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Abstract

Spatially extended ecological public goods, such as forests, grasslands, and fish stocks, are

at risk of being overexploited by selfish consumers–a phenomenon widely recognized as

the ‘tragedy of the commons.’ The interplay of spatial and ecological dimensions introduces

new features absent in non-spatial ecological contexts, such as consumer mobility, local

information availability, and strategy evolution through social learning in neighborhoods. It is

unclear how these features interact to influence the harvesting and dispersal strategies of

consumers. To answer these questions, we develop and analyze an individual-based, spa-

tially structured, eco-evolutionary model with explicit resource dynamics. We report the fol-

lowing findings. (1) When harvesting efficiency is low, consumers evolve a sedentary

consumption strategy, through which the resource is harvested sustainably, but with har-

vesting rates far below their maximum sustainable value. (2) As harvesting efficiency

increases, consumers adopt a mobile ‘consume-and-disperse’ strategy, which is sustain-

able, equitable, and gives maximum sustainable yield. (3) A further increase in harvesting

efficiency leads to large-scale overexploitation. (4) If costs of dispersal are significant,

increased harvesting efficiency also leads to social inequality between frugal sedentary con-

sumers and overexploitative mobile consumers. Whereas overexploitation can occur with-

out social inequality, social inequality always leads to overexploitation. Thus, we identify

four conditions that–while being characteristic of technological progress in modern socie-

ties–risk social inequality and overexploitation: high harvesting efficiency, moderately low

costs of dispersal, high consumer density, and the tendency of consumers to adopt new

strategies rapidly. We also show how access to global information–another feature wide-

spread in modern societies–helps mitigate these risks.

Author summary

Throughout history, humans have shaped ecological landscapes, which in turn have influ-

enced human behavior. This mutual dependence is epitomized when human consumers

harvest a spatially extended renewable resource. Simple models predict that, when
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multiple consumers harvest a shared resource, each is tempted to harvest faster than his/

her peers, putting the resource at risk of overexploitation. It is unclear, however, how the

interplay among resource productivity, consumer mobility, and social learning in spatial

ecological public goods games influences evolved consumer behavior. Here, using an indi-

vidual-based, spatially structured, eco-evolutionary model of consumers and a resource,

we find that increasing resource productivity initially promotes efficient resource use by

enabling mobile consumption strategies, but eventually leads to inequality and overexploi-

tation, as overexploitative mobile consumers coexist with frugal sedentary consumers.

When consumers are impatient (i.e., eager to imitate successful strategies) or myopic (i.e.,

unaware of conditions outside of their neighborhoods), inequality and overexploitation

tend to aggravate.

Introduction

A public good that is freely accessible to everyone, while limited in quantity, can be used opti-

mally only if consumers cooperate in using no more than their fair share. However, those who

consume more than their fair share obtain a greater benefit. This creates an incentive to over-

exploit the public good, which threatens to reduce resource availability, leaving everyone

worse off. This social dilemma is called the ‘tragedy of the commons’ [1, 2]. The ubiquity of

such social dilemmas has led to widespread interest in exploring mechanisms that can support

cooperation, not only in evolutionary biology but also in economics, cognitive sciences, and

social sciences [3–7]. Indeed, research into mechanisms capable of preventing social dilemmas

can help inform important policy decisions, ranging from fisheries regulations and forest man-

agement to treaty negotiations on the global commons, such as ozone-layer protection and cli-

mate-change mitigation [8–17].

Owing to the combined efforts of many scientists, several mechanisms that promote coop-

eration have been identified (e.g., [18]). Kin selection [19], in which cooperative acts are

directed towards genetic relatives, and direct reciprocity [20–24], in which consumers cooper-

ate with others returning their help, are two key mechanisms that promote cooperation. For

humans and other animals with sufficient cognitive capabilities, indirect reciprocity, in which

consumers cooperate with those who have a reputation for cooperating [25–27], is also an

important mechanism supporting cooperation. Furthermore, combinations of positive and

negative incentives, such as rewarding cooperators and punishing defectors, can be powerful

means of promoting cooperation [28–31]. Nonlinear effects leading to a decreasing marginal

benefit of cooperation have been shown to promote the coexistence of cooperators and defec-

tors [32, 33]. Studies of the aforementioned mechanisms are mostly stylized, often based on

simple mathematical models and occasionally on experiments.

Most real socio-ecological systems are spatially structured. Spatial structure is thought to

promote cooperation, as it exposes defectors to the negative local consequences of their selfish

acts and allows clusters of cooperators to form, generating positive assortment [34–36]. How-

ever, space also allows mobility. Mobility can hinder cooperation by allowing defectors to

escape the negative local consequences of their selfish acts [37]. Indeed, several studies have

considered the effects of fixed mobility and found that cooperation can be sustained when

mobility is either low [38] or dependent on local conditions [39,40]. If mobility incurs no cost,

defectors may invariably evolve high mobility and undermine cooperation. When dispersal is

costly, an evolutionary interplay between mobility and cooperation may occur, but thus far

only a handful of studies have considered the joint evolution of costly mobility and
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cooperation [41–45]. A recent study by Mullon et al. [46] found that when dispersal and coop-

eration coevolve, two coexisting strategies can spontaneously emerge: one benevolent and ses-

sile, the other self-serving and dispersing.

In socio-ecological settings, the ecological dynamics of the resource play a crucial role in

determining the associated evolutionary dynamics of consumer strategies. First, interactions

between consumers are often mediated through the resource, i.e., consumers do not directly

interact with other consumers, but respond to resource changes caused by other consumers.

Second, limited resource availability may lead to the evolution of density-dependent strategies,

since per capita resource extraction is expected to decline with local consumption density.

Third, ecological public goods, such as renewable resources, have their own ecological time-

scale of resource replenishment. Most studies assume that evolution is a slow process. How-

ever, memetic evolution through social learning is not biologically constrained, and can occur

on much faster timescales. Evolutionary outcomes may be dramatically different depending

on whether evolution is slow or fast [47]. Furthermore, spatial structure may prevent consum-

ers from having full knowledge about other consumers and the environment, because infor-

mation about far-off conditions may not reach them. Local information may lead to local

selection, which typically benefits defectors. Despite these important gaps, only a few studies

have so far considered ecological public goods (e.g., [2, 48,49]), and even fewer studies have

explicitly modelled a renewable resource (e.g., [50]). Here, we move beyond the aforemen-

tioned studies, in particular the pioneering work by Parvinen [45] and Mullon et al. [46], by

investigating the implications of explicit resource dynamics, fast evolution, and incomplete

information on the evolution of cooperation. Using a socio-ecological model of public-goods

utilization, also referred to as the common-pool-resource model in economics, we investigate

for the first time the coevolution of resource harvesting and dispersal strategies in realistic

socio-ecological settings.

Methods

We model consumers harvesting a resource in a continuous two-dimensional square-sharped

space of dimension L×L with periodic boundaries. We assume that resource growth is logistic.

Each consumer i exploits the resource in his/her neighborhood (see below) at a harvesting rate

rH,i. When the local resource density falls below a threshold, consumers disperse in random

directions to new locations drawn from a normal distribution centered on their current loca-

tions, with a standard deviation, or dispersal radius, of σD,i. Each consumer i is thus character-

ized by two quantitative traits, rH,i and σD,i, defining his/her resource-consumption strategy

(Fig 1). Consumers occasionally imitate the resource-consumption strategies of those consum-

ers in their neighborhood (see below) who acquire a higher profit from their resource

consumption.

