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Abstract 

Vehicle emission remote sensing has the potential to provide detailed emissions information at a 

highly disaggregated level owing to the ability to measure thousands of vehicles in a single day. 

Fundamentally, vehicle emission remote sensing provides a direct measure of the molar volume 

ratio of a pollutant to carbon dioxide, from which fuel-based emissions factors can readily be 

calculated. However, vehicle emissions are more commonly expressed in emission per unit distance 

travelled e.g. grams per km or mile. To express vehicle emission remote sensing data in this way 

requires an estimate of the fuel consumption at the time of the emission measurement. In this 

paper, an approach is developed based on vehicle specific power that uses commonly measured or 

easily obtainable vehicle information such as vehicle speed, acceleration and mass. We test the 

approach against 55 independent comprehensive PEMS measurements for Euro 5 and 6 gasoline 

and diesel vehicles over a wide range of driving conditions and find good agreement between the 

method and PEMS data. The method is applied to individual vehicle model types to quantify 

distance-based emission factors. The method will be appropriate for application to larger vehicle 

emission remote sensing databases, thus extending real-world distance-based vehicle emissions 

information. 

 

Keywords: Vehicle emissions, Remote sensing, Emission factors, PEMS 

 

 

 

1.  Introduction 
  

Road vehicle emissions contribute significantly to a wide range of air pollution problems, 

particularly in urban areas. The European Environment Agency estimates that in 2017 86% of its 

monitoring stations which reported  NO 2  concentrations above the World Health Organisation Air 

Quality Guidelines were traffic stations  (EEA, 2019). Important primary combustion products from 

vehicles include  NO x  (NO +  NO 2  ) and particulate matter (PM). Additionally, emissions of  NO x  act 

as an ozone precursor and are an important contributor to secondary particulate formation. 

Emissions of these species have been shown to have considerable deleterious effects on human 

health  (Mannucci et al., 2015;  Kar Kurt et al., 2016;  An et al., 2018), with premature deaths in 

Europe having been attributed to poor air quality owing to exceedances of road transport type 

approval tests  (Jonson et al., 2017;  Chossière et al., 2017, 2018). Recently,  Schraufnagel et al. 

(2019) suggested that air pollution could deal chronic damage to potentially every organ in the 

human body. 

Robust emissions data are required to ensure that policies aiming to mitigate air pollution 

are effective. In the case of road vehicle emissions, robust quantification poses considerable 

challenges. Vehicle emissions vary by manufacturer, vehicle model, emission standard, engine size 

and fuel type — and many other factors. Even nominally identical vehicles which share all these 

characteristics can vary in their mileage, their levels of maintenance, driver behaviour, the added 

weight of their passengers and cargo, the auxiliary systems being employed, and the ambient 
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conditions in which they are driven. With tens of millions of road vehicles in the United Kingdom 

alone, it is challenging to robustly quantify the contribution of road transport to air quality. 

In recent years there has been an increased focus on emissions under “real-world” 

conditions in addition to laboratory-based quantification. Historically, testing vehicles for Type 

Approval regulations has been solely conducted under controlled laboratory conditions on chassis 

dynamometers over drive cycles such as the New European Driving Cycle (NEDC). Originally 

introduced in 1996, the NEDC is criticised for poorly reflecting real driving conditions. To replace the 

NEDC, the Worldwide Harmonised Light Vehicles Test Procedure (WLTP) was introduced in Europe 

starting in 2017, which is more representative of real-world driving, alongside the Real Drive 

Emissions (RDE) test. The RDE test is conducted on roads in real traffic, with vehicles being measured 

with Portable Emission Measuring Systems (PEMS) undergoing a specified variety of driving 

conditions (urban, rural, and motorway)  (Mock, 2017). 

Remote sensing is in many ways complementary to PEMS. PEMS has some clear benefits: 

the full journey of a single vehicle can be measured under almost any driving condition — idling in 

traffic through to motorway driving. However, it can be expensive and time consuming to measure a 

large number of vehicles in this way and capture important variations due to ambient conditions, 

vehicle age profiles and the potential effects of vehicle deterioration. Moreover, it is also challenging 

to measure a broad range of vehicle types, including urban buses and the wide range of heavy duty 

diesel vehicles (HDV) that exist. The growing databases of PEMS measurements are strongly 

dominated by measurements of passenger cars. 

On the other hand, vehicle emission remote sensing cannot measure an entire drive cycle; 

only measuring a snapshot (typically 0.5 s) of a given vehicle’s journey. Nevertheless, an important 

advantage of remote sensing comes from the much larger sample size measured in a short space of 

time, full fleet coverage with little selection bias, and the unobtrusive nature of remote sensing. 

Applications of the technique have included the instantaneous identification of potential high-

emitters  (Huang et al., 2018;  OPUS RSE, 2019) and investigations into longer term trends in fleet 

emissions  (Bishop and Stedman, 2015;  Carslaw et al., 2016). Remote sensing data has also been 

used to analyse real-world conditions which can influence vehicle emissions, two examples being 

altitude  (Bishop et al., 2001) and ambient temperature  (Grange et al., 2019). 

A key limitation of remote sensing in terms of emission factor development, however, is that 

only a molar ratio of a pollutant to  CO 2  is measured. This is a consequence of measuring in a 

dispersing plume in the atmosphere rather than measuring emissions directly at the tailpipe. The 

concentrations of pollutants in a plume may change as it dilutes, but their ratios to  CO 2  should 

remain the same for unreactive pollutants  (Bishop and Stedman, 1996). With a few basic 

assumptions about the combustion of hydrocarbon fuels, it is straightforward to calculate fuel-based 

emission factors, most commonly expressed as grams of emission per kg of fuel burnt  (Burgard et 

al., 2006). 

