scenario taken from KC and Lutz 180 
[15]. b) Projections of per capita Global Domestic Product (GDP) between 2010 and 2050 by SSP scenario taken 181 
from Dellink et al. [16]. c) Projections of global harvested irrigated area between 2010 and 2050 by SSP scenario 182 
based on updated calculations using GAEZ model [23]. d) Global domestic and industrial water withdrawals 183 
between 2010 and 2050 by SSP scenario taken from Wada et al. [18]. 184 
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3. A need for a nexus modeling approach to assess water scarcity solutions  194 

A wide range of solution options could be implemented to address the growing water scarcity, 195 

including supply- and demand-side management options that span the water, energy, and agricultural 196 

sectors. The supply options are investments in water infrastructure and advanced treatment 197 

technologies (e.g., storage facilities, water transfer, water recycling and reuse, and desalination). The 198 

demand management options are improvements in water-use efficiency (e.g., use of more efficient 199 

irrigation systems and domestic devices, reducing leakage in water infrastructure), changes in water 200 

allocation mechanisms (e.g., use of market-based allocation), improvements in crop water 201 

productivity (e.g., use of new cultivars or higher efficiency of nutrient application), production 202 

reallocation and virtual water trade (e.g., reducing the production of water-intensive products and 203 

relying on imports from areas with abundant water resources), and reducing water demand through 204 

lifestyle changes related to food and energy consumption (e.g., adopting healthy diets, reducing food 205 

waste), among many others [4**, 29, 30, 31, 32, 33, 34]. However, these options involve tradeoffs 206 

among various societal objectives, especially when the interactions between these objectives are not 207 

properly considered. For example, Dalin et al. [35**] showed that international trade aiming to 208 

achieve food security triggered large irrigation-based groundwater depletion in many parts of the 209 

world threatening water security. Liu et al. [36**] found that pursuing sustainable irrigation may 210 

constrain achieving food security and other environmental goals due to higher food prices and 211 

cropland expansion. Despite these tradeoffs, synergies among options also exist. For instance, 212 

advancements in treatment technologies have increased the energy efficiency of wastewater 213 

treatment plants, thereby reducing energy use while increasing water supply for irrigation [37], and 214 

development of drought-tolerant crops could at the same time reduce irrigation water use and save 215 

energy used by irrigation systems [38].  216 

From a modeling perspective, significant efforts have been made to analyze nexus issues from 217 

various aspects including calculation of resource flows and their dependencies, assessment of 218 

technology and policy applications, and quantification of system performance. Mathematical 219 

programming with optimization [39] or simulation models [40] have been used to create tradeoff 220 

frontiers between water supply and quality, irrigation production, power generation, economic 221 

benefits, and environmental requirements. Embedded resource accounting approaches have also 222 

been used, such as life cycle and footprint assessment methods [41, 42], which reveal the hidden 223 

linkages between nexus resources, the challenges facing the achievement of some of the Sustainable 224 

Development Goals (SDGs), and the tradeoffs and synergies throughout the value chain [43, 44]. 225 

Another method is Computable General Equilibrium (CGE) modeling to evaluate the impacts of 226 

policies on the entire nexus system, rather than focusing only on how economics affects one sector 227 
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[45]. Integrated assessment models have been employed to establish tradeoffs between climate 228 

change mitigation, energy system transformation and water supply [46], and between agricultural 229 

production and water scarcity [47]. Other nexus methods that have been used in the literature include 230 

system dynamics and agent-based modeling, econometric analysis, and ecological network analysis 231 

[48].  232 

Despite significant advances in nexus modeling, there are still many challenges that face the 233 

development of efficient nexus tools capable of concurrently integrating the different sectoral 234 

objectives and resource constraints. One important challenge is related to methods of analysis that 235 

vary in response to the scale, sectors, and research priorities of a specific nexus system. Specifically, a 236 

higher degree of data aggregation is required as the system scale moves up. Conversely, more detail 237 

of the processes of nexus system should be represented, as the system scales down. However, the 238 

ability to model at multiple spatial scales and across sectors is increasingly necessary given that local 239 

conditions constrain nexus supply systems, while some policy interventions such as international trade 240 

and transboundary agreements can only be assessed at global and regional scales. Moreover, 241 

solutions identified at the large scale need to be validated in the local context given that management, 242 

policy, and investment decisions are made at national and sub-national levels. This level of complexity 243 

indicates that no single model or tool could cover the entire nexus system challenges [49]. Therefore, 244 

there is a pressing need for new tools and methods that connect inputs and outputs between well-245 

established models, followed by analysis of the results in an integrated way. The CLEWS framework 246 