Details of the resultant resource-consumer dynamics and strategy dynamics are specified

below. Table 1 lists all model parameters and S1 Table provides a glossary of key terms.

Resource dynamics

The resource density R at each location (x,y) grows logistically, with the harvesting-rate density

H depending on all consumers exploiting that location,

dRðx; yÞ=dt ¼ rRðx; yÞð1 � Rðx; yÞ=KÞ � Hðx; yÞ; ð1Þ

where r is the resource’s intrinsic growth rate and K is its carrying-capacity density, which we

assume to be spatially uniform, i.e., there is no intrinsic spatial heterogeneity.
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Consumer dynamics

The initial locations of consumers are drawn from a uniform distribution over the entire

space. The total number N of consumers remains constant over time, as consumers neither die

nor reproduce.

Consumers harvest the resource in their neighborhoods according to an exploitation kernel

E given by a quadratic function of spatial distance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
. Here, Δx = x−xi and Δy =

Fig 1. Schematic representation of our model’s processes and evolving traits. For the sake of illustration, only a single consumer is shown. (A) Consumers

harvest the resource in their neighborhoods at a rate that declines with the distance from their locations. (B) When the local resource density falls below a

threshold, consumers disperse to other locations at distances randomly drawn from a normal distribution. (C) Once consumers have dispersed, the resource

densities around their original location can rebound.

https://doi.org/10.1371/journal.pcbi.1007483.g001

Table 1. Model parameters.

Parameter Symbol Default value

Resource dynamics
Intrinsic resource growth rate

r 1

Carrying-capacity density K 1

Consumer dynamics
Harvesting radius

σH 1

Harvesting rate of consumer i rH,i Evolving trait

Dispersal radius of consumer i σD,i Evolving trait

Maximum dispersal rate rD,max 500

Resource-density threshold for dispersal RT 0.3

System size L 56.25

Consumption density ρ 50.8%

Consumer payoffs
Unit benefit of harvesting

bH 0.059

Unit cost of harvesting cH 0.68

Unit cost of dispersal cD 1

Duration over which payoffs are averaged T 0.4

Strategy dynamics
Imitation radius

σI 1

Imitation rate rI 0.1

Imitation error in harvesting rate μH 0.1

Imitation error in dispersal radius μD 0.05

https://doi.org/10.1371/journal.pcbi.1007483.t001
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y−yi are the differences in x and y, respectively, between the location (xi,yi) of the consumer

and the location (x,y) of harvesting. Specifically,

EðdÞ ¼
1 � d2=s2

H if d < sH;

0 otherwise;
ð2Þ

(

where σH is the harvesting radius within which consumers extract the resource from their

neighborhoods. On this basis, we measure the consumption density as the ratio of harvested

area to total area, r ¼ ps2
HN=L

2, rather than the typically used measure N/L2. This allows us to

measure density as a dimensionless quantity independent of the length unit. The resource

extraction-rate density of consumer i at location (x,y) is

Hiðx; yÞ ¼ rH;iRðx; yÞEðx � xi; y � yiÞ: ð3Þ

DescribingHi as being proportional to R corresponds to a so-called Holling type-I functional

response [51]. Assuming that the system size L is much larger than the harvesting radius σH

(fulfilling at least L>2σH), the total extraction rate of consumer i is

RH;i ¼
R L

0

R L
0
Hiðx; yÞ dxdy; ð4Þ

and the extraction-rate density at location (x,y) by all N consumers together is

Hðx; yÞ ¼
PN

i¼1
Hiðx; yÞ: ð5Þ

When local conditions become adverse, in terms of the resource density dropping below a

threshold RT, consumers disperse to another location. The dispersal rate of consumer i is thus

given by

rD;i ¼ rD;maxSDðRðxi; yiÞ � RTÞ: ð6Þ

where rD,max is the maximal dispersal rate (i.e., the maximum number of dispersal events per

time unit) and SD(ΔR) denotes a unit step function that switches from 1 for ΔR<0 to 0 for

ΔR�0. The distance to their new location is the absolute value of a random number drawn

from a dispersal kernel given by a normal distribution with zero mean and a standard devia-

tion, or dispersal radius, of σD,i. Therefore, the mean dispersal distance of consumer i is
ffiffiffiffiffiffiffiffi
2=p

p
sD;i. Dispersal is undirected, i.e., the direction of dispersal is a random number drawn

from a uniform distribution over [0,2π). Since the boundaries are periodic, consumers that

disperse across a boundary reappear on the other side.

Consumer payoffs

Harvesting yields a benefit bHRH,i and incurs a cost cHr2
H;i per unit time, while dispersal incurs

a cost cD per unit length. We use a linear benefit and a quadratic cost to describe a diminishing

marginal utility of the resource. The payoff of consumer i, averaged over a duration T ending

at time t, is thus given by

Vi ¼
1

T
ð
R t
t� TðbHRH;i � cHr

2

H;iÞ dt � cDlD;iÞ; ð7Þ

where lD,i is the cumulative distance consumer i has dispersed during time T (i.e., the actual

distance traversed by the consumer, rather than merely the displacement between the consum-

er’s old and new locations).
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Strategy dynamics

To account for strategy evolution by social learning, we assume that consumers occasionally

imitate the resource-consumption strategy, i.e., the harvesting rate and the dispersal radius, of

other consumers with higher payoff. Specifically, at rate rI each consumer i randomly chooses

another consumer as a potential role model, with consumer j at location (xj,yj) being chosen

with probability

pI;ij / exp �
ðxi � xjÞ

2
þ ðyi � yjÞ

2

2s2
I

 !

; ð8Þ

where σI is the imitation radius, and the proportionality constant is chosen to normalize the

probabilities such that
PN

j¼1;j6¼i pI;ij ¼ 1 for all i. After a consumer j is chosen, the focal con-

sumer i imitates the resource-consumption strategy of consumer j if Vj exceeds Vi.
To describe implementation errors in strategy imitation, we add, upon each imitation

event, normally distributed increments to both trait values, using standard deviations μH and

μD, respectively, for the harvesting rate and the dispersal radius. If a trait value becomes nega-

tive through such an addition, it is set to 0. As robustness checks, we also consider perception

errors, through which consumers make errors in judging the payoffs of other consumers dur-

ing imitation (S8 Fig) or in judging the local resource levels during dispersal (S9 Fig).

Model parameters

Without loss of generality, we reduce the number of parameters by carefully choosing the

units in our model (S1 Appendix). A key model parameter is the consumption density ρ, and

our model has two pairs of additional essential parameters. The first pair are the payoff param-

eters bH and cH that determine the efficiency bH/cH and utility bHRH;i � cHr2
H;i of consumption.

The second pair are the imitation parameters rI and σI that determine the temporal and spatial

scales of social learning.

