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We explore sources of this instability of the Mitra (1984) model for estimating the 

remaining life expectancy at old age by revisiting Mitra’s own derivation and keeping 

the terms of higher order necessary for our inquiry. Dropping the higher-order terms 

and errors in estimates of the mean population age appear to lead to only small errors 

of up to three percent of the true remaining life expectancy. The growth parameter’s 

inadequate estimates, however, lead to large estimation errors and are the source of the 

outliers of the model. Our results confirm that Mitra model’s biases are typically on the 

side of overestimating the life expectancy. This provides formal support for an earlier 

method (Ediev 2018) based on combining the Mitra and the classical life table models. 

Based on the performed analysis, we also propose several alternative models of 

estimating the life expectancy at old age in stable and non-stable population contexts. 

Our iterative method of estimating the expectation of life at old age does not rely on 

approximate relations assumed in Mitra and other traditional models and performs as 

good as the Mitra model overall, yet, being free from outliers and skewedness of 

estimation errors characterizing the Mitra model. 
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1. Introduction 

Distorted data on population age distribution (Bennett and Horiuchi 1984; Shryock and 

Siegel 1973), particularly the age exaggeration (Coale and Kisker 1990; Duthé et al. 

2010; Khlat and Courbage 1996; Kibele, Scholz, and Shkolnikov 2008; Preston et al. 

1996), undermines quality of life table at older ages and necessitates improving models 

for estimating the remaining life expectancy in the open age interval. Horiuchi and 

Coale (1982) – assuming population stability and using regression approximations – 
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suggested the conventional estimate of the remaining life expectancy in the open age 

interval is distorted for non-stationary populations and proposed the correction formula: 

𝑒𝑒𝑎𝑎 = 𝑀𝑀𝑎𝑎+
−1𝑒𝑒−𝛽𝛽𝑎𝑎𝑟𝑟𝑀𝑀𝑎𝑎+

−𝛼𝛼𝑎𝑎 , (1) 

here 𝑀𝑀𝑎𝑎+ is the death rate in the open age interval a+ beginning at age a, r is the 

population growth rate, 𝛼𝛼𝑎𝑎 and 𝛽𝛽𝑎𝑎 are model parameters. The first multiplier in (1) 

represents the conventional estimate used in constructing life tables (Preston, 

Heuveline, and Guillot 2001): 

𝑒𝑒𝑎𝑎 = 𝑀𝑀𝑎𝑎+
−1, (2) 

that assumes stationarity of population age composition. Indeed, in a (stationary) life 

table population with deaths above age 𝑎𝑎 equal to the survival by that age 𝑙𝑙𝑎𝑎 and 

population size above age 𝑎𝑎 equal to the life table person-years 𝑇𝑇𝑎𝑎, the death rate in the 

open age interval is in clear inverse relationship (2) to the life expectancy: 𝑀𝑀𝑎𝑎+ = 𝑙𝑙𝑎𝑎
𝑇𝑇𝑎𝑎

=

𝑒𝑒𝑎𝑎−1. 

Mitra (1984) used a more rigorous formal-demographic approach and suggested 

alternative model: 

𝑒𝑒𝑎𝑎 = 𝑀𝑀𝑎𝑎+
−1𝑒𝑒−𝑟𝑟�𝑀𝑀𝑎𝑎+

−1−�1+𝑟𝑟𝑀𝑀𝑎𝑎+
−1�(�̅�𝑥−𝑎𝑎)�, (3) 

here �̅�𝑥 is the mean population age in the open age interval. This has led to debate (Coale 

1985; Mitra 1985) that was not resolved until recently. 

More recent extensive empirical test of models (1)-(3) as compared also to the 

conventional extrapolation of death rates to older ages (Ediev 2018) revealed that 

models (1) and (3) are consistent with each other and substantially improve over the 

conventional approaches (the life table model (2) and the extrapolation). The original 

disagreement between these authors appears to be caused by using different inputs for 

the same countries rather than by using different models. In the empirical tests, the Mitra 

model appeared to be most accurate, although the difference in accuracy between 

models (1) and (3) was of smaller magnitude than improvement of either of the models 

over the conventional approaches. However, practical usability of the Mitra model 

appears to be limited, because it is also the least stable among the studied approaches 

due to frequent outliers produced by the model. Furthermore, Mitra model’s biases were 

predominantly positive in the empirical tests. 
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Neither the original works by Mitra, nor the empirical tests provide a clue as to 

what might have been causing the model instability and biasedness. Here, we address 

this problem by re-deriving the Mitra formula and studying its sensitivity to violations 

of the underlying assumptions.  