Fuel-based emission factors have been argued to vary less with engine load than distance-

based equivalents  (Stedman et al., 1994;  Singer and Harley, 1996).  Lee and Frey (2012) went as far 

to suggest that remote sensing site-specific fuel-based emission factors could be representative of 

area-wide emission rates if the distribution of vehicle specific power (VSP) values were similar 

between the measurement site and routes in the area of interest. However, the vehicle emissions 

type approval process and emission factors used in the development of emissions inventories 

instead express emissions as distance-based factors i.e. grams per mile or kilometre. 
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Previous studies have already attempted to generate distance-based emission factors from 

remote sensing data.  Carslaw et al. (2011) used UK emission factor estimates of  CO 2  in  g km 1  

and measured  NO x  : CO 2  ratios to generate  NO x   g km 1  emission factors; a major assumption 

being the accuracy and representativeness of the  CO 2  estimates. Similarly,  Bernard et al. (2018) 

combined average fuel-based emission factors, the carbon content of fuel, and distance-based  CO 2  

emission factors estimated based on type-approval information contained in number plate 

information, augmented by the reported consumer fuel economy average experience in real-world 

conditions. The authors note that this method is to be used with caution due to the real-world 

variance of  CO 2   g km 1  values not reflected in the type-approval values. 

More commonly, fuel consumption is used directly to transform fuel-based emission factors 

into speed-based ones. In some cases, the approach relies on preexisting measurements of fuel 

consumption.  Aguilar-Gómez et al. (2009) estimated fuel consumption based on fuel economy 

databases available from maintenance programs in Mexico where their study took place, and  Zhou 

et al. (2014) relied on fuel consumption information derived from an earlier PEMS study by  Wang et 

al. (2014). A natural drawback of methods such as these is the restriction of remote sensing to 

locations where these external data sets exist and are publicly available. 

Other studies have chosen to model fuel consumption based on roadside measurements. 

For example,  Chan and Ning (2005) used work presented by  Tong et al. (2000) to model fuel 

consumption based on instantaneous vehicle speed. Later,  Zhou et al. (2007) modelled fuel 

consumption based on both binned vehicle specific power (VSP) and vehicle speed to better reflect 

real-world driving conditions, with each binned fuel consumption value adjusted by vehicle mass. 

Only four vehicles were used in the fuel economy testing to feed into this model, however, limiting 

its applicability. 

The primary focus of this work is the development and validation of a method to estimate 

the instantaneous fuel consumption of a vehicle measured using remote sensing, which can then be 

used to estimate distance-based emission factors. To estimate fuel consumption, vehicle specific 

power (VSP) is first estimated using kerbside measurements and vehicle technical data, and is then 

used to model fuel consumption through relationships established using the Passenger Car and 

Heavy Duty Emission Model (PHEM). The derived distance-based emission factors are compared to 

PEMS data of 55 Euro 5 and 6 passenger cars and light duty vans. The comparison is made between 

the emissions of  NO x  measured over a real-world driving test (similar to an RDE test) and emissions 

derived using the emissions model based on remote sensing data. 

In order to demonstrate the methods in this work, certain assumptions have been made — 

for example relating to the power demands on vehicle engines, or the molecular formula of fuel. The 

methods are sufficiently modular such that if more specific values are known or if alternative 

assumptions are preferred, they can be used in the place of those assumptions presented here. 

 

2.  Materials and Methods 
  

 

2.1.  Calculation of Vehicle Power 
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The aim of the emissions model is to estimate the instantaneous fuel consumption of a 

vehicle at the time the remote sensing measurement is made. The approach is based on the 

estimate of the vehicle power demand at a particular point in time coinciding with when a remote 

sensing measurement is made. To calculate the VSP  (Jimenez-Palacios, 1998), it is necessary to sum 

the power demands for a vehicle, given in Equation 1. These include the power to accelerate the 

vehicle (P accel ), to overcome rolling resistance from the road (P roll ), to overcome air resistance (P air

), to climb the road gradient (P grad ) and to operate auxiliary devices (P aux ), accounting for power 

losses in the transmission (P trans ). 

 

 =total accel roll air grad trans auxP P P P P P P      (1) 

 

The total vehicle power demand (in Watts) is given by Equation 2. The terms used in 

Equation 2 and subsequent equations are defined in Table 1. 

2

0 1= 1.04 0.5

1.08 2500

PP gradroll

total d
P Paccel air

P
aux

P
trans

P m a R R v C A v m g Grad

v


 
             
 
 

  

  (2) 

  

 

 

  

 Term   Definition   Unit  

VSP   Vehicle Specific Power    kW t 1   

FC gx    Fuel Consumption   g x 1  (x = h, km)  

EF gx    Emission Factor   g x 1  (x = kg, s, km) 

m   Vehicle Mass, including loading   t  

a   Vehicle Acceleration   m s 2   

v   Vehicle Speed   m s 1   

C d    Aerodynamic Drag Coefficient   -  

A   Frontal Surface Area   m 2   
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    Density of Air   kg m 3   

R 0 , R 1    Road Load Coefficients   N, N (m s 1 ) 1   

g   Acceleration due to Gravity   m s 2   

Grad   Altitude / Distance Travelled   -  

r x    Ratio of Species “x” to  CO 2    -  

MW x    Molecular Weight of Species “x”   g mol 1   

Q   Exhaust Flow Rate   L s 1   

V m    Molar Volume of Gas   L  

n x    Amount of Gas “x”   mol  

 

  

Table  1: Definitions of terms, including units. 

   

To arrive at Equation 2, the following assumptions were made: the power to accelerate 

rotational accelerated mass is equivalent to 4% of the power for translational accelerated mass; the 

power losses in the transmission are equal to 8% of the power at the driven wheels; and the power 

demand of auxiliaries is taken to be a fixed value of 2.5 kW  (Borken-Kleefeld et al., 2018;  

Hausberger, 2003). g is taken to be 9.81 m s 2  and   to be 1.2 kg m 3 , the density of air at 20 C 

and 1 atm of pressure. 

To calculate VSP in  kW t 1 , Equation 2 is divided by mass to arrive at Equation 3. 