The imitation rate rI defines the temporal scale of strategy evolution: consumers are ‘impa-

tient’ if their imitation rate is much larger than the intrinsic rate of resource growth; such con-

sumers tend to imitate other consumers even before the consequences of the other consumers’

consumption strategies on the resource become apparent. The imitation radius σI defines the

spatial scale of strategy evolution: consumers are ‘myopic’ if their imitation radius is so small

that they can imitate only a few neighbors, whereas a very large or infinite imitation radius

means that consumers possess global information and can thus imitate any other consumer in

the population. In this way, we model essential characteristics of human behavior to make our

model realistic, while leaving out other confounding factors to keep our model minimal.

Technical parameters and model runs

We use an agent-based implementation of our model and run it from an initial condition until

the evolved strategies have stabilized. To minimize stochasticity in the evolutionary dynamics,

we simulate the largest computationally feasible system: we use N = 512 consumers in a system

of size L = 56.25, corresponding to a consumption density of ρ = 50.8%, with space discretized

into 450×450 = 202,500 cells. A model run of 750,000 time steps takes about 4 minutes on an

NVIDIA Tesla K20 Graphics Processing Unit (GPU). The code developed for running our

model is available at https://github.com/jaideep777/Consumer-resource-system and at

Zenodo (DOI: 10.5281/zenodo.3601735). S1 Video shows a representative model run of the

combined resource-consumer dynamics.
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Baseline harvesting and resource-consumption rates

We compare the evolved strategies–i.e., harvesting rates and dispersal radii–and emergent

resource extraction rates with their expected values in two baseline scenarios. Each baseline

scenario is calculated assuming that all consumers adopt the same strategy. In the first baseline

scenario, consumers maximize yield by adopting harvesting rates and dispersal rates that max-

imize per-capita resource extraction (as defined by Eq 4). In the second baseline scenario, con-

sumers maximize profit by adopting harvesting rates and dispersal rates that maximize payoff

(as defined by Eq 7). Both strategies are calculated numerically for mobile consumers and ana-

lytically for sedentary consumers (S2 Appendix). The yield-maximizing strategies for seden-

tary and mobile consumers are consistently colored blue and green, respectively, in Figs 4–7.

The analytical calculation of the sedentary yield-maximizing strategy is possible in the limit

of vanishing overlap among the harvesting kernels of consumers. Notice that this simplifica-

tion does not affect any of our results, as the sedentary yield-maximizing strategy is used only

as a reference for determining the color scales in Figs 4–7. Nonetheless, it is reassuring that

these analytical calculations are reasonably accurate for consumption densities of up to 50%

(S13 Fig).

Results

To explore the social dynamics of harvesting and dispersal in ecologically realistic environ-

ments, we examine our model for a wide range of parameter combinations corresponding to

diverse socio-ecological settings. Specifically, we investigate the impacts of consumption den-

sity, of unit costs and benefits of harvesting and dispersal, and of imitation rate and radius on

the evolved resource-consumption strategies. Furthermore, we document the robustness of

our results to changes in other model parameters and model structure.

Sedentary and mobile strategies emerge spontaneously

At time t = 0, all consumers start out with the same harvesting rate and dispersal radius. As the

interplay of resource-consumer dynamics and strategy dynamics unfolds, consumers diversify

into two distinct strategies (Fig 2). The first is a sedentary strategy, with consumers adopting a

low harvesting rate (rH�0.5) without dispersing (σD�0). The second is a mobile strategy, with

consumers adopting a high harvesting rate (rH�6) in combination with a non-zero dispersal

radius (σD�1). At the population level, these two strategies keep coexisting over time, although

individual consumers keep changing their strategies by imitating other consumers.

Increasing consumption density leads to social inequality

When consumption density is low, all consumers can adopt an ‘affluent’ harvest-intensively-

and-disperse-far strategy, enabling everyone to harvest at high rates without globally depleting

the resource. As consumption density increases, harvesting rate and dispersal radius evolve to

lower values (Fig 3). As consumption density increases further, the harvest-intensively-and-

disperse-far strategy is no longer sustainable, because it begins to deplete the resource globally.

Under these conditions, one might naively expect that all consumers would lower their har-

vesting rates to adjust to the changed circumstances. Instead, however, some consumers har-

vest even more intensively to sustain their costly dispersal, while other consumers harvest

much less intensively and adopt a harvest-frugally-and-do-not-disperse strategy, thus accept-

ing slower resource extraction along with reduced dispersal costs. The proportion of such sed-

entary consumers continues to increase when consumption density is increased further, until

all consumers adopt a sedentary strategy.
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As is typical in game-theoretic models, the average evolved harvesting rates (white curves in

Fig 3) are higher, at all consumer densities, than the corresponding baseline rates, i.e., the

yield-maximizing rates (green curves in Fig 3; see S2 Appendix for their formal definition) and

the profit-maximizing rates (magenta curves in Fig 3; see S2 Appendix for their formal defini-

tion). Consequently, the average resource extraction rates are below their optimal values.

Thus, when left to themselves, consumers overexploit the resource to some degree. From this

observation, the following question arises: Under what circumstances do consumers adopt a

yield-maximizing strategy?

Mobile consumers achieve maximum yield at the ‘edge of inequality,’

unless dispersal is very cheap

When the unit benefit of harvesting is low relative to the unit cost of dispersal, the population’s

strategy distribution is unimodal, with all consumers adopting a low harvesting rate (Fig 4B)

Fig 2. Sedentary and mobile resource-consumption strategies emerge spontaneously. Changes over time (measured

in units of the reciprocal of the imitation rate) of the population distributions of (A) harvesting rates, (B) dispersal

radii, and (C) per capita resource extraction rates, shown alongside the time-averaged population distributions of these

quantities (averaged over the last 1,000 time units so as to exclude the initial transient, with the frequencies in the

separate bins adding up to the numberN of consumers). Brighter colors indicate higher frequencies, using a nonlinear

color scale. The population starts with all consumers having identical strategies. As time progresses, social learning

leads to the spontaneous emergence of two distinct strategies: a frugal sedentary strategy (labeled ‘S’) with a low

harvesting rate and near-zero dispersal radius, and an overexploitative mobile strategy (labeled ‘M’) with a high

harvesting rate and large dispersal radius. Parameter values are as shown in Table 1.

https://doi.org/10.1371/journal.pcbi.1007483.g002
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and a near-zero dispersal radius (Fig 4D). This ‘sedentary regime’ applies in the region labeled

‘S’ in Fig 4. In this regime, resource harvesting is inefficient: the harvesting rate is low (Fig 5A)

despite an abundant supply of the resource being available in the environment (Fig 5B). This is

because dispersal costs that are high relative to the benefits of harvesting force consumers to

adopt a sedentary lifestyle that prevents them from dispersing to less occupied resource-rich

areas. Since each consumer harvests the resource only in his/her neighborhood without mov-

ing, consumers experience very little resource competition: thus, their resource extraction

rates are similar and the resource distribution is fair.

