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Abstract

Recently, China has been increasingly producindgingefrom alternative
resources, especially coal. Technological learnémgrgy consumption reduction, and
environmental policies/regulations will have a gr@apact on the economic and
environmental values of coal-to-olefin (CTO) pragedHow should China configure
its future olefin industry considering these fasfL.ittle work has been performed to
explore this question. This study develops a sysiptimization model to analyze the
optimal configuration of China’s olefin industry der different scenarios of
technological learning, energy consumption reductioand environmental
policies/regulations. Our results show that insaénarios, the oil-to-olefin process
will remain dominant in China’s olefin industry the next two decades, and with
technological learning, the CTO process is comigetitn China’s olefin industry,
especially when COemissions are not controlled. To control the,@&missions of
China’s olefin industry, our study indicates thegjuiring CTO implementation along
with carbon capture and storage (CCS) would havle éoonomic and environmental
value compared with imposing a carbon tax (assud$#t ZQ from the year 2021).
However, policymakers should be cautioned aboutitieertainties and risks of CCS.
This study also provides some insights for those wle considering investing in
China’s olefin industry.
Keywords: Olefin industry; technological learning; energy somption; CCS;

carbon tax.

1. Introduction
Olefins are used mainly in the production of polyspewhich drive the

development of organic chemicals [1]. Ethylene prapylene are the most important
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olefins; in 2015, the consumption of these materialChina was approximately 4.03
x 10 t and 3.18 x 10t, respectively [2]. These equivalent consumptiates are
expected to increase as a result of the increasseiglobal population combined with
rising living standards [3]. Before 2010, olefiroduction in China depended mainly
on crude oil. Recently, China has been producirgfird increasingly from other
resources (e.g., coal, methanol, and propane)cidlgecoal, for which China has
rich reserves. More than 23 coal-to-olefin (CTOant¢ (see Table Al) are already
under operation or planned in China. Due to its glexity, a CTO plant requires high
capital investment cost and consumes consideratdegg which is roughly double
that of an oil-to-olefin (OTO) plant [4]. Furthermay a CTO plant produces huge £0
emissions, which are estimated at approximately0G~der ton of olefin, whereas the
emissions for an OTO plant are approximately 1rttpe [5]. Thus it makes sense to
address the questions of how China should configsréuture olefin industry and
what kind of policies should be implemented to cointarbon emissions if more
olefins are produced via CTO in China.

Researchers have conducted considerable technoratmanalyses of different
olefin production technologies, such as estimativgfuture costs of different olefin
production technologies with bottom-up techno-eeoitoengineering model§7-10]
that consider possible technical innovations, enogos and energy use. A common
argument against coal for olefin production is thigh capital investment costs,
energy consumption and huge £@missions. One prominent example where this
argument does not hold is Shenhua Energy’s 20152846 Annual Report, which
states that CTO has continued to make profits teegipe decline in the oil price since
in the middle of 2014 [12]. However, the succes€®D technologies did not come
from nowhere. Olefins began to be produced front ico@hina in 2010, thus leading
to the first successful construction and commisamf a CTO plant in China [13].
China’s CTO production capacities have grown frorh 2 16 t-a* in 2010 to the
current rate of 1.50 x 1@-a*, which is mainly due to favorable government fekc
(see Table Al in appendix). The ethylene and peylcapacity from CTO
technologies has been estimated to account folyn28f6 of the national olefin

production capacity in China in 2020 [14]. Sincel@capital investment costs of

! Bottom-up engineering estimates are based on ejymgements on the potential development of

disaggregated components of power plants [11].



CTO technologies have decreased gradually due tto technological progress and
learning in the production of olefins [4]. Aspeds technological learning can be
captured by the so-called experience curve appfodible experience curve method is
based on the empirically observed phenomenon tmatcbsts of a technology
decrease by a constant fraction with every doubtih@ither installed capacity or
exercised activity [20]. For many decades, the B&pee curve has been one of the
methods used to estimate the future costs of erteaiyologies (e.g., see [11,15-18,
21-22]). Novel technologies for olefin productioreed to be viable from an
environmental perspective as well as from a tec@mnoe [5]. Researchers have used
different methods to accessing environmental ingpadta petrochemical industry,
such as LCA (life cycle assessment), material flamalysis (e.g., see [23]),
environmental footprint analysis (such as wateergyy and carbon footprint) (e.g.,
see [24]), and so on. In this study, we mainly atersthe carbon emission of each
olefin production process.

Although existing techno-economic analyses indtatbat future capital
investment costs in CTO technology may declineughotechnological learning, little
work has been done to explore how China shouldigord its olefin industry in
terms of different production technologies and plagential carbon emissions of the
industry. Given this knowledge gap, the main aintho$ paper is to explore these
guestions by developing a system optimization modfi€hina’s olefin industryl'he
model is developed from a long-term perspective aings at minimizing the total
costs of the industry while satisfying a serieconfstraints, e.g., demand constraint
and capacity limitations.

Configuring China’s olefin industry system enta#saluating the costs of
different technology paths. The costs of differathnologies are influenced by many
factors, such as the feedstock price, technolodeatning, energy consumption,
scaling up of individual units, and technology lacaion (the cost difference of a
technology in different nations and districts) [1% 25-27]. The impact of feedstock
prices (such as dynamic oil and coal prices) orctrdiguration of the olefin industry
has been analyzed in our previous work [28]. Amotiger aspects, empirical studies

have shown that technological learning and enemysemption reduction play

2We use the term experience curve instead of legrourve because the latter is typically used for

approaches that quantify the decrease in labos cosy (e.g., Junginger et al. [19]).