 

 

2 3

0 12500 ( 0.5 ) 1.08
=

1000

1.08 (1.04 )

dR v R v C A v
VSP

m

v a g Grad

         



     

 (3) 

 

Coefficients R 0 , R 1  and C d A are provided in Table 2 on a per-vehicle segment basis, as well 

as for average cars, vans and both cars and vans. The segmentation used is that of the  European 

Commission (1999), with vehicle segments defined to group vehicles with similar characteristics 

together and make the analysis tractable. Vehicle segments are each given letters and names, with A 

corresponding to minis, B small cars, C medium-sized cars, D large cars, E executive cars, F luxury 

cars and J sports utility vehicles. VanI-III refer to increasing sizes of van. Segmentation is inexact, 

being based on factors such as price and accessories as well as vehicle size and shape; in principle, 

no segmentation is required, but it is especially useful for grouping vehicles with similar drag 

coefficients, where there is an absence of individual vehicle measured values of C d .
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   Diesel   Petrol  

Segment   R
0

     R
1

    C
d

A   M   C   R
0

   R
1

   C
d

A   M   C  

A+B   120   0.77   

0.537  

 208   159   106   0.67   

0.538  

 236   545  

C   151   0.93   

0.617  

 206   217   139   0.85   

0.618  

 225   554  

D   166   1.02   

0.665  

 200   208   154   0.94   

0.689  

 219   558  

E+F+J   204   1.18   

0.915  

 199   272   175   1.01   

0.810  

 217   601  

VanI   122   0.73   

0.529  

 216   92   106   0.67   

0.538  

 236   545  

VanII   152   0.89   

0.765  

 217   81   145   0.84   

0.853  

 236   327  

VanIII   213   1.24   

1.307  

 220   85   198   1.14   

1.158  

 234   209  

Avg Car   157   0.95   

0.660  

 204   221   127   0.78   

0.598  

 229   552  

Avg Van   174   1.02   

0.965  

 218   87   114   0.71   

0.601  

 236   501  

Avg All   158   0.96    206   199   127   0.78    229   550  
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0.690  0.598  

 

  

Table  2: Generic coefficients ( R 0 ,  R 1 ,  C d A ) and dimensionless parameters (M, C) to be used in Equations 3 and 4. The coefficients are average 

values taken from the test data base used for the Handbook Emission Factors for Road Transport (HBEFA) v3.3. The parameters were 

determined from characteristic fuel flow curves for different engines calculated using PHEM, again using the HBEFA 3.3 test data base and the 

Common Artemis Driving Cycle (CADC)  (Hausberger 2003;  Keller et al. 2017;  Borken-Kleefeld et al. 2018). Fuel flow curves all showed excellent 

linearity (
2 > 0.99R ).
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2.2.  Modelling Instantaneous Fuel Consumption 
  

The Passenger Car and Heavy Duty Emission Model (PHEM), simulates fuel consumption and 

emissions from vehicles in any driving situation based on engine maps and vehicle longitudinal 

dynamics simulation  (Hausberger, 2003). PHEM is able to model fuel consumption values over a 

range of driving conditions. For the purposes of estimating the fuel consumption of vehicles 

measured by remote sensing, it provides relationships between fuel consumption and engine power. 

This relationship can be normalised by dividing through both variables by vehicle mass, effectively 

creating a relationship between normalised fuel consumption in (g h 1 ) t 1  and VSP. VSP can 

therefore be converted to fuel consumption using Equation 4, where M and C are the dimensionless 

parameters of the linear relationship. These parameters are provided in Table 2 on a per-vehicle 

segment basis, as well as for average cars, vans and both cars and vans. 

 

 = ( )ghFC M VSP C m    (4) 

 

A consequence of using a linear equation such as Equation 4 to model fuel consumption are 

negative modelled fuel consumption values, which are set to zero due to having no physical basis. 

Using Equation 5 fuel consumption can be converted from grams per hour driven to grams per 

kilometre travelled through division by vehicle speed in kilometres per hour. 

 

 =
3.6

gh

gkm

FC
FC

v
 (5) 

 

With access to modelled instantaneous fuel consumption from Equations 4 and 5, Equations 

6, 7 and 8 allow for the creation of emission factors by combination with remote sensing data. First, 

fuel-based emission factors are generated using pollutant ratios through Equation 6, where P 

corresponds to the pollutant being measured ( NO x ,  CO 2 , HC, etc.). The molecular formula of 

petroleum-derived fuel, MW fuel , is taken to be the molecular weight of CH 2  (14 g mol 1 ). 

 

 =
(1 6 ) ( /1000)

P P
gkg

CO HC fuel

r MW
EF

r r MW



  
 (6) 
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The fuel-based emission factors from Equation 6 can then finally be combined with the 

modelled fuel consumption from Equations 4 and 5 to create duration and distance-based emission 

factors using Equations 7 and 8. 

 

 =
3,600,000

gh

gs gkg

FC
EF EF   (7) 

  

 =
1000

gkm

gkm gkg

FC
EF EF   (8) 

 

Modelling fuel consumption is not necessary for PEMS data. As PEMS instruments report the 

flow rate of the exhaust, it is straightforward to calculate emission factors. Equation 9 demonstrates 

a method to calculate a duration-based emission factor, and Equation 10 a transformation from 

duration- to distance-based emission factors. V m  is taken to be 24.1 L (molar volume at a 

temperature of 20 C and pressure of 1 atm). 

 

 =gs P P

m

Q
EF n MW

V
   (9) 

 

 

 
1000

=
gs

gkm

EF
EF

v


 (10) 

 

 

2.3.  Journey Average Emission Factors 
  

For a vehicle completing a drive cycle of a known distance, the average distance-based 

emission factor can be determined from a 1Hz PEMS data set via the sum of all duration-based 

emission factors divided by the distance covered in the journey in kilometres, shown in Equation 11. 

 

 =
 

gs

gkm

EF
EF

total distance


 (11) 
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While Equation 8 is a simple way to transform remote sensing  g s 1  emission factors into  g 

km 1  ones, there are potential issues with these  g km 1  factors being biased due to remote sensing 

typically measuring vehicles under load. Large parts of journeys taken by vehicles, particularly in 

urban centres, may involve idling and braking — conditions in which remote sensing is not suited to 

measure. 