As the unit benefit of harvesting is increased relative to the unit cost of dispersal, dispersal

becomes viable. The population’s strategy distribution still remains unimodal, but all consum-

ers now adapt a mobile (harvest-intensively-and-disperse-far) strategy. This ‘mobile regime’

applies in the region labeled ‘M’ in Fig 4. The harvesting rate and resource extraction rate both

increase, until maximum yield is reached (green regions in Fig 4B and Fig 5A). At this resource

Fig 3. Increasing consumption density leads to social inequality. (A, B) When the density of consumers is low

(expressed as the ratio of harvested area to total area), all of them evolve to harvest at high rates and disperse far,

without overexploiting the resource. As consumption density increases, such a resource-consumption strategy

becomes unsustainable, leading to a diversification of strategies into frugal sedentary consumers with low harvesting

rates and near-zero dispersal radii, and overexploitative mobile consumers with high harvesting rates and large

dispersal radii. (C) The resultant per capita resource extraction rates (expressed as fractions of the system’s carrying

capacity extracted per unit time) decrease with consumption density. Population averages are indicated by white lines,

yield-maximizing resource-consumption strategies and resultant resource extraction rates by green lines, and profit-

maximizing resource-consumption strategies and resultant resource extraction rates by magenta lines. The green and

magenta lines are exponential fits to numerically estimated strategy values, as in S2F Fig. The average harvesting rates

exceed the corresponding yield-maximizing and profit-maximizing harvesting rates, implying overexploitation of the

resource and suboptimal per capita resource extraction rates. Parameter values are as shown in Table 1.

https://doi.org/10.1371/journal.pcbi.1007483.g003
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Fig 4. Strategy regimes for different unit benefits and costs of harvesting. Effects of the unit benefit bH and cost cH of harvesting on the (A) difference between

harvesting rates of sedentary and mobile consumers, (B) population average of harvesting rates, (C) difference between dispersal distances of sedentary and

mobile consumers, and (D) population average of dispersal distances. In panels A and B, the sedentary and mobile yield-maximizing harvesting rates (S2

Appendix) are indicated, respectively, by the unlabeled tick marks in the blue and green ranges of the color bars. In panel C, grey areas indicate where a

difference in dispersal distances could not be reliably detect, due to insufficient numerical resolution. We find three strategy regimes, delimited by cyan and blue

lines: in the region labeled ‘S,’ all consumers are prudent and sedentary, in the region labeled ‘M,’ all consumers are overexploitative and mobile, and in the

region labeled ‘S & M,’ frugal sedentary consumers are coexisting with overexploitative mobile consumers. For the latter regime, outsets in panels B and D show

average values separately for sedentary and mobile consumers. Parameter values are as shown in Table 1.

https://doi.org/10.1371/journal.pcbi.1007483.g004
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extraction rate, consumers locally deplete the resource, but the depletion is temporary and

resource extraction is globally sustainable. The resource distribution is fair, as all consumers

harvest the resource at similar rates. Therefore, resource extraction is efficient as well as fair.

However, when the unit benefit and cost of harvesting are both very high (or, equivalently, the

unit cost of dispersal is very low), the temptation to harvest the resource rapidly is strong, as

well as feasible, since dispersal is very cheap. Consequently, all consumers adopt a high dis-

persal radius and overexploit the resource: even though the population’s strategy distribution

remains unimodal, resource extraction drops below optimal values as a consequence of the

tragedy of the commons (top-right corners in the panels of Figs 4 and 5).

When the unit cost of harvesting is significant, but not too high, increasing the unit benefit

of harvesting leads to a diversification of strategies, adopted by sedentary and mobile consum-

ers. This ‘coexistence regime’ applies in the region labeled ‘S & M’ in Fig 4. Initially, mobile

consumers tend to harvest at high rates. But as the amount of resource in the environment is

diminished because of overexploitation by these consumers, the sedentary strategy becomes

increasingly viable. This is because the benefits forgone by a reduction in harvesting rate are

balanced by avoiding the costs of dispersal. As some consumers become sedentary, the density

of mobile consumers decreases, allowing them to sustain higher harvesting rates. Therefore,

frugal sedentary consumers (whom we might call cooperative) and overexploitative mobile

consumers (whom we might call cheating) coexist in the population (Fig 4A and 4C). The

coexistence regime is characterized by a social divide, in which the resource distribution is

Fig 5. Maximum sustainable resource extraction occurs for mobile consumers at the ‘edge of inequality’. (A)

Average per capita resource extraction rate (expressed as a fraction of the yield-maximizing extraction rate) and (B)

amount of resource left in the environment (expressed as a fraction of the system’s carrying capacity), depending on

the unit benefit bH and cost cH of harvesting. The sedentary regime, labeled ‘S,’ is equitable, but inefficient: the resource

extraction is far less than optimal, despite the ample amounts of resource left in the environment. The mobile regime,

labeled ‘M,’ is both equitable and efficient: the total resource extraction rate resulting from the evolved resource-

consumption strategies reaches its maximum in this regime. However, for high unit benefits and costs of harvesting (or

equivalently, for low unit costs of dispersal), the tragedy of the commons can occur also in this regime. The coexistence

regime, labeled ‘S & M,’ is neither equitable nor efficient: the resource extraction rate is far less than optimal, and

overexploitation by mobile consumers results in the tragedy of the commons. Parameter values are as in Fig 4.

https://doi.org/10.1371/journal.pcbi.1007483.g005
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unfair. Low costs of harvesting allow the cheating consumers greatly to increase their harvest-

ing rates (outsets in Fig 4B). Consequently, a small fraction of cheating consumers can thrive

at the expense of a large fraction of cooperative consumers (S3 Fig).

For a low efficiency of resource harvesting, measured by the ratio bH/cH of the unit benefit

and cost of harvesting, sedentary consumers adopt the profit-maximizing harvesting rate (blue

region in the outset labeled ‘S’ in Fig 4B): we thus call them prudent sedentary consumers. How-

ever, as this efficiency increases, mobile consumers become increasingly overexploitative (red

region in the outset labeled ‘M’ in Fig 4B), destroying the resource even in the neighborhoods of

the sedentary consumers: this drives the latter’s resource extraction rates to zero (black region

in the outset labeled ‘S’ in Fig 4B), forcing them into being frugal sedentary consumers. In this

regime, the resource distribution between sedentary and mobile strategies is highly inequitable.

Rapid consumer adaptation and localized information aggravate social

inequality

The imitation of resource-consumption strategies by consumers depends on their knowledge

of the strategies of other consumers. The farther information on other consumers’ strategies

travels, the larger is the pool of potential strategies each consumer can compare with its own

and imitate. Up to now, we have assumed that all consumers have knowledge about strategies

in the entire population (corresponding to an infinite imitation radius, σI!1). We now relax

this assumption. Fig 6 shows how the evolved strategies depend on imitation radius and imita-

tion rate, for payoff parameters from the mobile regime; S4 Fig provides an analogous analysis

for payoff parameters from the coexistence regime.

For low to moderate imitation rates and not too small imitation radii (in the region labeled

‘M’ in Fig 6A), the population’s strategy distribution is unimodal (Fig 6A) and the resource

extraction rate is high (Fig 7A), as characterizing the mobile regime. As the imitation rate

increases, i.e., as consumers become more ‘impatient,’ they diversify into two subpopulations

adopting sedentary or mobile strategies, respectively (in the region labeled ‘S & M’ in Fig 6A),

as characterizing the coexistence regime. Fast imitation causes a strategy to change even before

its consequences on the resource are reflected in the payoffs consumers receive. This can pre-

vent sedentary consumers from realizing the long-term benefits of their low harvesting rates,

which can lead to an unsustainable increase in their harvesting rates (green region in the outset

labeled ‘S’ in Fig 6B). For large imitation radii (in the region labeled ‘I’ in Fig 6A), the differ-

ences between the harvesting rates of sedentary and mobile consumers are relatively small

(S5A Fig). However, since the proportion of mobile consumers is relatively high (S5 Fig) and

sedentary consumers also exploit at rates higher than the sedentary yield-maximizing rate

(S5A Fig), the resource is overexploited (Fig 7B).