(climate, land-use, energy and water strategies) [50] goes some way towards this and is being tested 247 

for various locations. It included the use of publicly available tools such as LEAP and WEAP 248 

(respectively, Long-range Energy Alternatives Planning System and the Water Evaluation And Planning 249 

System). Nevertheless, integrating models across scales to enable decision-makers to distil 250 

information and consider the impacts at a range of scales, is still required [51].   251 

4. A nexus modeling framework   252 

This paper proposes the development and use of a nested multi-scale and cross-sector modeling 253 

framework integrating various spatial scales (from local to global) and sectoral models (including 254 

water and food, but also energy, ecosystems and economy) to provide a broader perspective for the 255 

design of water scarcity solutions consistent across sectors and scales (Figure 3). In recent decades, 256 

hydro-economic models (HEMs) have emerged as an important tool for informing basin-scale water 257 

resources planning because they include an integrated representation of the main features of water 258 

resource systems [52]. These features are usually represented using a set of physical and management 259 

constraints, with optimization algorithms used to choose a set of feasible decisions from the 260 

perspective of specific policy objectives [53]. Cai et al. [54] indicate that HEMs can be naturally 261 
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extended to modeling nexus systems by adding physical-economic relationships of food and energy 262 

at the large scale and linkages to more sectoral-oriented models. Our proposed framework places 263 

HEMs in the center of the nexus tool, as a linker platform for different models. 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

Figure 3. The proposed nested multi-scale and cross-sector modeling framework for integrating Food-Water 275 
(FW) nexus solutions. ECHO is the Extended Continental-scale Hydro-economic Optimization model. CWATM is 276 
the Community WATer Model. Dashed-lined boxes denote intermediate models used to generate input data, 277 
double-lined box represents the hydro-economic model, and the solid box indicates the results. Dashed arrows 278 
denote input data or feedbacks, and solid arrows indicate main input data needed for the optimization. Captions 279 
in red indicate the sector and spatial resolution covered by each model.    280 

  281 

An example of such extension is the Extended Continental-scale Hydro-economic Optimization 282 

(ECHO) model developed by Kahil et al. [4**]. ECHO covers an extensive number of subbasin units 283 

within a reduced-form transboundary river network and combines various components, including 284 

hydrology, agriculture and energy uses, and economics into a holistic large-scale modeling framework. 285 

ECHO minimizes the total investment and operating costs of a wide variety of management options 286 

that span the water, energy, and agricultural systems, in order to satisfy sectoral demands of these 287 

resources over a long-term planning horizon (e.g., a decade or more) across subbasins at a continental 288 

scale. ECHO is solved in its entirety where information between components, including feedbacks, is 289 

transferred endogenously. A certain number of simplifying assumptions related to the representation 290 

of complex processes and data were used in defining the structure of ECHO. Despite these limitations, 291 

ECHO can identify a broader solution space, achieving overall efficiency of water, food and energy 292 

resources utilization and producing synergistic benefits across large spatial domains.  293 
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ECHO and similar HEMs could benefit in the future by establishing linkages to different 294 

complementary sectoral-oriented models that operate at different spatial resolutions such as the ones 295 

shown in the proposed modeling framework in Figure 3. For instance, linkage to global gridded 296 

hydrological models (GHMs), such as the Community Water Model (CWatM) that represents 297 

hydrological processes at high spatial resolution (e.g., 0.5° or 5’) [55], provides a unique opportunity 298 

to tackle data limitation for many ungaged river basins (e.g., in Africa). GHMs generate information 299 

on hydrologic flows entering and leaving the modeled domain and relevant internal inflows such as 300 

runoff and groundwater recharge as well as water quality parameters. GHMs, however, do not 301 

account for the economic value of water, with water demands usually represented by fixed water 302 

requirements. This represents a static view of water demands which can lead to misguided decisions. 303 

HEMs are designed to account for the economic value of water by seeking least-cost options for 304 

meeting growing and changing demands for water. These optimized outcomes could be incorporated 305 

into GHMs to re-simulate hydrological impacts. For instance, Blanco-Gutiérrez et al. [56] linked an 306 

annual farm-level agro-economic model to a monthly basin-level hydrological model using a data 307 

exchange interface and showed that this linkage enabled a better representation of water resource 308 

constraints in the economic model and a more realistic farmer behavior in the hydrological model. 309 