important roles in cost reductions in emerging tedhgies. For example, Yu et al. [29]
showed that learning is the most important facssoaiated with the larger turbine
price reductions in China. Ren et al. [6] estimaaeéduction potential of 20—30% for
the capital investment costs of coal chemical glaahd cited the effects of
technological learning and economy of scale inrtlsudy period (2010-2050).
Energy consumption reduction is another importaay wo reduce production costs
and increasing earnings, especially in times oh l@gergy prices [30]. For example,
Saygin et al. [26] and Rubin et al. [27] suggeglabal energy consumption reduction
potential of 20% at the country level if Best PiaetTechnologies (BPTs) were
implemented in chemical processes. BPTs includestiaéing up of individual units,
higher levels of process integration, combined head power (CHP) and
postconsumer plastic waste treatment, and techpddeglization. Future CTO plants
in China are expected to achieve a specific eneogggumption reduction of 18% by
2020 through BPT and research and development (R&its [2, 31-32]. A study in
2018 found that the straight power supply schemeelatively feasible and better
solution in order to meet the requirements of epearfjiciency [33]. Of course, a
number of concerns about the uncertainties and p$IBPTs remain to be addressed,
especially when trying to implement the BPTs byorefing those existing ones.
Therefore, in our study we also did a sensitivitplgsis on the reductions rates (0%
to 18%) of energy consumption (see subsection 44y short word, these studies
imply that technological learning and energy congtiom reduction will play an
important role in China’s olefin production indystrFor this reason, this study
constructed four different future scenarios basadhiy on technological learning and
energy consumption reduction associated with CTiae fechnological learning and
energy consumption reduction of oil-to-olefin (OT@)ethanol-to-olefin (MTO), and
propane dehydrogenation (PDH) technologies arénc@itded in the analysis.

The first scenario is treated as a business-ad-usis@ in which the energy
consumption reduction and the capital investmest cbCTO remain unchanged (i.e.,
not considering technological learning). In thes®tscenario, technological learning
is calculated as proposed by McDonald & Schratter@nd34] and Zhou et al. [35],
while energy consumption remains unchanged. In tiied scenario, energy
consumption is reduced as proposed in MIITC [2] gexhnological learning is not
considered. In the fourth scenario, technologiealring and energy consumption

reduction are combined. We intend to compare theltseunder these four scenarios.



This study does not aim to predict the developneé@hina’s olefin industry but
rather to explore the optimal configuration (maifdy capacities of different olefin
production technologies) of China’s olefin industmpder different scenarios of
technological learning and energy consumption redaoc Although a number of
techno-economic analyses have been performed fferatit olefin production paths
in China, little work has been done to explore dpgimal configuration of China’s
olefin industry in terms of different productiorctenologies. The choice of the system
optimization model in this study can provide inggylon this question as well as
implications for relevant policymaking.

The rest of the paper is organized as follows. i&ec2 presents the system
optimization model. Section 3 presents the initialues of parameters. Section 4
explores the optimal configurations of China’s wlehdustry under the four defined
scenarios and their corresponding system costs @@d emissions without
considering controlling COemissions. Section 5 analyzes the impact of aocarx
and a carbon capture and storage (CCS) regulaaisedoon the four defined scenarios.
Section 6 discusses the validation/verification amdtations of the study. Section 7

presents the conclusions.

2. System optimization model considering technologica¢arning

2.1. Model framework

Our model framework follows that of the MESSAGE (@&b for Energy Supply
Strategy Alternatives and their General Environraknimpacts), which was
developed originally by the International Institdte Applied Systems Analysis and
was enhanced by the International Atomic Energynsge The MESSAGE provides
a framework for representing an energy system thatludes important
interdependencies from resources refineries, imsportlifferent conversion
technologies, transport and distribution to thevgmion of energy end-use services,

such as heat, motor fuel, and electricity [36-38].

As shown in Fig. 1, in this study, following the MEAGE, the olefin industry is
structured as a supply network (physical flow mpdélat includes four levels:
resource, primary, secondary, and final. The ligkamong different levels is realized



using conversion technologies (refinery, olefinnplaransportation, distribution, etc.).

Details of the four levels are introduced as fobow

* Resource level: Resources of the system includeedtiencoal, crude oil and
methanol, imported propane (the main four resoumesmentioned in the
introduction), and imported olefin.

* Primary level: The primary level includes threenfigrof products (coal, oil, and
propane) that are either refined from resourcasported from abroad.

* Secondary level: The secondary level includes mdefionverted from coal, oil,
methanol, and propane using different technologies,CTO, OTO, MTO, and
PDH.

* Final level: The final level denotes the distriloatiof olefins to olefin consumers
and is identical to the demand of olefins.

Resourse Primary Secondary Final
CTO
Coal Plant
Coal Refinery
OoTO
. Oil Plant
Crude oil Refinery
Transmission
MTO and —
Plant Distribution
Methanol Nllethanol
mport
PDH
Propane Plant
Propane Import
Olefins
Olefins Tmport
Coal Oil Propane Methanol Olefins Olefins

Fig. 1. Model framework

2.2. Mathematical formulation of the model
The objective function of our model is to minimiee total costs of China’s
olefin industry, including the investment costsedstock costs, and operation and
maintenance (O&M) costs. All costs that will ocouithe future are discounted with a
fixed discount rate.
The model is formulated as follows. The demanexogenous and increases

over time as shown in Eq. (1):



D'=D°(1+a) (1)
wheret is the time period (year)D'denotes the demand at tiineD® denotes the

initial demand, andr is the annual increasing rate of demand.
Let N (i0N,i=12,..,%) denote the set of technologies, including OTOOCT

MTO, PDH, and olefin import, and lgf denote the annual new expansion capacity
of technology at timet. Then, the total installed capacity of technolpgy timet,

denoted byC', can be calculated with Eq. (2).

max@_t C°0) t<ct
Z-i
ot -
C= y) + max#t C’0) ct <t<r7 +1l+ct (2)
— T,
S
Dy +max#C,°,O) t>7 +1+ct,
j=t-1; -t L

whereC? denotes the initial installed capacity of techigyi 7; denotes the plant

. . . . . .-t
life of technology, Ct denotes the construction time of technolng&ndr'—C0
T

i
denotes the remaining initial capacity of techngliog

The cumulative installed capacity of technoldglyy timet, denoted byE', can

be calculated with Eq. (3)

t — =0 th
E=F+2C. (3)

(=51
where E° denotes the initial cumulative installed capacifytechnologyi, which

means the cumulative experience on technaldagforet =1.

