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Abstract. The Zero Emissions Commitment (ZEC) is the
change in global mean temperature expected to occur fol-
lowing the cessation of net CO2 emissions and as such is a
critical parameter for calculating the remaining carbon bud-
get. The Zero Emissions Commitment Model Intercompari-
son Project (ZECMIP) was established to gain a better under-
standing of the potential magnitude and sign of ZEC, in ad-
dition to the processes that underlie this metric. A total of 18
Earth system models of both full and intermediate complex-
ity participated in ZECMIP. All models conducted an exper-
iment where atmospheric CO2 concentration increases expo-
nentially until 1000 PgC has been emitted. Thereafter emis-
sions are set to zero and models are configured to allow free
evolution of atmospheric CO2 concentration. Many models
conducted additional second-priority simulations with differ-
ent cumulative emission totals and an alternative idealized
emissions pathway with a gradual transition to zero emis-
sions. The inter-model range of ZEC 50 years after emissions
cease for the 1000 PgC experiment is −0.36 to 0.29 ◦C, with
a model ensemble mean of −0.07 ◦C, median of −0.05 ◦C,
and standard deviation of 0.19 ◦C. Models exhibit a wide va-
riety of behaviours after emissions cease, with some models
continuing to warm for decades to millennia and others cool-
ing substantially. Analysis shows that both the carbon uptake
by the ocean and the terrestrial biosphere are important for
counteracting the warming effect from the reduction in ocean
heat uptake in the decades after emissions cease. This warm-
ing effect is difficult to constrain due to high uncertainty in
the efficacy of ocean heat uptake. Overall, the most likely
value of ZEC on multi-decadal timescales is close to zero,
consistent with previous model experiments and simple the-
ory.

1 Introduction

The long-term temperature goal of the Paris Agreement is
to hold global warming well below 2 ◦C and to endeavour
to keep warming to no more than 1.5 ◦C (United Nations,
2015). An important metric to assess the feasibility of this
target is the “remaining carbon budget” (e.g. Rogelj et al.,
2018), which represents the total quantity of CO2 that can
still be emitted without causing a climate warming that ex-
ceeds the temperature limits of the Paris Agreement (e.g. Ro-
gelj et al., 2019a). The remaining carbon budget can be esti-
mated from five factors: (1) historical human-induced warm-
ing to date, (2) the Transient Climate Response to cumula-
tive CO2 emissions (TCRE), (3) the estimated contribution
of non-CO2 climate forcings to future warming, (4) a correc-
tion for the feedback processes presently unrepresented by
Earth System Models (ESMs), and (5) the unrealized warm-
ing from past CO2 emissions, called the Zero Emissions
Commitment (ZEC) (e.g. Rogelj et al., 2019a). Of these five
factors, ZEC is the only quantity whose uncertainty was not

formally assessed in the recent Intergovernmental Panel on
Climate Change (IPCC) Special Report on 1.5 ◦C. Here we
present the results of a multi-model analysis that uses the
output of dedicated model experiments that were submitted
to the Zero Emissions Commitment Model Intercomparison
Project (ZECMIP). This intercomparison project explicitly
aims to quantify the ZEC and identify the processes that af-
fect its magnitude and sign across models (Jones et al., 2019).

ZEC is the change in global temperature that is projected
to occur following a complete cessation of net CO2 emis-
sions (Matthews and Weaver, 2010). After emissions of CO2
cease, carbon is expected to be redistributed between the at-
mosphere, ocean, and land carbon pools, such that the atmo-
spheric CO2 concentration continues to evolve over centuries
to millennia (e.g. Maier-Reimer and Hasselmann, 1987; Cao
et al., 2009; Siegenthaler and Joos, 1992; Sarmiento et al.,
1992; Enting et al., 1994; Archer and Brovkin, 2008; Archer
et al., 2009; Eby et al., 2009; Joos et al., 2013). In parallel,
ocean heat uptake is expected to decline as the ocean comes
into thermal equilibrium with the elevated radiative forcing
(Matthews and Caldeira, 2008). In previous simulations of
ZEC, the carbon cycle has acted to remove carbon from the
atmosphere and counteract the warming effect from the re-
duction in ocean heat uptake, leading to values of ZEC that
are close to zero (e.g. Plattner et al., 2008; Matthews and
Caldeira, 2008; Solomon et al., 2009; Frölicher and Joos,
2010; Gillett et al., 2011). In the recent assessment of ZEC in
the IPCC Special Report on Global Warming of 1.5 ◦C, the
combined available evidence indicated that past CO2 emis-
sions do not commit to substantial further global warming
(Allen et al., 2018). A ZEC of zero was therefore applied
for the computation of the remaining carbon budget for the
IPCC 1.5 ◦C Special Report (Rogelj et al., 2018). However,
the evidence available at that time consisted of simulations
from only a relatively small number of models using a vari-
ety of experimental designs. Furthermore, some recent sim-
ulations have shown a more complex evolution of tempera-
ture following cessation of emissions (e.g. Frölicher et al.,
2014; Frölicher and Paynter, 2015). Thus, a need to assess
ZEC across a wider spectrum of climate models using a uni-
fied experimental protocol has been articulated (Jones et al.,
2019).

ZEC was one of the metrics that emerged from the devel-
opment of ESMs at the turn of the 21st century (Hare and
Meinshausen, 2006). The concept was first conceptualized
by Hare and Meinshausen (2006) who used the Model for
the Assessment of Greenhouse gas Induced Climate Change
(MAGICC), a climate model emulator, to explore temper-
ature evolution following a complete cessation of all an-
thropogenic emissions. Matthews and Caldeira (2008) intro-
duced the CO2-only concept of ZEC which is used here.
Their experiments used the intermediate-complexity Univer-
sity of Victoria Earth System Climate Model (UVic ESCM)
to show that stabilizing global temperature would require
near zero CO2 emissions. Plattner et al. (2008) used a wide
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range of different Earth System Models of Intermediate
Complexity (EMICs), following a similar experiment, and
found that ZEC is close to (or less than) zero. These ini-
tial results with intermediate-complexity models were sub-
sequently supported by emission-driven ESM simulations
(Lowe et al., 2009; Frölicher and Joos, 2010; Gillett et al.,
2011). Zickfeld et al. (2013) quantified the ZEC under dif-
ferent scenarios and for a range of EMICs, but the resulting
range is biased towards negative values, as slightly negative,
instead of zero emissions, were prescribed in some models.
Some recent ESM simulations indicate that climate warm-
ing may continue after CO2 emissions cease. For example,
Frölicher and Paynter (2015) performed a simulation with the
full ESM GFDL-ESM2M, where emissions cease after 2 ◦C
of warming is reached. The simulations show some decades
of cooling followed by a multi-centennial period of renewed
warming resulting in an additional 0.5 ◦C of warming 1000
years after emissions cease.

Two studies have examined the underlying physical and
biogeochemical factors that generate ZEC in detail. Ehlert
and Zickfeld (2017) examine ZEC with a set of idealized ex-
periments conducted with the UVic ESCM. The study par-
titioned ZEC into a thermal equilibrium component repre-
sented by the ratio of global mean surface air temperature
anomaly to unrealized warming, and a biogeochemical equi-
librium component represented by the ratio of airborne frac-
tion of carbon to equilibrium airborne fraction of carbon. The
study found that the thermal equilibrium component of ZEC
is much greater than the biogeochemical equilibrium com-
ponent, implying a positive warming commitment. Williams
et al. (2017) examine ZEC using the theoretical framework
developed by Goodwin et al. (2007). The framework allows
for the calculation of equilibrium atmospheric CO2 concen-
tration if the cumulative effect of the land carbon sink is
known. The framework was applied to the same simula-
tion that was conducted for Frölicher and Paynter (2015).
The analysis showed that ZEC emerges from two compet-
ing contributions: (1) a decline in the fraction of heat taken
up by the ocean interior leading to radiative forcing driving
more surface warming and (2) uptake of carbon by the terres-
trial biosphere and ocean system removing carbon from the
atmosphere, causing a cooling effect. Both studies focused
on the long-term value of ZEC after multiple centuries, and
thus neither study examined what drives ZEC in the policy-
relevant time frame of a few decades following the cessation
of emissions.

While we focus here on the ZEC from CO2 emissions only,
the ZEC concept has also been applied to the climate com-
mitment resulting from other greenhouse gas emissions and
aerosols (Frölicher and Joos, 2010; Matthews and Zickfeld,
2012; Mauritsen and Pincus, 2017; Allen et al., 2018; Smith
et al., 2019), wherein the ZEC is characterized by an initial
warming due to the removal of aerosol forcing, followed by
a more gradual cooling from the decline in non-CO2 green-
house gas forcing. The ZEC from all emissions over mul-

tiple centuries is generally consistent with ZEC from only
CO2 emissions for moderate future scenarios (Matthews and
Zickfeld, 2012).