 

2. Revisiting Mitra’s formula 

In this section, we re-derive Mitra’s formula by and large following the same steps as 

proposed by Mitra (1984). We re-derive the equation, because the original derivation 

by Mitra was not straightforward, led to various side-results and partly relied on results 

from the stable population theory. Furthermore, Mitra omitted higher-order terms 

before arriving to the result, which is an obstacle in finding out if these were the 

neglected higher-order terms that led to models’ instability and biasedness.  

Consider the number of deaths in the open age interval a+ in a stable population: 

𝐷𝐷𝑎𝑎+ = ∫ 𝐷𝐷(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 = ∫ 𝑁𝑁(𝑥𝑥)𝜇𝜇(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 = 𝑁𝑁(0)∫ 𝜇𝜇(𝑥𝑥)𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 =

−𝑁𝑁(0)∫ 𝑑𝑑𝑙𝑙(𝑥𝑥)
𝑑𝑑𝑥𝑥

𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 = −𝑁𝑁(0)�𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥|𝑎𝑎𝜔𝜔 + 𝑟𝑟 ∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 � =

𝑁𝑁(0)�𝑙𝑙(𝑎𝑎)𝑒𝑒−𝑟𝑟𝑎𝑎 − 𝑟𝑟 ∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 �, (4) 

here, 𝑙𝑙(𝑥𝑥) is the survival (probability to survive from birth to age x), 𝑁𝑁(𝑥𝑥) =

𝑁𝑁(0)𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥 is the age structure of the stable population with r being the growth 

parameter (Keyfitz and Caswell 2005), 𝜇𝜇(𝑥𝑥) = − 𝑑𝑑𝑙𝑙(𝑥𝑥)
𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥

 is the force of mortality, and 𝜔𝜔 

is the lifespan (𝑁𝑁(𝑥𝑥), 𝑙𝑙(𝑥𝑥) ≡ 0 at 𝑥𝑥 ≥ 𝜔𝜔).  

Population in the open age interval equals: 

𝑁𝑁𝑎𝑎+ = ∫ 𝑁𝑁(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 = 𝑁𝑁(0)∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 , (5) 

that is, the open age interval death rate equals 

𝑀𝑀𝑎𝑎+ = 𝐷𝐷𝑎𝑎+
𝑁𝑁𝑎𝑎+

=
𝑙𝑙(𝑎𝑎)𝑒𝑒−𝑟𝑟𝑎𝑎−𝑟𝑟 ∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎
∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

= 𝑙𝑙(𝑎𝑎)𝑒𝑒−𝑟𝑟𝑎𝑎

∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

− 𝑟𝑟. (6) 

In the stationary case (r=0), (6) implies that the conventional estimate (2) is accurate 

and no correction is needed: 

𝑀𝑀𝑎𝑎+
−1 = ∫ 𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎
𝑙𝑙(𝑎𝑎)

= 𝑒𝑒(𝑎𝑎), (7) 

Regrouping terms in (6) leads to an auxiliary equation that will be used further: 



4 
 

1
𝑀𝑀𝑎𝑎++𝑟𝑟

= ∫ 𝑙𝑙(𝑥𝑥)
𝑙𝑙(𝑎𝑎)

𝑒𝑒−𝑟𝑟(𝑥𝑥−𝑎𝑎)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 . (8) 

  The remaining life expectancy at age a may be approximated as follows: 

𝑒𝑒(𝑎𝑎) = 1
𝑙𝑙(𝑎𝑎)∫ 𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 = 𝑒𝑒𝑟𝑟𝑟𝑟�

𝑙𝑙(𝑎𝑎)∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑒𝑒𝑟𝑟(𝑥𝑥−�̅�𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 ≈ 𝑒𝑒𝑟𝑟𝑟𝑟�

