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Abstract: It has been around four years since the 2030 agenda for sustainable development 23 
was adopted by the United Nations in September 2015. Several efforts are being made by 24 
member countries to contribute towards achieving 17 Sustainable Development Goals 25 
(SDGs). The progress made over time in achieving SDGs can be monitored by measuring a 26 
set of quantifiable indicators for each of the goals. It has been seen that geospatial 27 
information has played a significant role in measuring some of the targets and hence in 28 
implementation and monitoring the roadmaps for achieving SDGs. It is evident from this 29 
review study that the synoptic view and repetitive coverage of the earth’s feature or 30 
phenomenon provided by remote sensing (RS) data is one of the most powerful and 31 
propitious technological advancements in science and technology. The scientific world has 32 
made commendable progress by providing geospatial data at various spatial, spectral, 33 
radiometric and temporal resolutions enabling usage of the data for various applications. 34 
This paper reviews the application of big data from earth observation and citizen science 35 
data to implement SDGs with a multi-disciplinary approach. It covers literature from various 36 
academic landscapes utilizing geospatial data for mapping, monitoring, evaluation, 37 
thereafter, and establishes the basis of its utilization for the achievement of the SDGs.  38 
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1. Introduction 43 

The Sustainable Development Goals (SDGs) are a universal call to action to end poverty, 44 
hunger, protect the planet and ensure that all people enjoy peace (United Nations & Nations, 45 
2015). The success of the Millennium Development Goals (MDGs) encouraged us to take 46 



a step forward by making effort in achieving 17 SDGs which lead the world towards 47 
prosperity and sustainability. In order to monitor the progress made over time on each goal, 48 
a set of quantifiable indicators of various targets specific to each goal need to be measured 49 
(Tomás, Svatava, & Bedrich, 2016). This requires systematic data observations at the local 50 
community level and subsequent decisions, which includes the collaboration of various 51 
stakeholders. The United Nations addressed the issues of existing poor data collection 52 
abilities and insufficient data quality in order to optimally measure the indicators. Hence, 53 
the need for a revolution in data collection to enhance the data quality of national datasets 54 
was emphasized (Kharas, Homi. Gerlach, Karina. Elgin-Cossart, 2013). In this task, 55 
geospatial data represents one of the most promising data sources, which can be applied 56 
towards implementing the roadmaps and monitoring the progress in achieving the SDGs.  57 
Some indicators need studying interesting processes and dynamics of the earth such as 58 
climate change, carbon fluxes, water dynamics and biodiversity treats. The earth 59 
observation data gathers information about the physical, chemical, and biological systems 60 
of the planet via remote-sensing technologies which are useful in achieving the SDGs 61 
(Masó, Serral, Domingo-Marimon, & Zabala, 2019). Although, in-situ sensors can be 62 
installed on the ground to measure these variables these sensors can provide earth data at 63 
small scale and that too at a regular frequency. On the contrary, Earth Observation (EO) 64 
satellites provide earth data on a large scale. Though the spatial coverage area increases 65 
significantly but the data collection frequency is limited depending on the revisiting period 66 
of satellites. While most of the national statistical data sources have become centralized, 67 
national spatial information is still fragmented and uncoordinated. To establish national and 68 
international baselines, we need to improve the collection and sharing of data. Specifically, 69 
data collection with the help of the local community, the participation of local people is 70 
essential in building capacity development and for transforming data into practice. The 71 
result was obtained by  Fukuda-Parr (2019) showed SDG 10 (reduced inequalities) within 72 
as well as between countries. The paper concludes that political and technical 73 
considerations are intertwined and transparency in policy strengths and weaknesses of 74 
measurement choices are important. The role of big data in analyzing SDG indicators has 75 
been discussed in (MacFeely, 2019). It has been pointed out that conventional data sources 76 
are not sufficient and the possibility of using big data for SDG monitoring has been studied. 77 
The paper presents issues and challenges in compiling SDG indicators. A review of methods 78 
for translating SDG interconnected goals into policy action has been given in (Breuer, 79 
Janetschek, & Malerba, 2019). The existing framework for the conceptualization of SDGs 80 
and the interconnections among 17 goals is presented. Also, the advantages and 81 
disadvantages of several frameworks used have been studied. The monitoring of SDGs in 82 
Poland has been investigated using dynamic analysis method in (Raszkowski & Bartniczak, 83 
2019).   It has been concluded that the implementation of SDGs in Poland is satisfactory. 84 
The study presents that out of the analysis of a total of 73 indicators, 57 indicators show 85 
contribute towards sustainable development. An urban transport indicator for SDGs has 86 
been discussed in (Brussel, Zuidgeest, Pfeffer, & van Maarseveen, 2019). It has been argued 87 
that urban transport indicator has many limitations. Out of several limitations, the major 88 
limitation is supply oriented. The indicators for the study has been collected using 89 
geoinformation for the city of Bogota in Columbia. The study in (Allen, Metternicht, & 90 



Wiedmann, 2019)  presents a novel integrated method for prioritizing of SDG targets. the 91 
study area is 22 countries in the Arab region. A multi-attribute decision method has been 92 
adopted for the study. the study also discusses benchmarks for indicators. The study (Koch 93 
& Krellenberg, 2018) points out that targets for SDGs are needed to be translated into a 94 
national context. SDG indicators and monitoring systems are needed to be altered 95 
depending on the national context. The authors present that indicators and targets for SDG 96 
11 need to be altered a lot in the German context. A gendered analysis for SDG 8 has been 97 
carried out in (Rai, Brown, & Ruwanpura, 2019). The authors argue that the focus of SDG 98 
8 on economic growth is not adequate. The authors also argue that gender supports SDG 8 99 
if decent work is realized. SDG synergy between forestry and agriculture in food, water, 100 
energy and income nexus has been presented in  (van Noordwijk et al., 2018). The authors 101 
categorize SDGs into three main groups. Application of RS and Geographical Information 102 
System (GIS) methods for change detection in Ethiopia forests has been discussed in 103 
(Reusing, 2000b). Forest monitoring has been done using an airborne and satellite-based 104 
RS. Satellite images captured during 1973-1976 were used to analyze change detection and 105 
land degradation neutrality (Wunder, Kaphengst, & Frelih-Larsen, 2018). A framework for 106 
the assessment of SDG target 15.3 on land degradation neutrality has been outlined. A case 107 
study exploring how locally managed marine areas in Mozambique contributes to SDGs for 108 
food security and poverty elimination has been presented in (Diz et al., 2018). The concept 109 
of fiscal space developed for the health sector in the SDG context has been studied in 110 
(Barroy et al., 2018). The authors in (Asi & Williams, 2018) conclude that SDGs are 111 
complicated even in stable environment scenarios. Marine spatial planning has been 112 
discussed for connecting SDG 14 with the rest of the SDGs in (Ntona & Morgera, 2018). 113 
The relationship of climate change actions in the food system to SDGs has been discussed 114 
in (Bruce M et al., 2018). The authors in (Diaz-Sarachaga, Jato-Espino, & Castro-Fresno, 115 
2018) analyze the suitability of applying an integrated index for assessing the SDGs. 116 

The visualization of indices generated from census data may indicate the spatiotemporal 117 
changes in poverty (SDG 1: end poverty). Similarly, map visualization of schools, literacy, 118 
green space in the cities, usage of natural resources and emissions over product life cycle, 119 
cases registered against violence and many more likewise would help communities to 120 
reconnaissance and thereby, taking concrete actions to achieve SDG 1, SDG 4, SDG 11, SDG 121 
12 and SDG 16 within the stipulated time frame. The impact of climate change can be 122 
witnessed in all the sectors from health to the terrestrial ecosystem. The recent GIS 123 
technologies utilizing spatial statistics for analyzing spatial distributions and patterns can be 124 
used for controlling diseases by monitoring water quality and sanitation of areas (SDG 3, 125 
SDG 6 and SDG 14). The satellite sensors are essential tools in monitoring and visualizing 126 
local and global level changes. The various satellite sensors and their characteristics are given 127 
in Annexure 1. The summary of the sensors is useful to understand the characteristics and 128 
applications of these sensors in various fields without repeating the details about the sensor. 129 
The RS and GIS are indispensable tools which provide a synoptic view with global to local 130 
coverage at various spatial resolutions and in addition to field surveying data, they can 131 
monitor the impact of climate change on different components of the aquatic and terrestrial 132 
ecosystem (Avtar, Takeuchi, & Sawada, 2013). Scientific results and conclusions can provide 133 



a strong basis for the policymakers to formulate best policies for promoting sustainable 134 
development of their respective communities (United Nations Secretary, 2016). Geospatial 135 
data and techniques can be used very effectively for monitoring most of the SDGs, but in 136 
some SDGs, it can be used as proxy data. Figure 1 highlights the SDGs for which the use of 137 
geospatial data is plausible. Highlighted goals mean geospatial data and techniques are 138 
enough to implement these goals and to monitor the progress of various indicators. We still 139 
need to develop techniques and data for the implementation and monitoring the SDG 5, SDG 140 
8, SDG 10 and SDG 17.  141 