In addition to the ZEC, other definitions of warming com-
mitment have also been used in the literature. The “con-
stant composition commitment” is defined as the unreal-
ized warming that results from constant atmospheric green-
house gas and aerosol concentrations (Wigley, 2005; Meehl
et al., 2005; Hare and Meinshausen, 2006). This variety
of warming commitment was highlighted prominently in
the 2007 IPCC report (Meehl et al., 2007), leading to a
widespread misunderstanding that this additional “warm-
ing in the pipeline” was the result of past greenhouse
gas emissions. However, the constant composition commit-
ment instead results primarily from the future CO2 and
other emissions that are required to maintain stable atmo-
spheric concentrations over time (Matthews and Weaver,
2010; Matthews and Solomon, 2013). Another related con-
cept is the future “emissions commitment” which quantifies
the committed future CO2 (and other) emissions that will oc-
cur as a result of the continued operation of existing fossil
fuel infrastructure (Davis et al., 2010; Davis and Socolow,
2014; Smith et al., 2019; Tong et al., 2019). This concept is
also distinct from the ZEC, as it quantifies an aspect of so-
cioeconomic inertia (rather than climate inertia), which has
been argued to be an important driver of potentially unavoid-
able future climate warming (Matthews and Solomon, 2013;
Matthews, 2014).

When considering climate targets in the range of 1.5 to
2.0 ◦C and accounting for the approximately 1 ◦C of histori-
cal warming to date (Allen et al., 2018; Rogelj et al., 2018), a
ZEC on the order of ±0.1 ◦C can make a large difference in
the remaining carbon budget. Hence, there is a need for a pre-
cise quantification and in-depth understanding of this value.
This can be achieved via a systematic assessment of ZEC
across the range of available models and a dedicated analysis
of the factors that control the value of ZEC in these simula-
tions. Thus, the goals of this study based on the simulations
of the Zero Emissions Commitment Model Intercomparison
Project (ZECMIP) are (1) to estimate the value of ZEC in the
decades following cessation of emissions in order to facili-
tate an estimate of the remaining carbon budget, (2) to test
if ZEC is sensitive to the pathway of emissions, (3) to estab-
lish whether ZEC is dependent on the cumulative total CO2
that are emitted before emissions cease, and (4) to identify
which physical and biogeochemical factors control the sign
and magnitude of ZEC in models.

The most policy-relevant question related to ZEC is
whether global temperature will continue to increase follow-
ing complete cessation of greenhouse gas and aerosol emis-
sions. The present iteration of ZECMIP aims to answer part
of this question by examining the temperature response in
idealized CO2-only climate model experiments. To answer
the question in full, the behaviour of non-CO2 greenhouse
gases, aerosols, and land use change must be accounted for
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in a consistent way. Such efforts will be the focus of future
iterations of ZECMIP.

2 Methods

2.1 Protocol and simulations

Here we summarize the ZECMIP protocol; the full proto-
col for ZECMIP is described in Jones et al. (2019). The
ZECMIP protocol requested modelling groups to conduct
three idealized simulations of two different types each: A
and B. Type A simulations are initialized from one of the
standard climate model benchmark experiments, in which
specified atmospheric CO2 concentration increases at a rate
of 1 % yr−1 from its pre-industrial value of around 285 ppm
until quadrupling, referred to as the 1pctCO2 simulation in
the Climate Model Intercomparison Project (CMIP) frame-
work (Eyring et al., 2016). The three type A simulations are
initialized from the 1pctCO2 simulation when diagnosed cu-
mulative emissions of CO2 reach 750, 1000, and 2000 PgC.
After the desired cumulative emission is reached, the mod-
els are set to freely evolving atmospheric CO2 mode, with
zero further CO2 emissions. Since net anthropogenic emis-
sions are specified to be zero in type A simulations, atmo-
spheric CO2 concentration is expected to decline in these
simulations in response to carbon uptake by the ocean and
land. A consequence of the protocol is that for the type A
simulations each model branches from the 1pctCO2 simula-
tions in a different year, contingent on when a model reaches
the target cumulative emissions, which in turn depends on
each model’s representation of the carbon cycle and feed-
backs. An example of emissions for the type A experiments
is shown in Fig. 1a. The three type B simulations are initial-
ized from pre-industrial conditions and are emissions driven
from the beginning of the simulation. Emissions follow bell-
shaped pathways wherein all emissions occur within a 100-
year window (Fig. 1b). In all experiments, land use change
and non-CO2 forcings are held at their pre-industrial levels.

Due to the late addition of ZECMIP to the CMIP Phase
6 (CMIP6) (Eyring et al., 2016), only the 1000 PgC type A
experiment (esm-1pct-brch-1000PgC) was designated as the
top-priority ZECMIP simulation. The other simulations were
designated as second-priority simulations and were meant to
be conducted if participating modelling groups had the re-
sources and time. Both full ESMs and EMICs were invited
to participate in ZECMIP. ESMs were requested to perform
the top-priority simulation for 100 years after CO2 emissions
cease and more years and more experiments as resources
allowed. EMICs were requested to conduct all experiments
for at least 1000 years of simulations following cessation of
emissions. Table 1 shows the experiments and experimental
codes for ZECMIP.

Table 1. Experiments designed for ZECMIP.

Name Code Cumulative Priority
emissions (PgC)

A1 esm-1pct-brch-1000PgC 1000 1
A2 esm-1pct-brch-750PgC 750 2
A3 esm-1pct-brch-2000PgC 2000 2
B1 esm-bell-1000PgC 1000 2
B2 esm-bell-750PgC 750 2
B3 esm-bell-2000PgC 2000 2

2.2 Model descriptions

A total of 18 models participated in ZECMIP: 9 compre-
hensive ESMs and 9 EMICs. The primary features of each
model are summarized in Tables A1 and A2 in Appendix A.
The ESMs in alphabetical order are the (1) CSIRO Aus-
tralian Community Climate and Earth System Simulator,
ESM version 1.5 – ACCESS-ESM1.5; (2) Canadian Cen-
tre for Climate Modelling and Analysis (CCCma), Canadian
Earth System Model version 5 – CanESM5; (3) Commu-
nity Earth System Model 2 – CESM2; (4) Centre National
de Recherches Météorologiques (CNRM), CERFACS Earth
System Model version 2 – CNRM-ESM2-1; (5) Geophysical
Fluid Dynamics Laboratory (GFDL), Earth System Model
version 2 – GFDL-ESM2M; (6) Japan Agency for Marine-
Earth Science and Technology (JAMSTEC/team MIROC),
Model for interdisciplinary Research on Climate, Earth Sys-
tem version 2, Long-term – MIROC-ES2L; (7) Max Planck
Institute Earth System model, version 1.2, low resolution
– MPI-ESM1.2-LR; (8) Norwegian Earth System Model 2
– NorESM2; and (9) United Kingdom (Met Office Hadley
Centre and NERC), United Kingdom Earth System Model
version 1 – UKESM1-0-LL. The nine EMICs in alphabetical
order are the (1) Bern three-dimensional Earth System Model
– Bern3D-LPX; (2) Climate–Biosphere model, version 2 –
CLIMBER-2; (3) Danish Centre for Earth System Science
Earth System Model – DCESS1.0; (4) A.M. Obukhov Insti-
tute of Atmospheric Physics, Russian Academy of Sciences
– IAPRAS, (5) Loch-Vecode-ECbilt-Clio Model – LOVE-
CLIM 1.2; (6) Massachusetts Institute of Technology Earth
System Model – MESM; (7) Model for Interdisciplinary Re-
search on Climate-lite/Japan Uncertainty Modelling Project
Loosely Coupled Model – MIROC-lite; (8) Planet Simulator
– Grid-Enabled Integrated Earth system model – PLASIM-
GENIE; and (9) University of Victoria Earth System Climate
Model version 2.10 – UVic ESCM 2.10. For brevity, these
models are referred to by their short names for the remainder
of the paper. Table 2 shows the ZECMIP experiments that
each modelling group submitted.