𝑙𝑙(𝑎𝑎)
�∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 +

𝑟𝑟 ∫ (𝑥𝑥 − �̅�𝑥)𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 + 𝑟𝑟2

2 ∫ (𝑥𝑥 − �̅�𝑥)2𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 � =

𝑒𝑒𝑟𝑟(�̅�𝑥−𝑎𝑎) ∫ 𝑙𝑙(𝑥𝑥)
𝑙𝑙(𝑎𝑎)

𝑒𝑒−𝑟𝑟(𝑥𝑥−𝑎𝑎)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 �1 + 𝑟𝑟 ∫

(𝑥𝑥−�̅�𝑥)𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

+ 𝑟𝑟2

2
∫ (𝑥𝑥−�̅�𝑥)2𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

� =

𝑒𝑒𝑟𝑟(�̅�𝑥−𝑎𝑎) ∫ 𝑙𝑙(𝑥𝑥)
𝑙𝑙(𝑎𝑎)

𝑒𝑒−𝑟𝑟(𝑥𝑥−𝑎𝑎)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 �1 + 𝑟𝑟(�̅�𝑥 − �̅�𝑥) + 𝑟𝑟2

2
𝜎𝜎2� = 𝑒𝑒𝑟𝑟(�̅�𝑥−𝑎𝑎) ∫ 𝑙𝑙(𝑥𝑥)

𝑙𝑙(𝑎𝑎)
𝑒𝑒−𝑟𝑟(𝑥𝑥−𝑎𝑎)𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 �1 +

𝑟𝑟2

2
𝜎𝜎2� = 𝑒𝑒𝑟𝑟(𝑟𝑟�−𝑎𝑎)

𝑀𝑀𝑎𝑎++𝑟𝑟
�1 + 𝑟𝑟2

2
𝜎𝜎2�, (9) 

here 

�̅�𝑥 = ∫ 𝑥𝑥𝑁𝑁(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑁𝑁(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

= ∫ 𝑥𝑥𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

 (10) 

is the mean population age in the open age interval and  

𝜎𝜎2 = ∫ (𝑥𝑥−�̅�𝑥)2𝑁𝑁(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑁𝑁(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

= ∫ (𝑥𝑥−�̅�𝑥)2𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

 (11) 

is the variance of age of individuals in the open age interval in the stable population. 

Using the identity 𝑙𝑙(𝑎𝑎) = −∫ 𝑑𝑑𝑙𝑙(𝑥𝑥)
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 , the survival is approximated as: 

𝑙𝑙(𝑎𝑎) = −∫ 𝑑𝑑𝑙𝑙(𝑥𝑥)
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 = −𝑒𝑒𝑟𝑟𝑥𝑥𝐷𝐷���� ∫ 𝑒𝑒𝑟𝑟(𝑥𝑥−𝑥𝑥𝐷𝐷����)𝑒𝑒−𝑟𝑟𝑥𝑥 𝑑𝑑𝑙𝑙(𝑥𝑥)

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 ≈ −𝑒𝑒𝑟𝑟𝑥𝑥𝐷𝐷���� �∫ 𝑒𝑒−𝑟𝑟𝑥𝑥 𝑑𝑑𝑙𝑙(𝑥𝑥)
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 +

𝑟𝑟 ∫ (𝑥𝑥 − 𝑥𝑥𝐷𝐷���)𝑒𝑒−𝑟𝑟𝑥𝑥 𝑑𝑑𝑙𝑙(𝑥𝑥)
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 + 𝑟𝑟2

2 ∫ (𝑥𝑥 − 𝑥𝑥𝐷𝐷���)2𝑒𝑒−𝑟𝑟𝑥𝑥 𝑑𝑑𝑙𝑙(𝑥𝑥)
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 � =

−𝑒𝑒𝑟𝑟𝑥𝑥𝐷𝐷���� ∫ 𝑒𝑒−𝑟𝑟𝑥𝑥 𝑑𝑑𝑙𝑙(𝑥𝑥)
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 �1 + 𝑟𝑟2

2
𝜎𝜎𝐷𝐷2�, (12) 

where: 

𝑥𝑥𝐷𝐷��� = ∫ 𝑥𝑥𝐷𝐷(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝐷𝐷(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

= ∫ 𝑥𝑥𝑁𝑁(𝑥𝑥)𝜇𝜇(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑁𝑁(𝑥𝑥)𝜇𝜇(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

=
∫ 𝑥𝑥𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑟𝑟)

𝑑𝑑𝑟𝑟 𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

∫ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑟𝑟 𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎
 (13) 

is the mean age at death in the open age interval and  

𝜎𝜎𝐷𝐷2 = ∫ (𝑥𝑥−𝑥𝑥𝐷𝐷����)2𝐷𝐷(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

∫ 𝐷𝐷(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

=
∫ (𝑥𝑥−𝑥𝑥𝐷𝐷����)2𝑒𝑒−𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑟𝑟 𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎

∫ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑟𝑟 𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎
 (14) 

is the variance of age at death in the open age interval in the stable population. 