To overcome this issue, relationships between snapshot  g s 1  emission factors and VSP may 

be determined from remote sensing and then, in principle, used to predict emissions over any drive 

cycle where VSP can be estimated. Generalised Additive Models (GAMs) can be used for this 

purpose. GAMs offer several advantages in this respect in that they are ‘data-driven’ and handle 

non-linear relationships between variables. GAMs relating  NO x   g s 1  to VSP were fitted using the 

gam function in the mgcv R package  (Wood, 2017) using remote sensing data constrained to 

positive i.e. non-zero  NO x   g s 1  values. The default parameters of the gam function were used 

throughout. In this study the drive cycle used to predict emissions over is taken from a PEMS test, 

described further in Section 2.4. 

Predicting  g s 1  factors for VSP values outside of the range of measured VSPs requires 

extrapolation of the GAM, which can lead to unreliable predictions. For these reasons, GAMs are 

only fitted using a VSP range between 0 and the 99th percentile of remote sensing VSPs, and then 

only used to predict over elements of the on-road drive cycle within the same VSP ranges. For 

elements of the drive cycle above the 99th percentile of the remote sensing data, the emissions and 

distance covered were disregarded in calculations, effectively truncating the drive cycle as a whole, 

to ensure a like-for-like comparison. With larger remote sensing data sets that cover a greater range 

of VSPs, truncating drive cycles should not be necessary. 

 

2.4.  Portable Emissions Measurement System (PEMS) Data 
  

The UK Department for Transport, prompted by the Volkswagen emissions scandal, started 

an investigation into commonly used diesel vehicles in 2015  (DfT, 2016). The Vehicle Emissions 

Testing Programme focused on three different types of measurements. First, in-lab testing using 

variations of the New European Driving Cycle (NEDC). Second, track testing using PEMS 

instrumentation, attempting to replicate the NEDC as close as possible, and third, on-road testing on 

a test route approximating the then-not fully defined Real Driving Emissions (RDE) test, including 

urban, rural and motorway driving. The third data set is used in this study. 

After being augmented with the similar Vehicle Market Surveillance Unit Programme in 

2017, the full PEMS data set contained 19 Euro 5 diesel cars, 17 Euro 6 diesel cars, 14 Euro 6 petrol 

cars, 4 Euro 5 diesel vans and a single Euro 6 diesel van, for a total of 55 vehicles in all  (DVSA, 2017). 

Vehicles were each tested only once for an average of 95 minutes, with the shortest test being 90 

minutes and the longest 106 minutes. The PEMS equipment was validated against a laboratory 

emissions measurement system. More detailed information about the ways the PEMS tests were 

conducted is available from the Department for Transport and Department web pages  ( DfT, 2016;  

DVSA, 2017). 

We considered the effect of applying a time offset to the PEMS data to check whether any 

time synchronisation between between variables such as  CO 2 ,  NO x , vehicle speed and 
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acceleration was necessary. A range of time offsets were applied to seek the best agreement 

between the PEMS  CO 2  and that predicted by the developed method. The agreement between 

PEMS and modelled data was judged using the correlation coefficient, r, and the root mean squared 

error (RMSE); seeking maxima and minima, respectively. Additionally, we also considered applying a 

rolling mean of 3 to 5 seconds to the data to reduce the effect of any time offsets. However, the best 

overall agreement was found by not applying time offsets for the data sets considered. 

The DfT route can be split into urban, rural and motorway driving by changes in the speed 

profile of the vehicle as it continues through its journey, mainly changes in maximum speeds and 

frequency of braking. Each vehicle is driven over a similar trip, so an example for just one is provided 

in Figure 1. 

 

 

 

Figure  1: The speed profile of one of the passenger cars undergoing the Department for Transport’s 

on-road test. The journey has been partitioned into motorway, urban and rural based on clear 

changes in the speed profile, including maximum speeds and frequency of braking. 

   

The PEMS data sets already include the majority of required variables for the calculation of 

instantaneous fuel consumption, but some required additional processing. Vehicle speed was 

estimated based on the measured distance throughout the test. An on-board GPS provided second-

by-second altitude in metres. A cubic smoothing spline was fitted using the default parameters of 

the smooth.spline function of the R stats package  (R Core Team, 2019) to remove noise from the 

GPS altitude signal, and was divided by the second-to-second difference in distance to derive the 

road gradient. Acceleration was taken to be the second-by-second difference in the speed of the 

vehicle. Ratios of pollutants to  CO 2  required for Equation 6 were calculated using the 

instantaneous measured concentrations of each in %/ppm. 

The PEMS data set provided measurements of carbon monoxide,  CO 2 , water vapour, and  

NO x , as well as the individual components nitric oxide and dioxide) but did not provide 

measurements for total hydrocarbons. This means that the HC: CO 2  ratio in Equation 6 is omitted 

from the final calculations. This omission is likely to have a negligible effect on calculated emissions 

for diesel vehicles due to their low emissions of hydrocarbons  (Reşitoʇlu et al., 2015), and studies 

have shown that even the newest petrol vehicles emit little HC relative to other carbon-containing 

pollutants  (Wang et al., 2014). 

The only variables that could not be estimated from data within the PEMS data sets were 

the masses of the vehicles, their vehicle segments and the road load and aerodynamic drag 

coefficients. Masses and vehicle segments were found using online research tools intended for car 

buyers, such as the Parker’s Car Guides, with each mass having 150 kg added to approximate the 

added weight of the driver and PEMS instrumentation. The coefficients, alongside the M and C 

parameters, were taken from the data outlined in Table 2 on a per-segment basis. 