This review paper examines the effectiveness of RS and GIS in achieving SDGs. Specifically, 142 
the paper focuses on goals directly related to human wellbeing viz. SDG 1: no poverty, SDG 143 
2: no hunger, and SDG 3: good health, and goals related to a safe planet viz.  SDG 6: clean 144 
water and sanitation, SDG 11: sustainable cities and communities, SDG 13: protect the 145 
planet, SDG 14: life below water and SDG 15: life on land. The paper provides a systematic 146 
review of the scientific knowledge about the use of geospatial data for implementing and 147 
monitoring roadmaps for achieving SDGs. The geospatial data is becoming an asset and 148 
important resource because of its multiple applications. We highlighted the studies from the 149 
literature that summaries (i) what are the various indicators for SDGs, (ii) what indicators 150 
can be monitored using geospatial data, (iii) how to measure and analyze the progress made 151 
over time in achieving SDGs, and (iv) how to improve the monitoring techniques with the 152 
advanced sensors and modeling techniques. To achieve the above objectives, the selected 153 
literature was reviewed systematically with the focus on multi-sensor RS techniques. 154 

 155 

Figure 1. Utilization of geospatial data for SDGs (Source: Sustainable Development 156 
Knowledge Platform)  157 

2. Methodology 158 



 This review is focused on papers that used geospatial data to monitor the progress of 159 
implementing the pathways to achieve SDGs. The keywords such as "Sustainable 160 
Development Goals",  "remote sensing AND SDGs", "remote sensing AND GIS AND 161 
SDGs", "geospatial data AND SDGs", "monitoring SDGs", "monitoring the progress of 162 
SDGs" were used in Google Scholar to gather relevant papers on this study. These keywords 163 
brought a varying number of results depending on various factors such as exact keywords 164 
(put in double quotes), search period (anytime and since 2015), Boolean operators used 165 
(AND, OR, NOT), etc. as summarized in Table 1. 166 

Table 1. Search results for different keywords 167 

Search Keywords Search 
Platform 

Search Period Number of 
Papers 

"Sustainable Development Goals" Google Scholar Anytime 1,32,000 
Since 2015 28,200 

remote sensing AND SDGs Google Scholar Anytime 3,950 
Since 2015 3,230 

remote sensing AND GIS AND 
SDGs 

Google Scholar Anytime 3,510 
Since 2015 2,530 

geospatial data AND SDGs Google Scholar Anytime 1,750 
Since 2015 1,500 

"monitoring SDGs" Google Scholar Anytime 108 
Since 2015 89 

"monitoring the progress of SDGs" Google Scholar Anytime 4 
Since 2015 4 

In the first phase, only abstracts with relevant keywords were briefly analyzed to decide 168 
whether or not to choose the paper for further analysis. To reduce the biases, the first selection 169 
was based on the title of the paper with the pertinent keywords regardless of the author name 170 
and country. During the second phase of scrutiny of literature, we prioritized peer-reviewed 171 
articles, however, reports, news articles, book sections, etc. were also included. A critical 172 
appraisal of the papers selected through the second phase of scrutiny was carried out.   173 

3. Geospatial data for Sustainable Development Goals (SDGs) 174 

3.1. Sustainable Development Goal 1: no poverty 175 

The spatial information from RS images can help to backdated data of census at a global 176 
scale, especially for developing countries. The United Nations has defined 7 targets and 14 177 
indicators for SDG 1. The traditional method to measure poverty relies on census data, which 178 
typically has a repeat cycle of 5 or 10 years as it is difficult to update the data yearly. In some 179 
of the low and middle-income countries, census data is unavailable or if available, it is 180 
outdated. Therefore, the use of alternative techniques based on GIS and mobile mapping can 181 
help in updating and filling up such data gaps (Tatem et al., 2017). The poverty maps based 182 
on geospatial data provide information on inequality within a country and hence divulge the 183 
spatial disparities related to the various indicators of SDG 1 (Kuffer et al., 2018). These maps 184 
are becoming an important tool for developing effective policies aimed at reducing 185 
inequalities within countries by implementing social protection programs which include 186 
allocating subsidies, effective resource use, disability pension, unemployment insurance, old-187 



age pension, etc. Multi-temporal poverty maps can be used to see the change in poverty by 188 
implementing social protection programs. The use of geospatial information can give 189 
information about potential hotspots, where the international community must work together 190 
to reduce poverty. The use of mobile phone data has been used as an indicator of poverty, for 191 
example, use of monthly credit consumption, the proportion of people with the use of mobile 192 
phones, movement of mobile phones, etc. (Eagle, Macy, & Claxton, 2010; Soto, Frias-193 
Martinez, Virseda, & Frias-Martinez, 2011). There are numerous studies where GIS tools are 194 
leveraged towards implementing policies to achieve SDGs. Some of these studies are 195 
discussed below. 196 

Le Gallo and Ertur studied the distribution of regional GDP per capita in Europe and 197 
found that the spatial autocorrelation (Gallo, J. L. & Ertur, 2003). The finding of the authors 198 
matches with those of Minot and Baulch (Minot & Baulch, 2005) since poverty often existed 199 
in the clustered form. The numeric values of indicators are important, but GIS enables us to 200 
see the problem obviously in bird’s eye view. Asensio focused on the targeting aspect of 201 
poverty alleviation (Asensio, 1997). In his work, census figures were used alongside aerial-202 
photo interpretation within a GIS environment. Numerous and varied indicators which 203 
revolved around unemployment rate, health-infant mortality rate, ethnicity, educational 204 
attainment of female household heads and housing quality, etc. were used. The level of data 205 
aggregation was the building block. The use of GIS-based poverty map can integrate data 206 
from various sources in defining and describing poverty. This can generate reliable poverty 207 
indicators at district and sub-district levels. The application of GIS can provide an insightful 208 
idea of the census data, which seems underutilized in developing countries. In Indonesia, 209 
Poverty Reduction Information System for Monitoring and Analysis (PRISMA) has been 210 
widely used to conduct spatial analysis of poverty in relation to other variables in the GIS 211 
platform (Sugiyarto, 2007). Okwi et al. mentioned in their study that acquisition of various 212 
thematic data such as slope, soil type, distance and travel time to public resources, elevation, 213 
type of land use, and demographic variables can be useful to explain spatial patterns of 214 
poverty (Okwi et al., 2007). Elvidge et al.  derived a global poverty map using a poverty 215 
index calculated by dividing population count by the brightness of satellite observed lighting 216 
(DMSP nighttime lights) (Elvidge et al., 2009). They have used land cover, topography, 217 
population settlement and DMSP nighttime light data. They estimated that the numbers of 218 
individuals living in poverty are 2.2 billion, slightly under the world development indicators 219 
(WDI) estimation of 2.6 billion. This information can be updated easily with the use of multi-220 
temporal satellite data. Blumenstock et al. demonstrated that policymakers in the world’s 221 
poorest countries are often forced to make policies with data insufficiency especially in the 222 
African region (Blumenstock et al., 2016). Therefore, the use of high-resolution satellite 223 
imagery and machine learning can fill the gap of data insufficiency. Multi-dimensional 224 
poverty index (MPI) based on mobile call details, ownership, call volume, as well as satellite-225 
based night light data, has been used in Rwanda with high accuracy (Njuguna & McSharry, 226 
2017). This study shows that mobile and satellite-based big data can be effectively used for 227 
evaluating spatiotemporal poverty. The use of high-resolution satellite data to estimate 228 
variation in poverty across small local areas by analyzing features such as the density of 229 
paved and unpaved roads, building density, roof types, farmland types has been conducted 230 



in Sri Lanka (Engstrom, 2016). Geospatial data can be effectively used as a tool to provide 231 
updated data as well as to monitor the progress or growth due to the implementation of current 232 
policies. Xie et al. developed a transfer learning approach using convolutional neural 233 
networks (CNN), where night-time light intensities are used as a data-rich proxy to predict 234 
poverty in Africa (Xie, Jean, Burke, Lobell, & Ermon, 2015). This approach can easily be 235 
generalized to other RS tasks and has great potential to solve global sustainability challenges. 236 
One of the recent studies demonstrated how mobile phone and satellite data can be utilized 237 
as a mapping tool for poverty (Tatem et al., 2017). The findings indicate the feasibility to 238 
estimate and continually monitor poverty rates at high spatial resolution in countries with 239 
limited capacity to support traditional methods of data collection. Hence, it can be concluded 240 
from the above-discussed literature review that geospatial techniques are effective means to 241 
reach out the most vulnerable groups to reduce poverty. 242 