Table 3 shows three benchmark climate metrics for each
model: equilibrium climate sensitivity (ECS), transient cli-
mate response (TCR), and TCRE. ECS is the climate warm-
ing expected if atmospheric CO2 concentration was doubled
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Figure 1. (a) Example of diagnosed emission from the UVic ESCM for the type A experiments. Emissions are diagnosed from the 1pctCO2
experiment, which has prescribed atmospheric CO2 concentrations. The target cumulative emissions total is reached part way through the
final year of emissions, thus the final year has a lower average emission rate than the previous year. (b) Time series of global CO2 emissions
for bell curve pathways B1 to B3. The numbers in the legend indicate the cumulative amount of CO2 emissions for each simulation.

from the pre-industrial value and maintained indefinitely
while the climate system is allowed to come into equilibrium
with the elevated radiative forcing (e.g. Planton, 2013; Char-
ney et al., 1979). There are a variety of methods to compute
ECS from climate model outputs (e.g. Knutti et al., 2017).
Here we use ECS values computed using the method of Gre-
gory et al. (2004), called “effective climate sensitivity”. The
method of Gregory et al. (2004) computes ECS from the
slope of the scatter plot between change in global temper-
ature and planetary heat uptake, with values from the bench-
mark experiment where atmospheric CO2 concentration is
instantaneously quadrupled (4×CO2 experiment). TCR is
the atmospheric surface temperature change (relative to the
pre-industrial temperature) when atmospheric CO2 is dou-
bled in year 70 of the 1pctCO2 experiment, computed using
a 20-year averaging window centred on year 70 of the exper-
iment (e.g. Planton, 2013). TCRE is described in the intro-
duction and is computed from year 70 of the 1 % experiment
(e.g. Planton, 2013).

Bern and UVic submitted three versions of their models
with three different ECSs. For Bern, these were ECSs of 2.0,
3.0, and 5.0 ◦C, and for UVic, these were ECSs of 2.0, 3.8,
and 5.0 ◦C. These ECS values are true equilibrium climate
sensitivities computed by allowing each model to come fully
into equilibrium with the changed radiative forcing. For each
model the central ECS value was used for the main analy-
sis, i.e. 3.0 ◦C for Bern and 3.8 ◦C for UVic. The remaining
experiments were used to explore the relationship between
ECS and ZEC.

2.3 Quantifying ZEC

ZEC is the change in global average surface air tempera-
ture following the cessation of CO2 emissions. Thus, ZEC
must be calculated relative to the global temperature when
emissions cease. Typically such a value would be computed
from a 20-year window centred on the year when emissions

Table 2. Experiments conducted for ZECMIP by model. Full ESMs
are listed on top, followed by EMICs.

Model A1 A2 A3 B1 B2 B3

ACCESS × × × – – –
CanESM5 × – × – – –
CESM2 × – – – – –
CNRM × – – – – –
GFDL × × × × × ×

MIROC-ES2L × × × – – –
MPI-ESM × – – – – –
NorESM2 × – – – – ×

UKESM × × × – – –

Bern × × × × × ×

CLIMBER × – – – – –
DCESS × × × × × ×

IAPRAS × × × × × ×

LOVECLIM × × – × – –
MESM × × × × × ×

MIROC-lite × × × × × ×

P. GENIE × × × × × ×

UVic × × × × × ×

cease. However, for the ZECMIP type A experiments such a
calculation underestimates the temperature of cessation, due
to the abrupt change in forcing when emissions suddenly
cease, leading to an overestimation of ZEC values. That is,
a roughly linear increase in temperature pathway abruptly
changes to a close to stable temperature pathway. Therefore,
we define the temperature of cessation to be the global mean
surface air temperature from the benchmark 1pctCO2 exper-
iment averaged over a 20-year window centred on the year
that emissions cease in the respective ZECMIP type A exper-
iment (year the ZECMIP experiment branches from the 1 %
experiment). For the EMICs which lack internal variability
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Table 3. Benchmark climate model characteristics for each model:
Equilibrium Climate Sensitivity (ECS), Transient Climate Re-
sponse (TCR), and Transient Climate Response to Cumulative CO2
Emissions (TCRE). UKESM reported a maximum to minimum
range for TCR and TCRE based on four ensemble members.

Model ECS (◦C) TCR (◦C) TCRE (K EgC−1)

ACCESS 3.9 1.9 1.9
CanESM5 5.7 2.8 2.3
CESM2 5.1 2.0 2.0
CNRM 4.8 1.9 1.9
GFDL 2.4 1.4 1.2
MIROC-ES2L 2.7 1.5 1.3
MPI-ESM 2.8 1.8 1.6
NorESM2 2.6 1.5 1.5
UKESM 5.4 2.68 to 2.85 2.49 to 2.66

Bern 2.6 1.6 1.5
CLIMBER 2.8 1.8 1.7
DCESS 3.0 2.0 2.0
IAPRAS 2.2 1.5 1.5
LOVECLIM 2.8 1.5 1.4
MESM 2.9 1.8 1.7
MIROC-lite 1.7 1.2 1.1
P. GENIE 3.4 1.7 1.6
UVic 3.5 1.8 1.8

this method provides an unbiased estimate of the tempera-
ture of cessation.

Earlier studies have examined ZEC from decadal
(Matthews and Zickfeld, 2012; Mauritsen and Pincus, 2017;
Williams et al., 2017; Allen et al., 2018; Smith et al., 2019)
to multi-centennial timescales (Frölicher and Paynter, 2015;
Ehlert and Zickfeld, 2017). One of the main motivations of
this present study is to inform the impact of the ZEC on
the remaining carbon budget. This remaining carbon budget
is typically used to assess the consistency of societal emis-
sions pathways with the international temperature target of
the Paris Agreement (UNEP, 2018). In this emission path-
way and policy context, the ZEC within a few decades of
emissions cessation is more pertinent than the evolution of
the Earth system hundreds or thousands of years into the
future. Therefore, we define values of ZECX as a 20-year
average temperature anomaly centred at year X after emis-
sions cease. Thus, 50-year ZEC (ZEC50) is the global mean
temperature relative to the temperature of cessation averaged
from year 40 to year 59 after emissions cease. We similarly
define 25-year ZEC (ZEC25) and 90-year ZEC (ZEC90).

2.4 Analysis framework

A key question of the present study is why some models
have positive ZEC and some models have negative or close
to zero ZEC. From elementary theory we understand that the
sign of ZEC will depend on the pathway of atmospheric CO2
concentration and ocean heat uptake following cessation of

emissions (Wigley and Schlesinger, 1985). Complicating this
dynamic is that atmospheric CO2 change has contributions
both from the net carbon flux from the ocean and the terres-
trial biosphere. Using the forcing response equation (Wigley
and Schlesinger, 1985) and the common logarithmic approx-
imation for the radiative forcing from CO2 (Myhre et al.,
1998), we can partition ZEC into contributions from ocean
heat uptake, ocean carbon uptake, and net carbon flux into
the terrestrial biosphere. The full derivation of the relation-
ship is shown in Appendix B, and the summary equations are
shown below:

λTZEC =−R

∞∫
t=ze

fO

CA
dt −R

∞∫
t=ze

fL

CA
dt − ε(N −Nze), (1)

where λ (W m−2 K−1) is the climate feedback parameter,
TZEC (K) is ZEC, R (W m−2) is the radiative forcing from
an e-fold increase in atmospheric CO2 burden, t is time (a),
ze is the time that emissions cease, fO (PgC a−1) is ocean
carbon uptake, fL (PgC a−1) is carbon uptake by land, CA
is atmospheric CO2 content (PgC), N is planetary heat up-
take (W m−2), Nze is planetary heat uptake at the time emis-
sions cease, and ε is the efficacy of planetary heat uptake.
The equation states that ZEC is proportional to the sum of
three energy balance terms: (1) the change in radiative forc-
ing from carbon taken up by the ocean, (2) the change in
radiative forcing from carbon taken up or given off by land,
and (3) the change in effective ocean heat uptake. The two in-
tegral terms can be evaluated numerically from the ZECMIP
model output and thus can be simplified into two energy forc-
ing terms Focean and Fland:

Focean = R

∞∫
t=ze

fO

CA
dt, (2)

and

Fland = R

∞∫
t=ze

fL

CA
dt, (3)

and thus

λTZEC =−Focean−Fland− ε(N −Nze). (4)

Values for R were computed from the effective radiative
forcing value for the models that simulate internal variability,
with effective radiative forcing provided by each modelling
group. Bern, DCESS, and UVic prescribe exact values for R,
and thus these values were used for calculations with these
models. Effective radiative forcing for a doubling of CO2 is
half the y intercept of a 4×CO2 Gregory plot (Gregory et al.,
2004). R values and the effective climate sensitivities were
used to calculate λ for each model. Efficacy (Winton et al.,
2010) was calculated from the following equation:
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ε =
λT −R ln

(
CA
CAo

)
N

, (5)

where CAo (PgC) is the pre-industrial CO2 burden,and T
(K) is the global mean temperature anomaly relative to pre-
industrial temperature. T ,N , and CA values were taken from
the benchmark 1pctCO2 for each model as an average value
from year 10 to year 140 of that experiment. Computed ε
values are shown in Table 4. Effective climate sensitivity is
calculated here as a time average fit and hence is assumed to
be a constant, while efficacy values are expected to change in
time. In CLIMBER, planetary or ocean heat uptake is not in-
cluded into standard output and hence is not analyzed using
this framework. CESM2 and NorESM2 are also excluded as
the 4×CO2 experiment results for these models are not yet
available.