Technological learning is based on experience, kwhi& quantified by the
cumulative installed capacity, and thus future steent cosCF' is a function of the
cumulative installed capacity as shown in Eq. (4).

t CF’ i=1,34
CR = : , (4)
CFiO X (E|t—l)—b| i = 2
where i =1,3,4 denotes OTO, MTO, and PDH, respectively 2 denotes CTO,

which has the potential for technological learni@f;' denotes the investment cost of

technology in timet ; cF °denotes the initial investment cost of technoliadl - 2"



is technologyi 's learning rate, which means the percentage redudh future

investment cost for every doubled cumulative cagaand 2" is the progress ratio.
According to Yelle [40] and Li et al. [41], the kméng rate of a technology can
be described in Eqg. (5):

LRnst,total = alLRl,inst + GZLRZ,inst oo t ai I‘F\),inst ' (5)

where LRns, s denotes the learning rate of technologs investment costQ
denotes the portion of investment cost of ithie subunit in the total investment cost
of the technology, and LR ins is the learning rate of investment costi ¢ subunit.

In this study, CTO includes three main subunit @sion technologies, namely, coal
gasification, methanol synthesis, and MTO.

To the best of the authors’ knowledge, althougheassh on CTO has been
performed for a long time, few commercial operatidrave been implemented in
countries other than China, although South Afrigghihbe an exception. Thus, in this
study, the technological learning effect is assurteednainly depend on China’s
experience in CTO, which could be approximatelytied as global experience in
commercial CTO operations.

Let Rj. represent the quantity of thgh types of refined resources at tine

which is a function of production with differentctenologies, as shown in Eq. (6).

R =) —| (6)
=]
where | (= 1, 2, ..., 5) denotes a resource type from coalde oil, methanol,

propane, and imported olefirx,‘j represents the output of technoloigysing the jth

resource at timd, ands, denotes the energy efficiency of technologywhich

usually should be no greater than 1. The term @gnefficiency in this paper is
different (but also somehow borrowed) from the ggeefficiency of energy
conversion plants. In this paper, energy efficierscgtefined using Eq. (7) as the ratio
of product energy to total energy consumption felitg the work of Xiang et al. [32].

Energy efficiency =Product energy (GJ) / Total ggesonsumption (GJ), (7)
where theProduct energy contains the energy of ethylene, propylene, andrguand

the Total energy consumption contains the energy of feedstock, steam, andriglieygt



The energy of olefins and feedstock is calculatsEd on their lower heating value.
The objective function of our model is to minimiitee total cost, which can be
expressed with Eq. (8).

Xy T gy BRI LEL, gy S M) ©

The objective function is subject to the followiognstraints (9) - (12):

D' <Y X0t 9)
i=1

X < £:C', 0 t (10)

x> 0,0t (11)

y' = 0,0i,t (12)

whereT denotes the number of periogs,denotes the discount ratepmy denotes
the fixed operating and maintenance cost of tedgyoi at timet, Vom' denotes the
variable operating and maintenance costs of tedgyal at timet, and CE} denotes

the feedstock price of th¢th resource at timé. Eq. (9) denotes that the demand
must be satisfied by the output of the differehteologies. Eq. (10) denotes that the
production should be no more than the total insthltapacities, wherd' is the
annual operation time percentage (i.e., plant faabtheith technology at timg.
Eqg. (11) and Eqg. (12) denote that the decisiorabégsx and y, are nonnegative.

If a carbon tax is imposed, the objective functian be described with Eq. (13).

g+ Zz(l 5)1<CE}ER->+iTZZ gy (P v )

i=l t= l t=1j=1 i=1t=1j=1 , (13)

-_ltl |
where CT denotes the carbon tax, antl denotes theemission coefficient of

technologyi. This objective function is also subject to coastts (9) — (12).

OTO was developed a half-century ago. This probhassbeen highly optimized,
and its capacities have been increased, resulting well-established technology
whose economics can hardly be challenged. OTO waslaped half-century ago.

This process has been highly optimized and its @apa have been increased,



resulting in a well-established technology whosenemics can hardly be challenged.
Methanol synthesis processes were implementedtbeeworld in 1960s, and MTO

was introduced in the late 1970s by ExxonMobil st&s and was later patented by
different companies, and PDH process also has baecessfully commercialized

worldwide. These processes are high energy efticeamd the specific energy

consumption is near to the theoretical minimum 2548]. CTO includes three main
energy conversion technologies: coal gasificatiothanol synthesis, and MTO.
Coal gasification is still under development in @&hior world [34-35,44]. For this

reason, the technological learning and energy cupson reduction potential of

CTO technologies were considered in our analysis.

With the technological learning effect, the resaitenathematical problems are
nonconvex and nonlinear optimization problems. Thedel was developed with
MATLAB and solved with thémincon function of MATLAB’s Optimization Toolbox
(R2008a), which applies a sequential quadratic namagning (SQP) method. In this
method, the function solves a quadratic programnm(@&) sub-problem at each
iteration. An estimate of the Hessian of the Lagran is updated at each iteration
using the BFGS formula. A line search is perfornusthg a merit function. More
details of the method can be found in the userideggto MathWorks (2008) [45]. The

global optimality of the solutions was checked Bing di lerent starting points.

3. Initialization of parameters

Development plans in China are commonly made efreeyyears. In our study,
we consider 4 connecting five-year plans, from 2@18035, as the decision periods
of the optimization problem. The year 2015 is asstiito be the base year, and the
annual discount rate is assumed to be 5% (a setysdnalysis on the discount rate is

provided later in section 4.4).

3.1. Demand of olefins

China’s initial demand for olefins was approximgt8D,683 ktoe in 2015. The
average predicted growth rate of olefins demantii2% in the period from 2015 to
2020 (see Table A2 in appendix). Future demand ihghinfluenced by uncertain
economic changes, such as weak trade. In our staagidering these uncertainties,
we assume that the model will meet an increasimgathel at an annual growth rate of
3.9% [46].
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3.2. Feedstock price and capacity in olefin produain technologies

Table 1 presents the international prices of ressuused to produce olefins,
and these data were obtained from NBSC [47] and [849]. As discussed in the
introduction, this study focuses particularly omh@hina should configure its future
olefin industry in terms of different productiorctanologies considering technological
learning and energy consumption reduction of CT@.tkis purpose, we assume that
the feedstock prices of these technologies wiltdestant and the olefin import price

will be at its highest level (assumed as doubleptiesent price) [47].
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Table 1

Olefin feedstock prices in the base year.

oil? Coaf Methanof Propané Olefins
Year import
US$/toe US$/toe US$/toe US$/toe US$/toe
2015 (base year) 357 94.4 592.2 423 1007
Source:

& Crude oil (West Texas Intermediate) price is cotegefrom the National Bureau of Statistics of
China (NBSC) [47].