Furthermore, linkages of HEMs to models representing food and energy markets at regional or global 310 

scale could also bring price feedbacks to the local scale, leading to changes in food and energy 311 

demands that could impact agriculture and energy sector developments and their ensuing water 312 

demands. HEMs could provide these global models with information on the cost of water supply as 313 

well as the scarcity value of water that would likely influence initial technology choices. An illustration 314 

of such a possibility is the study of Vinca et al. [57] that developed an engineering-economic model 315 

representing water and energy technological choices and resources availability at the basin-level 316 

linked to the MESSAGEix energy model representing global energy markets and climate mitigation 317 

targets.  318 

Agent-based models (ABMs) represent an emerging bottom-up approach to describe 319 

heterogeneous behaviors of numerous agents in one system that interact with and influence each 320 

other, learn from their experiences, and adapt their behaviors [58]. Linkage to ABMs could provide a 321 

more realistic and effective representation of complex social systems in HEMs (e.g., water sharing 322 

mechanisms between agents, water allocation priority among sectors, reservoir operation rules), 323 

beyond the optimized behavior. For instance, Khan et al. [59] developed a coupled agent-based and 324 

hydrologic-agronomic models to simulate the impacts of water resource management decisions on 325 

the food-water-energy-environment nexus at basin scale. The procedure involved delineating the river 326 

basin into homogenous water management units (i.e., autonomous agents) making decisions 327 
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concerning reservoir operation and irrigated area in one time step within the ABM. These decisions 328 

are then used as input for the calibrated hydrologic-agronomic model that simulates the hydrology 329 

and crop yields for the next time step at the sub-basin level, which are send back to the ABM to update 330 

decisions for that time step. The results of this study showed the reciprocal interactions and co-331 

evolution of the natural and human systems providing a holistic understanding of the nexus system. 332 

Lastly, while solution options implemented at the sectoral and local (micro) levels could lead to 333 

desirable results, micro considerations may also lead to suboptimal outcomes, from a social point of 334 

view. This point is demonstrated in various studies on economy-wide considerations, which indicated 335 

that, for example, reforms in sectors other than agriculture have major impacts on rural households’ 336 

income, and water reforms designed for irrigated agriculture without taking into account reforms in 337 

non-agricultural sectors, may lower overall productivity of irrigation water and have negative impact 338 

on the other sectors competing for water [60]. Yu et al. [61] linked a HEM to a CGE model to investigate 339 

solution options to deal with climate change impact on water resources in the Indus basin. This 340 

coupled model enabled not only the possibility to address efficiency aspects of options, but also their 341 

equity and distributional implications. 342 

The development of a complex modeling framework such as the ones shown in the proposed 343 

modeling framework in Figure 3 is challenging due to extensive data requirements, different model 344 

structures, and spatial and temporal resolutions. Wada et al. [18] indicate that using different GHMs 345 

to estimate domestic and industrial water withdrawals led to divergent results, even when input data 346 

were harmonized, because of the different modeling approaches. For instance, GHMs and ABMs 347 

usually use simulation to represent complex systems with nonlinear physical or institutional processes, 348 

while HEMs and global food and energy market models use optimization techniques to identify 349 

allocation and operation decisions. Simulation and optimization could perform well together, by using 350 

optimization to identify promising solution strategies and simulation models to test and refine these 351 

in more detail. One important challenge facing the linkage of models is the different spatial and 352 

temporal resolutions. For instance, GHMs run at grid scale on a daily time step, while HEMs are 353 

typically developed at basin scale with monthly or yearly time scales. Food and energy market models 354 

and economy-wide models are developed at country or regional level with yearly time scale. 355 

Accommodating these different spatial and temporal resolutions would require developing 356 

intermediate exchange interfaces that could scale input and output data to the modeled domain. As 357 

a final remark, linking different complementary models could increase the quality of the nexus tool, 358 

but it could also introduce obstacles related to the high model complexity, user-unfriendly interface, 359 

and extensive data requirements [62, 63]. Sustainable implementation of any nexus tool will require 360 



12 
 

greater accessibility such that they may be more widely deployed by practitioners, as well as 361 

harmonization of modeling approaches and input data.  362 

5. Conclusions  363 

Water scarcity has increased substantially in the last decades in many parts of the world, and it is 364 

expected to further exacerbate in the future driven by increasing water withdrawals and shrinking 365 

water availability. A wide range of solution options could be implemented to address this growing 366 

water scarcity, including supply- and demand-side management options spanning the water, energy, 367 

and agricultural sectors. These sectors are intertwined, and tightly linked also to other important 368 

societal objectives such as ecosystem health and climate system. Water is a key feature in nexus 369 

system, given that all the other features are affected either directly or indirectly, by water availability. 370 

Under such circumstances, future water modeling tools should be able to concurrently integrate the 371 

different societal objectives and resource constraints to identify a broader solution space for the 372 

interconnected resources. This paper suggests addressing this complex problem using a nexus 373 

modeling framework that connects inputs and outputs between well-established sectoral-oriented 374 

models. The application of this framework to assess water scarcity solutions is currently limited, but 375 

promising for future research. 376 

 377 
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