Using (8), one gets: 
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∫ 𝑒𝑒−𝑟𝑟𝑥𝑥 𝑑𝑑𝑙𝑙(𝑥𝑥)
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 = 𝑒𝑒−𝑟𝑟𝑥𝑥𝑙𝑙(𝑥𝑥)|𝑎𝑎𝜔𝜔 + 𝑟𝑟 ∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 = −𝑒𝑒−𝑟𝑟𝑎𝑎𝑙𝑙(𝑎𝑎) +

𝑟𝑟 ∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 = −𝑒𝑒−𝑟𝑟𝑎𝑎𝑙𝑙(𝑎𝑎) �1 − 𝑟𝑟 ∫ 𝑙𝑙(𝑥𝑥)

𝑙𝑙(𝑎𝑎)
𝑒𝑒−𝑟𝑟(𝑥𝑥−𝑎𝑎)𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 � = −𝑒𝑒−𝑟𝑟𝑎𝑎𝑙𝑙(𝑎𝑎) �1 −

𝑟𝑟
𝑀𝑀𝑎𝑎++𝑟𝑟

� = −𝑒𝑒−𝑟𝑟𝑎𝑎𝑙𝑙(𝑎𝑎) 𝑀𝑀𝑎𝑎+
𝑀𝑀𝑎𝑎++𝑟𝑟

. (15) 

Substituting (15) into (12): 

𝑙𝑙(𝑎𝑎) ≈ 𝑒𝑒𝑟𝑟(𝑥𝑥𝐷𝐷����−𝑎𝑎)𝑙𝑙(𝑎𝑎) 𝑀𝑀𝑎𝑎+
𝑀𝑀𝑎𝑎++𝑟𝑟

�1 + 𝑟𝑟2

2
𝜎𝜎𝐷𝐷2�, (16) 

which implies: 

𝑀𝑀𝑎𝑎+ + 𝑟𝑟 ≈ 𝑒𝑒𝑟𝑟(𝑥𝑥𝐷𝐷����−𝑎𝑎)𝑀𝑀𝑎𝑎+ �1 + 𝑟𝑟2

2
𝜎𝜎𝐷𝐷2�. (17) 

Substituting (17) into (9): 

𝑒𝑒(𝑎𝑎) ≈ 1
𝑀𝑀𝑎𝑎+

𝑒𝑒𝑟𝑟(�̅�𝑥−𝑥𝑥𝐷𝐷����) �1 + 𝑟𝑟2

2
(𝜎𝜎2 − 𝜎𝜎𝐷𝐷2)�. (18) 

  To conclude the derivation, Mitra suggests relating the mean age at death to the 

mean population age using Eqs. (8), (10) and (13): 

𝑥𝑥𝐷𝐷��� =
∫ 𝑥𝑥𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑟𝑟)

𝑑𝑑𝑟𝑟 𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

∫ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑟𝑟 𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎
=

∫ 𝑥𝑥𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑟𝑟 𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎

−𝑒𝑒−𝑟𝑟𝑎𝑎𝑙𝑙(𝑎𝑎) 𝑀𝑀𝑎𝑎+
𝑀𝑀𝑎𝑎++𝑟𝑟

=
𝑥𝑥𝑒𝑒−𝑟𝑟𝑟𝑟𝑙𝑙(𝑥𝑥)|𝑎𝑎𝜔𝜔+𝑟𝑟 ∫ 𝑥𝑥𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎 −∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

−𝑀𝑀𝑎𝑎+ ∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

=

−𝑎𝑎𝑒𝑒−𝑟𝑟𝑎𝑎𝑙𝑙(𝑎𝑎)+𝑟𝑟 ∫ 𝑥𝑥𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎 −∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎
−𝑀𝑀𝑎𝑎+ ∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔

