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Abstract  

Recently, China has been increasingly producing olefins from alternative 

resources, especially coal. Technological learning, energy consumption reduction, and 

environmental policies/regulations will have a great impact on the economic and 

environmental values of coal-to-olefin (CTO) projects. How should China configure 

its future olefin industry considering these factors? Little work has been performed to 

explore this question. This study develops a system optimization model to analyze the 

optimal configuration of China’s olefin industry under different scenarios of 

technological learning, energy consumption reduction, and environmental 

policies/regulations. Our results show that in all scenarios, the oil-to-olefin process 

will remain dominant in China’s olefin industry in the next two decades, and with 

technological learning, the CTO process is competitive in China’s olefin industry, 

especially when CO2 emissions are not controlled. To control the CO2 emissions of 

China’s olefin industry, our study indicates that requiring CTO implementation along 

with carbon capture and storage (CCS) would have both economic and environmental 

value compared with imposing a carbon tax (assume 20$/t CO2 from the year 2021). 

However, policymakers should be cautioned about the uncertainties and risks of CCS. 

This study also provides some insights for those who are considering investing in 

China’s olefin industry. 

Keywords: Olefin industry; technological learning; energy consumption; CCS; 

carbon tax. 

 

1. Introduction 

Olefins are used mainly in the production of polymers, which drive the 

development of organic chemicals [1]. Ethylene and propylene are the most important 
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olefins; in 2015, the consumption of these materials in China was approximately 4.03 

× 107 t and 3.18 × 107 t, respectively [2]. These equivalent consumption rates are 

expected to increase as a result of the increase in the global population combined with 

rising living standards [3]. Before 2010, olefin production in China depended mainly 

on crude oil. Recently, China has been producing olefins increasingly from other 

resources (e.g., coal, methanol, and propane), especially coal, for which China has 

rich reserves. More than 23 coal-to-olefin (CTO) plants (see Table A1) are already 

under operation or planned in China. Due to its complexity, a CTO plant requires high 

capital investment cost and consumes considerable energy, which is roughly double 

that of an oil-to-olefin (OTO) plant [4]. Furthermore, a CTO plant produces huge CO2 

emissions, which are estimated at approximately 6~10 t per ton of olefin, whereas the 

emissions for an OTO plant are approximately 1 t per ton [5]. Thus it makes sense to 

address the questions of how China should configure its future olefin industry and 

what kind of policies should be implemented to control carbon emissions if more 

olefins are produced via CTO in China. 

Researchers have conducted considerable techno-economic analyses of different 

olefin production technologies, such as estimating the future costs of different olefin 

production technologies with bottom-up techno-economic engineering models1 [7-10] 

that consider possible technical innovations, economics and energy use. A common 

argument against coal for olefin production is the high capital investment costs, 

energy consumption and huge CO2 emissions. One prominent example where this 

argument does not hold is Shenhua Energy’s 2015 and 2016 Annual Report, which 

states that CTO has continued to make profits despite the decline in the oil price since 

in the middle of 2014 [12]. However, the success of CTO technologies did not come 

from nowhere. Olefins began to be produced from coal in China in 2010, thus leading 

to the first successful construction and commissioning of a CTO plant in China [13]. 

China’s CTO production capacities have grown from 1.1 × 106 t·a–1 in 2010 to the 

current rate of 1.50 × 107 t·a–1, which is mainly due to favorable government policies 

(see Table A1 in appendix). The ethylene and propylene capacity from CTO 

technologies has been estimated to account for nearly 20% of the national olefin 

production capacity in China in 2020 [14]. Since 2010, capital investment costs of 

                                                        
1 Bottom-up engineering estimates are based on expert judgements on the potential development of 

disaggregated components of power plants [11].  
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CTO technologies have decreased gradually due to both technological progress and 

learning in the production of olefins [4]. Aspects of technological learning can be 

captured by the so-called experience curve approach2. The experience curve method is 

based on the empirically observed phenomenon that the costs of a technology 

decrease by a constant fraction with every doubling of either installed capacity or 

exercised activity [20]. For many decades, the experience curve has been one of the 

methods used to estimate the future costs of energy technologies (e.g., see [11,15-18, 

21-22]). Novel technologies for olefin production need to be viable from an 

environmental perspective as well as from a technical one [5]. Researchers have used 

different methods to accessing environmental impacts of a petrochemical industry, 

such as LCA (life cycle assessment), material flow analysis (e.g., see [23]), 

environmental footprint analysis (such as water, energy, and carbon footprint) (e.g., 

see [24]), and so on. In this study, we mainly consider the carbon emission of each 

olefin production process. 

Although existing techno-economic analyses indicated that future capital 

investment costs in CTO technology may decline through technological learning, little 

work has been done to explore how China should configure its olefin industry in 

terms of different production technologies and the potential carbon emissions of the 

industry. Given this knowledge gap, the main aim of this paper is to explore these 

questions by developing a system optimization model of China’s olefin industry. The 

model is developed from a long-term perspective and aims at minimizing the total 

costs of the industry while satisfying a series of constraints, e.g., demand constraint 

and capacity limitations.  

Configuring China’s olefin industry system entails evaluating the costs of 

different technology paths. The costs of different technologies are influenced by many 

factors, such as the feedstock price, technological learning, energy consumption, 

scaling up of individual units, and technology localization (the cost difference of a 

technology in different nations and districts) [1,6,19, 25-27]. The impact of feedstock 

prices (such as dynamic oil and coal prices) on the configuration of the olefin industry 

has been analyzed in our previous work [28]. Among other aspects, empirical studies 

have shown that technological learning and energy consumption reduction play 

                                                        
2 We use the term experience curve instead of learning curve because the latter is typically used for 

approaches that quantify the decrease in labor costs only (e.g., Junginger et al. [19]). 
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important roles in cost reductions in emerging technologies. For example, Yu et al. [29] 

showed that learning is the most important factor associated with the larger turbine 

price reductions in China. Ren et al. [6] estimated a reduction potential of 20–30% for 

the capital investment costs of coal chemical plants and cited the effects of 

technological learning and economy of scale in their study period (2010–2050). 