3.2. Sustainable Development Goal 2: no hunger 243 

Estimation of agricultural yields based RS data which can be used to prevent hunger 244 
issue. According to the United Nations Food and Agriculture Organization (FAO), there is 245 
more than enough food produced in the world to feed everyone. But recent data shows that 246 
the estimated number of undernourished people has increased from 777 million in 2015 to 247 
815 million in 2016 (FAO IFAD UNICEF, 2017). The tackling with hunger problem is not 248 
an easy task and it needs international cooperation in concert. Knowing the problem of 249 
undernutrition in an area, projecting future crop production and water availability could help 250 
us to mitigate the problem in the future since we would make a plan in advance. The satellite 251 
data can contribute to zero hunger by providing timely data on agriculture yield, market 252 
demand using modelings. The use of unmanned aerial vehicles (UAVs) in precision 253 
agriculture can also support sustainable agriculture production by precision farming 254 
(Paganini et al., 2018). The RS and GIS could be used to detect problem areas struggling for 255 
ensuring enough food. Nube and Sonneveld analyzed the current situation of the distribution 256 
of underweight children in Africa and found the highest prevalence rate around the border 257 
between Nigeria and Niger, Burundi, and the central/northern Ethiopia (Nubé & Sonneveld, 258 
2005). They indicated that the regional characteristics, as well as national policies and 259 
circumstances, play a role in high causation as well as prevention. Liu et al. also analyzed 260 
hotspots of hunger along with the climate change scenario for the subnational level of Sub-261 
Saharan Africa (Liu et al., 2008). The authors found that existing problems in Nigeria, Sudan, 262 
and Angola would be mitigated by improving the domestic food security situation through 263 
gaining economic power, but some regions in Tanzania, Mozambique and DR Congo would 264 
face more serious hunger problems if climate change continues to progress. Based on the 265 
projections, SDG 2 would be achieved for these countries only if the international community 266 
could work together to help struggling countries. Geospatial data can be used to timely and 267 
accurately forecast the agricultural yield at a national, regional and global level with the use 268 
of ground-based observation and weather data. Satellite data can provide useful information 269 
about poor growing seasons and years of low crop productions. Group on Earth Observations 270 
Global Agricultural Monitoring (GEOGLAM) is one of the seminal agencies that use 271 
geospatial data for agriculture forecasting. Raising the agriculture productivity and climate 272 



resilience are needed to feed the growing population by adopting advanced technologies 273 
(World Bank, 2016).  274 

3.3 Sustainable Development Goal 3: good health 275 
Spatial analyses techniques can help in examining such a healthcare system as well 276 

as estimating the path of infectious diseases. Improving sanitary conditions such as access to 277 
clean water is crucial in maintaining good health. Therefore, SDG 3 is feasible only if SDG 278 
6: clean water and sanitation, is achieved. It is worth to mention here that all the 17 goals of 279 
SDGs are not independent, rather these goals are interconnected. The WDI data and the 280 
World Water Development Report by UN-Water provide us the percentage of the population 281 
with clean water access using GIS maps. The maps show a cluster in Africa, telling that the 282 
situation must be improved in the future for the attainment of SDGs. Similar to its use for 283 
detecting hunger problems, GIS plays an important role in assisting decision-makers to 284 
improve the situation. 285 

In addition to sanitation, maintaining good health requires access to the healthcare 286 
system. GIS can be used to analyze healthcare conditions nationally and internationally. 287 
Rosero-Bixby studied the condition of healthcare in Costa Rica measuring the spatial access 288 
within the country (Rosero-Bixby, 2004). His findings provide important information to 289 
achieve SDG 3 in Costa Rica because it clearly points out certain communities without 290 
adequate access to healthcare. Together with other healthcare indicators such as child 291 
mortality rate, if the regional differences are revealed, the government could intensively 292 
allocate the budget and human resources in areas behind the others to improve the situation 293 
for achieving SDG 3. A similar analysis is useful for Sub-Saharan countries to show clear 294 
signs for the international community.  295 

Gaugliardo studied the situation of the primary care by measuring the distance to a 296 
healthcare facility and found the differences in the accessibility of primary care in 297 
Washington DC (Gaugliardo, 2004). Some areas have medical service providers over 70 for 298 
100,000 children while others have less than 20. Wang and Luo studied to find areas, which 299 
suffered from the shortage of healthcare workers in Illinois and found that disadvantaged 300 
areas were widespread all over the state, except big cities such as Chicago (Wang & Luo, 301 
2005). Both studies imply that GIS can also be used in medical geography to depict social 302 
inequality in developed countries. Also, improving social conditions contributes to achieving 303 
both SDG 3 and SDG 10: reduced inequalities. 304 

The effectiveness of GIS is not limited to the general healthcare system, we could 305 
utilize it for epidemiology study to prevent a future pandemic of diseases. Maude et al. 306 
analyzed the spatial and temporal data on clinical malaria in Cambodia, and the distribution 307 
of the disease and village malaria workers were depicted (Maude et al., 2014). Luge prepared 308 
a case study to report how GIS was used to combat the recent Ebola outbreak in Guinea 309 
(Timo Lüge, 2014). In countries like Guinea, it is quite challenging to tackle communicable 310 
diseases because a lot of basic information including geographic and social data is missing. 311 
Although quick responses are crucial to containing the pandemic and the epidemic, a 312 
response tends to be slow and ineffective. A medical humanitarian organization, Medicine 313 
Sans Frontier, needed to start from collecting geographic data to know how streets connect 314 



residential areas as well as where the cases were reported. Jones et al studied global temporal 315 
and spatial patterns of emerging infectious diseases (EIDs) and found that the origin of EIDs 316 
is correlated with socio-economic, environmental and ecological factors (Jones et al., 2008). 317 
The study revealed the fragile regions due to EIDs in the world including developed 318 
countries, and the risk map would help us to prepare for the future outbreaks. EIDs include 319 
zoonosis, which is common to both human and animal. Outbreaks of zoonosis such as 320 
avian/swine influenza, Ebola, and rabies would significantly impact on both human health 321 
and national economies, especially if the livestock industry is a major industry. Preventing 322 
infectious diseases through monitoring is necessary for SDG 3. The current trend of global 323 
warming as well as globalization, the infected area is expanding into new areas as mosquitos 324 
move along with human and material flows, and controlling infectious diseases will be 325 
challenging to all countries. The recent outbreak of Zika virus in South America has already 326 
widespread to North America, Europe, and Asia, and the impact of the disease is especially 327 
significant for pregnant women and newborn babies. Therefore, for SDG 3, analyzing the 328 
origin, tracking the outbreak and preventing the disease from invasion is an important 329 
process, and GIS is an effective tool for this process. Orimoloye et al. studied about change 330 
in land surface temperature and radiation due to urbanization in South Africa using Landsat 331 
data and radiation risks to heatstroke, skin cancer, and heart disease (Orimoloye, Mazinyo, 332 
Nel, & Kalumba, 2018). Strano et al. proposed a tool for supporting the design of disease 333 
surveillance and control strategies through mapping areas of high connectivity with roads in 334 
the African region (Strano, Viana, Sorichetta, & Tatem, 2018). 335 

The GIS is also an effective tool to monitor the progress of achievement as well as 336 
to make future plans for SDGs, and many studies have revealed its effectiveness (Sustainable 337 
Development Solutions Network (SDSN), 2014). GIS is, however, not fully incorporated in 338 
the monitoring and evaluation process for global problems and targets. For the successful 339 
ending of SDGs, the monitoring process could be standardized for all countries, and the GIS 340 
could be incorporated into the process aiming for redressing regional differences in a country. 341 
Science and political communities would need to cooperate to make an effective monitoring 342 
system for SDGs 343 