Efficacy has been shown to arise from spatial patterns in
ocean heat uptake (Winton et al., 2010, 2013; Rose et al.,
2014), with ocean heat uptake in the high latitudes being
more effective at cooling the atmosphere than ocean heat up-
take in low latitudes (Rose et al., 2014). This spatial structure
in the effectiveness of ocean heat uptake in turn is suspected
to originate from shortwave radiation cloud feedbacks (An-
drews et al., 2015). The method we have used to calculate ef-
ficacy folds state-dependent feedbacks and temporal change
in the climate feedback parameter (Rugenstein et al., 2016)
into the efficacy parameter.

Notably, calculated effective climate sensitivities and ef-
fective radiative forcings vary slightly within models due to
the internal variability (Gregory et al., 2015), hence the effi-
cacy values calculated here are associated with some uncer-
tainty. Efficacy values are known to evolve in time (Winton
et al., 2010); thus, the efficacy value from the 1pctCO2 exper-
iment may be different than efficacy 50 years after emissions
cease in the ZECMIP experiments. To test this effect yearly
efficacy values were calculated for the four EMICs with-
out internal variability (Bern, DCESS, MESM, and UVic).
These tests showed that efficacy was 3.5 % to 25 % away
from the values for the 1pctCO2 experiment 50 years after
emissions cease (Fig. D1 in Appendix D). Thus, we have as-
signed efficacy a ±30 % uncertainty. Notably, efficacy de-
clines in three of the four models, consistent with previous
work showing strong trends in efficacy over time (Williams
et al., 2017). Radiative forcing from CO2 is not precisely log-
arithmic (Gregory et al., 2015; Byrne and Goldblatt, 2014;
Etminan et al., 2016), and therefore the calculated Focean and
Fland values will be slightly different than the changes in ra-
diative forcing experienced within each model, except for
the three models that prescribe CO2 radiative forcing. Also
accounting for the uncertainty in recovering R values from
model output, we assign a ±10 % uncertainty to radiative
forcing values.

Table 4. Efficacy ε and radiative forcing for 2×CO2 R values for
each model. Efficacy values are calculated from the 1pctCO2 exper-
iment.

Model Efficacy Radiative forcing
2×CO2 (W m−2)

ACCESS 1.2 2.9
CanESM5 1.0 3.4
CNRM 0.9 3.2
GFDL 1.3 3.6
MIROC-ES2L 1.0 4.1
MPI-ESM 1.1 4.1
UKESM 1.0 4.0

Bern 1.0 3.7
DCESS 1.1 3.7
IAPRAS 1.1 3.7
LOVECLIM 1.0 3.7
MESM 0.8 4.1
MIROC-lite 1.0 3.0
P. GENIE 0.9 4.2
UVic 1.0 4.1

3 Results

3.1 A1 Experiment results

Figure 2 shows the evolution of atmospheric CO2 concen-
tration and temperature for the 100 years after emissions
cease for the A1 experiment (1 % branched at 1000 PgC).
In all simulations atmospheric CO2 concentration declines
after emissions cease, with a rapid decline in the first few
decades followed by a slower decline thereafter. The rates
of decline vary across the models. By 50 years after emis-
sions cease in the A1 experiment, the change in atmospheric
CO2 concentration ranged from −91 to −52 ppm, with a
mean of −76 ppm and median of −80 ppm. Temperature
evolution in the 100 years following cessation of emissions
varies strongly by model, with some models showing declin-
ing temperature, others showing ZEC close to zero, and oth-
ers showing continued warming following cessation of emis-
sions. Some models, such as UKESM, CNRM, and UVic,
exhibit continued warming in the centuries following ces-
sation of emissions. Other models, such as IAPRAS and
DCESS, exhibit a temperature peak and then decline. Still
other models show ZECs that hold close to zero (e.g. MPI-
ESM), while some models show continuous decline in tem-
perature following cessation of emissions (e.g. P. GENIE).
Table 5 shows the ZEC25, ZEC50, and ZEC90 values for
the A1 experiment. The table shows values of ZEC50 rang-
ing from −0.36 to 0.29 ◦C, with a model ensemble mean
of −0.06 ◦C, median of −0.05 ◦C, and a standard devia-
tion of 0.19 ◦C. Tables C1 and C2 show ZEC25, ZEC50,
and ZEC90 for the A2 and A3 experiment. Figure 3 shows
the evolution of atmospheric CO2 concentration, tempera-
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Table 5. Temperature anomaly relative to the year that emissions
ceased, averaged over a 20-year time window centred on the 25th,
50th, and 90th year following cessation of anthropogenic CO2 emis-
sions (ZEC25, ZEC50, and ZEC90, respectively) for the A1 (1 % to
1000 PgC experiment).

Model ZEC25 (◦C) ZEC50 (◦C) ZEC90 (◦C)

ACCESS 0.04 0.01 −0.03
CanESM5 −0.04 −0.13 −0.17
CESM2 −0.11 −0.31 −0.34
CNRM 0.11 0.06 0.25
GFDL −0.18 −0.27 −0.19
MIROC-ES2L −0.02 −0.08 −0.21
MPI-ESM −0.22 −0.27 −0.37
NorESM −0.27 −0.33 −0.32
UKESM 0.21 0.28 0.33

Bern 0.05 0.01 −0.08
DCESS 0.11 0.06 −0.04
CLIMBER 0.0 −0.07 −0.14
IAPRAS 0.34 0.29 0.03
LOVECLIM −0.02 −0.04 −0.03
MESM 0.05 0.01 −0.06
MIROC-lite −0.02 −0.06 −0.09
P. GENIE −0.19 −0.36 −0.71
UVic 0.04 0.03 0.02

Mean −0.01 −0.07 −0.12
Median −0.01 −0.05 −0.08
Standard deviation 0.15 0.19 0.23

ture anomalies (relative to the year that emissions cease),
and ocean heat uptake for 1000 years following cessation
of emissions in the A1 experiment. All models show con-
tinued decline in atmospheric CO2 concentration for cen-
turies after emissions cease. One model (P. GENIE) shows
a renewed growth in atmospheric CO2 concentration begin-
ning about 600 years after emissions cease, resulting from re-
lease of carbon from soils overwhelming the residual ocean
carbon sink. Of the nine models that extended simulations
beyond 150 years, seven show temperature on a long-term
decline (Bern, MESM, DCESS, IAPRAS, LOVECLIM, P.
GENIE, and MIROC-ES2L), GFDL shows temperature de-
clining and then increasing within 200 years after cessation
but ultimately remaining close to the temperature at cessa-
tion, and the UVic model shows slow warming. Most models
show continuous decline in ocean heat uptake with values
approaching zero. Three models (GFDL, LOVECLIM and
IAPRAS) show the ocean transition from a heat sink to a
heat source.

3.2 Effect of emissions rate: 1 % vs. bell

The bell experiments were designed to test whether temper-
ature evolution following cessation of emissions depends on
the pathway of emissions before emissions cease. These ex-
periments also illustrate model behaviour during a gradual
transition to zero emissions (e.g. MacDougall, 2019), a path-

way that is consistent with most future scenarios (Eyring
et al., 2016). Nine of the participating models conducted both
the A1 and B1 experiments, GFDL and eight of the EMICs
(CLIMBER is the EMIC which did not conduct the B1 exper-
iment). Figure 4 shows the temperature evolution (relative to
pre-industrial temperature) for both experiments. All models
show that by the 100th year of the experiments, when emis-
sions cease in the bell experiment, the temperature evolution
is very close in the two experiments. For seven of the mod-
els, GFDL, Bern, DCESS, LOVECLIM, MESM, MIROC-
lite, and UVic, the temperature evolution in the A1 and B1
experiments is indistinguishable after emissions cease in the
bell experiment. Thus, models suggest that in the long term
the past pathway of CO2 is largely irrelevant to total temper-
ature change and is determined only by the total amount of
cumulative emissions.

Figure 5 shows ZEC for both experiments. There is no
sharp discontinuity in forcing in the bell experiments, and
thus the temperature of cessation for these experiments is
simply calculated relative to a temperature average from a
20-year window centred on the year 100 when emissions
cease. Despite the long-term temperature evolution being the
same for both experiments, the change in temperature rel-
ative to time of cessation is different in most models. This
feature is not unexpected as theoretical work on the TCRE
relationship suggests that direct proportionality between cu-
mulative emissions of CO2 and temperature change should
break down when emission rates are very low (MacDougall,
2017), as emissions are near the end of the bell experiments.
Thus, in the type B experiments emissions decline gradually,
and hence the Earth system is closer to thermal and carbon
cycle equilibrium when emissions cease. These results sup-
port using the type A experiment (1 % followed by sudden
transition to zero emissions) to calculate ZEC for providing
a correction to the remaining carbon budget, as the experi-
ment provides a clear separation between TCRE and ZEC,
while for a gradual transition to zero emissions scenario the
two effects are mixed as emissions approach zero.