Energy consumption reduction is another important way to reduce production costs 

and increasing earnings, especially in times of high energy prices [30]. For example, 

Saygin et al. [26] and Rubin et al. [27] suggest a global energy consumption reduction 

potential of 20% at the country level if Best Practice Technologies (BPTs) were 

implemented in chemical processes. BPTs include the scaling up of individual units, 

higher levels of process integration, combined heat and power (CHP) and 

postconsumer plastic waste treatment, and technology localization. Future CTO plants 

in China are expected to achieve a specific energy consumption reduction of 18% by 

2020 through BPT and research and development (R&D) efforts [2, 31-32]. A study in 

2018 found that the straight power supply scheme is relatively feasible and better 

solution in order to meet the requirements of energy efficiency [33]. Of course, a 

number of concerns about the uncertainties and risks of BPTs remain to be addressed, 

especially when trying to implement the BPTs by reforming those existing ones. 

Therefore, in our study we also did a sensitivity analysis on the reductions rates (0% 

to 18%) of energy consumption (see subsection 4.4). In a short word, these studies 

imply that technological learning and energy consumption reduction will play an 

important role in China’s olefin production industry. For this reason, this study 

constructed four different future scenarios based mainly on technological learning and 

energy consumption reduction associated with CTO. The technological learning and 

energy consumption reduction of oil-to-olefin (OTO), methanol-to-olefin (MTO), and 

propane dehydrogenation (PDH) technologies are not included in the analysis.  

The first scenario is treated as a business-as-usual case in which the energy 

consumption reduction and the capital investment cost of CTO remain unchanged (i.e., 

not considering technological learning). In the second scenario, technological learning 

is calculated as proposed by McDonald & Schrattenholzer [34] and Zhou et al. [35], 

while energy consumption remains unchanged. In the third scenario, energy 

consumption is reduced as proposed in MIITC [2] and technological learning is not 

considered. In the fourth scenario, technological learning and energy consumption 

reduction are combined. We intend to compare the results under these four scenarios. 
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This study does not aim to predict the development of China’s olefin industry but 

rather to explore the optimal configuration (mainly for capacities of different olefin 

production technologies) of China’s olefin industry under different scenarios of 

technological learning and energy consumption reduction. Although a number of 

techno-economic analyses have been performed for different olefin production paths 

in China, little work has been done to explore the optimal configuration of China’s 

olefin industry in terms of different production technologies. The choice of the system 

optimization model in this study can provide insights on this question as well as 

implications for relevant policymaking.  

The rest of the paper is organized as follows. Section 2 presents the system 

optimization model. Section 3 presents the initial values of parameters. Section 4 

explores the optimal configurations of China’s olefin industry under the four defined 

scenarios and their corresponding system costs and CO2 emissions without 

considering controlling CO2 emissions. Section 5 analyzes the impact of a carbon tax 

and a carbon capture and storage (CCS) regulation based on the four defined scenarios. 

Section 6 discusses the validation/verification and limitations of the study. Section 7 

presents the conclusions.  

 

2. System optimization model considering technological learning 

2.1. Model framework 

Our model framework follows that of the MESSAGE (Model for Energy Supply 

Strategy Alternatives and their General Environmental Impacts), which was 

developed originally by the International Institute for Applied Systems Analysis and 

was enhanced by the International Atomic Energy Agency. The MESSAGE provides 

a framework for representing an energy system that includes important 

interdependencies from resources refineries, imports, different conversion 

technologies, transport and distribution to the provision of energy end-use services, 

such as heat, motor fuel, and electricity [36-38]. 

As shown in Fig. 1, in this study, following the MESSAGE, the olefin industry is 

structured as a supply network (physical flow model) that includes four levels: 

resource, primary, secondary, and final. The linking among different levels is realized 
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using conversion technologies (refinery, olefin plant, transportation, distribution, etc.). 

Details of the four levels are introduced as follows. 

� Resource level: Resources of the system include domestic coal, crude oil and 

methanol, imported propane (the main four resources we mentioned in the 

introduction), and imported olefin. 

� Primary level: The primary level includes three forms of products (coal, oil, and 

propane) that are either refined from resources or imported from abroad. 

� Secondary level: The secondary level includes olefins converted from coal, oil, 

methanol, and propane using different technologies, i.e., CTO, OTO, MTO, and 

PDH.  

� Final level: The final level denotes the distribution of olefins to olefin consumers 

and is identical to the demand of olefins.  

 

 
Fig. 1. Model framework 

 

2.2. Mathematical formulation of the model 

The objective function of our model is to minimize the total costs of China’s 

olefin industry, including the investment costs, feedstock costs, and operation and 

maintenance (O&M) costs. All costs that will occur in the future are discounted with a 

fixed discount rate.  

    The model is formulated as follows. The demand is exogenous and increases 

over time as shown in Eq. (1):  
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0(1 )α= +t tD D                                                         (1)                                                                                     

where t  is the time period (year), tD denotes the demand at timet , 0D  denotes the 

initial demand, and α  is the annual increasing rate of demand. 

Let N  ( , 1,2,...,5i N i∈ = ) denote the set of technologies, including OTO, CTO, 

MTO, PDH, and olefin import, and let tiy  denote the annual new expansion capacity 

of technologyi  at timet . Then, the total installed capacity of technologyi  by timet , 

denoted by t
iC , can be calculated with Eq. (2).
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where 0
iC  denotes the initial installed capacity of technologyi , iτ

 denotes the plant 

life of technologyi , ict  denotes the construction time of technologyi , and 0
i

i

i C
t

τ
τ −

 

denotes the remaining initial capacity of technology i .  

The cumulative installed capacity of technology i  by timet , denoted by t
iE , can 

be calculated with Eq. (3) 

t 0
i i i

h=1

t
E = E + C∑

h  ,                                                          (3) 

where 0
iE denotes the initial cumulative installed capacity of technologyi , which 

means the cumulative experience on technologyi  before 1t = .  

Technological learning is based on experience, which is quantified by the 

cumulative installed capacity, and thus future investment cost t
iCF  is a function of the 

cumulative installed capacity as shown in Eq. (4). 

1

1, 3, 4

2i

0
it

i 0 t - -b
i i

CF i =
CF =

CF (E ) i =




×
 ,                                                   (4) 

where 1,3,4i =  denotes OTO, MTO, and PDH, respectively; 2i =  denotes CTO, 

which has the potential for technological learning; t
iCF denotes the investment cost of 

technologyi  in timet ; 0
iCF denotes the initial investment cost of technologyi ; 1 - 2 i-b  
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is technology i ’s learning rate, which means the percentage reduction in future 

investment cost for every doubled cumulative capacity; and 2 i-b  is the progress ratio.  