Two sets of emission factors were then calculated. First, Equations 3-8 were applied to the 

PEMS data set to generate emission factors through modelling fuel consumption. Second, Equations 
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9 & 10 were applied to generate emission factors including the fuel consumption data contained 

within the PEMS data set. These two sets of emission factors facilitate comparisons and therefore 

validations of the fuel consumption model. To do so, GAMs were fit to create smooth trends in  CO 2  

emission factors according to both the PEMS and modelled fuel consumption values through both 

speed and VSP values. Owing to the additional asymptotic effect of low speed values on distance-

based emission factors (i.e. as speed tends towards 0, fuel consumption per unit distance and 

therefore emissions per unit distance tend towards infinity) very low speeds are filtered out for the  

g km 1  figure. In practice this meant that these models used data which corresponded to VSP values 

of 0 to 30  kW t 1  for both GAMs, speeds of 0 to 111  km h 1  for the  g s 1  GAM and speeds of 5 to 

111  km h 1  for the  g km 1  GAM. 

Equation 11 was also applied to each vehicle in the PEMS data set for comparisons with 

distance-based emission factors calculated from the remote sensing data set. These  g km 1  factors 

were calculated for the journey as a whole as well as the individual urban, rural and motorway 

components. 

 

2.5.  Remote Sensing Data 
  

To demonstrate an application of the duration and distance-based emission factor 

generation method outlined in Equations 3-8, remote sensing data were used. The data was 

acquired using the Fuel Efficiency Automobile Test (FEAT) instrument, the remote sensing (RS) 

device developed by the University of Denver. Its principles of operation have been described in 

detail elsewhere  (Bishop and Stedman, 1996;  Burgard et al., 2006), but a brief overview is provided 

here. 

The FEAT instrument consists of a UV/IR light source and detector for the measurement of 

exhaust gases, a set of laser-based speed bars for the measurement of speed and acceleration, a 

camera for photographing number plates, and a control computer. On the kerbside is positioned the 

UV/IR detector and the detecting speed bar, with the light source and emitting speed bar positioned 

directly opposite across a single lane carriageway. Pollutants in the exhaust plumes of passing 

vehicles interact with the collinear beam of non-dispersive IR and dispersive UV light produced by 

the source, permitting the measurement of CO,  CO 2 , hydrocarbons (HC), SO 2 , NH 3 , NO, NO 2  and 

a background reference. Based on the blocking and unblocking of the two parallel lasers, the speed 

bars allow for the speed and acceleration of the vehicle to be calculated. Number plate photographs 

are cross referenced with vehicle databases to obtain further vehicle technical information, in this 

case obtained from a commercial supplier (CDL Vehicle Information Services Limited). 

The remote sensing data set combines data from measurement campaigns in two UK cities, 

York and London, conducted in 2017 and early 2018, with earlier measurements made in 2012/2013  

(Carslaw and Rhys-Tyler, 2013;  Carslaw et al., 2018). The data set consists of 37,421 measurements 

of Euro 5 and 6 light duty vehicles. The number of relevant measurements contained within the 

remote sensing data set are summarised in Table 3 alongside some statistical information pertaining 

to VSP, speed and road gradients. 
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 Vehicle   Fuel Type   Euro Class   n  

Passenger car   Diesel   5   12808  

    6   3805  

  Petrol   5   7488  

    6   3244  

Van   Diesel   5   8652  

    6   1306  

Statistic   Unit     Value  

Mean VSP    kW t 1      4.7  

Mean speed    km h 1      22.2  

Speed range    km h 1      0 – 110.1  

Accel. range   m s 2      -5.5 – 6.3  

Gradient range   %     -0.9 – 3.2  

 

  

Table  3: The numbers of measurements (n) in the remote sensing data set by vehicle type, fuel type 

and Euro classification, alongside some measurement statistics. The data set contains measurements 

of vehicles with different Euro classifications, different vehicle types (e.g. HDVs and hybrid vehicles), 

which are not used in this study so were not included when generating these statistics. 

   

Equations 3-8 were applied to the remote sensing data set to generate emission factors. As 

the model is designed to be used with remote sensing data, its application is straightforward as most 

of the variables are already present in the data set. The mass of vehicles measured using remote 

sensing is also unknown but is estimated by adding 150 kg to the unladen weight of the vehicle, 

which is provided in the vehicle technical data. This uncertainty is explored further in Section 3.2. 

One omission in the remote sensing data used is a lack of market segment information, 

which was overcome with simple regression tree modelling based on the manually assigned market 

segments of the vehicles in the PEMS data set. Figure 2 shows the distributions of the vehicle frontal 

surface area (approximated simply through multiplying vehicle height times width) and mass for 

each vehicle segment in the UK Department for Transport PEMS data set. While vehicle dimensions 

are commonly available in remote sensing data sets, in this case the same online research tools used 

to find the vehicle segments and masses were used to determine width and height. Also shown is a 

simple decision tree for the segmentation of vehicles generated through the rpart R package, which 

utilises the Classification and Regression Trees (CART) algorithm to generate trees  (Therneau and 

Atkinson, 2019). 
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Figure  2: Box plots showing the range of surface areas and masses for each vehicle segment present 

in the UK Department for Transport PEMS data set, with a simple decision tree which could be used 

for the segmentation of vehicles based on kerb weights (mass, in tonnes), frontal surface areas 

(area, in m 2 ) and UNECE type approval categories (type, for which passenger cars belong to the M1 

classification and vans N1). Note that there are no E- or F-Segment vehicles in the PEMS data set, 

reflective of their niche status in the UK fleet, so these segments are not featured. 

   

The decision tree presented in Figure 2 is based on a relatively small set of vehicles, albeit 

vehicles chosen for their high market share, so may be further refined by the addition of more 

vehicle data. However, it does demonstrate that partitioning vehicles into market segments is viable 

with a relatively simplistic method and, as discussed previously, the availability of aerodynamic drag 

coefficients for individual vehicles would largely avoid the need to consider vehicle segments 

anyway. 

One of the benefits of using vehicle emissions remote sensing data for estimating aggregate 

(e.g. Euro class, fuel type, vehicle model) emissions is that an uncertainty can be calculated. When 

aggregating the  g kg 1  emissions derived directly from individual vehicle emission measurements, 

the 95% confidence interval in the mean can be calculated. To account for the non-normal nature of 

vehicle emissions distributions, the 95% confidence interval is robustly estimated using bootstrap re-

sampling approaches using the openair R package  (Carslaw and Ropkins, 2012). The calculated 

uncertainties encompass many sources of variation including the uncertainty of the measurement 

itself but also issues related to the sampling conditions, such as sample size, ambient conditions and 

variation in vehicle dynamics remain. 