3.4 Sustainable Development Goal 6: clean water and sanitation 344 
SDG 6 addresses the issues related to clean water and sanitation. It has seven targets to 345 

be achieved by 2030 ranging from water resources to the hygiene of people. The applications 346 
of geospatial techniques like remote sensing and GIS has promised for achieving each of the 347 
seven targets. Target 1 is to achieve universal and equitable access to safe and affordable 348 
drinking water for all by 2030. The study “Assessment of Groundwater Potential in a Semi-349 
Arid Region of India Using RSGIS and Multi-Criteria Decision Making Techniques” 350 
(Machiwal, Jha, & Mal, 2011) provides a very good insight to achieve this target. In this 351 
study, the authors proposed a standard methodology to delineate groundwater potential zones 352 
using integrated RS, GIS and Multi-Criteria Decision Making (MCDM) technique. Using 353 
each of these techniques they have generated a groundwater map and demarcated four 354 
groundwater potential zones as good, moderate, poor and very poor based on groundwater 355 
potential index in Udaipur district of Rajasthan, Western India. On the basis of hydrogeology 356 
and geomorphic characteristics, four categories of groundwater prospect zones were 357 



delineated. Another study in drought-prone Bundelkhand region also showed the importance 358 
of RS, GIS and ground survey data to identify groundwater potential zones. This study can 359 
be used to address drought mitigation and adaptation (Avtar, Singh, Shashtri, Singh, & 360 
Mukherjee, 2010).  361 

Target 2 of the SDG 6 is to achieve access to adequate and equitable sanitation and 362 
hygiene for all and end open defecation, paying special attention to the needs of women and 363 
girls and those in vulnerable situations. Open defecation is a very common sight in 364 
developing countries due to inaccessibility to infrastructure facilities. Various information on 365 
land cover and infrastructure derived from satellite data can be used for geographical analysis 366 
in the planning of infrastructure development (Paulson, 1992). Information like land-cover 367 
derived from satellite imagery combined with land ownership, slope, soil type and visibility 368 
indicators in GIS can be used to design infrastructure facilities (Tatem et al., 2017). These 369 
techniques are also important for assessing the environmental impact and cost of construction 370 
(Kuffer et al., 2018). Another type of application is the zoning of cities according to the 371 
physical and socio-economic properties of infrastructure planning. The zones can be for 372 
different purposes such as sanitation, housing etc. By using the information of population 373 
densities and area it can be also used to calculate the approximate number of users and costs. 374 

The study on water pollution and management in Tiruchirappalli Taluk, Tamil Nadu, 375 
India using IRS LISS-III (Linear  Imaging Self Scanning Sensor), satellite imagery and 376 
SRTM (Shuttle Radar Topography Mission) data integrated with water level data, canal 377 
inflow, groundwater condition to generate distribution of water pollution map in the area 378 
(Alaguraja, Yuvaraj, & Sekar, 2010). Another study conducted in Alabata community 379 
(Nigeria), which is a community without basic infrastructure facilities revealed the 380 
importance of RS-GIS based techniques in the bacteriological examination of rural 381 
community water supply. Data on sanitation, health, water sources, and water sampling 382 
points were taken and plotted in GIS and a base map was generated in this study. 383 
Development of RS-GIS system allows the overlapping of the spatial location of water 384 
sources and bacteriological quality data as well as the generation of a map for the planning 385 
and management (Shittu, Akpan, Popoola, Oyedepo, & Oluderu, 2015). 386 

Over-exploitation of groundwater resources can be monitored by RS-GIS techniques. 387 
The study on integrated RS-GIS application for groundwater exploitation and identification 388 
of artificial recharge sites provides a very good example to support this argument. In this 389 
study, IRS-LISS-II data and other relevant datasets are used to extract information on hydro-390 
geomorphic features of hard rock terrain. This study was conducted in Sironj area of Vidisha 391 
district of Madya Pradesh (India). IRS-LISS-II data has been integrated with DEM, drainage 392 
and groundwater data analysis in GIS. This study has helped to design an appropriate 393 
groundwater management plan for a hard rock terrain (Saraf & Choudhury, 1998). Satellite 394 
data with multiple applications can be useful to monitor clouds, precipitation, soil moisture, 395 
groundwater potential, inland water bodies, change in the river and surface water levels, etc. 396 
(Paganini et al., 2018). 397 

Target 5 of SDG 6 is protecting and restoring water-related ecosystems, including 398 
mountains, forests, wetlands, rivers, aquifers, and lakes by 2020. Availability of water 399 



depends on several factors like forests, wetlands, mountain springs, etc. Therefore, protecting 400 
them and restoring them plays a vital role in achieving SDG 6. The study was done by 401 
Reusing on change detection of natural high forests in Ethiopia using RS and GIS techniques 402 
set a very good example for this (Reusing, 2000a). The author has done countrywide change 403 
detection analysis of Ethiopia’s natural high forests using multi-temporal LANDSAT-TM 404 
satellite images. Wetlands are important in mitigating and controlling flood a hazard which 405 
brings lots of negative impacts on the poor communities due to the widespread of waterborne 406 
diseases, destroying properties and agricultural fields. Therefore, restoring and protecting 407 
existing wetlands is a timely necessity and RS and GIS can be incorporated in this. Rebelo et 408 
al., have developed a multiple purpose wetland inventory using integrated RS-GIS techniques 409 
and specific analyses at different scales in response to past uncertainties and gaps (Rebelo, 410 
Finlayson, & Nagabhatla, 2009). Furthermore, they have quantified the conditions of 411 
wetlands along the western coastline of Sri Lanka using satellite data and GIS to describe 412 
trends in land use due to the changes in agriculture, sedimentation and settlement patterns.  413 

3.5 Sustainable Development Goal 11: sustainable cities and communities 414 

There has been accelerated progress made on global spatial data collection and 415 
processing because of advancement in technologies and computer science. Therefore, 416 
increased investment and technical application are needed to expand on the progress being 417 
made to integrate geospatial data into the implementation of sustainable cities and human 418 
settlements global goal. UN-Habitat is already engaging research institutions to develop a 419 
representative dataset of urban areas that would make possible monitoring of urban land-use 420 
efficiency, land-use mix, street connectivity and other key factors of sustainable urban 421 
development (Habitat, 2015). Consequently, adopted SDG 11 is also transformational in the 422 
sense that it targets the sequential progress of urban planning, the complex provision of public 423 
space, access to basic services and transportation systems to the growing population in this 424 
digital world of uncertainties. Furthermore, working towards the achievement of higher-level 425 
outcomes in other goals (e.g. poverty eradication, water and sanitation, food security and 426 
energy efficiency), which strongly reflects cities as arenas of implementation, and places 427 
where projects strong foundations are to be built.  428 

United Nations Regional Cartographic Conference for Asia-Pacific (2015) emphasized 429 
the importance of an integrated approach to sustainable development, including the need for 430 
quality data and information for decision making (Lehmann et al., 2017). The high need for 431 
geographic data was then first captured in a global sustainable development dialogue. The 432 
report of the summit, under the ‘means of implementation’ theme called for member states 433 
to inter-alia: promotion of development and a wider use of earth observation technologies 434 
including satellite RS, global mapping and geographic information systems, to collect quality 435 
data on environmental impacts, land-use and land-use changes, including through urgent 436 
actions at all levels of access, explore the use of geographic information by utilizing the 437 
technologies of satellite RS for further development as far as urbanization is concerned. How 438 
geographic information would be applied to sustainable development challenges, or be 439 
implemented was not clarified. There was simply no apex intergovernmental mechanism in 440 
existence that could suitably address the production and use of geographic information within 441 



national, regional and global policy frameworks – or how they could be applied to sustainable 442 
development challenges. There are various sectors in a city that really need the application 443 
of geospatial information. Acquiring data on these indicators will contribute a lot to the 444 
implementation of the sustainable cities SDG 11 achievements by 2030. For example, the 445 
application of RS data in wastewater monitoring can clearly assist us to identify the flow and 446 
be used as an indicator for monitoring the proportion of wastewater safely treated (Ulugtekin, 447 
Bektas, Dogru, Goksel, & Alaton, 2005). There is a similar situation on the population 448 
density, land use, land cover and many other data needed in the achievement of SDG 11. If 449 
this data is integrated with other geospatial, survey and administrative data of high-resolution 450 
satellite images can document the location of treatment facilities in a city, estimate the 451 
wastewater generation potential, release their impacts. The use of geospatial data in the 452 
implementation of SDG 11 will contribute a lot to filling most of the knowledge gaps. It will 453 
place many demands on national statistical systems, help on the lack of capacity for 454 
additional monitoring and well it also has cost-effective gains on monitoring in general.   455 

Geospatial information and analysis significantly enhance the effectiveness of the SDG 456 
11 indicators in monitoring and guiding sustainable development from global to local scales. 457 
The value of statistical and geospatial data compilation for the implementation and 458 
monitoring of the 2030 Agenda and SDG 11 constitutes an important basis for the continued 459 
collaboration between the geospatial field and many other sectors involved in the 460 
implementation structure of sustainable cities goal achievement. However, this will require 461 
us, not only to promote the use of statistical and geospatial data as reporting and monitoring 462 
tools for achieving the SDG 11 but further support the capacity building in the intersection 463 
of various disciplines in a transdisciplinary approach ((ISO), And, & (IHO), 2015).  464 