According to Yelle [40] and Li et al. [41], the learning rate of a technology can 

be described in Eq. (5): 

LR = LR + LR + + LRα α α1 2, 1, 2, ,. . . . . . ii nst t ot al i nst i nst i i nst

 
,        (5) 

where totalinstLR ,  denotes the learning rate of technologyi ’s investment cost, iα  

denotes the portion of investment cost of the  thi  subunit in the total investment cost 

of the technologyi , and instiLR ,  is the learning rate of investment cost of  thi  subunit. 

In this study, CTO includes three main subunit conversion technologies, namely, coal 

gasification, methanol synthesis, and MTO. 

To the best of the authors’ knowledge, although research on CTO has been 

performed for a long time, few commercial operations have been implemented in 

countries other than China, although South Africa might be an exception. Thus, in this 

study, the technological learning effect is assumed to mainly depend on China’s 

experience in CTO, which could be approximately treated as global experience in 

commercial CTO operations. 

Let t
jR  represent the quantity of the thj  types of refined resources at timet , 

which is a function of production with different technologies, as shown in Eq. (6).  

                  
1

tN
ijt

j
i i

x
R

η=

= ∑ ,                                    (6) 

where j  (= 1, 2, …, 5) denotes a resource type from coal, crude oil, methanol, 

propane, and imported olefin; tijx  represents the output of technology i  using the thj  

resource at time t, and iη
 
denotes the energy efficiency of technology i , which 

usually should be no greater than 1. The term energy efficiency in this paper is 

different (but also somehow borrowed) from the energy efficiency of energy 

conversion plants. In this paper, energy efficiency is defined using Eq. (7) as the ratio 

of product energy to total energy consumption following the work of Xiang et al. [32].  

Energy efficiency =Product energy (GJ) / Total energy consumption (GJ),      (7) 

where the Product energy contains the energy of ethylene, propylene, and butane and 

the Total energy consumption contains the energy of feedstock, steam, and electricity. 
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The energy of olefins and feedstock is calculated based on their lower heating value. 

The objective function of our model is to minimize the total cost, which can be 

expressed with Eq. (8).  

1 1 1 1 1 1 1

1 1 1
min

(1 ) (1 ) (1 )

N T T J N T J
t t t t t t t t

i i j j i i i ijt t t
i t t j i t j

CF y CE R Fom C Vom x
δ δ δ= = = = = = =

⋅ + ⋅ + ⋅ + ⋅
+ + +∑∑ ∑∑ ∑∑∑˄ ˅ ˄ ˅ ˄ (˅8) 

The objective function is subject to the following constraints (9) - (12): 
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where T  denotes the number of periods, δ  denotes the discount rate, t
iFom  denotes 

the fixed operating and maintenance cost of technology i  at time t , t
iVom  denotes the 

variable operating and maintenance costs of technology i  at time t ,and t
jCE  denotes 

the feedstock price of the thj  resource at time t .Eq. (9) denotes that the demand 

must be satisfied by the output of the different technologies. Eq. (10) denotes that the 

production should be no more than the total installed capacities, where tif  is the 

annual operation time percentage (i.e., plant factor) of the i th technology at timet . 

Eq. (11) and Eq. (12) denote that the decision variables t
ix  and t

iy  are nonnegative.  

If a carbon tax is imposed, the objective function can be described with Eq. (13). 

1 1 1 1 1 1 1
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1 1 1
min

(1 ) (1 ) (1 )

1

(1 )

N T T J N T J
t t t t t t t t

i i j j i i i ijt t t
i t t j i t j

N T
ti
it

i t i

CF y CE R Fom C Vom x

CT x

δ δ δ
λ

δ η

= = = = = = =

= =

⋅ + ⋅ + ⋅ + ⋅
+ + +

+ ⋅
+

∑∑ ∑∑ ∑∑∑

∑∑

˄ ˅ ˄ ˅ ˄ ˅

˄ ˅

,  (13) 

where CT  denotes the carbon tax, and iλ  denotes the emission coefficient of 

technology i . This objective function is also subject to constraints (9) – (12). 

OTO was developed a half-century ago. This process has been highly optimized, 

and its capacities have been increased, resulting in a well-established technology 

whose economics can hardly be challenged. OTO was developed half-century ago. 

This process has been highly optimized and its capacities have been increased, 
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resulting in a well-established technology whose economics can hardly be challenged. 

Methanol synthesis processes were implemented over the world in 1960s, and MTO 

was introduced in the late 1970s by ExxonMobil scientists and was later patented by 

different companies, and PDH process also has been successfully commercialized 

worldwide. These processes are high energy efficient and the specific energy 

consumption is near to the theoretical minimum [5,42-43]. CTO includes three main 

energy conversion technologies: coal gasification, methanol synthesis, and MTO. 

Coal gasification is still under development in China or world [34-35,44]. For this 

reason, the technological learning and energy consumption reduction potential of 

CTO technologies were considered in our analysis. 

With the technological learning effect, the resultant mathematical problems are 

nonconvex and nonlinear optimization problems. The model was developed with 

MATLAB and solved with the fmincon function of MATLAB’s Optimization Toolbox 

(R2008a), which applies a sequential quadratic programming (SQP) method. In this 

method, the function solves a quadratic programming (QP) sub-problem at each 

iteration. An estimate of the Hessian of the Lagrangian is updated at each iteration 

using the BFGS formula. A line search is performed using a merit function. More 

details of the method can be found in the user’s guide to MathWorks (2008) [45]. The 

global optimality of the solutions was checked by using di�erent starting points. 

 

3. Initialization of parameters 

Development plans in China are commonly made every five years. In our study, 

we consider 4 connecting five-year plans, from 2016 to 2035, as the decision periods 

of the optimization problem. The year 2015 is assumed to be the base year, and the 

annual discount rate is assumed to be 5% (a sensitivity analysis on the discount rate is 

provided later in section 4.4).  

 

3.1. Demand of olefins  

China’s initial demand for olefins was approximately 80,683 ktoe in 2015. The 

average predicted growth rate of olefins demand is 4.12% in the period from 2015 to 

2020 (see Table A2 in appendix). Future demand might be influenced by uncertain 

economic changes, such as weak trade. In our study, considering these uncertainties, 

we assume that the model will meet an increasing demand at an annual growth rate of 

3.9% [46].  
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3.2. Feedstock price and capacity in olefin production technologies 

Table 1 presents the international prices of resources used to produce olefins, 

and these data were obtained from NBSC [47] and CIR [48,49]. As discussed in the 

introduction, this study focuses particularly on how China should configure its future 

olefin industry in terms of different production technologies considering technological 

learning and energy consumption reduction of CTO. For this purpose, we assume that 

the feedstock prices of these technologies will be constant and the olefin import price 

will be at its highest level (assumed as double the present price) [47]. 