The mobile strategy becomes more rewarding when consumers are not only impatient, but

also myopic (in the region labeled ‘III’ in Fig 6A). Under such circumstances, the cheating con-

sumers become extremely overexploitative, with very high harvesting rates (red region in the

outset labeled ‘M’ in Fig 6B). However, their proportion is low (S5 Fig). This implies a stark

social divide, with a handful of cheating consumers driving the extraction rates of the majority

of consumers close to zero. Resource harvesting is acutely inefficient, with much of the

resource being left unharvested (green region in Fig 7B).

For intermediate spatio-temporal scales of imitation (in the region labeled ‘II’ in Fig 6A),

cheating consumers are less aggressive, but more abundant. The harvesting rates of coopera-

tive consumers are close to their sedentary profit-maximizing values. This leads to greater

resource extraction (Fig 7A), almost entirely by the cheating consumers (Figs 6B and S5A).

Consequently, this region is most favorable for cheating consumers.
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Fig 6. Strategy regimes for different spatio-temporal scales of imitation. Effects of the imitation radius σI and imitation rate rI on the (A) difference between

harvesting rates of sedentary and mobile consumers, (B) population average of harvesting rates, (C) difference between dispersal distances of sedentary and mobile

consumers, and (D) population average of dispersal distances. In panels A and B, the sedentary and mobile yield-maximizing harvesting rates (S2 Appendix) are

indicated, respectively, by the unlabeled tick marks in the blue and green ranges of the color bars. We find four strategy regimes, delimited by cyan, blue, black, and

white lines. In the region labeled ‘M,’ characterized by relatively low imitation rates and not too small imitation radii, the population’s strategy distribution is

unimodal, featuring an efficient mobile resource-consumption strategy. Increasing the imitation rate is taking the population into the coexistence region, labeled ‘S

& M,’ in which strategies diversify, and sedentary and mobile consumers coexist. For the latter regime, outsets in panels B and D show average values separately for

sedentary and mobile consumers. We further divide the region labeled ‘S & M’ into three regions. In the region labeled ‘I,’ characterized by global information,

both sedentary and mobile consumers have high harvesting rates, resulting in the tragedy of the commons. Decreasing the imitation radius is taking the population

into the region labeled ‘II,’ in which the mobile cheating consumers are becoming less common but more overexploitative, while sedentary cooperative consumers

are harvesting at rates close to the sedentary profit-maximizing rate. Decreasing the imitation radius even further is taking the population into the region labeled

‘III,’ in which the mobile cheating consumers are becoming even less common but extremely overexploitative. S5 Fig provides additional information on the

regions labeled ‘I’ to ‘III.’ Parameter values are as shown in Table 1, except for bH = 0.02 and cH = 0.8.

https://doi.org/10.1371/journal.pcbi.1007483.g006
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Results are robust to altering model parameters and model structure

To investigate the robustness of our results under more realistic assumptions for intelligent

consumers, we allow consumers to explore random strategies, in addition to imitating the

strategies of role models, by adopting harvesting rates and dispersal radii randomly drawn, at

the chosen strategy-exploration rate, from salient uniform distributions. S6 Fig shows that, for

sufficiently low strategy-exploration rates, the population of consumers evolves to the same

strategy combination as in Fig 2, which indicates that the strategy dynamics has no hidden

attractors that could be attained only through strategy exploration.

After some social learning, the resource-consumption strategies in the consumer popula-

tion typically exhibit a slight spread around one or two modes (Figs 2–5). This spread is largely

determined by the implementation errors μH and μD of strategy imitation and by the duration

T of payoff averaging, whose values we have chosen in accordance with the need for computa-

tional efficiency. It is therefore instructive to demonstrate that the evolved mean strategies are

robust under altering these parameters: as expected, using smaller imitation errors and longer

averaging durations results in more sharply peaked strategy distributions, without noticeably

affecting the modes’ mean strategies (S7 Fig).

We can relax the assumption that consumers imitate the strategies of other consumers if

and only if those receive a higher payoff, by consider a smooth imitation-response function

SI(ΔV) = 1/(1+exp(−kIΔV)), instead of the step function (kI!1) used for our main results.

Having chosen another consumer as a potential role model, the probability of imitating him/

Fig 7. Consumer impatience and myopia aggravate social inequality. Effects of the imitation radius σI and imitation

rate rI on the (A) average per capita resource extraction rate (expressed as a fraction of the yield-maximizing extraction

rate) and (B) amount of resource left in the environment (expressed as a fraction of the system’s carrying capacity).

The average per capita resource extraction rate decreases as the imitation rate is increased. In the region labeled ‘III,’

this is because a small fraction of mobile cheating consumers is exploiting the resource at a very high harvesting rate,

while sedentary cooperative consumers, which form the vast majority of the population, adopt a frugal harvesting rate

and receive hardly any resource. In the region labeled ‘I,’ sedentary and mobile consumers are present in roughly

similar proportions, both harvesting aggressively and overexploiting the resource. In the region labeled ‘II,’ a smaller,

but still substantial, proportion of cheating consumers is enabled to coexist with the cooperative consumers. S5 Fig

provides additional information on the regions labeled ‘I’ to ‘III.’ Parameter values are as in Fig 6.

https://doi.org/10.1371/journal.pcbi.1007483.g007
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her is now SI(ΔV), where ΔV is the difference between the chosen consumer’s payoff and the

focal consumer’s payoff. An increased smoothness of the imitation-response function, resulting

for lower values of kI, can describe an increased reluctance to adopt a higher-payoff strategy in

conjunction with an increased willingness to try out a lower-payoff strategy. It can also describe

increases in errors of perception and/or implementation, which arise, respectively, when con-

sumers cannot accurately assess payoffs or cannot accurately implement the decision whether

or not to imitate a role model. S8 Fig shows that our results are robust to a reasonable degree of

imitation-response smoothness. However, too much smoothness leads to the widespread adop-

tion of significantly suboptimal strategies, such as a high harvesting rate without dispersal.

We can relax the assumption that consumers disperse if and only if the resource density at

their locations drop below the threshold RT, by considering a smooth dispersal-response func-

tion SD(ΔR) = 1/(1+exp(kDΔR)), instead of the step function (kD!1) used for our main

results. This function determines a consumer’s rate of dispersing away from his/her location in

dependence on the difference ΔR = R−RT between the local resource density R and the thresh-

old RT. Possible causes for smoothness in the dispersal response are analogous to those

impinging on the imitation response. S9 Fig shows that our results are robust to considerable

changes in the dispersal-response smoothness.