The estimated uncertainties also provide a guide to whether two populations are statistically 

different from one another. For example, when considering the differences between individual 

vehicle manufacturer or vehicle models, the uncertainty helps to determine whether there is 

evidence or not for clear differences in the emission performance of vehicles. Such information is 

difficult to determine using PEMS and uncertainty information is rarely provided. 

Uncertainty estimates can also be derived through GAM models relating the VSP to the 

emissions of  NO x . In this case, the estimated uncertainty in the GAM itself can be used to express 

an emissions uncertainty when applied to drive cycles over which predictions are made. The benefit 

of this approach is that where the original data have poor coverage e.g. owing to a lack of 

measurements over high VSP conditions, the corresponding uncertainty estimated as part of the 

GAM development will also be higher. Consequently, the uncertainty in the prediction of emissions 

over different drive cycles will reflect the coverage of the original measurement data. 

While our analysis does not explicitly include hybrid vehicles, the remote sensing 

measurements do provide insight into their operation. A vehicle plume is only considered valid if 

there is a measurement of  CO 2 . The absence of valid  CO 2  plumes provides some indication of 

whether a hybrid vehicle was using an internal combustion engine or not. The data suggest that for 

all hybrid passenger cars, 27% of the measurements do not have a valid  CO 2  plume, compared with 

only 2% of conventional vehicle measurements of  CO 2 . The data suggests that hybrid vehicles 
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operate in battery mode approximately 25% of the time based on the remote sensing 

measurements. In principle it would be possible therefore to apply the methods developed in this 

study to a proportion of hybrid vehicle measurements only where there is a valid plume 

measurement and assume zero emission otherwise. 

 

3.  Results 
  

 

3.1.  Validation with a PEMS Data Set 
  

Vehicle emission factors are typically not expressed at an individual vehicle model level but 

are aggregated in some way. For example, COPERT’s emission factors separate passenger cars by 

Euro standard, fuel type and broad engine size. For simplicity, the vehicles studied were aggregated 

into three categories: Euro 5 diesel, Euro 6 diesel and Euro 6 petrol (there being no Euro 5 petrol 

vehicles in the PEMS data set). GAMs of the two sets of emission factors calculated using the PEMS 

data set are overlaid in Figure 3, with the lines labelled “PEMS” showing the factors calculated using 

Equations 9 & 10 and “Modelled” showing the factors calculated using modelled fuel consumption 

detailed in Equations 3-8. 

 

 

 

Figure  3: Generalised additive models (GAM) of  CO 2  emissions (g s 1  and  g km 1 ) taken from the 

PEMS data set as functions of both power demand and speed. “PEMS” refers to emission factors 

calculated using Equations 9 & 10 and “Modelled” the factors calculated using modelled fuel 

consumption detailed in Equations 3-8. 

   

 CO 2  emissions in  g km 1  are shown as a speed-emission curve. In general, the emission 

factors generated from the modelled fuel consumption data correspond well with those generated 

from the PEMS fuel consumption, particularly in the case of the Euro 6 diesel vehicles. When using 

both curves to predict over a sequence of speeds from 5 to 110  km h 1 , the RMSE values between 

the two sets of predicted values was 28.2 (Euro 5 Diesel), 11.6 (Euro 6 Diesel) and 50.4 (Euro 6 

Petrol). The modelled values in the Euro 5 diesel and Euro 6 petrol vehicles show some 

underestimation at lower speeds, though the gap rapidly shrinks and is closed by around 15  km h 1  

in both cases; indeed the RMSE values drop to 18.5 and 14.3 respectively when only 15 to 110  km h
1  values are predicted over. There is slight underestimation at higher speeds seen in the Euro 5 

diesel also. 

 CO 2  emissions in  g s 1  are shown as a linear power-emission relationship, which 

demonstrates the overall concurrence between modelled and PEMS fuel consumption. A shared 

characteristic in all three of these curves is some deviation between the methods at higher engine 
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powers, around 40 kW. There are fewer data at higher engine powers which may explain this 

observation. The curves were used to predict a sequence of engine powers from 1 to 70 kW (diesel 

vehicles) and from 1 to 50 kW (petrol), giving RMSE values of 0.293 (Euro 5 Diesel), 0.579 (Euro 6 

Diesel) and 0.514 (Euro 6 Petrol). 

 

3.2.  Model Sensitivity 
  

In practice, the application of the methods outlined in Sections 2.1 & 2.2 depend on several 

assumptions concerning the vehicles measured using remote sensing. There are variables needed by 

the model for which direct measurements are not available. The mass of an unladen vehicle is 

obtainable from vehicle databases, but the true laden mass of a vehicle is unknown and will depend 

on factors such as number of passengers and cargo. The auxiliary power component is entirely 

estimated. While vehicle and acceleration can be measured accurately with speed bars, there will be 

some uncertainty over the location that is best suited to make the measurements  (Jimenez-Palacios, 

1998;  Rushton et al., 2018). 

To examine the sensitivity in emission factors related to the uncertainty in individual model 

parameters, a single vehicle was taken from the UK Department for Transport PEMS data set. A 

single vehicle was judged to be sufficient for this analysis as it is expected that the sensitivity of the 

model will be roughly consistent regardless of the vehicle to which it is being applied. The chosen 

vehicle was a D-Segment Euro 6 diesel passenger car, chosen for having a very good agreement 

between measured and modelled journey average  CO 2   g km 1  values (calculated using Equation 

11). The model outlined in Equations 3-7 was applied to this vehicle repeatedly to produce 1 Hz  CO

2   g s 1  emission factors, with variations in the following parameters:  C d A,  R 0  / R 1 , auxiliary 

power, acceleration, speed, road gradient and mass. The impact on journey average  CO 2   g km 1  

values for the vehicle is visualised in Figure 4. 