12 

Table 1 

Olefin feedstock prices in the base year. 

Year 
Oila Coalb Methanolc Propanec 

Olefins 
importc 

US$/toe US$/toe US$/toe US$/toe US$/toe 

2015 (base year) 357 94.4 592.2 423 1007 

Source: 
a Crude oil (West Texas Intermediate) price is converted from the National Bureau of Statistics of 

China (NBSC) [47].  
b Coal price is converted from the National Bureau of Statistics of China (NBSC) [47].  
c These data on methanol and propane prices were converted from the China Industry Research 

(CIR) [48,49].  

 

Table 2  

Initial total installed and initial cumulative capacities of olefin production technologies in 2015 

and the planned expansion capacity for 2016–2020 in China. 

Technologies 
Initial total installed 

capacity in 2015a  

Share of 
technology 

in 2015 

Initial cumulative 
installed capacity in 

2015a  

Planned 
expansion 
capacity in 
2016-2020b 

  (ktoe) 
 

(ktoe)  (ktoe) 

OTO 42,099 76.57% 300,000 10,407 

CTO 4,521 8.22% 23,395 13,328 

MTO 4,219 7.67% 9,996 1,511 

PDH 3,984 7.25% 4,355 5,170 

Others 157 0.29% - - 

  54,980       

Source:  
a Data were taken from Yu [50].  
b Data were taken partly from Xiang [51], and PDH data were calculated from the CNCIC [52]. 

 

Table 2 presents the initial total installed and initial cumulative capacities of olefin 

production technologies in 2015 and the new expansion capacity for 2016–2020 in 

China [50-52]. From this, we can see that OTO dominated the olefin production in 

2015 and accounted for approximately 76% of the total production, and CTO was the 

second most widely used olefin production technology in China in 2015. In this study, 

we also assume the planned expansion capacity of olefin production technologies 

(from 2016 to 2020 [51-52]) will be established as planned.  
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Following the optimization model framework, in our study, olefin industry 

technologies are characterized by their initial investment cost, operation and 

maintenance (O&M) cost, energy efficiency, CO2 emissions coefficient (i.e., total 

CO2 emissions per ton olefins), learning rate, plant factor, construction time, and plant 

life. Table 3 summarizes these technical parameters. 

 

Table 3  

Techno-economic parameters of the olefin industry. 

Technology 
Initial 

investment 
cost1 

Fix O&M 
cost2 

Variable 
O&M cost2 

Energy 
efficiency3 

CO2 
emission 

coefficient4  

Mean 
learning 

rate5  

Plant 
factor6 

Construct 
time6 

Plant 
life6 

  (US$1/toe) (US$/toeyr) (US$/toeyr) (%) tCO2•t
–1 % (%) (yr) (yr) 

OTO 1722.1 93.7 330.1 70.96 0.71 - 90 3 30 
CTO 3615.7 446.8 522.6 36.16-44 8.94-7.61 15 81.8 3.5 30 

CTO with 
CCS 

3832.6 495.9 590.4 35.7-43.5 4.16-2.83 14 81.8 3.5 30 

MTO 1648.8 116.1 185.1 81.02 1.59 - 90 2.5 30 
PDH 638.1 49.2 226.5 69.77 0.81 - 90 2.5 30 

Note: This table goes through the basic scenario calculations. 
1 2015 US$/¥ = 6.2284. These data were taken partly from a recent review by Xiang et al. [4,53], 

and PDH investment cost data were taken from Xu et al. [54]. 
2 OTO, CTO, and MTO data were calculated from Xiang et al. [7] and Wan et al. [55], and the 

PDH cost data were calculated from Xu et al. [54]. 
3 These data were taken partly from a recent review by Xiang et al. [4,53]. CTO data were taken 

from Xiang et al. [4] and MIITC [2], and the energy efficiency of PDH was calculated from Xu et 

al. [54] and Xu et al. [56]. 
4 These data were taken partly from a recent review by Amghizar et al. [5], and PDH emission data 

were assumed to be equal to the SC (ethane) reference. The highest CO2 emissions coefficient of 

the CTO data were based on Xiang et al. [7,53]. With its energy efficiency reaching 44%, the CO2 

emissions coefficient of CTO will be 7.61 tCO2•t
–1[2]. 

5 These data were calculated via Eq. (5), and the original data were taken from McDonald & 

Schrattenholzer [34] and Zhou et al. [35]. CTO’s technological learning was calculated via Eq. (5) 

as follows. 

a. , 1 , 2 ,CTO inst CTM inst MTO instLR LR LRα α+=   

= (3615.7-1648.8)/3615.7 × 27%+1648.5/3615.7 × 0% ≈ 15%. 

b. , 1 , 2 , + 3 ,CTO CCS inst CTM inst MTO inst CCS instLR LR LR LRα α α+=˄ ˅  

 = (3615.7-1648.8)/3832.6 ×27%+ 1648.5/3832.6 × 0% + (3832.6-3615.7)/3832.6 × 6.3% ≈ 14%. 
6 These data were evaluated based on the CNCIC [52]. 

 



14 

4. Four scenarios without controlling carbon emissions 

4.1. Four scenarios of technological learning and energy consumption reduction 

of CTO 

As discussed in the introduction section, previous studies have shown that 

technological learning and energy consumption reduction play important roles in 

investment cost decline and CO2 reductions of emerging technologies, such as CTO 

technology [6,25-26]. We designed the following four scenarios of technological 

learning and energy consumption reduction of CTO, where the technological learning 

of CTO is estimated via Eq. (5) based on previous empirical research [34,35], and the 

energy consumption reduction in CTO is based on China’s official documents for 

future planning [2] as well as existing studies [32].  

(A1) Reference scenario. The reference scenario is a business-as-usual scenario, 

in which the energy consumption of CTO is 129.98 GJ/t (i.e., its energy efficiency is 

36.16%) [4] and the investment cost will not be changed since technological learning 

is not considered. 

(A2) Scenario with technological learning. In this scenario, the CTO’s 

technological learning is 15% as calculated via Eq. (5) and using data from McDonald 

& Schrattenholzer [34] and Zhou et al. [35] (see more details in Table 3 and its notes), 

while there is no energy consumption reduction in CTO. 