𝑎𝑎
= 𝑎𝑎(𝑀𝑀𝑎𝑎++𝑟𝑟)

𝑀𝑀𝑎𝑎+
+ 1−𝑟𝑟�̅�𝑥

𝑀𝑀𝑎𝑎+
= 𝑎𝑎 + 1−𝑟𝑟(�̅�𝑥−𝑎𝑎)

𝑀𝑀𝑎𝑎+
. (19) 

Substituting (19) into (18) and rearranging terms: 

𝑒𝑒(𝑎𝑎) ≈ 1
𝑀𝑀𝑎𝑎+

𝑒𝑒𝑟𝑟
(𝑟𝑟�−𝑎𝑎)(𝑀𝑀𝑎𝑎++𝑟𝑟)−1

𝑀𝑀𝑎𝑎+ �1 + 𝑟𝑟2

2
(𝜎𝜎2 − 𝜎𝜎𝐷𝐷2)�. (20) 

  Mitra’s formula (3) is obtained from (20) by dropping the higher order terms. 

 

3. Sources of instability and biasedness of the Mitra model 

As follows from the above derivation of the Mitra formula, there are three possible 

sources of biases in the Mitra model: neglecting the higher order terms in (20), 

erroneous estimates of the mean population age �̅�𝑥, or deviation of the population age 

composition from the (stable) one assumed in the model derivation. Within the model’s 

own framework, the error in the growth parameter may be taken as a proxy for the latter 

source of model biases. Following, we investigate contribution of each of these sources 

to the estimation errors. 
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To assess the contribution of neglecting the higher order terms when moving 

from (20) к (3), note that the magnitude of the growth parameter r does not usually 

exceed 0,05 (Keyfitz and Flieger 1990) and the variance of age at death is of the same 

magnitude as the variance of the population age distribution (but smaller at younger 

onset age a of the open age interval). Both the standard deviation of age at death and of 

population age distribution are of magnitude of several years, i.e., the quadratic term in 

(20) may be roughly assessed as no more than 0,052

2
52 ≈ 0,03, i.e. three percentage 

points. Hence, the quadratic terms dropped in the Mitra model may not have caused the 

outliers observed in empirical tests. Note, however, that the quadratic terms addressed 

here are only the first ones in a series of non-linear terms neglected in the Mitra formula. 

In fact, linearization assumed in the Mitra formula may have profound consequences 

for the estimation accuracy when combined with large errors in the input value of the 

growth parameter (see the discussion further down in the next section). 

Sensitivity to estimation errors of the mean population age �̅�𝑥 might have been 

another source of instability in the Mitra model. Indeed, Coale (1985) has pointed to 

this parameter of the Mitra model as a problematic one when dealing with data subject 

to age exaggeration. Although, it was shown that the mean population age may be 

efficiently estimated even in the case of age exaggeration or in the absence of data on 

actual population age composition in the open age interval (Ediev 2017, 2018), such  

(regression-based) estimates may nonetheless be subject to substantial errors and lead 

to Models’ overall instability. To explore what might have been the effect of biased 

estimation of the mean population age in the Mitra model, consider sensitivity of the 

life expectancy (3) to this parameter: 
𝑑𝑑𝑙𝑙𝑑𝑑[𝑒𝑒𝑀𝑀(𝑎𝑎)]

𝑑𝑑�̅�𝑥
= 𝑑𝑑

𝑑𝑑�̅�𝑥
�𝑟𝑟 (�̅�𝑥−𝑎𝑎)(𝑀𝑀𝑎𝑎++𝑟𝑟)−1

𝑀𝑀𝑎𝑎+
� = 𝑟𝑟 (𝑀𝑀𝑎𝑎++𝑟𝑟)

𝑀𝑀𝑎𝑎+
~𝑟𝑟, (21) 

The magnitude of errors in the mean population age may roughly be assessed as not 

exceeding 0.5 years based on standard errors of the regression model proposed for the 

parameter (Ediev 2016, table 2). Taking this into account, we get from (21), at 𝑟𝑟 <

0.05:  
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𝛿𝛿𝑙𝑙𝛿𝛿[𝑒𝑒𝑀𝑀(𝑎𝑎)]~0.5𝑟𝑟 < 0.025, (22) 

i.e., approximation errors in the mean age �̅�𝑥 contribute to the relative error of 𝑒𝑒𝑀𝑀(𝑎𝑎) no 

more than about 3 percentage points. 