® Coal price is converted from the National Burea@tatistics of China (NBSC) [47].

“These data on methanol and propane prices wereetedvirom the China Industry Research
(CIR) [48,49].

Table 2
Initial total installed and initial cumulative capties of olefin production technologies in 2015
and the planned expansion capacity for 2016—202hina.

" . Planned
. . Share of Initial cumulative .
. Initial total installed . L expansion
Technologies L technology installed capacity in S
capacity in 201% in 2015 2015 capacity in
2016-2026
(ktoe) (ktoe) (ktoe)
OTO 42,099 76.57% 300,000 10,407
CTO 4,521 8.22% 23,395 13,328
MTO 4,219 7.67% 9,996 1,511
PDH 3,984 7.25% 4,355 5,170
Others 157 0.29% - -

54,980

Source:
#Data were taken from Yu [50].

®Data were taken partly from Xiang [51], and PDHadaere calculated from the CNCIC [52].

Table 2 presents the initial total installed antlahcumulative capacities of olefin
production technologies in 2015 and the new expansapacity for 2016—-2020 in
China [50-52]. From this, we can see that OTO dateid the olefin production in
2015 and accounted for approximately 76% of thal fmtoduction, and CTO was the
second most widely used olefin production technpiogChina in 2015. In this study,
we also assume the planned expansion capacityedifh gbroduction technologies
(from 2016 to 2020 [51-52]) will be establishedpdéenned.

12



Following the optimization model framework, in ostudy, olefin industry
technologies are characterized by their initial elsttnent cost, operation and
maintenance (O&M) cost, energy efficiency, £@missions coefficient (i.etptal
CO, emissions per ton olefins), learning rate, platdr, construction time, and plant

life. Table 3 summarizes these technical parameters

Table 3

Techno-economic parameters of the olefin industry.

Initial CcO, Mean

Technoloav investment Fix O&M Variable Energy emission learnin Plant Construct Plant
ay cosf O&M cost  efficiency’ >> 9 factof  timé® life®
cost coefficienf  rate

(US$Ttoe) (US$/toeyr) (USS$/toeyr) (%) odat™ % (%) (yr (yr
OTO 1722.1 93.7 330.1 70.96 0.71 - 90 3 30

CTO 3615.7 446.8 522.6 36.16-44 8.94-7.61 15 818 5 3 30

CTgC‘g'th 3832.6 495.9 590.4 35.7-435  4.16-2.83 14 81.8 3.5 30
MTO 1648.8 116.1 185.1 81.02 1.59 - 90 2.5 30
PDH 638.1 49.2 226.5 69.77 0.81 - 90 2.5 30

Note: This table goes through the basic scenafouledions.

1 2015 US$/¥ = 6.2284. These data were taken faotly a recent review by Xiang et al. [4,53],
and PDH investment cost data were taken from >al. ¢54].

2 0TO, CTO, and MTO data were calculated from Xiatgl. [7] and Wan et al. [55], and the
PDH cost data were calculated from Xu et al. [54].

®These data were taken partly from a recent revigwiang et al. [4,53]. CTO data were taken
from Xiang et al. [4] and MIITC [2], and the energificiency of PDH was calculated from Xu et
al. [54] and Xu et al. [56].

*These data were taken partly from a recent revigvrhghizar et al. [5], and PDH emission data
were assumed to be equal to the SC (ethane) reteréhe highest CQOemissions coefficient of
the CTO data were based on Xiang et al. [7,53]h\& energy efficiency reaching 44%, the £LO
emissions coefficient of CTO will be 7.6d2t[2].

®> These data were calculated via Eq. (5), and thginali data were taken from McDonald &
Schrattenholzer [34] and Zhou et al. [35]. CTOwht@ological learning was calculated via Eq. (5)
as follows.

a.LRcro,ine = a1LRcv ,ing + & 2LRwvT0 | ingt

= (3615.7-1648.8)/3615.7 x 27%+1648.5/3615.7 x:0¥%b%.

b. LRctocces), ing — @1LRct™ ,ins + & 2LRwT0 ,ingt +& 3LRccs inst

= (3615.7-1648.8)/3832.6 x27%+ 1648.5/3832.6 x+0832.6-3615.7)/3832.6 x 6.3%i4%.
®These data were evaluated based on the CNCIC [52].
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4. Four scenarios without controlling carbon emissins
4.1. Four scenarios of technological learning andhergy consumption reduction
of CTO

As discussed in the introduction section, previstisdies have shown that
technological learning and energy consumption redacplay important roles in
investment cost decline and g@ductions of emerging technologies, such as CTO
technology [6,25-26]. We designed the following facenarios of technological
learning and energy consumption reduction of CT@ene the technological learning
of CTO is estimated via Eg. (5) based on previoupigcal research [34,35], and the
energy consumption reduction in CTO is based om&siofficial documents for
future planning [2] as well as existing studies][32

(Al) Reference scenarioThe reference scenario is a business-as-usualrggena
in which the energy consumption of CTO is 129.9& @.k., its energy efficiency is
36.16%) [4] and the investment cost will not bergfed since technological learning
IS not considered.

(A2) Scenario with technological learning.In this scenario, the CTO’s
technological learning is 15% as calculated via(&yand using data from McDonald
& Schrattenholzer [34] and Zhou et al. [35] (seeemtetails in Table 3 and its notes),
while there is no energy consumption reduction TroC

(A3) Scenario with energy consumption reductionln this scenario, the energy
consumption of the CTO capacity will be 106.58 Gil4., its energy efficiency is
44%) following China’s official documents [2] andiaXg et al. [32], and the
investment cost of CTO will not decrease in theifef i.e., no technological learning
effect.