(A3) Scenario with energy consumption reduction. In this scenario, the energy 

consumption of the CTO capacity will be 106.58 GJ/t (i.e., its energy efficiency is 

44%) following China’s official documents [2] and Xiang et al. [32], and the 

investment cost of CTO will not decrease in the future, i.e., no technological learning 

effect. 

(A4) Scenario with both technological learning and energy consumption 

reduction. In this scenario, the combination of technological learning is set as 15% 

following McDonald & Schrattenholzer [34] and Zhou et al. [35], and the energy 

consumption of CTO is set as 106.58 GJ/t (i.e., its energy efficiency is 44%) 

following the MIITC [2] and Xiang et al. [32]. As mentioned in the introduction 

section, the olefin industry could reduce its energy consumption by implementing 

Best Practice Technology and R&D efforts. 

In the following, we present and discuss the optimal results (including the 

capacity configuration of different technologies, the accumulated total system costs, 

and CO2 emissions) of the four defined scenarios. Based on the four scenarios, we 
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also conduct sensitivity analysis on the technological learning rate and energy 

consumption reduction (see section 4.4).  

 

4.2. Impacts of technological learning and energy consumption reduction  

The capacities of different technologies for the A1, A2, A3, and A4 scenarios 

from 2016 to 2035 are illustrated in Fig. 2. In all four scenarios, OTO will still 

dominate China’s olefin industry in the next two decades and accounts for more than 

67% of China’s olefin production using OTO technology (see Table A3 in appendix). 

This result is consistent with those of Peng’s study [58], which has predicted that OTO 

will account for approximately 60% of olefin production in China in 2018 and 

dominate the olefin production in China in the coming decade.  

Moreover, in both the A2 and A4 scenarios, which consider technological 

learning of CTO, CTO is competitive and will be significant in China’s olefin 

production, accounting for approximately 12–13% of China’s olefin production using 

CTO technology even when the oil price is as low as 357 US$/toe (i.e., 48.71 US$/bbl, 

see Table A3 in the appendix). In the year 2035, the adoption of CTO technology will 

reach approximately 22.60% and 27.11% in the A2 and A4 scenarios, respectively, as 

shown in Fig. 2. These results are consistent with China’s official estimation that CTO 

technologies might account for nearly 20% of the national olefin production capacity 

in China in 2020 [14]. 

 The expansion of PDH capacities in the study period is obvious in all four 

scenarios, and approximately 11% of China’s olefin production will use PDH 

technology (see Table A3 in appendix) mainly because the abundance of cheap 

propane from shale gas would cause the OTO industry to shift to production by 

catalytic dehydrogenation of propane. This finding is consistent with the recent 

observations that a dozen new PDH plants are to be built worldwide [5,58]. 

The expansion of the capacities of MTO in the study period are nearly the same 

in all four scenarios, and approximately 3.3% of China’s olefin production will use 

MTO technology (see Table A3 in appendix).  
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Fig. 2. Capacity of different technologies in scenarios A1, A2, A3, and A4. 

 

4.3. System cost and CO2 emission 

As denoted in Eq. (8), the total system cost includes the investment costs, O&M 

costs, and feedstock costs. As shown in Table A4 in the appendix, in scenarios A2, A3, 

and A4, in which CTO’s technological learning and/or energy consumption reduction 

are modeled, the accumulative total system costs are lower than those in scenario A1. 

In scenario A4, with the combination of technological learning and energy 

consumption reduction, the accumulative total system cost is the lowest of all four 

scenarios and approximately 0.65% lower than that in scenario A1. In brief, 

technological learning and energy consumption reduction do not change the 

accumulative total system cost by much.  

Fig. 3 illustrates the CO2 emissions from the olefin industry in the four scenarios. 

In 2035, CO2 in scenario A2 and A4 reaches approximately 396 million tons, which is 

approximately twice that of scenario A1. This finding is because CTO becomes more 

competitive and will be significant in China’s olefin production with technological 

learning, thus accounting for 22.60% and 27.11% of China’s olefin production in 

2035 in scenario A2 and A4, respectively (see Fig. 2). Scenario A2 results in the 

highest total CO2 emission (3763.6 Mt, see Table A4 in appendix) in the four 

scenarios. In scenario A3, the total CO2 emissions are decreased by 8.05% compared 

with that in scenario A1 due to the decreased energy consumption of CTO plants (see 
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Table A4 in appendix). In short, the reduced energy consumption of CTO could 

contribute considerably to CO2 emissions in China’s olefin production technology. 

 

 
Fig. 3. CO2 emissions from the olefin industry in the four scenarios. 

 

4.4. Sensitivity analysis 

With scenario A2, we experiment with different learning rates of CTO, i.e., 3%, 

6%, 9%, 12%, and 15%. Fig. 4 shows that higher technological learning corresponds 

to the greater adoption of CTO technology, which is very sensitive to the learning rate 

when it increases from 9% to 12%. In this scenario, since the reduction of energy 

consumption is not considered, CTO technology benefits significantly from 

technological learning and dominates the olefin industry.  

 
Fig. 4. Adoption of CTO technology with different technology learning in scenario A2. 
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With scenario A3, we experiment with different energy consumption reductions, 

and the energy efficiency of CTO is assumed to vary from 36.16% to 44%, with 8 

different values in intervals of 1.12%. The results show that this energy efficiency 

improvement does not lead to the greater adoption of CTO, which is mainly because 

even with 44% efficiency, CTO still has the lowest efficiency (i.e., approximately half 

that of other technologies, see Table 3); thus, this energy efficiency improvement does 

not influence the adoption of CTO. 

With scenario A4, we experiment with different combinations of technology 

learning and energy consumption reduction. Fig. 5 shows the adoption of CTO in 

2035 with different combinations and indicates that the combination of high 

technology learning and large energy consumption reduction will promote the 

adoption of CTO. 

 

 

Fig. 5. Adoption of CTO in 2035 with different combinations of technology learning and 

energy efficiency in scenario A4. 

 

We also carried out a sensitivity analysis of the discount rate for the four 

scenarios as illustrated in Table A5 in the appendix and we found changing the 

discount rate from 5% to 10% did not change the optimal results. 