We can relax the assumption that there is no intrinsic spatial heterogeneity in the spatial

distribution of resources, by describing spatially heterogeneous resource growth rates (S10

Fig) using a synthetic turbulence model [52]. When dispersal is not costly or imitation is slow

or global, our results are robust to spatial heterogeneity, but when dispersal is costly and imita-

tion is fast and local, spatial heterogeneity may lead to strategy diversification and inefficient

resource extraction (S11 Fig). This happens only when the imitation radius is smaller than the

distance over which the resource growth rate varies significantly, as quantified by the spatial

correlation length of the resource growth rate. We can understand this result by appreciating

that small imitation radii together with high imitation rates enable the local adaptation of

resource-consumption strategies: when the imitation radius is smaller than the correlation

length, this allows for the evolution of consumers specializing on low and high resource

growth rates, respectively. In contrast, when the correlation length is smaller than the imitation

radius, or when imitation is slow, consumers experience a diversity of resource growth rates

before imitating. Thus, the effects of spatial heterogeneity are averaged out and the evolved

strategies are similar to those arising in an intrinsically homogeneous space.

We also investigate the impacts on evolved strategies of altering our model so as to describe

more sophisticated consumers. In particular, we consider two additional scenarios. First, sed-

entary consumers may have the capacity to increase the resource growth rate or to generate

additional resource (such as when agriculture utilizes external supplies of energy and nutri-

ents). Second, mobile and sedentary consumers may be slightly or fully specialized on harvest-

ing different resources (such as when farmers and hunter-gatherers differ in their diets). In

other words, sedentary consumers might be able to achieve a greater resource extraction rate

than mobile consumers, and mobile consumers might not be able equally to exploit the

resource used by sedentary consumers. To explore these scenarios in a simple way, we assume

that sedentary consumers benefit from a fixed additional supply RG of resource per unit time.

S12 Fig shows that such additional resource acquisition by sedentary consumers does not qual-

itatively alter the evolutionary outcomes. Quantitatively, mobile consumers evolve higher

extraction rates to match the additional resource acquisition of sedentary consumers. Further,

as the sedentary strategy becomes more profitable through additional resource acquisition, the

mobile regime shrinks or disappears: when the rate described by RG is much greater than the

yield-maximizing harvesting rate of mobile consumers, all consumers become sedentary; oth-

erwise, sedentary and mobile consumers coexist.
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Discussion

We have shown that differences in resource productivity lead to different emerging harvesting

regimes, including a sedentary regime, which is equitable but inefficient, a mobile regime,

which is equitable and efficient at high dispersal costs but becomes inefficient as dispersal costs

are reduced, and a coexistence regime, which is neither equitable nor efficient (Fig 8). The

inefficiency in the sedentary regime results from consumers individually lacking the ability to

harvest resources efficiently, whereas the inefficiency in the mobile regime and coexistence

regime results from consumers collectively harming each other’s harvesting efficiency through

competition, i.e., through the tragedy of the commons. Therefore, mobility as such is desirable,

as it leads to equitable and efficient resource use, but excessive mobility is harmful, as it leads

to unsustainable resource extraction. We have further shown that when consumers are impa-

tient and myopic, the social inequality between cheating consumers and cooperative consum-

ers is aggravated. Thus, high resource productivity, in conjunction with consumer impatience

and myopia, are the key features that cause social divides, inefficient resource extraction, and

global overexploitation of the resources.

Comparison with previous studies

Spatial public goods games have frequently been used to study the evolution of cooperation.

Often, models of spatial public goods rely on additional mechanisms to stabilize cooperation,

such as volunteering [35], rewarding cooperators or punishing defectors [28, 53, 54], or condi-

tional strategies [55]. Other models rely on spatial structure, intrinsic or emergent, that sup-

ports the clustering of cooperators [36, 56, 57]. In all these studies, cooperation has been

defined through its effects on the game-theoretical payoffs, and whether an act is cooperative

or defective is independent of the prevailing socio-ecological conditions. By contrast, coopera-

tion and defection in our model can only be defined in relation to the resource: a resource-

consumption strategy is cooperative if and only if it ensures that, when adopted by all

Fig 8. Overview of harvesting and dispersal regimes and their ranges in equality-efficiency space. The sedentary

regime (labelled ‘S’) is equitable but inefficient, the mobile regime (labelled ‘M’) is equitable and efficient at high

dispersal costs but inefficient at low dispersal costs, while the coexistence regime (labelled ‘S & M’) is neither equitable

nor efficient.

https://doi.org/10.1371/journal.pcbi.1007483.g008
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consumers in the population, the resource extraction rate is less than that giving maximum

sustainable yield.

When movement is costly, consumers of a spatial resource may face a ‘milker-killer

dilemma’ [58, 59], in which each consumer has a choice to adopt a ‘milker’ strategy (like our

sedentary consumers) or a ‘killer’ strategy (like our mobile consumers). Several earlier studies

have tried to identify the conditions under which either milker or killer strategies are favored

[58, 60, 61]. But none of these studies had found coexistence of milkers and killers. A recent

study [46] reported the coexistence of sessile cooperators (like milkers) and mobile defectors

(like killers), by allowing the coevolution of cooperation and unconditional dispersal, and con-

cluded that such coexistence is favored when dispersal costs are low. In broad agreement with

the results of that study, we have demonstrated the emergence and coexistence of frugal seden-

tary consumers and mobile overexploitative consumers. However, in contrast to that study, we

have found that in our system, coexistence is favored when dispersal costs are high, whereas

consumers all tend to be mobile and overexploitative when dispersal costs are low. This is

because dispersal opens up the possibility of overexploiting local resources and of finding new

resource-dense areas to exploit. Furthermore, interactions in our model are entirely mediated

by the resource dynamics. Specifically, if the resources were inexhaustible, consumers who

harvest aggressively and do not disperse would outcompete those with other strategies. There-

fore, the exhaustible and renewable nature of resources in our model is essential for the evolu-

tion of dispersal.

Another recent study [45] used an infinite island model to study the coevolution of cooper-

ation (quantified in terms of investments to public goods) and dispersal (quantified in terms of

the rate of leaving the current patch). That study found that both dispersal and cooperation are

favored if catastrophes wipe out local populations at an intermediate rate. This is because

catastrophes reduce local population densities and increase relatedness among the remaining

consumers. It would be interesting to examine the effects of catastrophes in our model. On the

one hand, catastrophes may prevent strategy diversification because a decrease in consump-

tion density brought about by a catastrophe may allow all consumers to sustain high harvesting

rates. On the other hand, catastrophes may facilitate coexistence due to the well-known com-

petition-colonization tradeoff.

Directions for future research

Our model makes deliberately simple assumptions to capture the essential processes governing

resource consumption and strategy evolution. For example, we have assumed that all consumers

have the capacity to adopt any strategy they wish, and without delay. Thus, a sedentary con-

sumer with a very low harvesting rate can quickly switch to a mobile strategy that is much more

expensive in terms of the costs of harvesting and dispersal. In real situations, however, resource-

poor consumers may not be able to afford a strategy switch, forcing them into a low-consump-

tion strategy permanently, or they might be able to afford such a switch only after accumulating

sufficient payoff, forcing them into implementing the intended switch with a delay. These effects

could be investigated by extending our model to incorporate costly strategy switches.