(A4) Scenario with both technological learning andenergy consumption
reduction. In this scenario, the combination of technologiearning is set as 15%
following McDonald & Schrattenholzer [34] and Zhet al. [35], and the energy
consumption of CTO is set as 106.58 GJ/t (i.e.,eitergy efficiency is 44%)
following the MIITC [2] and Xiang et al. [32]. As emtioned in the introduction
section, the olefinndustry could reduce its energy consumption bylementing
Best Practice Technology and R&D efforts.

In the following, we present and discuss the optimesults (including the
capacity configuration of different technologiese taccumulated total system costs,

and CQ emissions) of the four defined scenarios. Basedhenfour scenarios, we
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also conduct sensitivity analysis on the technalalgilearning rate and energy

consumption reduction (see section 4.4).

4.2. Impacts of technological learning and energyomsumption reduction

The capacities of different technologies for the, AR, A3, and A4 scenarios
from 2016 to 2035 are illustrated in Fig. 2. In &ur scenarios, OTO will still
dominate China’s olefin industry in the next twacdees and accounts for more than
67% of China’s olefin production using OTO techrpldsee Table A3 in appendix).
This result is consistent with thoseR#ng’s study [58], which has predicted that OTO
will account for approximately 60% of olefin prodion in China in 2018 and
dominate the olefin production in China in the coghdecade.

Moreover, in both the A2 and A4 scenarios, whicmsider technological
learning of CTO, CTO is competitive and will be rgfigcant in China’s olefin
production, accounting for approximately 12—-13%Ctina’s olefin production using
CTO technology even when the oil price is as lov@%s US$/toe (i.e., 48.71 US$/bbl,
see Table A3 in the appendix). In the year 2035 aithoption of CTO technology will
reach approximately 22.60% and 27.11% in the A2 afhdcenarios, respectively, as
shown in Fig. 2. These results are consistent @itima’s official estimation that CTO
technologies might account for nearly 20% of theamal olefin production capacity
in China in 2020 [14].

The expansion of PDH capacities in the study pers obvious in all four
scenarios, and approximately 11% of China’s olgbimoduction will use PDH
technology (see Table A3 in appendix) mainly beeatlee abundance of cheap
propane from shale gas would cause the OTO industrghift to production by
catalytic dehydrogenation of propane. This findilsgconsistent with the recent
observations that a dozen new PDH plants are buieworldwide [5,58].

The expansion of the capacities of MTO in the stpdgiod are nearly the same
in all four scenarios, and approximately 3.3% oin@ls olefin production will use

MTO technology (see Table A3 in appendix).
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Fig. 2. Capacity of different technologies in scenarios A2, A3, and A4.

4.3. System cost and C©emission

As denoted in Eqg. (8), the total system cost inetuthe investment costs, O&M
costs, and feedstock costs. As shown in Table Aarappendix, in scenarios A2, A3,
and A4, in which CTO'’s technological learning arrddoergy consumption reduction
are modeled, the accumulative total system costsoarer than those in scenario Al.
In scenario A4, with the combination of technol@giclearning and energy
consumption reduction, the accumulative total syst®st is the lowest of all four
scenarios and approximately 0.65% lower than tmatséenario Al. In brief,
technological learning and energy consumption redacdo not change the
accumulative total system cost by much.

Fig. 3 illustrates the C£emissions from the olefin industry in the fourrsaeos.
In 2035, CQin scenario A2 and A4 reaches approximately 396amitons, which is
approximately twice that of scenario Al. This fimglis because CTO becomes more
competitive and will be significant in China’s alefproduction with technological
learning, thus accounting for 22.60% and 27.11%Cbina’s olefin production in
2035 in scenario A2 and A4, respectively (see Bjg.Scenario A2 results in the
highest total C@ emission (3763.6 Mt, see Table A4 in appendix)the four
scenarios. In scenario A3, the total £€nissions are decreased by 8.05% compared
with that in scenario A1l due to the decreased gnemgsumption of CTO plants (see
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Table A4 in appendix). In short, the reduced energgsumption of CTO could

contribute considerably to G@missions in China’s olefin production technology.
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Fig. 3. CO, emissions from the olefin industry in the fourrszeos.

4.4. Sensitivity analysis

With scenario A2, we experiment with different leiag rates of CTO, i.e., 3%,
6%, 9%, 12%, and 15%. Fig. 4 shows that highernelcgical learning corresponds
to the greater adoption of CTO technology, whicligsy sensitive to the learning rate
when it increases from 9% to 12%. In this scenasince the reduction of energy
consumption is not considered, CTO technology btnesignificantly from

technological learning and dominates the olefirustdy.

30
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Fig. 4. Adoption of CTO technology with different techngiolearning in scenario A2.
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With scenario A3, we experiment with different ejyeconsumption reductions,
and the energy efficiency of CTO is assumed to Veoyn 36.16% to 44%, with 8
different values in intervals of 1.12%. The resudl®ow that this energy efficiency
improvement does not lead to the greater adoptid®T®, which is mainly because
even with 44% efficiency, CTO still has the lowefficiency (i.e., approximately half
that of other technologies, see Table 3); thus,ghiergy efficiency improvement does
not influence the adoption of CTO.

With scenario A4, we experiment with different camdiions of technology
learning and energy consumption reduction. Fighéws the adoption of CTO in
2035 with different combinations and indicates thhe combination of high
technology learning and large energy consumptiotuceon will promote the
adoption of CTO.

Share of CTO in 2035 (%)

Technological learning

Fig. 5. Adoption of CTO in 2035 with different combination$ technology learning and

energy efficiency in scenario A4.

We also carried out a sensitivity analysis of thecaunt rate for the four
scenarios as illustrated in Table A5 in the apperahd we found changing the
discount rate from 5% to 10% did not change th@mgitresults.