The results of the four scenarios show that CTO is competitive without 

considering carbon emissions in China’s olefin industry, especially in scenario A2 and 

scenario A4. However, the expansion of the CTO capacity would imply high carbon 

emissions in this industry in China. In June 2015, China officially submitted its 
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Intended Nationally Determined Contribution (INDC) to the United Nations 

Framework Convention on Climate Change (UNFCCC), which added a target to the 

earlier pledge to peak CO2 emissions by 2030 [57]. In this regard, CO2 emissions 

might become a heavy burden on CTO technology. Two recent studies have provided 

insights into methods of reducing CO2 emissions [6]. One study concluded that 

policies that promote investment in new and improved technologies (such as 

implementation of carbon capture and storage (CCS)) might be more effective for 

CO2 emission reduction in the petrochemical industry than other policies, such as 

carbon taxes [59]. Another study argued that carrying out global carbon taxes (at $65–

130/t CO2) could lead to the widespread use of biomass-based routes and thereby 

could halve the total CO2 emissions from the global petrochemicals production in 

their study period [60]. In the following section, we explore how a carbon tax and 

implementation of CCS to CTO change the optimal results of the four scenarios.  

 

5. Impacts of a carbon tax and CTO with CCS  

 5.1. Impacts of a carbon tax  

The configuration of the olefin industry is not only determined by the 

technological performance but also deeply influenced by the climate policy, such as 

carbon taxes. In the following study, a $20 per ton CO2 tax is assumed to be imposed 

based on the four defined scenarios from the year 2021, which has been discussed by 

Nakata et al. [61], Xiong et al. [62] and Zhang [63].   

Capacity configuration of different technologies with the carbon tax. We 

found that the carbon tax would induce a slight reduction of the capacity expansion of 

CTO in scenarios A2 and A4, with reductions of 2.05% and 2.99% respectively (see 

details of Table A6 and Table A7 in the appendix). Accordingly, OTO and PDH 

technologies will replace CTO partly in these two scenarios due to the lower 

emissions. Meanwhile, in scenarios A1 and A3, the imposed carbon tax does not 

change the optimal results. With the carbon tax, the adoption of CTO is 17.91% in 

2035 in scenario A4, whereas it is 27.11% when there is no carbon tax (see details of 

Fig. A1 in the appendix). Therefore, the adoption of CTO in scenario A4 is 9.20% less 

than that without the carbon tax, indicating that the carbon tax will slow down the 

adoption of CTO and lead to the use of lower carbon technologies (i.e., OTO and 

PDH).  

Accumulative total system costs and CO2 emissions with the carbon tax. 
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After imposing the carbon tax, we found that the accumulative total system costs 

increased by 75.2 B US$ in scenario A1, 63.5 B US$ in scenario A2, 58.5 B US$ in 

scenario A3, and 63.2 B US$ in scenario A4 (see details in Table 4). Fig. 6 compares 

the annual CO2 emissions of the four scenarios both with and without imposing the 

carbon tax, and the results show that in scenarios A2 and A4, imposing the carbon tax 

would increasingly reduce the CO2 emissions from 2032 to 2035. Meanwhile, in 

scenarios A1 and A3, the carbon tax does not induce a reduction of CO2 emissions 

because it does not change the capacity configuration of different technologies. 

 
Fig. 6. CO2 emissions in the olefin industry in the four scenarios both with and without imposing a 

carbon tax. 

 

5. 2. Impacts of CTO with CCS  

CCS might be a promising method of reducing the CO2 emissions from CTO [5], 

although the production cost would be higher. According to Xiang et al.’s study [53], a 

CTO plant that achieves an 80% reduction of CO2 emissions by implementing CCS is 

slightly less energy efficient (0.47%), has a total capital investment increase of 6%, 

and has an O&M cost increase of nearly 11% compared to the case without CCS, as 

shown in Table 3. Because the analysis presented in section 4 did not consider 

controlling the CO2 emissions of China’s olefin industry, CCS was not adopted in the 

system. In this section, we add an assumed regulation in the four scenarios, i.e., CTO 

must implement the CCS. In the following, we explore how such a regulation 

influences the capacity expansion of different olefin production technologies, total 

system costs, and CO2 emissions of China’s olefin industry.   
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Capacity configuration of different technologies with the CCS to CTO. We 

found that the cost of CCS would induce a slight reduction of the capacity expansion 

of CTO in scenarios A2 and A4 by 1.0% and 2.3%, respectively (see Table A8 and A9 

in the appendix). Accordingly, OTO and PDH technologies will replace CTO partly in 

these two scenarios. Meanwhile, in scenarios A1 and A3, the implementation of CCS 

does not change the optimal results.  

Accumulative total system costs and CO2 emissions after implementing CCS 

to CTO. As shown in Table 4, we found that after implementing the CCS, the 

accumulative total system costs would increase by 64.2 B US$ in scenario A1, 68.6 B 

US$ in scenario A2, 56.3 B US$ in scenario A3, and 61.0 B US$ in scenario A4. We 

also found that the CCS will reduce CO2 emissions by 1,257.3 Mt and 1,405.3 Mt in 

scenarios A2 and A4, respectively, which denote reductions of as much as 33.4% and 

38.96%, respectively. In scenarios A1 and A3, the CCS will reduce CO2 emissions by 

992.6 Mt, which denotes reductions of as much as 28.93% and 31.47%, respectively.  

Fig. 7 compares the annual CO2 emissions of the four scenarios both with and 

without implementing the CCS, and it shows that for all four scenarios, the CCS 

would increasingly reduce CO2 emissions up to 2035.  

 

Fig. 7. CO2 emissions in the olefin industry in the four scenarios both with and without CCS 

to CTO. 

 

5. 3. Comparing the carbon tax with the CCS  

Table 4 tabulates the changes of the accumulative total system costs and CO2 

emissions in the four scenarios either with the carbon tax or by implementing the CCS 
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to CTO. We obtain average CO2 reduction costs by dividing the increase in the 

accumulative total system cost by the accumulated CO2 reductions, and the results are 

listed in the 4th column of Table 4. The results show that in terms of reducing CO2 

emissions, the CCS regulation is more efficient and cheaper than the carbon tax as 

shown in the third and fourth columns of Table 4. Of course, these results are based on 

the cost of implementing CCS to CTO following the study by Xiang et al. [53], and 

they ignore the uncertainties and risks of CCS that have been widely discussed (e.g., 

Rubin et al. [64]).      

 

Table 4  

Changes of the total system costs and CO2 emissions after either imposing the carbon tax or 

implementing CCS to CTO in the four scenarios. 