The B2 experiment (750 PgC) was designed to assess ZEC
for an emissions total that would imply a climate warming of
close to 1.5 ◦C (Jones et al., 2019). The mean change in emis-
sion rate for the B2 experiment during the ramp-down phase
of the experiment (year 50 to 100) is −0.39 PgC a−2. This
rate is similar to the rate of−0.29 [−0.05 to−0.64] PgC a−2

for stringent mitigation scenarios from the IPCC Special Re-
port on 1.5◦ for the period from 2020 to 2050 CE (Rogelj
et al., 2018). Therefore, we would expect similar behaviour
in the stringent mitigation scenarios and the type B experi-
ments. Thus, for the effect of ZEC to manifest while emis-
sions are ramping down. The A2 experiment (1 % 750 PgC)
branches from the 1pctCO2 experiment between year 51 and
60 in the models that performed that experiment. Emission
in the A2 experiment ceases in year 100. Thus, the temper-
ature correction expected by time that emission ceases for
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Figure 2. (a, c) Atmospheric CO2 concentration anomaly and (b, d) Zero Emissions Commitment following the cessation of emissions
during the experiment wherein 1000 PgC was emitted following the 1 % experiment (A1). ZEC is the temperature anomaly relative to the
estimated temperature at the year of cessation. The top row shows the output for ESMs, and the bottom row shows the output for EMICs.

Figure 3. (a) Change in atmospheric CO2 concentration, (b) change in temperature, and (c) ocean heat uptake following cessation of
emissions for the A1 experiment (1000 PgC following 1 %) for 1000 years following the cessation of emissions.

the stringent mitigation scenarios would be in the range of
ZEC40 to ZEC50 for the B2 experiment.

3.3 Sensitivity of ZEC to cumulative emissions

A total of 12 models conducted at least two type A (1 %)
experiments, such that ZEC could be calculated for 750,
1000, and 2000 PgC of cumulative emissions, five ESMs
(ACCESS, CanESM5, GFDL, MIROC-ES2L, and UKESM),
and all of the EMICs except CLIMBER. Two of the models
conducted only two of the type A experiments: CanESM5
conducted the A1 and A3 experiments, while LOVECLIM
conducted the A1 and A2 experiments. Figure 6 shows the

ZEC50 for each model for the three experiments. All of
the full ESMs exhibit higher ZEC50 with higher cumula-
tive emissions. The EMICs have a more mixed response
with Bern, MESM, LOVECLIM, and UVic showing in-
creased ZEC50 with higher cumulative emissions; DCESS
and IAPRAS showing slightly declining ZEC50 with higher
cumulative emissions; and P. GENIE showing a strongly de-
clining ZEC50 with higher emissions. The inter-model range
for the ZEC50 of the A2 (750 PgC) experiment is −0.31
to 0.30 ◦C, with a mean value of −0.03 ◦C, a median of
−0.06 ◦C, and a standard deviation of 0.15 ◦C. The inter-
model range of the A3 (2000 PgC) experiment −0.40 to
0.52 ◦C, with a mean of 0.10 ◦C, a median of 0.10 ◦C, and
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Figure 4. Temperature evolution of A1 (1 % to 1000 PgC) and B1 (bell-shaped emissions of 1000 PgC over 100 years) experiments relative
to pre-industrial temperature. Solid lines are the A1 experiment and dashed lines are the B1 experiment. The vertical blue line shows when
emissions cease in the A1 experiment, and the vertical red line shows where emissions cease in the B1 experiment.

a standard deviation of 0.26 ◦C. Note that different subsets
of models conducted each experiment, such that ranges be-
tween experiments are not fully comparable.

3.4 Analysis of results

The framework introduced in Sect. 2.4 was applied to the
ZECMIP output to partition the energy balance components
of ZEC into contributions from the warming effect of the re-
duction in ocean heat uptake (−1N ) and the effect of the
change in radiative forcing from the ocean (Focean) and ter-
restrial carbon fluxes (Fland). Figure 7 shows the results of
this analysis for each model averaged over the period 40 to
59 years after emissions cease for the 1000 PgC 1 % (A1)
experiment (the same time interval as ZEC50). The compo-
nents of the bars in Fig. 7a are the terms of the right-hand
side of Eq. (4). The results suggest that both ocean carbon
uptake and terrestrial carbon uptake are critical for determin-
ing the sign of ZEC in the decades following cessation of
emissions. Previous efforts to examine ZEC, while acknowl-

edging the terrestrial carbon sink, have emphasized the role
of ocean heat and carbon uptake (Ehlert and Zickfeld, 2017;
Williams et al., 2017). These studies also focused on ZEC
on timescales of centuries, not decades. In CanESM5 and
CNRM the terrestrial carbon sink dominates the reduction
in radiative forcing, while in ACCESS, IAPRAS, MESM,
P. GENIE, and UVic the ocean carbon uptake dominates the
reduction in radiative forcing. The remaining models have
substantial contributions from both carbon sinks. In all mod-
els the reduction in forcing from ocean carbon uptake is
smaller than the reduction in ocean heat uptake, suggest-
ing that the post-cessation net land carbon sink is critical
to determining ZEC values. The ocean carbon uptake it-
self varies substantially between models, with some of the
EMICs (P. GENIE, MESM, and IAPRAS) having very high
ocean carbon uptake, and two of the ESMs (CanESM5 and
CNRM) having very low ocean carbon uptake. Given that the
behaviour of the terrestrial carbon cycle varies strongly be-
tween models (Friedlingstein et al., 2006; Arora et al., 2013,
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Figure 5. ZEC for the A1 (1 % to 1000 PgC) and B1 (bell-shaped emissions of 1000 PgC over 100 years) experiments. The solid lines are
the A1 experiment, and the dashed lines are the B1 experiment.

Figure 6. Values of ZEC50 for the 750, 1000, and 2000 PgC experiments branching from the 1 % experiment (type A). Panel (a) shows
results for full ESMs, and panel(b) shows results for EMICs.
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2019) and that many models lack feedbacks related to nu-
trient limitation and permafrost carbon pools, the strong de-
pendence of ZEC50 on terrestrial carbon uptake is concern-
ing for the robustness of ZEC50 estimates. Notably, the three
ESMs with the weakest terrestrial carbon sink response (AC-
CESS, MIROC-ES2L, and UKESM) include terrestrial nu-
trient limitations (Table A1). However, despite including ter-
restrial nutrient limitation, Bern and MPI-ESM simulate a
terrestrial carbon uptake in the middle and upper parts of
the inter-model range, respectively. The UVic model includes
permafrost carbon and has a relatively weak terrestrial car-
bon uptake (Table A2). IAPRAS does not account for either
nutrient limitations or permafrost carbon and has the weak-
est terrestrial carbon uptake among all models studied here
(Table A2).

To further investigate the effect of nutrient limitation on
ZEC, we have compared models with and without terres-
trial nutrient limitations. Eight of the models that partici-
pated in ZECMIP included a representation of the terres-
trial nitrogen cycle: ACCESS, CESM2, MIROC-ES2L, MPI-
ESM, NorESM, UKESM, Bern, and MESM. One model
(ACCESS) includes a representation of the terrestrial phos-
phorous cycle. Figure 8 shows behaviour of the terrestrial
carbon cycle before and after emissions cease for models
with and without terrestrial nutrient limitations. Figure 8a
shows that consistent with Arora et al. (2019) models with
a terrestrial nitrogen cycle on average have a lower carbon
uptake than those without. However, after emissions cease
there is little difference in the terrestrial uptake of carbon be-
tween models with and without nutrient limitations. For both
sets of model the median uptake is almost the same at 68 and
63 PgC, respectively, and the range for models without nu-
trient limitation fully envelops the range for those with nu-
trient limitations. Thus, while nutrient limitations do not ap-
pear to have a controlling influence on the magnitude of the
post-cessation terrestrial carbon uptake, they have a marked
impact on its uncertainty. As with carbon cycle feedbacks
(Arora et al., 2019) those models including terrestrial nitro-
gen limitation exhibit substantially smaller spread than those
which do not. This offers hope for future reductions in ZEC
uncertainty as more models begin to include nitrogen (and
thereafter phosphorus) limitations on the land carbon sink.

Figure 9a shows the relationship between ocean heat up-
take (Fig. 9b), cumulative ocean carbon uptake (Fig. 9c),
and the cumulative terrestrial carbon uptake when emissions
cease and 50 years after emissions cease. Excluding the clear
outlier of IAPRAS, Fig. 9 shows a clear negative relation-
ship (R =−0.80) between ocean heat uptake before emis-
sions cease and the change in ocean heat uptake 50 years
after emissions cease in the A1 experiment. Thus, models
with high ocean uptake before emissions cease tend to have a
strong reduction in ocean heat uptake after emissions cease.
Similarly, there is a strong (R = 0.88) positive relationship
between ocean carbon uptake before emissions cease and
uptake in the 50 years after emissions cease. The relation-

ship between uptake (or in one case net release) of carbon
by the terrestrial biosphere before and after emissions cease
is weaker (R = 0.72) but clear. Therefore, explaining why
the energy balance components illustrated by Fig. 7 vary be-
tween models would seem to relate strongly to why models
have varying ocean heat, ocean carbon uptake, and terrestrial
carbon cycle behaviour before emissions cease.