To assess the contribution of the third possible source of instability of the Mitra 

model, let us consider sensitivity of (3) to the growth parameter r: 
𝑑𝑑𝑙𝑙𝑑𝑑[𝑒𝑒𝑀𝑀(𝑎𝑎)]

𝑑𝑑𝑟𝑟
= 𝑑𝑑

𝑑𝑑𝑟𝑟
�𝑟𝑟 (�̅�𝑥−𝑎𝑎)(𝑀𝑀𝑎𝑎++𝑟𝑟)−1

𝑀𝑀𝑎𝑎+
� = (�̅�𝑥 − 𝑎𝑎) �1 + 1

𝑀𝑀𝑎𝑎+
� + 𝑟𝑟 (�̅�𝑥−𝑎𝑎)

𝑀𝑀𝑎𝑎+
− 1

𝑀𝑀𝑎𝑎+
. (23) 

Noting that 1
𝑀𝑀𝑎𝑎+

 equals, roughly, the remaining life expectancy in the open age interval, 

while the age difference (�̅�𝑥 − 𝑎𝑎) is, roughly, half the remaining life expectancy, we get: 
𝑑𝑑𝑙𝑙𝑑𝑑[𝑒𝑒𝑀𝑀(𝑎𝑎)]

𝑑𝑑𝑟𝑟
≈ 𝑒𝑒2(𝑎𝑎)(1+𝑟𝑟)−𝑒𝑒(𝑎𝑎)

2
≈ 𝑒𝑒2(𝑎𝑎)

2
. (24) 

The remaining life expectancy in the open age interval is of magnitude of years to 

dozens of years while the error of the growth parameter might be up to a percentage 

point. Therefore, it follows from (24) that erroneous growth parameter may lead to 

enormous deviations of the estimated life expectancy from the actual one. Taking more 

broadly, violations of the Mitra model’s assumption about stability of the age structure 

of the population in the open age interval appear to be the prime source of the model’s 

instability.  

Noting the quadratic term in (3), one may explain the empirical observation of 

predominantly positive biases, especially of the large ones, of the Mitra model (Ediev 

2017, 2018). To this end, consider finite increments of the growth parameter that, as we 

have established above, drives most the biases of the Mitra model. Let us assume the 

simplest (yet, characteristic) case when the true growth parameter equals zero, i.e. the 

population is actually a stationary one, and the correcting multiplier in (3) equals one. 

In that case, the relative error of the model when assuming, erroneously, non-zero 

growth parameter r, equals: 

𝑒𝑒𝑟𝑟
(𝑟𝑟�−𝑎𝑎)(𝑀𝑀𝑎𝑎++𝑟𝑟)−1

𝑀𝑀𝑎𝑎+ − 1 ≈ 𝑒𝑒0,5𝑟𝑟𝑒𝑒(𝑎𝑎)(𝑟𝑟𝑒𝑒(𝑎𝑎)−1) − 1. (25) 

The lower limit of expression (25) is attained at 𝑟𝑟𝑒𝑒(𝑎𝑎) = 0,5 and equals -0.11. Hence, 

the model may underestimate the remaining life expectancy is by no more than about 

11 percent. On the overestimation side, however, the errors have no upper limit and may 

easily lead to outliers, as the power in (25) is a parabolic function that opens up. For 
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example, at 𝑟𝑟𝑒𝑒(𝑎𝑎) = 2, the relative bias (25) reaches 1,72 (model error of 172 percent) 

and at 𝑟𝑟𝑒𝑒(𝑎𝑎) = −2, the model error equals 1909 percent. 

 

Discussion. On the combined and iterative methods of estimating the remaining 

life expectancy at old age 

We have revisited Mitra’s derivation while streamlining the derivation and keeping the 

higher-order terms in the formula. That enabled us to conduct a comprehensive analysis 

of the sources of the biases and of instability of the results of the Mitra model. Our 

analysis shows that the leading source of instability of the model is inadequacy of the 

growth parameter used in the model or, by implication, the violation of the assumption 

of stability of the population age composition. 