Scenarios 
Total system 

cost  

Total CO2 

emission 

Percentage 

difference 

CO2 reduction 

cost  

   (USD billion) (Mt)   (US$/t) 

A1 (with carbon tax) 75.2 0 0.00% - 

A2 (with carbon tax) 63.5 -289.6 -7.69% 219.3 

A3 (with carbon tax) 58.5 0 0.00% - 

A4 (with carbon tax) 63.2 -311 -8.62% 203.2 

A1 (CTO with CCS) 64.2 -992.6 -28.93% 64.7 

A2 (CTO with CCS) 68.6 -1257.3 -33.41% 54.6 

A3 (CTO with CCS) 56.3 -992.6 -31.47% 56.7 

A4 (CTO with CCS) 61 -1405.3 -38.96% 43.4 

 

6. Discussions 

6.1 Model validation and verification 

As mentioned in the introduction section, many studies have performed techno-

economic analyses of different olefin production paths in China, whereas little work 

has focused on the perspective of system optimization to explore the optimal 

configuration of China’s olefin industry. Although the real setting of an industry does 

not have to be optimized in terms of the total cost, exploring the optimal configuration 

in this study can provide insights for developing appropriate strategies. Thus, the 
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optimization model adopted in this study can inform decision-makers on the right 

strategy under different scenarios; however, it was not developed to perform future 

predictions. Based on this point of view, the model is not validated by comparing the 

model results with reality. Rather, we validate the model based on the following two 

aspects. 

� First, the olefin production paths are consistent with real available paths and the 

techno-economic parameters of these paths were obtained from authorized studies, 

reports, and government documents. The greatest effort of this study was to 

guarantee that these parameters are consistent with reality by reviewing a number 

of published materials, and we further validate these parameters by interviewing 

people who work in the olefin production industry, such as people from the 

Shenhua Group. The optimization analysis framework adopted in our study has a 

long history of over 20 years and is still commonly used in energy system 

modeling, which provides some confidence for the methodology.  

� Second, the results are consistent with insights drawn by other researchers who 

did not apply an optimization analysis framework. For example, we found that in 

all four scenarios, OTO will still dominate China’s olefin industry in the next two 

decades, which is consistent with the results of Peng’s study [58]. Moreover, our 

results suggest the CTO is competitive and will be significant in China’s olefin 

production, which is consistent with China’s official estimation [14]. In terms of 

reducing CO2 emissions, the CCS regulation is more efficient and cheaper 

compared with the carbon tax, which is consistent with the findings of Xiang et al. 

[4], Van den Broek et al. [11], and Ruth et al. [59]. In short, the optimal solution 

of our model is consistent with other researchers’ insights generated from their 

techno-economic analyses of different olefin production paths in China, which 

validate and verify our model and methodology. Compared with the qualitative 

insights in the available literature, the optimization model in our study can 

provide detailed optimal configurations of different olefin production paths.  

6.2. Limitations 
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Of course, this study also has limitations. First, obtaining empirical data on the 

technological learning of CTO is difficult; therefore, the technological learning rate of 

CTO is estimated based on empirical research on other new technologies [34]. We 

conducted a sensitivity analysis on the technological learning rate of CTO to 

compensate for this limitation. Second, the future projections (e.g., demand, feedstock 

price, etc.) in this study are estimated via trends in historical data, although the former 

trend may not be consistent in the future. Third, real commercial applications of CCS 

have not been implemented and considerable debate on CCS remains. Finally, this 

research does not include revolutionary novel technologies. The readers of this paper 

should be cautioned about these limitations.   

 

7. Conclusions 

This study developed an optimization model to explore how China should 

configure its olefin industry by 2035 under four different scenarios of technological 

learning and energy efficiency improvement in the coal-to-olefin (CTO) process as 

well as with different environmental policies or regulations, i.e., either imposing a 

carbon tax or a regulation that CTO must be implemented with carbon capture and 

storage (CCS).  

Our analysis showed that without considering controls on CO2 emissions, 

because of its estimated technological learning potential, the CTO will be competitive 

and significant in China’s olefin production, even when the oil price is as low as 48.71 

US$/bbl. Although the improved energy efficiency of CTO does not necessarily 

promote the wide adoption of CTO, it can strengthen the effect of technological 

learning in terms of adopting more CTO. However, CO2 emissions from the olefin 

industry would increase with the penetration of CTO technology.  

Our analysis showed that after imposing a 20$/t carbon tax from the year 2021, 

CTO will also be competitive with the combination of technology learning and energy 

efficiency improvement. We also found that the adoption of CTO will be restrained 

and CO2 emissions will be reduced in the fourth scenario. Our results showed that 

CCS regulation would restrain the expansion of the CTO capacity slightly, and in the 

fourth scenario with CCS regulation, the CTO still accounts for more than 10.29% of 
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the production in China’s olefin industry.   

For policies-makers, our study implies that the development of CTO is not a 

wrong direction because it will be important in China’s olefin production industry in 

the near future, especially in terms of reducing the dependency on crude oil since 

more than half of the crude oil consumed in China is imported. Our study also implies 

that the energy consumption reduction of CTO could contribute quite a lot towards 

reducing CO2 emissions in China’s olefin production technology; thus, it makes great 

sense to spend additional efforts on improving the energy efficiency of CTO by best 

practices as well as R&D. 

Our study further implies that in terms of reducing CO2 emissions, the CCS 

regulation might be a good choice if the cost of CCS could be as low as indicated in 

the study by Xiang et al.’s [53] cited here since it could reduce CO2 emissions 

considerably at a relatively lower expense compared with that due to the 20$/t carbon 

tax. Of course, policymakers should be cautioned that a number of concerns about the 

uncertainties and risks of CCS remain to be addressed.      

For private investors who are considering investing in China’s olefin industry, 

our study provides insights into the technologies that could be competitive and worth 

investing in and the appropriate capacity configurations.   

 

Acknowledgments  

This research was sponsored by the NSFC (No. 71874055, 71571069̍

71961137012). We gratefully acknowledge the contributions of Prof. Fuchen Wang 

who is a leading expert in coal chemical engineering. We have benefited considerably 

from talking with him. We have also benefited from discussion with Dr. Yadong Yu. 

The shortcomings in this work remain our own. 

 



26 

Appendix  

 
Fig. A1. Adoption of CTO in the four scenarios both with and without the carbon tax. 

 

Table A1.  

Under operation and planned CTO projects in China [51-52]. 