This review paper has recognized the need for the global geospatial information 465 
community, particularly for the implementation of SDG 11 through the utilization of national 466 
geospatial information agencies. There is an opportunity to integrate geospatial information 467 
into the sustainable cities goal in more accurate ways to gather, measure and monitor the 468 
targets and indicators of the SDG 11. For example, through an approach called Backcasting, 469 
conceptually developed to support sustainable decisions in the energy sector (Haslauer, 470 
Biberacher, & Blaschke, 2012). Backcasting works backward from the envisioned future 471 
goals to the present, setting milestones to achieve the desired objective. These milestones are 472 
small interim scenarios along the way between the future scenario, usually 20–50 years 473 
ahead, and the present situation. The use of Backcasting methodology, if implemented in a 474 
modeling environment of many cities, urban planning process based on Geo-Information-475 
System (GIS-based) using the scripting language Python, will play a major part in the 476 
implementation process of the SDG 11. Most importantly, in order to achieve this outcome, 477 
national geospatial information institutes need to collaborate more with the national statistical 478 
and earth observatory professional communities.  479 

The governments need to ensure the unity between institutions having similar goals and 480 
objectives both at national and global perspectives. The institutions are required to deliver 481 
the same data, as much as practical and depending on national circumstances and functions 482 
usefulness of the geospatial data in the implementation of the SDG 11 is concerned. Urban 483 



cities contribute around 80% of global greenhouse gas (GHG) emissions, especially in most 484 
developing nations where urban centers and cities are very much spaced, with no effective 485 
means of urban transport systems. Therefore, sustainability indicators can provide new ideas 486 
and solutions to the planning and expansion happening globally. The decisions for 487 
sustainable cities planning and management should be taken on an evaluation of their 488 
consequences. Correspondingly, each strategy needs to design the right tools of study, 489 
analysis, and prediction (Martos, Pacheco-Torres, Ordóñez, & Jadraque-Gago, 2016). For 490 
this reason, the integration of RS and geospatial tools like GIS and many modeling and 491 
projection tools will have an effective impact to implement and monitor sustainable city goal. 492 
The mapping, modeling, and measurements of urban growth can be analyzed using GIS and 493 
RS-based statistical models. While achieving safe, resilient, sustainable cities and 494 
communities surely present the global community with a set of significant social, 495 
environmental and economic challenges, geospatial information can provide a set of science 496 
and time-based monitoring solutions to these challenges. As noted at the second session of 497 
United Nations Initiative on Global Geospatial Information Management (UN-GGIM) in 498 
August 2012, “all of the issues impacting sustainable development can be analyzed, mapped, 499 
discussed and/or modeled within a geographic context” (Scott & Rajabifard, 2017). The use 500 
of Geo-information will effectively reduce the network load and the building modeling cost 501 
as well. Which contribute substantially to the achievement of the sustainable and low carbon 502 
cities by saving three quarters of manpower, time and cost during the implementation of most 503 
construction projects (Rau & Cheng, 2013).  A case study on GIS methods for assessing the 504 
environmental effects in informal settlements in Cuiaba, Central Brazil has been carried out 505 
in (Zeilhofer & Piazza Topanotti, 2008).  The reason for the rise in informal settlements in 506 
Cairo, the capital of Egypt has been studied in (El-Batran & Arandel, 2005). The sustainable 507 
informal settlements in Dharavi, Mumbai, India, Santa Marta favela, Rio de Janeiro, Tondo, 508 
Manila, Philippines have been studied in (Dovey, 2015). The author in (Dovey, 2013) 509 
explains that the informal settlements for shelter and community have risen globally and are 510 
legally unjustifiable. The informal settlements in Kisumu, Kenya have been described in 511 
(Karanja, 2010). In conclusion, whether collecting and analyzing satellite images or 512 
developing geopolitical policy, geography provides the integrative approach necessary for 513 
global collaboration and consensus decision making towards the achievement of SDG Goal 514 
11 on safe, resilient and sustainable cities. 515 

3.6 Sustainable Development Goal 13: climate action 516 
The key to understanding our dynamic climate is creating a framework to take many 517 

different pieces of past and future data from a variety of sources and merge them together in 518 
a single system using GIS (Dangermond & Artz, 2010). A particular technological measure, 519 
which was specifically identified by national development targets and strategies of most 520 
countries all over the world is the use of RS, particularly on climate monitoring and analysis. 521 
For instance, Indonesia has initiated the development of its National Satellite Development 522 
Programme in aid of the application of satellite RS on the issues of climate change and food 523 
security in the country. Also, countries like the Philippines is pushing for the capacity 524 
building of its technical people to earn needed expertise on the use and application of new 525 
and sophisticated equipment such as the GIS. It goes without saying that RS has become a 526 



pre-requisite for reliable information bulletins on climate change which was relied on by 527 
decision-makers. Various pieces of literature pointed out the following reasons why RS has 528 
become a very important ingredient in climate change study and decision making related to 529 
it: 530 

• Many regions in the world are characterized by the lack of a dense network of ground-based 531 
measurements for Essential Climate Variables (ECVs). 532 

• Some parameters can only be observed from space or can be observed with better accuracy 533 
from space (e.g. top of atmosphere radiation budget). 534 

• RS provides climate variables with a large regional coverage up to global coverage. 535 
• Assimilation of satellite data has largely increased the quality of reanalysis data. 536 
• Satellite-derived products have the potential to increase the accuracy of gridded climate 537 

datasets gained from dense ground-based networks. 538 
At present, the application of RS in dealing with the issue of climate change has been 539 

very useful. It is noteworthy to mention one of the earliest and globally important 540 
contributions of RS in climate change study which is the discovery of the ozone hole over 541 
Antarctica. It was discovered by a British scientist and was confirmed by the Nimbus-7 Total 542 
Ozone Mapping Spectrometer (TOMS) launched in 1978. Since then, the TOMS make maps 543 
of daily global ozone concentration. These data were used as scientific shreds of evidence in 544 
the First Montreal Protocol where 46 nations agreed to reduce the use of chlorofluorocarbons 545 
(CFCs) by 50% by 1999. However, like many other great things, it is also being hurdled by 546 
some issues and criticisms including (i) there are types of data which are not accurate down 547 
to a more human scale of meters (e.g., while standing in the field), (ii) requires highly 548 
technical expertise, (iii) involve the use of costly/expensive equipment, (iv) accuracy is 549 
highly dependent on the source data. This pushed different organizations (i.e., NASA, ESRI) 550 
to strive for future directions in RS and global change, including international cooperation, 551 
dataset management, ENVISAT, and distributed computing. Recent developments in RS 552 
open up new possibilities for monitoring climate change impacts on the glacier and 553 
permafrost-related hazards and threat to human lives and infrastructure in mountainous areas 554 
(Kaab, Huggel, & Fischer, 2006). Previous studies show the importance of RS and GIS in 555 
the assessment of natural hazards in mountainous regions, therefore, it will play a major role 556 
for the sustainability of the region in the near future (Kääb, 2002; Quincey et al., 2005).  557 

3.7 Sustainable Development Goal 14: life below water 558 
This goal addresses the sustainable use and conservation of ocean, seas and marine 559 

resources. This goal consists of several targets addressing marine pollution, protection of 560 
marine and coastal ecosystems, minimizing ocean acidification, regulating and managing 561 
fishing activities, prohibiting overfishing, increasing economic benefits to the small island 562 
via the sustainable use of marine resources, developing research capacity and implementing 563 
international laws which support sustainable utilization of marine resources. Geospatial 564 
techniques provide an enhanced interface to achieve these targets in numerous ways. One 565 
good example can be taken by the study done by Geubas (2002) (Dahdouh-guebas, 2002). 566 
The author has studied the sustainable use and management of important tropical coastal 567 
ecosystems such as mangrove forests, seagrass beds and coral reefs using integrated RS and 568 
GIS. The author determined the ecosystem resilience and recovery followed by an adverse 569 



impact using these techniques. The author stressed that there is a need for more 570 
comprehensive approaches that deal with new RS technologies and analysis in a GIS-571 
environment, and that integrate findings collected over longer periods with the aim of 572 
prediction. Another study done for seagrass meadows, North Carolina, USA supports the 573 
significance of geospatial techniques in the sustainable use of ocean and its resources. 574 
Seagrass meadows are vulnerable to external environmental changes and they provide habitat 575 
for coastal fisheries. Therefore, monitoring and conserving seagrass is key to a healthy ocean 576 
environment. Spatial monitoring of seagrasses can improve coastal management and 577 
provides a change in location and areal extent through time (Ferguson & Korfmacher, 1997). 578 
RS and Landsat TM were used in this study to detect these changes.  579 