The results of the four scenarios show that CTOcasnpetitive without
considering carbon emissions in China’s olefin stdy especially in scenario A2 and
scenario A4. However, the expansion of the CTO ac#pavould imply high carbon
emissions in this industry in China. In June 20Chjina officially submitted its
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Intended Nationally Determined Contribution (INDGp the United Nations
Framework Convention on Climate Change (UNFCCC)iciwladded a target to the
earlier pledge to peak G@missions by 2030 [57]. In this regard, £€émissions
might become a heavy burden on CTO technology. fegent studies have provided
insights into methods of reducing €@missions [6]. One study concluded that
policies that promote investment in new and impdowechnologies (such as
implementation of carbon capture and storage (C@@ght be more effective for
CO, emission reduction in the petrochemical indush@nt other policies, such as
carbon taxes [59]. Another study argued that cagygiut global carbon taxes (at $65—
130/t CQ) could lead to the widespread use of biomass-baseis and thereby
could halve the total COemissions from the global petrochemicals productio
their study period [60]. In the following sectiowe explore how a carbon tax and

implementation of CCS to CTO change the optimallte®f the four scenarios.

5. Impacts of a carbon tax and CTO with CCS
5.1. Impacts of a carbon tax

The configuration of the olefin industry is not pnbetermined by the
technological performance but also deeply influenbg the climate policy, such as
carbon taxes. In the following study, a $20 per @ tax is assumed to be imposed
based on the four defined scenarios from the y@at 2which has been discussed by
Nakata et al. [61], Xiong et al. [62] and Zhang][63

Capacity configuration of different technologies wih the carbon tax. We
found that the carbon tax would induce a slighuotidn of the capacity expansion of
CTO in scenarios A2 and A4, with reductions of 2d08nd 2.99% respectively (see
details of Table A6 and Table A7 in the append&gcordingly, OTO and PDH
technologies will replace CTO partly in these tweersrios due to the lower
emissions. Meanwhile, in scenarios A1 and A3, tn@adsed carbon tax does not
change the optimal results. With the carbon tag, @doption of CTO is 17.91% in
2035 in scenario A4, whereas it is 27.11% whenetlieno carbon tax (see details of
Fig. Al in the appendix). Therefore, the adoptib®€®0O in scenario A4 is 9.20% less
than that without the carbon tax, indicating thHa tarbon tax will slow down the
adoption of CTO and lead to the use of lower cartemhnologies (i.e., OTO and
PDH).

Accumulative total system costs and C@emissions with the carbon tax.
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After imposing the carbon tax, we found that theumaulative total system costs
increased by 75.2 B US$ in scenario Al, 63.5 B iiS§cenario A2, 58.5 B US$ in
scenario A3, and 63.2 B US$ in scenario A4 (seaildah Table 4). Fig. 6 compares
the annual C@emissions of the four scenarios both with and euthmposing the

carbon tax, and the results show that in scen&2oand A4, imposing the carbon tax
would increasingly reduce the G@missions from 2032 to 2035. Meanwhile, in
scenarios Al and A3, the carbon tax does not induoeduction of C@emissions

because it does not change the capacity configurafi different technologies.
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Fig. 6. CO, emissions in the olefin industry in the four sa@smboth with and without imposing a

carbon tax.

5. 2. Impacts of CTO with CCS

CCS might be a promising method of reducing the @@issions from CTO [5],
although the production cost would be higher. Adowg to Xiang et al.’s study [53], a
CTO plant that achieves an 80% reduction ob@@issions by implementing CCS is
slightly less energy efficient (0.47%), has a taapital investment increase of 6%,
and has an O&M cost increase of nearly 11% compiareéde case without CCS, as
shown in Table 3. Because the analysis presenteskdtion 4 did not consider
controlling the CQ@ emissions of China’s olefin industry, CCS was adbpted in the
system. In this section, we add an assumed regnlatithe four scenarios, i.e., CTO
must implement the CCS. In the following, we expldiow such a regulation
influences the capacity expansion of different iolgdfroduction technologies, total
system costs, and G@missions of China’s olefin industry.
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Capacity configuration of different technologies wih the CCS to CTO. We
found that the cost of CCS would induce a sligkiuction of the capacity expansion
of CTO in scenarios A2 and A4 by 1.0% and 2.3%peetvely (see Table A8 and A9
in the appendix). Accordingly, OTO and PDH techiggds will replace CTO partly in
these two scenarios. Meanwhile, in scenarios A1AB\dhe implementation of CCS
does not change the optimal results.

Accumulative total system costs and C®emissions after implementing CCS
to CTO. As shown in Table 4, we found that after implemegtthe CCS, the
accumulative total system costs would increaseb B US$ in scenario Al, 68.6 B
USS$ in scenario A2, 56.3 B US$ in scenario A3, hd B US$ in scenario A4. We
also found that the CCS will reduce £€@missions by 1,257.3 Mt and 1,405.3 Mt in
scenarios A2 and A4, respectively, which denoteicgdns of as much as 33.4% and
38.96%, respectively. In scenarios A1 and A3, tlkSQvill reduce C@Qemissions by
992.6 Mt, which denotes reductions of as much a8328 and 31.47%, respectively.

Fig. 7 compares the annual €@missions of the four scenarios both with and
without implementing the CCS, and it shows that &lirfour scenarios, the CCS
would increasingly reduce G@missions up to 2035.
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Fig. 7.CO, emissions in the olefin industry in the four sagmaboth with and without CCS
to CTO.

5. 3. Comparing the carbon tax with the CCS
Table 4 tabulates the changes of the accumulabitz $ystem costs and GO
emissions in the four scenarios either with thédaartax or by implementing the CCS
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to CTO. We obtain average GQ®@eduction costs by dividing the increase in the
accumulative total system cost by the accumulat®gr€ductions, and the results are
listed in the 4 column of Table 4. The results show that in teohseducing C@
emissions, the CCS regulation is more efficient ahdaper than the carbon tax as
shown in the third and fourth columns of Table #c@urse, these results are based on
the cost of implementing CCS to CTO following thiady by Xiang et al. [53], and
they ignore the uncertainties and risks of CCS tiaae been widely discussée.g.,
Rubin et al. [64]).

Table 4
Changes of the total system costs and, @@issions after either imposing the carbon tax or

implementing CCS to CTO in the four scenarios.