Another direction for future research is to allow the imitation rate to evolve and to investi-

gate whether consumers then adopt a fast or slow imitation rate. We speculate that without a

cost of imitation, consumers will evolve to be increasingly impatient, as they (and especially

those among them that happen to have lower payoffs) will benefit from increased opportuni-

ties to imitate more successful strategies. Nonetheless, multiple strategies may still exist, even

when consumers rapidly switch between them, as we have already observed in the present

study.
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Although we have investigated the dependence of evolved resource-consumption strategies

on consumer density, we have kept the number of consumers constant within individual

model runs. However, it is well known that increased resource consumption resulting from

higher efficiency and better technology often leads to increases in population size, and thus,

consumer density. This, in turn, may necessitate and enable further increases in harvesting

efficiency. It is possible to incorporate such additional feedbacks into our model, and exploring

the fate of a society under such circumstances therefore constitutes a particularly interesting

avenue for further research.

Conclusions

In conclusion, we have explored how the dynamics of a renewable resource influence the har-

vesting and dispersal strategies of consumers. We have found that high consumption density,

high efficiency of resource harvesting, low costs of dispersal, rapid strategy adaptation among

consumers, and localized information about the strategies of other consumers, are features

that lead to spontaneous diversification of consumers into frugal sedentary consumers and

overexploitative mobile ones. This inequitable social divide is always accompanied by an over-

exploitation of the resource.

In modern societies, developments involving technological progress have led to an

increased efficiency of resource harvesting and to a reduced cost of dispersal. This has led, in

turn, to an increase in population size. Furthermore, the pace of modern life has quickened,

which in our model can be accounted for by an increased pace of strategy adaptation. While

these are positive developments as such, our analyses suggest that all four of them–individu-

ally, and especially together–pose a threat to social equality and the sustainability of resource

consumption. Our results also suggest a specific way of mitigating these threats: an increased

spatial scale of information availability, which is another characteristic feature of modern soci-

eties, can safeguard social equality and promote sustainable resource consumption. We hope

that further work can build on the findings presented here and shed light on the foundations

of human and animal behavior and their changes in response to changing socio-ecological

conditions.

Supporting information

S1 Table. Glossary.

(PDF)

S1 Appendix. Choice of units and essential parameters.

(PDF)

S2 Appendix. Optimal strategies.

(PDF)

S1 Video. Consumer-resource dynamics. Schematic video showing consumers (red squares)

harvesting a renewable resource according to an exploitation kernel as described by Eq 2.

Resource density is represented by greyscale, with black corresponding to zero resource den-

sity and white corresponding to the carrying-capacity density. Consumers disperse when the

local resource density falls below the resource-density threshold for dispersal. This schematic

video illustrates the mobile regime, in which all consumers are similarly mobile.

(MP4)

S1 Fig. Evolved average harvesting rates are always lower than the corresponding profit-

maximizing harvesting rates. Effects of the unit benefit bH and cost cH of harvesting on the
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profit-maximizing (A) harvesting rates and (C) dispersal radii, and on the resultant (B) per

capita resource extraction rates and (D) dispersal distances. In panel A, the sedentary and

mobile yield-maximizing harvesting rates (S2 Appendix) are indicated, respectively, by the

unlabeled tick marks in the blue and green ranges of the color bars. Comparing Figs 4B and

5A with panels A and B, respectively, shows that the evolved average harvesting rates and

resource extraction rates are always lower than, respectively, the profit-maximizing harvesting

rates and resource extraction rates, especially in the coexistence region, labeled ‘S & M’.

Parameter values are as in Figs 4 and 5, while imitation parameters are not relevant to this fig-

ure.

(TIF)

S2 Fig. Maximum yield is obtained through global dispersal and harvesting rates exceeding

the resource’s intrinsic growth rate. (A, B) Yield-maximizing resource-consumption strate-

gies are found by computing and comparing the per capita resource extraction rates (expressed

as fractions of the system’s carrying capacity extracted per unit time) of monomorphic popula-

tions with different harvesting rates and dispersal radii, here shown for a consumption density

of 50.8% (expressed as the ratio of harvested area to total area). (C) The per capita resource

extraction rate is maximized at an intermediate harvesting rate, called the yield-maximizing

harvesting rate. (D) The resource-extraction rate increases monotonically with the dispersal

radius, i.e., the yield-maximizing dispersal radius is infinite. (E-F) The yield-maximizing har-

vesting rate and the resultant maximum per capita resource extraction rate both decrease with

consumption density. The maximum resource extraction rate is inversely proportional to the

consumption density, with a power-law exponent close to –1. This indicates minimal kernel

overlap among mobile consumers, i.e., mobile consumers evade through movement configu-

rations in which their exploitation kernel overlaps with that of another consumer. Parameter

values are as shown in Table 1, while imitation parameters are not relevant to this figure.

(TIF)

S3 Fig. As the efficiency of resource harvesting is increased, the evolved resource -con-

sumption strategies change from sedentary to mobile to a coexistence of sedentary and

mobile. Effects of the unit benefit bH of harvesting on the evolved population distributions of

(A) harvesting rates, (B) dispersal radii, (C) dispersal distances, and (D) per capita resource

extraction rates. The blue curve in panel D shows the average per capita resource extraction

rate. We can clearly see the three strategy regimes: sedentary (labelled ‘S’), mobile (labelled

‘M’), and coexistence of sedentary and mobile (labelled ‘S & M’). Parameter values are as in the

row with cH = 0.68 in Fig 4 (Fig 4C and 4D show only dispersal distances and not also dispersal

radii because the latter tend to drift in the region labeled ‘S,’ where the former are very small,

as sustainable harvesting ensures that the resource densities at the locations of consumers very

rarely fall below the dispersal threshold).

(TIF)

S4 Fig. Impatient myopic imitation aggravates the inequality between sedentary and

mobile consumers. Effects of the imitation radius σI and imitation rate rI on the (A) difference

between harvesting rates of sedentary and mobile consumers, (B) population average of har-

vesting rates, (C) difference between dispersal radii of sedentary and mobile consumers, (D)

population average of dispersal radii, (E) average per capita resource extraction rate (expressed

as a fraction of the yield-maximizing extraction rate), and (F) amount of resource left in the

environment (expressed as a fraction of the system’s carrying capacity). While Figs 6 and 7

show how fast local imitation can lead to strategy diversification that does not occur for slow

global imitation, here we show that this finding extends to parameter combinations in the
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coexistence region, where fast local imitation aggravates the aforementioned social inequality.

For very low imitation rates (black regions in panels A and C), strategy diversification does not

occur within the limited duration of the model runs considered here. Parameter values are as

shown in Table 1.

(TIF)

S5 Fig. Mobile consumers are most successful at intermediate imitation radii. Effects of the

imitation radius on the evolved population distributions of (A) harvesting rates, (B) dispersal

radii, (C) dispersal distances, and (D) per capita resource extraction rates, for a large imitation

rate corresponding to the top rows of panels in Fig 6. The blue curves in all panels show aver-

ages of the population distributions, while the red and green curves in panels A to C show

averages of the population distributions separately for the two modes. We see that the per cap-

ita resource extraction rate is highest in the region labelled ‘II,’ in which the imitation radius is

intermediate. For smaller imitation radii in the region labelled ‘III,’ the mobile consumers are

very few but highly overexploitative, and therefore still drive the average resource extraction

rate of the sedentary consumers to close to zero. For larger imitation radii in the region

labelled ‘I,’ the sedentary consumers are also overexploitative, and the population’s average per

capita resource extraction rate drops accordingly. Parameter values are as shown in Table 1,

except for rI = 5.