Oil spills are a very common sight in oceans. They are mainly associated with the 580 
shipping routes. Oil spills can significantly affect the marine animals by coating on them and 581 
suffocating them to death. Furthermore, it can inhibit sunlight falling on the ocean and inhibit 582 
primary production. RS can be used to detect these oil spills easily. Microwaves are 583 
commonly used for the detection of ocean pollution. For example, Satellite-based oil 584 
pollution monitoring capabilities in the Norwegian waters were demonstrated in the early 585 
1990s by using images from the ERS-1 satellite (Wahl, Anderssen, & Skøelv, 1994). With 586 
the advancement of RS technologies Synthetic Aperture Radar (SAR) plays an important role 587 
in oil-spill monitoring (Brekke & Solberg, 2005). 588 

Global capture fisheries production was relatively stable during the past decade, whereas 589 
aquaculture production continued to rise (FAO (Food & Agriculture Organisation), 2012). 590 
Both sectors are very important in global food security and there is an increasing threat to 591 
their sustainability. Some of the challenges are overfishing, degradation of keystone species 592 
and climate change. On the other-hand aquaculture faces problems like competition for space, 593 
disease outbreak, labor, impacts of climate change. The solutions to some of these problems 594 
can involve applying satellite remotely sensed (SRS) information (Saitoh et al., 2011). RS 595 
can be used to detect ocean temperature, sea surface height anomaly, and wind which are 596 
very important in operational oceanography. In pelagic fisheries, there are mainly two RS 597 
applications. One is for identification of potential fishing zones, and the other one is for the 598 
development of management measures in order to minimize the catch of endangered species. 599 
For example, Howell et al., (2008) demonstrated a tool that facilitated the avoidance of 600 
loggerhead turtle (Caretta caretta) bycatch, while fishing for swordfish (Xiphias gladius) and 601 
tuna (Thunnus spp.) in the North Pacific (Howell, Kobayashi, Parker, Balazs, & Polovina, 602 
2008). This proved the feasibility of designing near-real-time fishery management 603 
boundaries using SRS SST (sea surface temperature), modeled data, and thermal habitat 604 
signatures from pop-up satellite tags (Saitoh et al., 2011). 605 

3.8 Sustainable Development Goal 15: life on land  606 
Forest plays a major role in regulating the global carbon cycle at regional to a global 607 

scale. According to MEA, (2005) report (Finlayson, 2016), 335- 365 Gigatonnes of carbon 608 
is locked up by forests each year. Any significant alterations or reduction in the forested area 609 
which may be due to any or many of the following reasons; changes in land use and land 610 
cover, the practice of selective logging, forest fires, pest, and diseases would definitely lessen 611 



the productive functioning of the forest. The authors in (Angelsen, Brockhaus, Sunderlin, & 612 
Verchot, 2012; Instituter & Meridian Institute, 2009) have concluded that it is highly 613 
important to reduce greenhouse gas (GHG) emissions from deforestation and forest 614 
degradation as a step towards mitigating climate change.  615 

Global climate change is a growing concern that has led to international negotiations 616 
under the United Nations Framework Convention on Climate Change (UNFCC) (Sustainable 617 
Development Solutions Network (SDSN). (2014). The REDD+ concept emphasizes on 618 
reducing emissions from deforestation and forest degradation, promoting sustainable forest 619 
management as well as enhancing carbon sinks are all integrated and regarded as mitigating 620 
GHG emissions. Forest degradation heavily impacts small communities, who are dependent 621 
on the forest as a source of emergency income and food during famine or destruction of the 622 
forest also affects soil and water quality in the immediate area and can adversely affect on 623 
biodiversity over a range of connected ecosystem. There has been a lot of ambiguity in the 624 
definition of forest degradation. According to FAO report (FAO, 2011), forest degradation 625 
has been defined as; changes within the forests which negatively affects the structure or 626 
functions of the stand or site, and thereby lower the capacity to supply products and/ or 627 
services. While REDD+ defines degradation is a long-term loss (persisting for x years or 628 
more) of at least y% of forest carbon stocks since time T and not qualifying as deforestation 629 
that is; conversion of forest land to another land use category. Thus, it is highly essential to 630 
decide the definition, the indicators on the basis of which a nation’s trajectory towards the 631 
achievement of SDGs could be monitored. Once, the international organizations decide the 632 
common indicators, the phenomenon or feature can be monitored by geospatial techniques.  633 

Looking into the grave problem which stands right in front of humanity, it is the need of 634 
an hour to accurately monitor, map and estimate the net forest cover, monitor deforestation, 635 
and degraded forest area and quantifies the Above Ground Biomass (AGB). RS technique 636 
which offers comprehensive spatial and temporal coverage has been used for the same in past 637 
decades. Many types of research and monitoring programs have been carried out to map 638 
deforestation and forest degradation using optical RS. For instance, Reddy et al. (2015) 639 
(Sudhakar Reddy et al., 2016) quantified and monitored deforestation in India over eight 640 
decades extending from 1930 to 2013 using grid cell analysis of multi-source and multi-641 
temporal dataset. The satellite imageries used were cloud-free Landsat Multispectral Scanner 642 
System (MSS) from 1972-1977, IRS 1A/IB LISS I (1995), IRS P6 Advanced Wide Field 643 
Sensor (AWiFS) (2005) and Resources at-2 AWiFS (2013). The overall accuracy of the forest 644 
cover maps derived for the years 1975, 1985, 1995, 2005 and 2013 was 89.2%, 90.5%, 645 
92.4%, and 93.2% respectively. Another study by Ritters et al. (2015) (Riitters, Wickham, 646 
Costanza, & Vogt, 2016) assessed global and regional changes in forest fragmentation in 647 
relation to the change of forest area from 2000 to 2012. The study utilized global tree cover 648 
data to map forest and forest interior areas in 2000 and concluded that forest area change is 649 
not necessarily a good predictor of forest fragmentation change. Thus, we see that there are 650 
still some gaps between our understanding of the ecological processes and finding using 651 
geospatial techniques. It is required that basic science, technology, and policy evolve and 652 
develop hand-in-hand.  653 



Regional-scale studies do provide insights into general trends in space and time domain 654 
over the entire country and are important for national-level policy designing to stop the 655 
progress of deforestation and degradation. But, they do tend to overlook the changes at a 656 
local level, which shall require the usage of high-resolution satellite imagery. The choice of 657 
usage of satellite imagery depends on the objective of the study. For instance, WWF 658 
Indonesia Tesso Nilo Programme, (2004) (Kusumaningtyas, Kobayashi, & Takeda, 2009)  659 
used ASTER satellite image procured on 24 July 2003 covering a part of Tesso Nilo National 660 
Park, Riau Province, Sumatra Island to monitor the illegal logging practices in the area. In 661 
conjunction with the satellite data, they collected other information like GPS location of each 662 
logging operation and time when trucks with illegal logs left the site of investigation and 663 
likewise. The study could find out the company involved in illegal logging on the site. Such 664 
studies at local level surely help to monitor the activities of private companies and thereby a 665 
strong monitoring system shall help to stop deforestation and forest degradation. But, the use 666 
of satellite working in the optical range is constrained by the unfavorable weather conditions. 667 
In such a case, microwave RS is a more preferred option. The data is available in around the 668 
year with its penetration capability to clouds thus, providing data even in rainy and cloudy 669 
conditions. The authors in (Shimada et al., 2014) generated four global forest/ non-forest 670 
mosaics of Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic 671 
Aperture Radar (PALSAR). The maps provide a new global resource for documenting the 672 
changing extent of forests and offer opportunities for quantifying historical and future 673 
dynamics through comparison with historical (1992–1998) Japanese Earth Resources 674 
Satellite (JERS-1) SAR. 675 