 

 

 

Figure  4: The percentage uncertainty in the D-Segment Euro 6 diesel passenger car  CO 2  g km 1  

induced by changes in model parameters.  C d A,  R 0  and  R 1  were changed by   10%, acceleration 

by   5%, gradient by   20% and speed by   2  km h 1 . The range in mass is the kerb weight 

(lower) to the kerb weight plus 400 kg (higher). The range in P aux  is 250 W (lower) to 3 kW (higher). 

Percentage changes are relative to the base case, defined as the  g km 1  factor determined using 

correct generic parameters for a D-segment diesel vehicle, unaltered speed, acceleration and 

gradient, kerb weight plus 150 kg, and a P aux  of 2.5 kW. 

   

Auxiliary power has been shown to vary considerably in on-road driving  (Carlson et al., 

2016). The range of auxiliary powers investigated here (0.25 to 3 kW) induces a large change in 

estimated emissions of  CO 2 , particularly in urban driving. This behaviour is expected for urban 
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driving conditions where there is a greater proportion of driving in lower power conditions, meaning 

that the auxiliary power accounts for a greater proportion of the total power consumption of the 

engine. 

Uncertainty in vehicle mass also has a greater effect under urban driving conditions, which 

can be understood by the greater amount of acceleration and deceleration in urban driving. The 

opposite trend is seen in the air resistance parameter (C d ), with very little change observed in urban 

driving conditions. This behaviour is expected owing to the lower vehicle speeds under urban driving 

conditions, with P air  being proportional to the cube of vehicle speed. A similar but less extreme 

trend is seen for  R 0  / R 1 . 

A different trend is seen when varying the road gradient — little change is seen in both 

urban and motorway conditions, but a large effect is seen in hillier rural driving. The overall 

influence of gradient uncertainty in this analysis is relatively small compared to other parameters, 

but it would likely be greater and therefore more important for vehicle emission measurements 

taken in hillier regions. 

Focusing on urban-type driving conditions — where vehicle emissions remote sensing 

measurements are most commonly made — the variables to which estimated  CO 2  emissions are 

most sensitive are seen to be vehicle mass, speed, acceleration, and auxiliary power demand. 

An alternative way to consider uncertainty rather than the uncertainty of individual 

parameters is the misattribution of vehicle segments. Assuming inaccessibility of market segment 

information and the use of a decision tree similar to that which is described in Section 2.5, there will 

be unavoidable misattribution for vehicles that are uncharacteristically heavy or light for their 

market segment, or have an atypical frontal area. On an aggregate level this is not be a cause for 

concern; conversely this may be of benefit — an atypically shaped vehicle’s ‘true’  C d A,  R 0  and  R 1  

values may be closer to those given for the segment to which it has been incorrectly assigned. 

Table 4 summarises the effect of both misattributing the segments and applying the 

‘average car’ parameters to the D-Segment vehicle. The greatest difference is seen when attributing 

the vehicle an E, F or J Segment, corresponding to an increase of 22  CO 2   g km 1  relative to a 

correct D-Segment attribution. 

  

Attributed 

Segment  
Journey Average  CO 2   g 

km 1    

Absolute Difference   Percentage Change  

A/B   123   -12   -8.9%  

C   136   +1   +0.7%  

D   135   -   - 

E/F/J   157   +22   +16.3% 

Average Car   136   +1   +0.7%  
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Table  4: Journey average  CO 2   g km 1  values for a chosen Euro 6 diesel D-Segment passenger car 

depending on Euro Segment attribution, including deviation from the correct D-Segment attribution.  

   

 

3.3.  Method Application to Remote Sensing Data 
  

These methods can be used to estimate emission factors in  g s 1  based on remote sensing 

data, which can be then directly compared with those of other measurement techniques, such as 

PEMS. Figure 5 illustrates that similar relationships between  NO x   g s 1  emission factors and VSP 

are seen in both remote sensing and PEMS, for example both showing increasing  NO x  emissions 

with engine load. 

 

 

 

Figure  5: Trends in  NO x   g s 1  emission factors as a function of vehicle specific power taken from 

the whole PEMS and remote sensing (RS) data sets. The  g s 1  factors from PEMS are calculated 

from 1 Hz measurements, and those from RS are taken from individual snapshot measurements. A 

normalised VSP density of a VSP-based Urban-Rural RDE drive cycle is shown in grey, used later in 

Figure 8. 

   

Figure 6 shows truncated journey average  g km 1  emission factors from remote sensing 

determined using the GAM fitting methods outlined in Section 2.3, and truncated journey average  g 

km 1  emission factors determined using PEMS. To ensure a fair comparison, only vehicles present in 

both the PEMS and remote sensing data sets were used in GAM fitting (43 vehicles — 14 Euro 5 

diesel cars, 11 Euro 6 diesel cars, 12 Euro 6 petrol cars, and 4 Euro 5 diesel vans). This corresponds to 

7939 remote sensing measurements. For this purpose, a ‘vehicle’ is defined by its make, engine size, 

fuel type, Euro classification and type approval category. Note that, for fairer comparison, the PEMS 

data set was constrained to the same VSP range over which the GAMs were fitted. 

 

 

 

Figure  6: Truncated journey average  NO x   g km 1  values for different categories of vehicle. The 

remote sensing (RS) factors are taken from the predictions of GAMs relating  NO x   g s 1  to VSP over 

a VSP-based drive cycle taken from a real driving emissions (RDE) test. The PEMS factors are the 

mean truncated journey average emission factors from all vehicles in each of the given categories. 

Error bars show the 95% confidence interval. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

   

Overall, there is good agreement between the emission factors from PEMS and remote 

sensing for the passenger cars. Note also, that the error bars showing 95% confidence intervals 

overlap for all columns in Figure6. There is a much larger disparity seen in the emissions of the vans, 

however, particularly in urban driving. This disparity may be a consequence of having relatively few 

vans in the PEMS data set, as well as vans likely being more laden in real-world use as opposed to 

the PEMS RDE test. There are instances in which the relative order of the driving conditions differs 

also — in Euro 6 diesel cars, for example, remote sensing suggests that motorway driving has the 

lowest emission factor whereas PEMS suggests that it is rural driving. 