It has long been suggested that the reason that long-term
ZEC was close to zero is compensation between ocean heat
and ocean carbon uptake (Matthews and Caldeira, 2008;
Solomon et al., 2009; Frölicher and Paynter, 2015), which
are both dominated by the ventilation of the thermocline
(Sabine et al., 2004; Banks and Gregory, 2006; Xie and Val-
lis, 2012; Frölicher et al., 2015; Goodwin et al., 2015; Zanna
et al., 2019). However, Fig. 7 shows that this generalization
is not true for decadal timescales. The two quantities do com-
pensate for one another, but in general the effect from reduc-
tion in ocean heat uptake is larger than the change in radia-
tive forcing from the continued ocean carbon uptake. Thus,
going forward additional emphasis should be placed on ex-
amining the role of the terrestrial carbon sink in ZEC for pol-
icy relevant timescales. Also notable is the large uncertainty
in effective ocean heat uptake, which originates from the un-
certainty in efficacy. As efficacy is related to spatial patterns
in ocean heat uptake and coupled shortwave cloud feedbacks
(Rose et al., 2014; Andrews et al., 2015) shifts in these pat-
terns in time likely affect the values of ZEC and represent an
important avenue for further investigation.

Figure 10 compares the energy fluxes for the 10 models
that conducted all of the type A (1 %) experiments. All three
energy balance components seem to be affected by the cumu-
lative emissions leading up to cessation of emissions; how-
ever, there is no universal pattern. Most models show a larger
reduction in ocean heat uptake with higher cumulative emis-
sions, but UKESM has the largest reduction for the 1000 PgC
experiment. Variations in the reduction in radiative forcing
from ocean carbon uptake tend to be small between simu-
lations within each model but show no consistent patterns
between models. Most of the models show a smaller terres-
trial carbon sink for the 2000 PgC experiment than the other
two experiments, the exception being IAPRAS, which shows
the opposite pattern. Examining in detail why these factors
change in each model could be a productive avenue for fu-
ture research.

3.5 Relationship to other climate metrics

Figure 11 shows the relationship between ECS, TCR, TCRE,
realized warming, and ZEC50 for the A1 (1000 PgC) experi-
ment. Realized warming is the ratio of TCR to ECS. TCR is
transient warming when CO2 is doubled and ECS is warm-
ing at equilibrium following doubling of CO2, their ratio is
the fraction of warming from CO2 that has been realized,
hence “realized warming” (e.g. Frölicher et al., 2014). ECS
shows virtually no correlation with ZEC50 (R = 0.04), and
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Figure 7. (a) Energy fluxes following cessation of CO2 emissions for the 1000 PgC 1 % (A1) experiment. 1N is the change in ocean heat
uptake relative to the time that emissions ceased. A reduction in ocean heat uptake will cause climate warming, hence −1N is displayed.
Focean is the change in radiative forcing caused by ocean carbon uptake, and Fland is the change in radiative forcing caused by terrestrial
carbon uptake. Vertical black lines are estimated uncertainty ranges. (b) ZEC50 values for each model. Models are arranged in ascending
order of ZEC50

Figure 8. Terrestrial carbon uptake for models with and without a nitrogen cycle, before emissions cease and after emissions cease. A total
of 8 models have a representation of nutrient limitations while 10 do not. Circles indicate data points for ESMs, and triangles indicate data
points for EMICs.

thus ZEC and ECS appear to be independent. Both TCR
and realized warming show weak positive correlations with
ZEC50 (R = 0.25 and 0.30, respectively). TCRE shows the
strongest relationship to ZEC50 with a correlation coefficient
of 0.34. However, these relationships may not be robust due
to the small number of non-independent models. The poor
correlation between ZEC and other climate metrics is not un-
expected as ZEC is determined by the difference in warming
caused by reduction in ocean heat uptake and cooling caused

by continued land and ocean carbon uptake after the cessa-
tion of emissions. Small differences between large quantities
are not expected to correlated well to the quantities used to
calculate them.

Bern and UVic both conducted the ZECMIP experiments
with three versions of their models with different equilibrium
climate sensitivities, allowing for examination of the effect of
ECS on ZEC. Figure 12 shows the ZEC50 for these simula-
tions and shows that for both Bern and UVic higher ECS cor-
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Figure 9. Relationship between variables before emissions cease and 50 years after emissions cease. (a) Ocean heat uptake (OHU) is
computed for 20-year windows with the value at cessation taken from the 1pctCO2 experiment in a way analogous to the how temperature
of cessation is computed. (b) Cumulative ocean carbon uptake and (c) Cumulative land carbon uptake are shown. Each marker represents a
value from a single model. The line of best fit excludes the outlier model IAPRAS, which is marked with a magenta square.

Figure 10. Energy fluxes following cessation of CO2 emissions for the type A experiments (1 %) for each model. 1N is the change in
ocean heat uptake relative to the time that emissions ceased. A reduction in ocean heat uptake will cause climate warming, hence −1N is
displayed. Focean is the change in radiative forcing caused by ocean carbon uptake, and Fland is the change in radiative forcing caused by
terrestrial carbon uptake. All fluxes are computed for averages from 40 to 59 years after emissions cease.

responds to higher ZEC. For Bern for the A1 (1 % 1000 PgC)
experiment ZEC50 is 0.01, 0.03, and 0.18 ◦C for ECSs of
2.0, 3.0, and 5.0 ◦C, respectively. For UVic for the A1 (1 %
1000 PgC) experiment ZEC50 is −0.15, 0.01, and 0.22 for
ECSs of 2.0, 3.8, and 5.0 ◦C, respectively. Note that the ECS
values given here are for true equilibrium climate sensitiv-
ity, not effective climate sensitivities as used in the remain-
der of this study. Figure 13 compares the energy fluxes for
the three versions of Bern and UVic. For Bern, ocean carbon

uptake is unaffected by climate sensitivity, while for UVic
there is a small decline in ocean carbon uptake for an ECS of
5.0 ◦C. For Bern the reduction in ocean heat uptake is larger
at higher climate sensitivity, while for UVic this quantity is
almost the same for ECSs of 3.8 and 5.0 ◦C. In Bern the ter-
restrial carbon sink is weaker in versions with higher climate
sensitivity. In UVic the terrestrial carbon sink is weakest for a
climate sensitivity of 3.8 ◦C. Overall the results suggest a re-
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Figure 11. Relationship between ECS (a), TCR (b), TCRE (c), realized warming, and (d) ZEC50. The line of best fit is shown in red.
Correlation coefficients are displayed in each panel.

lationship between higher ECS and higher ZEC within these
models.

4 Discussion

4.1 Drivers of ZEC

The analysis here has shown that across models decadal-
scale ZEC is poorly correlated to other metrics of climate
warming, such as TCR and ECS, though relationships may
exist within model frameworks (Fig. 12). However, the three
factors that drive ZEC, ocean heat uptake, ocean carbon up-
take, and net land carbon flux correlate relatively well to
their states before emissions cease. Thus, it may be useful to
conceptualize ZEC as a function of these three components
each evolving in their own way in reaction to the cessation
of emissions. Ocean heat uptake evolves due to changes in
ocean dynamics (e.g. Frölicher et al., 2015) as well as the
complex feedbacks that give rise to changes in ocean heat up-
take efficacy (Winton et al., 2010). Ocean carbon uptake evo-
lution is affected by ocean dynamics, changes to ocean bio-
geochemistry, and changes in atmosphere–ocean CO2 chem-
ical disequilibrium, where the latter is also influenced by
land carbon fluxes (e.g. Sarmiento and Gruber, 2006). The
response of the land biosphere to cessation of emissions is
expected to be complex with contributions from the response
of photosynthesis to declining atmospheric CO2 concentra-
tion, a continuation of enhanced soil respiration (e.g. Jenkin-
son et al., 1991), and release of carbon from permafrost soils
(Schuur et al., 2015), among other factors. Investigating the

evolution of the three components in detail may be a valuable
avenue of future analysis. Similarly, given their clearer rela-
tionships to the state of the Earth system before emissions
cease, focusing on the three components independently may
prove useful for building a framework to place emergent con-
straints on ZEC. Future work will explore evaluation oppor-
tunities by assessing relationships between these quantities
in the idealized 1 % simulation and values at the end of the
historical simulations up to present day.