The green plants uptake carbon from the atmosphere via the process of photosynthesis. 676 
The removal of carbon from the atmosphere, referred to as carbon sequestration is a function 677 
of a type of terrestrial ecosystem existing, for instance, the authors in  (Jaramillo, Kauffman, 678 
Rentería-Rodríguez, Cummings, & Ellingson, 2003) found that forest ecosystem to sequester 679 
more carbon per unit area than any other land type. Another factor playing a vital role in 680 
carbon sequestration is the quantity of biomass (Brown, Schroeder, & Kern, 1999). 681 
Therefore, it is important for each country to assess above-ground biomass accurately, which 682 
has a prime role in quantifying carbon stored. From the usage of destructive techniques to 683 
highly accurate non-destructive techniques, the world has witnessed tremendous growth of 684 
technology in the way of quantifying AGB. The forest biomass has been estimated using 685 
PolInSAR coherence based regression analysis of using RADARSAT-2 datasets covering 686 
Barkot Reserve Forest, Doon Valley, India in (Singh, Kumar, & Kushwaha, 2014).   687 

Achievement of targets under Sustainable Development Goal 15 which basically focuses 688 
on sustainable management of all types of the forest by the year 2020 shall require each 689 
nation to establish a transparent, consistent and accurate forest monitoring system. The 690 
implication of the human activities in present along with the policies developed and practiced 691 
are the factors, which will certainly shape the future of the forest ecosystem. Thus, it is 692 
critically important to forecast future scenarios. One key component of these systems lies in 693 
satellite RS approaches and techniques to determine baseline data on forest loss against which 694 
future rates of change can be evaluated. Advances in approaches meeting these criteria for 695 
measuring, reporting and verification purposes are therefore of tremendous interest. The 696 



authors in  (Thapa, Motohka, Watanabe, & Shimada, 2015) carried research to generate 697 
future above-ground forest carbon stock in Riau Province, Indonesia. The study utilized 698 
ALOS PALSAR-2 Mosaic data at a 25m spatial resolution to generate a baseline and 699 
generated future scenarios in correspondence to the IPCC Assessment Report (AR 5). The 700 
three policy scenarios were analyzed: BAU, corresponding to the ‘business as usual policy’, 701 
G-FC indicating the ‘government-forest conservation policy’, and G-CPL, representing the 702 
‘government-concession for plantations and logging policy’. It was found that if the currently 703 
practiced policies are continued then, the place will lose the forest cover and thereby 704 
impacting carbon sequestration. Such kinds of studies play a paramount role in designing and 705 
analyzing the current policies and their implication on the future. Thus, it is evident that the 706 
use of an objective specific geospatial technique is essentially important for implementation 707 
and achievement of Sustainable Development Goal 15. An analytical framework for SDGs 708 
is given in Figure 2. 709 
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4. Discussion 713 

The progress being made in achieving SDGs can be measured by several quantifiable 714 
indicators. The role of RS techniques in the measurement of various indicators for monitoring 715 
the roadmaps for achieving SDGs has been significant in terms of its capacity to use sensor 716 
data for augmentation of the census data. Several studies which make use of one kind of RS 717 
technique or other have shown that RS methods play a major role in the monitoring of SDGs. 718 
The citizen science and big data have also been found useful for measuring and monitoring 719 
SDG indicators. Citizen generated data is data that people or their organizations produce to 720 
directly monitor, demand or drive changes on issues that affect them. It is generated by using 721 
surveys, messages, phone calls, emails, reports, social media, etc. and the data produced can 722 
be quantitative or qualitative in various formats (DataShift, 2017). Lessons learned from 723 
Millennium Development Goals (MDGs) shows the engagement of citizens and civil 724 



societies can play a critical role for an inclusive, transparent and participatory SDGs 725 
accountability framework (Romano, 2015). Public participation at all levels should be 726 
prioritized as per Post-2015 agenda, to ensure inclusive development. It can help to bring the 727 
most marginalized voices to the table with the rights to freedom of expression, association, 728 
peaceful assembly and access to information (Romano, 2015). Citizen-driven data could play 729 
a major role in monitoring and driving progress of SDGs implementation in real-time. 730 
Citizen-driven data has high potential to fill the existing gaps by providing real-time, 731 
prioritized or precise data. It can ensure transformational changes that are required to tackle 732 
the huge global challenges to implement SDGs (DataShift, 2017). Citizen science can 733 
contribute to the wards implementation of SDGs in various ways such as filling data gaps 734 
and capacity, fulfilling commitments to multi-stakeholder partnerships, driving Innovation 735 
and build capacity, broad ownership and accuracy of data, strengthening accountability, 736 
shadow monitoring, etc. The authors in (Cronforth Jack, 2015) said “SDG monitoring should 737 
be rigorous, based on evidence, timely, reliable and disaggregated by different groups in 738 
society  all of which the citizen generated data can make a crucial contribution to making a 739 
reality”. Some of the examples for the above points can be already seen taking effect in our 740 
everyday life in the form of Google Maps or Google Earth data addition and analysis. With 741 
geotagging and image uploads by individuals all over the world, not only others get to have 742 
the practical aspect of the situation but also keeps the system up to date. With the massive 743 
interest of highly complex data available from satellites all over the world and presented into 744 
simple form and easily understandable format of Google Earth has encouraged people to 745 
make astonishing discoveries e.g. largest rain forest in Southern Africa or identification of 746 
unusual cave systems that lead to the discovery of a New Human Ancestor (Nobre et al., 747 
2010). These are a few examples of citizen data not only making a contribution to the 748 
betterment of the system but also increasing scientific curiosity & making discoveries 749 
(Santens, 2011). A study by Global Pulse on mining citizen feedback data for enhanced local 750 
government decision making in 2015 demonstrated the potential utility of near real-time 751 
information on public policy issues and their corresponding locations within defined 752 
constituencies, enhanced data analysis for prioritization and rapid response, and deriving 753 
insights on different aspects of citizen feedback (UN Global Pulse, 2015). Forest Watchers 754 
“proposes a new paradigm in conservationism based on the convergence of volunteer 755 
computing with free or donated catalogs of high-resolution Earth imagery” (Gonzalez D. L., 756 
2012). It involves volunteer citizen scientists from around the globe, who help monitor levels 757 
of deforestation. By reviewing satellite images of forested regions local residents, volunteers, 758 
non-governmental organizations governments can help in the assessment of these regions. 759 
Moreover, this initiative encourages local citizens and provide the rights of ownership to help 760 
and implement SDGs.  The authors in   (Flückiger & Seth, 2016) suggested data from civil-761 
society can be crowdsourced to implement and monitor the progress of SDGs. United Nations 762 
Environmental Programme (UNEP) is involved in capacity development, environmental 763 
awareness, and information exchange program to foster a generation of environmentally 764 
conscious citizens that can help ecosystem renewal in Kenya (UNEP, 2017). Use of citizen 765 
science data/information can provide transparency in a system with updated and real-time 766 
information that can change the course of our future with political will. A positive example 767 
for such political and citizen science data movement is accessibility to Landsat, Sentinel, 768 



MODIS data for scientific purpose to anyone who wants to use it has led to a tremendous 769 
increase in research studies and monitoring of areas ranging from busiest metropolitans to 770 
the most remote location on the plant ushering a new era of scientific research backed by 771 
satellite data analysis. 772 

Over the last decade, big data has become an interesting field of research with increasing 773 
attention & attracting the interest of academia, industries, governments, and other 774 
organizations. The authors in  (Kitchin, 2014) have suggested it to be a predominant source 775 
of innovation, competition, and productivity. The recent development in computer science 776 
with the high-performance computer and storage capacity, the growth of high-resolution 777 
satellite data is dramatically increasing by several terabytes per day. Scientists are 778 
considering RS data as “Big Data” because of continues monitoring of global earth 779 
observation for environmental monitoring (Skyland, 2012). The RS big data does not merely 780 
refer to the volume and velocity of data but also the variety and complexity of data. This 781 
diversity and complexity in data makes the accessing and processing the data significantly 782 
difficult especially for the layman (Ma et al., 2014). Annexure1 shows various satellites and 783 
their specification. These satellites have sensors with different spatial, temporal and spectral 784 
resolution will result in multi-sensor complex data.  Use of a multi-sensor approach can 785 
overcome the limitations of one sensor with the use of other sensor data from local to global 786 
scale (Ma et al., 2014). The opportunity of big data for the Sustainable Development Goals 787 
(SDGs) lies in leveraging new/non-traditional data sources and techniques to better measure 788 
or monitor progress towards the achievement of the SDGs. Moreover, with the interest in big 789 
data in the global SDG discourse, attempts have been made to identify ongoing regional and 790 
country-specific activities. It is important to understand the applicability of big data in 791 
relation to the SDGs by identifying how big data can help to implement and monitor potential 792 
targets. The use of urban big data for advancing more innovative targets and indicators 793 
relevant to the SDGs has been studied in (Kharrazi, Qin, & Zhang, 2016). The SDG for any 794 
government can be challenging to understand and even more difficult to put a system in place 795 
for the achievement of such goals. The initiation of government interest for Big data mining 796 
can be on various fronts and for a variety of purposes. The first step for any government is to 797 
make the life of the citizen of that country/ region better than before. The initiation of 798 
government interest for Big data mining can be on various fronts and for a variety of 799 
purposes. This can be attained to even more over the already established systems and for the 800 
betterment of the existing system. For Example, the benefits of big data mining done by 801 
governments intended for the betterment for citizen services can potentially be the 802 
determination of eligibility of beneficiaries, using advanced analytical tools, to plan and track 803 
welfare schemes to ensure that benefits reach only eligible citizens, identify deceased, 804 
invalid, and duplicate persons to eliminate duplicate benefit payments. While these benefits 805 
are just a few to start with, it is just an example of the broad spectrum of impacts in all aspects 806 
of any nation. Further, to achieve these development targets in a sustained manner, converged 807 
governance efforts are required at the grassroots, which in turn would inevitably result in the 808 
generation of continuous baseline data. Use of structured baseline data and unstructured 809 
citizens’ data can be combined and analyzed by the application of big data analytics and 810 
emerging Information and Communication Technologies (ICTs). There is a need to raise 811 