Journey average  NO x   g km 1  values can also be calculated for individual vehicle models, 

shown in Figure 7. In this instance only urban and rural driving conditions were considered i.e. 

similar conditions to those experienced for the remote sensing measurements. However, the 

Emission Detection And Reporting system (Edar)  (HEAT LLC, 2017) shows promise for use in 

motorway conditions  (Ropkins et al., 2017). Of the diesel vehicles, the root mean square error 

(RMSE) between the PEMS and remote sensing (RS) emission factors varies from 0.230 (Euro 6 cars) 

to 0.616 (Euro 5 vans). A low RMSE is not necessarily expected; each RS emission factor reflects over 

a hundred individual vehicles whereas the PEMS data represents single vehicle measurements over a 

single drive cycle. Other work has shown significant variance in PEMS emission measurements for 

single vehicles tested multiple times, partly due to variance in testing conditions and procedures  

(Baldino et al., 2017). 

 

 

 

Figure  7: A comparison between truncated journey average  NO x   g km 1  values derived from 

remote sensing (RS) and PEMS data. Each point represents an individual vehicle, defined as being a 

unique manufacturer-engine size combination with at least 100 measurements in the remote 

sensing data set. The solid grey line shows the 1:1 relationship. The remote sensing (RS) factors are 

taken from the predictions of GAMs relating  NO x   g s 1  to VSP over a VSP-based drive cycle taken 

from an Urban-Rural real driving emissions (RDE) test. The PEMS factors are the truncated journey 

average emission factors for the corresponding vehicle. The error bars show the 95% confidence 

interval of the mean for the remote sensing emission predictions. 

   

A strength of remote sensing is its ability to measure large numbers of vehicles non-

obtrusively in a short space of time. In practice this means that even in a relatively modest remote 

sensing data set there is likely a sufficient range of measurements over a large enough range of VSPs 

for GAMs to be fitted on an individual manufacturer or vehicle basis. Figure 8 shows urban-rural 

journey average  g km 1  values from the remote sensing data set for individual vehicles, with a 

vehicle defined in the same way as in Figures 6 and 7. Only vehicles with at least 100 measurements 

were used to ensure sufficient data to fit a GAM relating the  NO x  emission and VSP. 
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Figure  8:  NO x   g km 1  values generated from the predictions of remote sensing (RS) fitted GAMs 

over a truncated urban-rural on-road drive cycle on a per-vehicle basis. Vehicles have been 

anonymised, but each is taken to be a unique manufacturer-engine size combination with at least 

100 measurements. Error bars show the 95% confidence interval. Blue dashed lines show the mean  

NO x   g km 1  values in each vehicle category. 

   

Figure 8 demonstrates the wide variation in individual vehicle emissions even within a single 

Euro class. In the Euro 5 diesel cars category, for example, the cleanest vehicle is associated with a 

0.55 g km 1  emission, 0.79 g km 1  lower than the highest at 1.34  g km 1 . Similarly for the Diesel 

Euro 6 Cars category, the cleanest vehicle is at 0.17  g km 1  and the highest at 0.80  g km 1 , a range 

of 0.63  g km 1 . The vans show similar variation, both for Euro 5 (0.69 to 1.93  g km 1 ) and Euro 6 

(0.23 to 1.32  g km 1 ). The variation shown in  NO x  emissions provides an indication of the extent 

to which emissions could be reduced if ‘best in class’ emissions performance was achieved. 

Furthermore, the differences observed between vehicle manufacturer and model provides 

information that is useful for understanding the expected variation in  NO x  emissions resulting from 

different vehicle fleet compositions. 

 

4.  Conclusions 
  

Remote sensing data offers large data sets of road vehicle emission measurements with 

good fleet coverage and little selection bias. However, without a measurement of instantaneous fuel 

consumption it is difficult to transform fuel-based to distance-based emission factors. As the vehicle 

type approval process and emission inventory development both rely on distance-based emission 

factors, this difficulty presents a limitation for the use of remote sensing data. Furthermore, 

comparisons with other commonly used road transport emission measurement techniques (chassis 

dynamometers, PEMS, etc.) are more limited without expressing emissions in this way. 

A method to model fuel consumption from kerbside measurements and vehicle technical 

data was developed, and is sufficiently general to be applied to any emission species measured using 

remote sensing and indeed any point-sampling measurement method that provides a pollutant to  

CO 2  ratio. In the current work, a relatively modest data set of remote sensing data was used to 

develop and demonstrate the method. However, there has been a considerable increase in the 

number of vehicle emission remote sensing data campaigns in recent years  (The Real Urban 

Emissions Initiative, 2014;  Bernard et al., 2019;  Ropkins et al., 2017). Large databases such as these 

would enable the methods outlined in this study to be used to calculate  g km 1  emissions for a 

large range of vehicle models and driving conditions. 

Arguably the main benefit of the approach is that it can in principle be applied to any vehicle 

drive cycle. This development is of importance for the analysis of vehicle emission remote sensing 

data where measurements tend to be made of vehicles mostly (but not always) under load. The 

potential to re-calculate emissions for more representative full drive cycles therefore addresses the 

potential issue of remote sensing site selection bias, where measured emissions would on average 
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be higher than a typical full drive cycle. Indeed, with the increasing amounts of drive cycle data 

available, there is the potential to apply the method to large databases of actual vehicle activity over 

a large range of conditions. 

A common shortcoming of current remote sensing data sets is a lack of measurements 

under high speed and VSP conditions, making its application to motorway portions of vehicle drive 

cycles inappropriate. As remote sensing technology advances, however, this gap in measurements 

should decrease and allow for emissions to be modelled over full drive cycles. 
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HIGHLIGHTS 

 A method for deriving distance-based (g/km) emission factors from vehicle emissions 

remote sensing has been developed. 

 The method has been comprehensively evaluated against independent PEMS data. 

 Applications to several remote sensing campaigns are demonstrated. 

 While demonstrated for CO2 and NOx, the method is applicable to any pollutant species  
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