(TIF)

S6 Fig. Occasional strategy exploration does not alter evolutionary outcomes. Time series

of population distributions of harvesting rates for five different strategy-exploration rates

shown in the rightmost column (expressed as fractions of the imitation rate), shown alongside

the time-averaged population distributions (averaged over the last 1,000 units to exclude the

initial transient), with the frequencies in the separate bins adding up to the number N of con-

sumers. Upon an exploration event, consumers change their harvesting rates and dispersal

radii to values randomly drawn from uniform distributions over the intervals [0, 12.5] and [0,

2.5], respectively. For strategy-exploration rates of up to about 2% of the imitation rate, the

evolutionary outcome remains qualitatively unchanged, with the two modes corresponding to

frugal sedentary consumers (labeled ‘S’) and overexploitative mobile consumers (labeled ‘M’),

respectively. Higher strategy-exploration rates widen these modes to an extent that the separa-

tion between them is lost. Parameter values are as shown in Table 1, except for cH = 0.68.

(TIF)

S7 Fig. Results are robust to altering the mutation-step size and payoff-averaging duration.

The left column shows time series of the population distributions and time-averaged distribu-

tions of harvesting rates and dispersal radii for the default parameter values, while the right

column shows the same information for smaller imitation errors and longer payoff-averaging

durations. These time series are shown alongside the time-averaged population distributions

(averaged over the last one third of the total simulated duration to exclude the initial transient,

with the frequencies in the separate bins adding up to the number N of consumers). The two

rows show results for two different imitation rates, rI = 0.5 in the upper row and rI = 0.15 in

the lower row. As expected, the evolutionary dynamics in the right column are slower and the

resultant modes are narrower than in the left column. Nevertheless, the evolutionary dynamics

in the two columns are analogous, exhibiting the same pattern of diversification into sedentary

and mobile resource-consumption strategies and leading to roughly the same average harvest-

ing rates and dispersal radii in the two modes. Parameter values are as shown in Table 1, except

for T = 1, μH = 0.0125, and μD = 0.00125 in the right column.

(TIF)
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S8 Fig. Results are robust to perception errors in the imitation response, unless these

become too large. Effects of the smoothness of the imitation-response function on the evolved

population distributions of (A) harvesting rates, (B) dispersal radii, (C) dispersal distances,

and (D) per capita resource extraction rates. The smoothness is measured as wI/ΔV95, where

the width wI is the range of payoff differences over which the imitation-response function

changes from 5% to 95%, and ΔV95 is the 5% to 95% quantile range of the payoff differences

experienced by consumers. Our results are robust until the aforementioned width exceeds

about a tenth of the experienced payoff differences. Higher smoothness promotes unsustain-

able resource-consumption strategies and causes overexploitation of the resource. Parameter

values are as shown in Table 1.

(TIF)

S9 Fig. Results are robust to perception errors in the dispersal response, even when these

become very large. Effects of the smoothness of the dispersal-response function on the evolved

population distributions of (A) harvesting rates, (B) dispersal radii, (C) dispersal distances,

and (D) per capita resource extraction rates. The smoothness is measured as wD/ΔR95, where

the width wD is the range of resource densities over which the dispersal-response function

changes from 5% to 95%, and ΔR95 is the 5% to 95% quantile range of the resource densities

experienced by consumers. Our results are robust over several orders of magnitude of the dis-

persal-response smoothness. Parameter values are as shown in Table 1.

(TIF)

S10 Fig. Results are robust to spatially heterogeneous resource growth. (A-C) Heteroge-

neous spatial distributions of the intrinsic resource growth rate with different spatial correla-

tion lengths Lc. The shown spatial distributions are generated using a synthetic turbulence

model [52], the code for which can be found at https://github.com/jaideep777/Consumer-

resource-system/blob/master/src/turbulence.cu.

(TIF)

S11 Fig. Under fast local imitation, spatial heterogeneity causes strategy diversification,

aggravating inefficient and inequitable resource harvesting. Effects of the imitation radius

σI and correlation length Lc of heterogeneous spatial distributions of the intrinsic resource

growth rate on the (A) difference between harvesting rates of sedentary and mobile consumers,

(B) population average of harvesting rates, (C) difference between dispersal radii of sedentary

and mobile consumers, (D) population average of dispersal radii, (E) average per capita

resource extraction rate (expressed as a fraction of the yield-maximizing extraction rate), and

(F) amount of resource left in the environment (expressed as a fraction of the system’s carrying

capacity). For fast imitation, spatial heterogeneity causes strategy diversification roughly when

the correlation length Lc exceeds the imitation radius σI. Parameter values are as shown in

Table 1, except for bH =0.14, cH = 0.8, and rI = 0.5.

(TIF)

S12 Fig. Mobile consumers persist even when sedentary consumers benefit from additional

resource supply. Effects of the unit benefit bH of harvesting on the evolved population distri-

butions of harvesting rates for four different values of RG, the fixed additional supply of

resource per unit time available to consumers who do not disperse, shown in the rightmost

column (expressed as fractions of the maximum resource extraction rate of sedentary consum-

ers shown in Equation 11). (A) For RG = 0, the three strategy regimes shown in S3 Fig apply:

sedentary (labelled ‘S’), mobile (labelled ‘M’), and coexistence of sedentary and mobile

(labelled ‘S & M’). (B, C) Cases with RG>0 describe scenarios in which sedentary resource con-

sumption enables increased ecological efficiency (e.g., through agricultural activities) or
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decreased competition with mobile consumers (e.g., through diet specialization). To offset the

additional resource supply of the sedentary consumers, the mobile consumers harvest at

higher rates, which enables them to keep coexisting with the sedentary consumers. (D) Only

when the additional resource supply of the sedentary consumers is much greater than what is

otherwise available to them, sedentary consumers outcompete mobile consumers. The red

lines indicate how the boundaries between the three strategy regimes shift as RG is raised from

0. Parameter values are as in S3 Fig.

(TIF)

S13 Fig. Effects of exploitation-kernel overlap are small for consumption densities of up to

50%. (A) Maximum resource extraction rates of randomly placed sedentary consumers as a

function of their harvesting rate, for four different consumption densities (red, magenta, blue,

and black circles with fitted cubic splines). The orange line indicates the numerically calculated

yield-maximizing harvesting rates (horizontal coordinates along orange line) and maximum

resource extraction rates (vertical coordinates along orange line). These are compared with the

corresponding analytical values (horizontal and vertical grey lines, respectively), calculated

assuming no overlap of exploitation kernels (S2 Appendix). (B) Approximation accuracy,

defined as the percentage drop in the maximum resource extraction rate (orange line) and the

yield-maximizing harvesting rate (brown line) relative to their respective analytical values, as a

function of consumption density. At low consumption densities, the maximum resource

extraction rate and the yield-maximizing harvesting rate are both close to their respective ana-

lytical values, indicating that the effects of kernel overlap (cyan line) are small. The approxima-

tion accuracy remains higher than 75% even at 50% consumption density and decreases to no

less than 60% at 100% consumption density. The relative kernel overlap is defined as the aver-

age fraction of a consumer’s exploitation area that overlaps with that of other consumers.

Accordingly, the relative drop in maximum resource extraction rate mirrors the relative kernel

overlap.

(TIF)
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