Our analysis has suggested that the efficacy of ocean heat
uptake is crucial for determining the temperature effect from
ocean heat uptake following cessation of emissions. Efficacy
itself is generated by spatial patterns in ocean heat uptake
and shortwave cloud feedback processes (Rose et al., 2014;
Andrews et al., 2015). Thus, evaluating how these processes
and feedbacks evolve after emissions cease is crucial for bet-
ter understanding ZEC. As the spatially resolved outputs for
ZECMIP are now available (see Data availability at the end
of the paper), evaluating such feedbacks presents a promising
avenue for future research.

4.2 Policy implications

One of the main motivations to explore ZEC are its impli-
cations for policy and society’s ability to limit global warm-
ing to acceptable levels. Climate policy is currently aiming at
limiting global mean temperature increase to well below 2 ◦C
and pursuing to limit it to 1.5 ◦C (United Nations, 2015). To
stay within these temperature limits, emission reduction tar-
gets are being put forward. These targets can take the form
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Figure 12. Values of 50-year ZEC for the 750, 1000, and 2000 PgC experiments branching from the type A (1 %) for versions of Bern and
UVic with varying equilibrium climate sensitivity. Note that the ECS values given here are for true equilibrium climate sensitivity and not
effective climate sensitivities as used in the remainder of the study.

Figure 13. Energy fluxes following cessation of CO2 emissions for
the type A experiments (1 %) for versions of Bern and UVic with
varying equilibrium climate sensitivity. 1N is the change in ocean
heat uptake relative to the time that emissions ceased. A reduction
in ocean heat uptake will cause climate warming, hence −1N is
displayed. Focean is the change in radiative forcing caused by ocean
carbon uptake, and Fland is the change in radiative forcing caused
by terrestrial carbon uptake. All fluxes computed by averaging from
40 to 59 years after emissions cease.

of emissions reductions in specific years, like the nationally
determined Paris Agreement contributions for the years 2025
or 2030 (Rogelj et al., 2016) but also of net zero emissions
targets that cap the cumulative CO2 emissions a country is
contributing to the atmosphere (Haites et al., 2013; Rogelj
et al., 2015; Geden, 2016). Because ZEC does affect the re-
quired stringency of emissions reductions or of the maximum
warming one can expect, it is important to clearly understand
its implications within a wider policy context. First, for pol-
icy analysts and scientists, the quantification of ZEC50 will
help inform better estimates of the remaining carbon budget
compatible with limiting warming to 1.5 ◦C or well below
2 ◦C over the course of this century. Analysts need to be clear,
however, that ZEC50 is only then an adequate adjustment for

TCRE-based carbon budget estimates if the TCRE values are
based on 1 % CO2 increase simulations. In contrast, however,
our results also show that when CO2 emissions ramp down
gradually (see the B series of ZECMIP experiments), ZEC50
is generally much smaller because part of it is already real-
ized during the emissions ramp down. Hence, this means that
in a situation in which society successfully gradually reduces
its global CO2 emissions to net zero at rates comparable to
the B2 experiment (see Sect. 3.2), the expected additional
warming on timescales of decades to a maximum of a cen-
tury is small. Finally, over multiple centuries, warming might
still further increase or decrease. In the former case, a certain
level of carbon dioxide removal would be required over the
coming centuries. The level implied by the long-term ZEC,
however, represents much less a challenge than the urgent
drastic emissions cuts required to limit warming to either 1.5
or 2 ◦C over the next decades (Rogelj et al., 2019b).

4.3 Moving towards ZECMIP-II

For the first iteration of ZECMIP, the experimental proto-
col has focused solely on the response of the Earth sys-
tem to zero emissions of CO2. However, many other non-
CO2 greenhouse gases, aerosols, and land use changes af-
fect global climate (e.g. IPCC, 2013). To truly explore the
question whether global temperature will continue to in-
crease following complete cessation of greenhouse gas and
aerosol emissions, the effect of each anthropogenic forcing
agent must be accounted for (e.g. Frölicher and Joos, 2010;
Matthews and Zickfeld, 2012; Mauritsen and Pincus, 2017;
Allen et al., 2018; Smith et al., 2019). We envision a sec-
ond iteration of ZECMIP accounting for these effects with a
set of self-consistent idealized experiments, as a part of the
formal CMIP7 process.
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5 Conclusions

Here we have analysed model output from the 18 models that
participated in ZECMIP. We have found that the inter-model
range of ZEC 50 years after emissions cease for the A1 (1 %
to 1000 PgC) experiment is −0.36 to 0.29 ◦C, with a model
ensemble mean of −0.07 ◦C, median of −0.05 ◦C, and stan-
dard deviation of 0.19 ◦C. Models show a range of tempera-
ture evolution after emissions cease from continued warming
for centuries to substantial cooling. All models agree that,
following cessation of CO2 emissions, the atmospheric CO2
concentration will decline. Comparison between experiments
with a sudden cessation of emissions and a gradual reduc-
tion in emissions show that long-term temperature change is
independent of the pathway of emissions. However, in ex-
periments with a gradual reduction in emissions, a mixture
of TCRE and ZEC effects occur as the rate of emissions de-
clines. As the rate of emission reduction in these idealized
experiments is similar to that in stringent mitigation scenar-
ios, a similar pattern may emerge if deep emission cuts com-
mence.

ESM simulations agree that higher cumulative emissions
lead to a higher ZEC, though some EMICs show the oppo-
site relationship. Analysis of the model output shows that
both ocean carbon uptake and the terrestrial carbon uptake
are critical for reducing atmospheric CO2 concentration fol-
lowing the cessation of CO2, thus counteracting the warming
effect of reduction in ocean heat uptake. The three factors
that contribute to ZEC (ocean heat uptake, ocean carbon up-
take and net land carbon flux) correlate well to their states
prior to the cessation of emissions.

The results of the ZECMIP experiments are broadly con-
sistent with previous work on ZEC, with a most likely value
of ZEC that is close to zero and a range of possible model
behaviours after emissions cease. In our analysis of ZEC we
have shown that terrestrial uptake of carbon plays a more
important role in determining that value of ZEC on decadal
timescales than has been previously suggested. However, our
analysis is consistent with previous results from Ehlert and
Zickfeld (2017) and Williams et al. (2017) in terms of ZEC
arising from balance of physical and biogeochemical factors.

Overall, the most likely value of ZEC on decadal
timescales is assessed to be close to zero, consistent with
prior work. However, substantial continued warming for
decades or centuries following cessation of emissions is a
feature of a minority of the assessed models and thus cannot
be ruled out purely on the basis of models.

https://doi.org/10.5194/bg-17-2987-2020 Biogeosciences, 17, 2987–3016, 2020



3004 A. H. MacDougall et al.: Zero Emissions Commitment

Appendix A: Model description tables

Table A1. Model descriptions of the atmospheric, oceanic, and carbon cycle components for the full Earth System Models (ESMs) that
participated in this study.

Model ACCESS-ESM1.5 CanESM5 CESM2 CNRM-ESM2-1 GFDL ESM2M

Short name ACCESS CanESM5 CESM2 CNRM GFDL

Model expansion CSIRO Australian
Community Climate
and Earth System Sim-
ulator, ESM version 1.5

Canadian Earth Sys-
tem Model, version 5

Community Earth
System Model 2

CNRM-CERFACS Earth
system model, version 2

Geophysical Fluid
Dynamics Laboratory
Earth system model
version 2

Atmosphere Unified Model (UM)
7.3, 1.875◦× 1.25◦,
L38

CanAM5,
2.81◦× 2.81◦,
L49

CAM6, 0.9◦× 1.25◦ ARPEGE-Climate T127
(∼ 1.4◦), 91 levels

AM2, 2◦× 2.5◦, L24

Ocean MOM5, 1◦ tripolar
grid, finer 10◦ S–10◦ N
and S. Ocean, L50

NEMO, 1◦ finer
20◦ N–20◦ S, L45

POP2 NEMO, 1◦ tripolar grid,
L75

MOM4p1, 1◦ tripolar
grid finer at the Equator,
L50

Z coordinate or
Isopycnal

Z coordinate Z coordinate Z coordinate Z coordinate Z coordinate

Sea ice CICE4.1 LIM2 POP2 GELATOv6 SIS

Land carbon cycle

Model name CABLE CLASS-CTEM CLM5 SURFEX (ISBA-CTRIP) LM3.0
Dynamic vegetation No No No No Yes
Nitrogen cycle Yes No Yes No No
Phosphorus cycle Yes No No No No
Permafrost carbon No No Yes No No

Ocean carbon cycle

Model name WOMBAT CMOC MARBL PISCESv2-gas TOPAZ2
Explicit nutrients Yes Yes yes yes Yes
If yes, list P, Fe N N, P, Si, Fe N, P, Si, Fe N, P, Si, Fe

Reference Law et al. (2017),
Ziehn et al. (2020)

Swart et al. (2019) Danabasoglu et al. (2020),
Lawrence et al. (2019)

Séférian et al. (2019),
Decharme et al. (2019),
Delire et al. (2020)

Dunne et al. (2012, 2013),
Burger et al. (2020)
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Table A1. Continued.