We have also confirmed an earlier hypothesis (Ediev 2017, 2018) that upward 

biasedness of the model was not a coincidental observation related to particular data 

used but is, rather, an essential feature of the model. This latter observation provides a 

formal ground to the earlier proposed combined method (Ediev 2018) that relies on 

using the minimum of the Mitra and of the classical estimates of the remaining life 

expectancy in the open age interval: 

𝑒𝑒𝑎𝑎 = min(𝑒𝑒𝑎𝑎𝐶𝐶𝑙𝑙𝑎𝑎𝐶𝐶., 𝑒𝑒𝑎𝑎𝑀𝑀.) (26) 

Taking positive difference between the Mitra and the classical estimates as indication 

of an outlier of the Mitra model, one may extend the combined method by including 

more than two alternative estimates: 

, (27) 

where 𝑒𝑒𝑎𝑎alt. is an alternative estimate of the remaining life expectancy to be used when 

an outlier of the Mitra model is detected. With the classical estimate used as such an 

alternative, 𝑒𝑒𝑎𝑎alt. = 𝑒𝑒𝑎𝑎𝐶𝐶𝑙𝑙𝑎𝑎𝐶𝐶., (27) turns into (26). More accurate alternative estimates, 

such as the Horiuchi-Coale estimate (Ediev 2018; Horiuchi and Coale 1982), may be 

used to improve accuracy of the combined method. Even better perhaps, one may 

consider models that do not assume population stability at all to form the alternative 

estimates 𝑒𝑒𝑎𝑎alt.. A prominent choice of that kind might be the regression model relating 

𝑒𝑒𝑎𝑎 = �
𝑒𝑒𝑎𝑎𝑀𝑀. 𝑖𝑖𝑖𝑖 𝑒𝑒𝑎𝑎𝐶𝐶𝑙𝑙𝑎𝑎𝐶𝐶. ≥ 𝑒𝑒𝑎𝑎𝑀𝑀.

𝑒𝑒𝑎𝑎alt. 𝑖𝑖𝑖𝑖 𝑒𝑒𝑎𝑎𝐶𝐶𝑙𝑙𝑎𝑎𝐶𝐶. < 𝑒𝑒𝑎𝑎𝑀𝑀. 
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the remaining life expectancy to the death rate at a given age, because of the model’s 

independence of population stability and the lack of correlation between the estimates 

based on the regression model and on models by Horiuchi-Coale and Mitra (Ediev 

2019). 

We found no strong effects of dropping the quadratic terms in the Mitra formula. 

This, presumably, indicates that the effects of neglecting other higher-order terms 

should be of the same magnitude (inducing errors of several percentage points) or less. 

Despite that, combined effect of all non-linear terms dropped in the Mitra formula might 

well be sizable, especially in combination with large errors in the input value of the 

growth parameter. Indeed, note that the Mitra formula suggests non-monotone (log-

quadratic) relationship of the observed death rate in the open age interval to the growth 

parameter: 𝑀𝑀𝑎𝑎+~𝑒𝑒𝑟𝑟
(𝑟𝑟�−𝑎𝑎)(𝑀𝑀𝑎𝑎++𝑟𝑟)−1

𝑀𝑀𝑎𝑎+ . This, however, is merely a reflection of inadequacy 

of the linear approximation used in deriving the formula, because in reality the open age 

interval death rate should monotonically decrease with increasing growth rate. That is 

because the death rate in the open age interval is a weighted average of age-specific 

death rates in the interval with weights equal to the population size in respective age. 

When growth parameter is higher, the stable population age composition is weighted 

heavier at younger ages (with lower mortality) and the open age interval death rate 

becomes lower.  