Investor project Location 
Capacity                  

(Million tons/year) 
Operational 

year 

Shenhua Baotou (i)  Baotou, Inner Mongolia 0.6 2010 

Shenhua Ningmei (i)  Yingchuan, Ningxia Province 0.5 2010 

Yanchang China coal Yulin, Shangxi Province 0.6 2011 

Shanxi Pucheng Pucheng, Shangxi Province 0.7 2011 

Huating Meiye Huating, Gangsu Province 0.2 2011 

Datan Duolun Duolun, Inner Mongolia 0.46 2012 

China Coal yulin Yulin, Shangxi Province 0.6 2014 

Shenghua Ningmei (ii) Yingchuan, Ningxia Province 0.6 2014 

Ninxia Baofeng Nindong, Ningxia Province 0.2 2014 

Shenhua xiwang Xiwan, Shangxi Province 0.3 2015 

Zhongtian Hechuang Erdos, Inner Mongolia 1.3 2016 

Jiutai Energy Erdos, Inner Mongolia 0.6 2016 

China Coal Menda Erdos, Inner Mongolia 0.5 2016 

Ekuan Rongxin Erdos, Inner Mongolia 0.6 2016 

Shenhua Baotou (ii)  Baotou, Inner Mongolia 0.7 2016 

Shenhua Wulumuqi Wulumuqi, Xinjiang Province 0.68 2017 

China Coal Yili Yili, Xinjiang Province 0.6 2017 

Qinghai Damei Xinin, Qinghai Province 1.2 2017 

Qinghai Kuanye Haixi, Qinghai Province 1.2 2017 

Qinghai Salt Lake Yanhu, Qinghai Province 1 2017 
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Sanxi cooking coal Taiyuan, Shangxi Province 0.6 2018 

Datong Coal Mine Sanxi, Shangxi Province 0.6 2019 

Shenhua Yulin Yulin, Shangxi Province 0.68 2019 

Total 
  15.02   

 

Table A2.  

Projected olefin demand in China for the period 2016–2035 [2]. 

Year 

Olefin 

demand 

(ktoe)  

Yearly growth in olefins 

demand from the base 

year 2015 (%) 

Year 

Olefin 

demand 

(ktoe)  

Yearly growth in olefin 

demand from the base 

year 2015 (%) 

2015 80,683 Base year 2026 125,522 55.57  

2016 83,979 4.08 2027 130,690 61.98  

2017 87,409 8.34 2028 136,074 68.65  

2018 90,990 12.77 2029 141,684 75.60  

2019 94,716 17.39 2030 147,529 82.85  

2020 98,588 22.2 2031 153,620 90.40  

2021 102,635 22.20  2032 159,966 98.26  

2022 106,846 32.43  2033 166,579 106.46  

2023 111,232 37.86  2034 173,471 115.00  

2024 115,802 43.53  2035 180,653 123.90  

2025 120,562 49.43     

Note: the average annual growth rate of olefin demand of China is approximately 4.12%. 

 

Table A3  

Accumulative olefin production with different technologies in the four scenarios. 

Scenarios OTO CTO PDH MTO 
Olefin 

imports 

Scenario A1 69.76% 10.29% 11.75% 3.35% 4.84% 

Scenario A2 68.59% 12.34% 11.03% 3.34% 4.70% 

Scenario A3 69.76% 10.29% 11.75% 3.35% 4.84% 

Scenario A4 67.73% 13.64% 10.60% 3.34% 4.69% 
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Table A4 
Accumulative total system cost and CO2 emissions in the four scenarios. 

Scenarios 
Total system cost 

Percentage 
difference 

Total CO2 
emission 

Percentage 
difference 

US$/billion 
 

Mt 
 

Scenario A1 1827.9 0 3430.8 0 

Scenario A2 1823.5 -2.4% 3763.6 9.7% 

Scenario A3 1821.7 -3.4% 3154.6 -8.05% 

Scenario A4 1816.1 -6.5% 3607.1 5.14% 

 

Table A5 

Change of accumulative capacity expansion to discount rate increase from 5% to 10%. 

Scenarios OTO CTO PDH MTO 
Olefin 

imports 

Scenario A1 0.00% 0.00% 0.00% 0.00% 0.00% 

Scenario A2 0.00% 0.00% 0.00% 0.00% 0.00% 

Scenario A3 0.00% 0.00% 0.00% 0.00% 0.00% 

Scenario A4 0.00% 0.00% 0.00% 0.00% 0.00% 

 

Table A6  

Accumulated olefin production with different technologies in the four scenarios with the carbon 

tax. 

Scenarios OTO CTO PDH MTO 
Olefin 

imports 

Scenario A1 69.76% 10.29% 11.75% 3.35% 4.84% 

Scenario A2 69.76% 10.29% 11.75% 3.35% 4.84% 

Scenario A3 69.76% 10.29% 11.75% 3.35% 4.84% 

Scenario A4 69.73% 10.65% 11.57% 3.35% 4.71% 

 

Table A7  

Changes of accumulative capacity expansion in the four scenarios with the carbon tax. 

Scenarios OTO CTO PDH MTO Olefin Import 

Scenario A1 0.00% 0.00% 0.00% 0.00% 0.00% 

Scenario A2 1.17% -2.05% 0.72% 0.01% 0.14% 

Scenario A3 0.00% 0.00% 0.00% 0.00% 0.00% 

Scenario A4 2.00% -2.99% 0.97% 0.01% 0.02% 
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Table A8  

Accumulated capacity configuration of different technologies in the four scenarios with CCS to 

CTO. 

Scenarios OTO 

 

CTO (with 

CCS) 

PDH MTO 
Olefin 

imports 

Scenario A1 69.76% 10.29% 11.75% 3.35% 4.84% 

Scenario A2 69.26% 11.34% 11.35% 3.35% 4.70% 

Scenario A3 69.76% 10.29% 11.75% 3.35% 4.84% 

Scenario A4 69.26% 11.34% 11.35% 3.35% 4.70% 

 

Table A9  

Changes of accumulative capacity expansion in the four scenarios with CCS to CTO. 

Scenarios OTO 
CTO (with 

CCS) 
PDH MTO 

Olefin 

imports 

Scenario A1 0.00% 0.00% 0.00% 0.00% 0.00% 

Scenario A2 0.67% -1.00% 0.32% 0.01% 0.00% 

Scenario A3 0.00% 0.00% 0.00% 0.00% 0.00% 

Scenario A4 1.53% -2.30% 0.75% 0.01% 0.01% 
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1 

Highlights 

� This study develops an optimization model of China’s olefin industry until 2035.  

� The results show that OTO will remain dominant in China’s olefin industry. 

� And CTO is competitive in China and most likely its capacity will be expanded.  

� The study suggests requiring CCS to CTO would be better than imposing a 

carbon tax. 

� But policymakers should be cautioned about the uncertainties and risks of CCS. 
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