Total system Total CO2 Percentage CO2 reduction

Scenarios
cost emission difference cost

(USD billion) (Mt) (US$H)
Al (with carbon tax) 75.2 0 0.00% -
A2 (with carbon tax) 63.5 -289.6 -7.69% 219.3
A3 (with carbon tax) 58.5 0 0.00% -
A4 (with carbon tax) 63.2 -311 -8.62% 203.2
Al (CTO with CCS) 64.2 -992.6 -28.93% 64.7
A2 (CTO with CCS) 68.6 -1257.3 -33.41% 54.6
A3 (CTO with CCS) 56.3 -992.6 -31.47% 56.7
A4 (CTO with CCS) 61 -1405.3 -38.96% 43.4

6. Discussions
6.1 Model validation and verification

As mentioned in the introduction section, many msidhave performed techno-
economic analyses of different olefin productiorthgan China, whereas little work
has focused on the perspective of system optimizato explore the optimal
configuration of China’s olefin industry. Althoughe real setting of an industry does
not have to be optimized in terms of the total cesploring the optimal configuration

in this study can provide insights for developingpmpriate strategies. Thus, the
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optimization model adopted in this study can infodecision-makers on the right

strategy under different scenarios; however, it was developed to perform future

predictions. Based on this point of view, the madeatot validated by comparing the

model results with reality. Rather, we validate thedel based on the following two

aspects.

® First, the olefin production paths are consisteith weal available paths and the
techno-economic parameters of these paths weremettdom authorized studies,
reports, and government documents. The greatestt aif this study was to
guarantee that these parameters are consistenteaiity by reviewing a number
of published materials, and we further validateséhparameters by interviewing
people who work in the olefin production industsych as people from the
Shenhua Group. The optimization analysis framevealbpted in our study has a
long history of over 20 years and is still commoniged in energy system

modeling, which provides some confidence for théhoeology.

® Second, the results are consistent with insighasvdrby other researchers who
did not apply an optimization analysis frameworkr Example, we found that in
all four scenarios, OTO will still dominate Chinakefin industry in the next two
decades, which is consistent with the results oigRestudy [58]. Moreover, our
results suggest the CTO is competitive and willslgmificant in China’s olefin
production, which is consistent with China’s officestimation [14]. In terms of
reducing CQ@ emissions, the CCS regulation is more efficient aineaper
compared with the carbon tax, which is consistatit the findings of Xiang et al.
[4], Van den Broek et al. [11], and Ruth et al.][38 short, the optimal solution
of our model is consistent with other researchmsghts generated from their
techno-economic analyses of different olefin praduc paths in China, which
validate and verify our model and methodology. Careg with the qualitative
insights in the available literature, the optimiaat model in our study can

provide detailed optimal configurations of diffetetefin production paths.

6.2. Limitations
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Of course, this study also has limitations. Fioditaining empirical data on the
technological learning of CTO is difficult; there& the technological learning rate of
CTO is estimated based on empirical research oer atbw technologies [34]. We
conducted a sensitivity analysis on the technokdgiearning rate of CTO to
compensate for this limitation. Second, the fufangections (e.g., demand, feedstock
price, etc.) in this study are estimated via trendsistorical data, although the former
trend may not be consistent in the future. Thiedl commercial applications of CCS
have not been implemented and considerable delateGs remains. Finally, this
research does not include revolutionary novel tetdgies. The readers of this paper

should be cautioned about these limitations.

7. Conclusions

This study developed an optimization model to esgplbow China should
configure its olefin industry by 2035 under fouffelient scenarios of technological
learning and energy efficiency improvement in tloaldgo-olefin (CTO) process as
well as with different environmental policies omguations, i.e., either imposing a
carbon tax or a regulation that CTO must be implaee: with carbon capture and
storage (CCS).

Our analysis showed that without considering cdstron CQ emissions,
because of its estimated technological learningmi@l, the CTO will be competitive
and significant in China’s olefin production, ewshen the oil price is as low as 48.71
US$/bbl. Although the improved energy efficiency ©TO does not necessarily
promote the wide adoption of CTO, it can strengthiem effect of technological
learning in terms of adopting more CTBowever, CQ emissions from the olefin
industry would increase with the penetration of Ct€€hnology.

Our analysis showed that after imposing a 20$bamartax from the year 2021,
CTO will also be competitive with the combinatiohtechnology learning and energy
efficiency improvement. We also found that the d@awpof CTO will be restrained
and CQ emissions will be reduced in the fourth scena@ar results showed that
CCS regulation would restrain the expansion ofGA® capacity slightly, and in the
fourth scenario with CCS regulation, the CTO stdtounts for more than 10.29% of
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the production in China’s olefin industry.

For policies-makers, our study implies that thedlepment of CTO is not a
wrong direction because it will be important in @&s olefin production industry in
the near future, especially in terms of reducing tlependency on crude oil since
more than half of the crude oil consumed in Chsenported. Our study also implies
that the energy consumption reduction of CTO cawddtribute quite a lot towards
reducing CQ emissions in China’s olefin production technolothys, it makes great
sense to spend additional efforts on improvingehergy efficiency of CTO by best
practices as well as R&D.

Our study further implies that in terms of reduci@@. emissions, the CCS
regulation might be a good choice if the cost ofSC&uld be as low as indicated in
the study by Xiang et al.’s [53] cited here sintecould reduce C® emissions
considerably at a relatively lower expense compariga that due to the 20$/t carbon
tax. Of course, policymakers should be cautionedl @mumber of concerns about the
uncertainties and risks of CCS remain to be addcess

For private investors who are considering investmg@hina’s olefin industry,
our study provides insights into the technologhes tould be competitive and worth

investing in and the appropriate capacity configare.
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Fig. Al. Adoption of CTO in the four scenarios both wittdamithout the carbon tax.

Table Al.

Under operation and planned CTO projects in Chiia52].