awareness of the potential of big data for public purposes and invest in institutional capacity 812 
building as well as data-driven regulation and policy-making (Development, 2017). The use 813 
of big data analysis in medicine and healthcare practices is on the rise, and we are already 814 
seeing legal proposals such as the draft Electronic Data Records standards in order to both 815 
enable and govern the collection of medical data. The pooling of medical data for 816 
identification, diagnosis, and treatment of a wide range of health problems is one such 817 
example of everyone benefiting from data pooling. The authors in (Lu, Nakicenovic, 818 
Visbeck, & Stevance, 2015) suggest five priorities for the SDGs viz. devise metrics,  establish 819 
monitoring mechanisms, evaluate progress, enhance infrastructure, standardize and verify 820 
data. The authors of  (Maurice, 2016) measure the progress of SDGs by using data from the 821 
2015 edition of the global burden of diseases, injuries and risk factor study. The authors of 822 
(Jotzo, 2013) discuss that big data should be selected in such a way that it can be used to test 823 
different aspects for sustainable production of energy, food security, water security and 824 
eliminating poverty. 825 

5. Concluding remarks  826 

The seventeen goals of SDGs have been set for improving human well-being, protecting 827 
natural resources and lessening the impact of human activities on the earth for the future 828 
generation. Unlike the previous Millennium Development Goals, the Sustainable 829 
Development Goals are meant for both developed and developing countries, and considering 830 
the broad themes and areas of the SDGs, monitoring is a crucial process for the successful 831 
accomplishment by 2030. Monitoring is a necessary step to revise the existing policies for 832 
better functioning and precise targeting. Geospatial data can visualize regional differences 833 
hence it is useful to detect social and economic inequalities in both national and local levels. 834 
It requires numeric data to create a GIS database, meaning the data must be physically 835 
obtained. However, connecting the numeric data and geography provides clearer shreds of 836 
evidence of regional differences and spatial correlations. On another front, RS can also 837 
visualize the surface of the earth; hence it is useful to detect environmental problems. 838 
Considering the broad range of SDGs’ targets, geospatial information is one of the most 839 
important tools for monitoring the achievement and it will pave the way towards successful 840 
accomplishment of SDGs.  841 

Achieving the SDGs undoubtedly demand a massive global effort in concert to efficiently 842 
make use of data sharing, processing, and aggregation in a highly multidisciplinary 843 
framework. National geospatial information agencies will need to collaborate more closely 844 
with national statistical and earth observation professional communities, be more unified 845 
with similar national to global objectives and aspirations, be delivering consistent and reliable 846 
data that is fit-for-purpose, and demonstrate the functionality and value of the geospatial data 847 
by integrating it into the wider sustainable development policy process. This paper also 848 
discussed the role of citizen science and big data for the success of SDGs implementation. 849 
Participation and transparency are the key components for a robust, effective and accountable 850 
mechanism for SDGs from local to a global scale. In the future, the demand for real-time 851 
processing of satellite data has high opportunities that can be noticed by the potential use of 852 



Google Earth Engine. The integrative approach of partnership, capacity-building, and big 853 
data can bring a sustainable solution for SDGs implementation. 854 
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Annexure-1 1206 

Satellite sensors and their characteristics  1207 

S. 
No. 

Sensors Spatial resolution 
(m) 

No. of Spectral  
bands 

Radiometric 
resolution (bit) 

Band range  
(μm) 

Swath width (km) Revisit 
cycle 
(days) 

A. Coarse Resolution Sensors 
1 AVHRR 1000 4 11 0.58-11.65 2900 daily 
2 MODIS 250, 500,1000 36 12 0.62-2.16 2330 daily 

B. Multi-Spectral Sensors 
3 Landsat-1, 2, 3 MSS 56X79 4 6 0.5-1.1 185 16 
4 Landsat-4, 5 TM 30 7 8 0.45-2.35 185 16 
5 Landsat-7 ETM+ 30 8 8 0.45-1.55 185 16 
6 Landsat-8 30 11 16 0.43-2.29 185 16 
7 ASTER 15, 30, 90 15 8 0.52-2.43 60 16 
8 ALI 30 10 12 0.433-2.35 37 16 
9 SPOT-1, 2, 3, 4, 5 2. 5-20 15 16 0.50-1.75 60 3 - 5 
10 IRS 1C, 1D  23.4 (SWIR 70.5) 4 7 0.52-1.7 141/140 24 
11 IRS 1C, IRS 1D  188 2 7 0.62-0.86 810 24 

12 IRS 1C, IRS1D 5.8 1 6 0.50-0.75 70 24 
13 IRS P6  5.8 3 10 0.52-0.86 70/23 (mono) 24  

14 IRS P6  56 4 10 and 12 0.52-1.7 737/740 24  

15 Cartosat-1 (PAN) 2.5 1 10 0.5-0.85 30 5 
16 Cartosat-2 (PAN) 0.8 1 10 0.5-0.85 9.6 5 
17 CBERS-2 20 m pan,  11 0.51-0.89 113 26 
18 Sentinel-2 10, 20, 60 13 12 0.44-2.2 290 5 
19 Sentinel-3 Full resolution 

300m 
21  12 0.44-1.02 ~1270 27 

C. Hyper-Spectral Sensor 
1 Hyperion 30 196 16 0.427-0.925  7.5 16 

D. Hyper-Spatial Sensor 
1 SPOT-6 1.5 (PAN) 4 12 0.455 - 0.89 60 daily 
2 RAPID EYE 6.5 5 12 0.44-0.89 77 1 - 2 

4 WORLDVIEW 0.55 1 11 0.45-0.51 17.7 1.7-5.9 

5 FORMOSAT-2 2 - 8 5 12 0.45-0.90 24 daily 
6 KOMPSAT-3A 0.55 (PAN) 6 14 0.45 - 0.9  12 28 

7 Pleiades -1A 0.5 (PAN)  5 12 0.43 - 0.94 20 daily 
8 GeoEye 0.46 (PAN) 5 11 0.45 -0.92 15.2 3 
9 IKONOS 1 - 4 4 11 0.445-0.853 11.3 5 
10 QUICKBIRD 0.61-2.44 4 11 0.45-0.89 18 5 

E. Synthetic Aperture Radar Sensor 
1 ERS -1 5.3 (C-band) VV 100 30 30 35 
2 JERS -1 1.275 (L-band) HH 75 18 18 44 
3 RADARSAT-1 5.3 (C-band) HH 50-500 9-147 6-147 24 
4 ENVISAT 5.33 (C-band) HH, VV 56.5 - 104.8 30-100 35 
5 ALOS (PALSAR) 1.27 (L-band) single, dual, quad 20 - 350 10 - 100  46 
6 RADARSAT-2 5.3 (C-band) Full polarimetric 125 4.6-7.6  3.1-10.4(Wide multi-

look)  
24 

7 TerraSAR-X 9.65 (X-band) Single and dual 100 (scanSAR) 0.24  0.9-1.8 (Spotlight) 11 
8 RISAT-1 5.35 (C-band) single, dual 25 (stripmap-1) 3  2 (stripmap-1) 25 
9 TanDEM-X 9.65 (X-band) single, dual 30 1.7-3.4 1.2 (spotlight) 11 

10 PALSAR-2 1.27 (L-band) single, dual 25-350 1  3 (spotlight) 14 

11 Sentinel-1 5.405 (C-band) single or dual  80 (strip mode)  4.3 - 4.9  1.7 - 3.6 (strip mode)  12 
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