To address the Mitra model’s inadequacy at extreme values of the growth 

parameter, we suggest making use of the constrained mortality extrapolation model 

(Ediev 2017) that enables projecting, rather accurately, the death rates to old ages given 

the reasonable estimate of the remaining life expectancy at old age. Having the death 

rates 𝜇𝜇(𝑥𝑥) projected to old ages and assuming the growth parameter, one may form the 

life table functions and the stable population age structure 𝑁𝑁(𝑥𝑥)~𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑥𝑥. Now, the 

idea is to use this stable population age structure directly, without relying on indirect 

regressions as in the Horiuchi-Coale method or on linear approximations as in the Mitra 

model, in order to derive the correction coefficient necessary to estimate the remaining 

life expectancy from the observed death rate in the open age interval: 
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𝑒𝑒𝑎𝑎 = ∫ 𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
𝑙𝑙(𝑎𝑎)

= ∫ 𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
𝑙𝑙(𝑎𝑎)

𝑀𝑀𝑎𝑎+
𝑀𝑀𝑎𝑎+

= 𝑀𝑀𝑎𝑎+
−1 ∙ ∫

𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
𝑙𝑙(𝑎𝑎)

∫ 𝜇𝜇(𝑥𝑥)𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

= 𝑀𝑀𝑎𝑎+
−1 ∙ 𝐾𝐾, (28) 

here  

𝐾𝐾 = ∫ 𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
𝑙𝑙(𝑎𝑎)

∫ 𝜇𝜇(𝑥𝑥)𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

= ∫ 𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

∫ 𝑙𝑙(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

∫ 𝑑𝑑(𝑥𝑥)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎
∫ 𝑑𝑑(𝑥𝑥)𝑑𝑑𝑥𝑥𝜔𝜔
𝑎𝑎

 (29) 

is the correction coefficient alternative to the ones used in Horiuchi-Coale or Mitra 

methods, 𝑑𝑑(𝑥𝑥) = 𝜇𝜇(𝑥𝑥)𝑙𝑙(𝑥𝑥) is the deaths density function. The latter expression for the 

correction coefficient shows the coefficient to be a robust function of the stable 

population age composition. Hence, the idea is to find such an estimate for the 

remaining life expectancy 𝑒𝑒𝑎𝑎 that, in combination with the constrained mortality 

extrapolation model and relation (28), is consistent with the observed death rate 𝑀𝑀𝑎𝑎+.  

The estimation procedure for the stable population model (28) combined with 

the constrained extrapolation may efficiently be organized in an iterative manner, where 

the life expectancy at each step is used to generate the correction coefficient K and 

improve the life expectancy estimate in the next step. We have empirically evaluated 

this iterative method on the Human Mortality Database (University of California, 

Berkeley and Max Planck Institute for Demographic Research (Rostock) 2018) using 

the same testing methodology as in earlier works (Ediev 2018). The empirical tests 

show that the iterative method differs from the Mitra model in two important ways. 

Firstly, the iterative method appears not to be prone to produce outliers and is close, in 

this respect, to the Horiuchi-Coale model. Secondly, unlike in both the Mitra and 

Horiuchi-Coale models, estimation errors of the iterative method are not skewed 

towards positive biases. These differences confirm that the origins of outliers and of 

predominantly positive biases of the Mitra model lie in the log-quadratic form of 

approximation used in the Mitra formula. This approximation serving perfectly in cases 

of small absolute values of the growth parameter performs increasingly inadequately 

when the growth parameter gets higher in absolute terms. This is a problematic feature 

of the model in cases of low-mortality populations that experience rapid ageing and 

expansions of elderly populations.  

Indeed, the very stable population model (28) that forms the basis for the 

Horiuchi-Coale and Mitra models as well as for our iterative model may appear 
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inadequate for cases of rapid mortality decline. That is because the population age 

composition is the context of changing mortality is formed by cohort survival profiles 

and not by the period life tables assumed in the mentioned models. In that case, the 

cross-sectional average length of life (Brouard 1986; Guillot 2003) or other tempo-

adjusted indicators of lifespan (Ediev 2008) may be used instead of the life expectancy 

indicators in generating inputs for the correction coefficient (29). Alternatively, one 

may modify our iterative model by applying it to a period of time covering the cohorts 

forming the currently elderly population. In this way, after estimating the life 

expectancy and the death rates in each iteration, one could calculate the cohort survival 

and use it in estimating the correction coefficients (29) for the next step. Yet another 

prominent improvement to our model might be to estimate both the life expectancy and 

the growth parameter within the iteration procedure. The growth parameter may be 

estimated based on the ratio of the population size in the open age interval to the 

population size in the age groups below the open age interval. These improvements to 

our model need more elaboration and will be considered in further research. 
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