Investor project Location (Milligr??c?r?g);/ear) Opi/?;ironal
Shenhua Baotou (i) Baotou, Inner Mongolia 0.6 2010
Shenhua Ningmei (i) Yingchuan, Ningxia Province 50. 2010
Yanchang China coal Yulin, Shangxi Province 0.6 12201
Shanxi Pucheng Pucheng, Shangxi Province 0.7 2011
Huating Meiye Huating, Gangsu Province 0.2 2011
Datan Duolun Duolun, Inner Mongolia 0.46 2012
China Coal yulin Yulin, Shangxi Province 0.6 2014
Shenghua Ningmei (i)  Yingchuan, Ningxia Province 60 2014
Ninxia Baofeng Nindong, Ningxia Province 0.2 2014
Shenhua xiwang Xiwan, Shangxi Province 0.3 2015
Zhongtian Hechuang Erdos, Inner Mongolia 1.3 2016
Jiutai Energy Erdos, Inner Mongolia 0.6 2016
China Coal Menda Erdos, Inner Mongolia 0.5 2016
Ekuan Rongxin Erdos, Inner Mongolia 0.6 2016
Shenhua Baotou (ii) Baotou, Inner Mongolia 0.7 @01
Shenhua Wulumugi Wulumugqi, Xinjiang Province 0.68 012
China Coal Yili Yili, Xinjiang Province 0.6 2017
Qinghai Damei Xinin, Qinghai Province 1.2 2017
Qinghai Kuanye Haixi, Qinghai Province 1.2 2017
Qinghai Salt Lake Yanhu, Qinghai Province 1 2017
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Sanxi cooking coal Taiyuan, Shangxi Province 0.6 180
Datong Coal Mine Sanxi, Shangxi Province 0.6 2019
Shenhua Yulin Yulin, Shangxi Province 0.68 2019
Total 15.02

Table A2.

Projected olefin demand in China for the period622D35 [2].

Olefin Yearly growth in olefins Olefin Yeal

rly growth in olefin

Year demand demand from the base Year demand demand from the base

(ktoe) year 2015 (%) (ktoe) year 2015 (%)
2015 80,683 Base year 2026 125,522 55.57
2016 83,979 4.08 2027 130,690 61.98
2017 87,409 8.34 2028 136,074 68.65
2018 90,990 12.77 2029 141,684 75.60
2019 94,716 17.39 2030 147,529 82.85
2020 98,588 22.2 2031 153,620 90.40
2021 102,635 22.20 2032 159,966 98.26
2022 106,846 32.43 2033 166,579 106.46
2023 111,232 37.86 2034 173,471 115.00
2024 115,802 43.53 2035 180,653 123.90
2025 120,562 49.43

Note: the average annual growth rate of olefin dedr@ China is approximately 4.12%.

Table A3

Accumulative olefin production with different teablingies in the four scenarios.
Scenarios OTO CTO PDH MTO .Olefln

imports

Scenario Al 69.76% 10.29% 11.75% 3.35% 4.84%
Scenario A2 68.59% 12.34% 11.03% 3.34% 4.70%
Scenario A3 69.76% 10.29% 11.75% 3.35% 4.84%
Scenario A4 67.73% 13.64% 10.60% 3.34% 4.69%
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Table A4
Accumulative total system cost and CO2 emissiorberfour scenarios.

Percentage Total CO2 Percentage
Total system cost : - )
Scenarios difference emission difference
US$/billion Mt

Scenario Al 1827.9 0 3430.8 0
Scenario A2 1823.5 -2.4% 3763.6 9.7%
Scenario A3 1821.7 -3.4% 3154.6 -8.05%
Scenario A4 1816.1 -6.5% 3607.1 5.14%

Table A5

Change of accumulative capacity expansion to discaie increase from 5% to 10%.

Scenarios OoTO CTO PDH MTO -Oleﬁn
imports

Scenario Al 0.00% 0.00% 0.00% 0.00% 0.00%
Scenario A2 0.00% 0.00% 0.00% 0.00% 0.00%
Scenario A3 0.00% 0.00% 0.00% 0.00% 0.00%
Scenario A4 0.00% 0.00% 0.00% 0.00% 0.00%

Table A6

Accumulated olefin production with different techogies in the four scenarios with the carbon

tax.
Scenarios OoTO CTO PDH MTO .Olefln

imports

Scenario Al 69.76% 10.29% 11.75% 3.35% 4.84%
Scenario A2 69.76% 10.29% 11.75% 3.35% 4.84%
Scenario A3 69.76% 10.29% 11.75% 3.35% 4.84%
Scenario A4 69.73% 10.65% 11.57% 3.35% 4.71%

Table A7

Changes of accumulative capacity expansion inabhedcenarios with the carbon tax.
Scenarios OoTO CTO PDH MTO Olefin Import
Scenario Al 0.00% 0.00% 0.00% 0.00% 0.00%
Scenario A2 1.17% -2.05% 0.72% 0.01% 0.14%
Scenario A3 0.00% 0.00% 0.00% 0.00% 0.00%
Scenario A4 2.00% -2.99% 0.97% 0.01% 0.02%
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Table A8
Accumulated capacity configuration of differentttaologies in the four scenarios with CCS to

CTO.
) ) Olefin
Scenarios OoTO CTO (with  PDH MTO ]
imports
CCS)
Scenario Al 69.76% 10.29% 11.75% 3.35% 4.84%
Scenario A2 69.26% 11.34% 11.35% 3.35% 4.70%
Scenario A3 69.76% 10.29% 11.75% 3.35% 4.84%
Scenario A4 69.26% 11.34% 11.35% 3.35% 4.70%
Table A9
Changes of accumulative capacity expansion inghe dcenarios with CCS to CTO.
) CTO (with Olefin
Scenarios OoTO PDH MTO )
CCS) imports
Scenario Al 0.00% 0.00% 0.00% 0.00% 0.00%
Scenario A2 0.67% -1.00% 0.32% 0.01% 0.00%
Scenario A3 0.00% 0.00% 0.00% 0.00% 0.00%
Scenario A4 1.53% -2.30% 0.75% 0.01% 0.01%
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Highlights
This study develops an optimization model of Char@éfin industry until 2035.

The results show that OTO will remain dominant mr@&’s olefin industry.

And CTO is competitive in China and most likely ¢gpacity will be expanded.
The study suggests requiring CCS to CTO would bigebéhan imposing a
carbon tax.

But policymakers should be cautioned about the tiaiceies and risks of CCS.
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