Model MIROC-ES2L MPI-ESM1.2-LR NorESM2-LM UKESM1-0-LL

Short Name MIROC-ES2L MPI-ESM NorESM2 UKESM

Model expansion Model for Interdisciplinary
Research on Climate, Earth
System version2 for Long-
term simulations

Max Planck Institute
Earth System model, ver-
sion 1.2, low resolution

Norwegian Earth
System Model 2

United Kingdom
Earth System Model,
version 1

Atmosphere CCSR-NIES AGCM, T42,
L40

ECHAM6, T63
(ca. 1.8◦× 1.8◦), L47

CAM6, 0.9◦× 2.5◦,
L32

HadGAM3. N96
(1.25◦× 1.875◦),
L85

Ocean CCSR Ocean Component
model (COCO), 360× 256
grids with tripolar grid, L62

MPIOM1.6, GR1.5
(1.5◦× 1.5◦)

Bergen Layered
Ocean Model, 1◦

finer near Equator,
L53

NEMO, 1◦ tripolar
grid, L75

Z coordinate or
Isopycnal

Z coordinate Z coordinate Isopycnal Z coordinate

Sea ice COCO Thermodynamic–
dynamic

Community sea ice
model

CICE sea ice model

Land carbon cycle

Model name MATSIRO/VISIT-e JSBACH 3.2 CLM5 JULES
Dynamic vegetation No Yes No Yes
Nitrogen cycle Yes Yes Yes Yes
Phosphorus cycle No No No No
Permafrost carbon No No Yes No

Ocean carbon cycle

Model name OECO2 HAMOCC6 iHAMOCC MEDUSA-2
Explicit nutrients Yes Yes Yes Yes
If yes, list N, P, Fe N, P, Si, Fe P, N, Fe N, Si, Fe

Reference Hajima et al. (2020) Ilyina et al. (2013),
Mauritsen et al. (2019),
Goll et al. (2017)

Tjiputra et al. (2020) Sellar et al. (2019),
Best et al. (2011),
Clark et al. (2011),
Yool et al. (2013)
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Table A2. Model descriptions of the atmospheric, oceanic, and carbon cycle components for Earth system models of intermediate complexity
(EMICs) that participated in this study.

Model Bern3D-LPX CLIMBER-2 DCESS IAPRAS LOVECLIM 1.2

Short name Bern CLIMBER DCESS IAPRAS LOVECLIM

Model Expansion Bern three-dimensional
Earth system model

Climate–Biosphere
model, version 2

Danish Center for
Earth System Sci-
ence Earth system
model version 1.0

A.M. Obukhov Institute of At-
mospheric Physics, Russian
Academy of Sciences

Loch-Vecode-ECbilt-
Clio Model version 1.2

Atmosphere 2D Energy–Moisture
Balance, 4.5◦× 9◦ (on
average)

Statistical–dynamical,
51◦× 10◦

Energy–Moisture
Balance model

Statistical–dynamical model,
4.5◦× 6.0◦, L11

ECBilt,
5.625◦× 5.625◦, L3

Ocean 4.5◦× 9◦ (on average),
L32

2D, 3-basin zonally
averaged, 2.5◦ lat,
L21

2 box in lat, 100 m
Z resolution

Statistical–dynamical model
4.5◦× 6.0◦, L3

CLIO, 3◦ 3◦, L20

Z coordinate or
isopycnal

Z coordinate Z coordinate Z coordinate Z coordinate Z coordinate

Sea Ice 4.5◦× 9◦ (on average) Thermodynamic–
dynamic

Mean surface tem-
perature parameteri-
zation

Mean surface temperature
parameterization

Thermodynamic–
dynamic

Land carbon cycle

Model name LPX v1.4 VECODE VECODE
Dynamic vegetation Yes Yes Yes No Yes
Nitrogen cycle Yes No No No No
Phosphorus cycle No No No No No
Permafrost carbon No No No No No

Ocean carbon cycle

Model name Bern3D v2.0s LOCH
Explicit nutrients Yes Yes Yes No Yes
If yes, list P, Si, Fe P P P, Si

Reference Ritz et al. (2011),
Roth et al. (2014),
Jeltsch-Thömmes et al.
(2019), Lienert and Joos
(2018)

Brovkin et al. (2002),
Ganopolski et al. (2001)

Shaffer et al. (2008) Eliseev (2011),
Eliseev and Mokhov (2011),
Eliseev et al. (2014),
Mokhov and Eliseev (2012),
Mokhov et al. (2020)

Menviel et al. (2008),
Goosse et al. (2010),
Mouchet (2011)

Biogeosciences, 17, 2987–3016, 2020 https://doi.org/10.5194/bg-17-2987-2020



A. H. MacDougall et al.: Zero Emissions Commitment 3007

Table A2. Continued.

Model MESM MIROC-lite/JUMP-LCM PLASIM-GENIE UVic ESCM 2.10

Short name MESM MIROC-lite P. GENIE UVic

Model expansion Massachusetts Insti-
tute of Technology
Earth System Model

Model for Interdisciplinary
Research on Climate-
lite/Japan Uncertainty
Modelling Project-Loosely
Coupled Model

Planet Simulator – Grid-
ENabled Integrated
Earth system model

University of Victoria
Earth System Climate
Model version 2.10

Atmosphere Zonally averaged 4◦

lat., L11
2D Energy-Moisture
Balance, 6◦× 6◦

PLASIM, T21, L10 2D Energy-Moisture
Balance, 3.6◦× 1.8◦, L1

Ocean 4◦× 5◦ mixed layer,
anomaly diffusing
model

CCSR Ocean Component
model (COCO), 6◦× 6◦,
L15

GOLDSTEIN, T21, L16 MOM2, 3.6◦× 1.8◦,
L19

Z coordinate or
isopycnal

n/a Z coordinate Z coordinate Z coordinate

Sea ice Thermodynamic–
dynamic

COCO GOLDSTEIN Thermodynamic–
dynamic

Land carbon cycle

Model name TEM Sim-CYCLE ENTS TRIFFID
Dynamic vegetation No No Yes Yes
Nitrogen cycle Yes No No No
Phosphorus cycle No No No No
Permafrost carbon No No No Yes

Ocean carbon cycle

Model name OCM BIOGEM 2NZPD
Explicit nutrients No Yes Yes Yes
If yes, list N P N, P

Reference Sokolov et al. (2018) Tachiiri et al. (2010),
Oka et al. (2011)

Holden et al. (2018),
Holden et al. (2019)

Mengis et al. (2020)

n/a – not applicable.
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Appendix B: Analytical framework

A key question for this study is explaining why some mod-
els have positive ZECs and some models have negative or
close to zero ZECs. From elementary theory we understand
that the sign of ZEC will depend on the pathway of atmo-
spheric CO2 concentration and ocean heat uptake following
cessation of emissions. Complicating this dynamic is that at-
mospheric CO2 change has contributions both from ocean
carbon uptake and the net flux from the terrestrial biosphere.
Here we devise a simple method for partitioning the contri-
bution to ZEC from the ocean carbon flux, net land carbon
flux, and the ocean heat uptake.

We begin with the forcing response equation (Wigley and
Schlesinger, 1985):

F = λT + εN, (B1)

where F (W m−2) is radiative forcing, N (W m−2) is plan-
etary heat uptake, ε (dimensionless) is the efficacy of plan-
etary heat uptake, λ (W m−2 K−1) is the climate feedback
parameter, and T (K) is the change in global temperature
(relative to pre-industrial). This equation can be re-written
as follows:

λT = F − εN. (B2)

To compute the rate of change of temperature we take the
derivative of Eq. (B2) in time giving the following equation:

λ
dT
dt
=

dF
dt
− ε

dN
dt
. (B3)

Radiative forcing from CO2 can be approximated using the
classical logarithmic relationship (Myhre et al., 1998):

F = R ln
(
CA

CAo

)
, (B4)

where R (W m−2) is the radiative forcing from an e-fold in-
crease in atmospheric CO2 concentration, CA (PgC) is at-
mospheric CO2 burden, and CAo (PgC) is the original atmo-
spheric CO2 burden. Recalling the derivative of dln(x)

dx =
1
x

,
the derivative of Eq. (B4) is as follows:

dF
dt
= R

(
CAo

CA

)(
dCA

dt

)
1
CAo

, (B5)

which simplifies to

dF
dt
=
R

CA

(
dCA

dt

)
. (B6)

After emissions cease atmospheric CO2 concentration can be
expressed as follows:

CA = Cze− (CO−COze)− (CL−CLze), (B7)

where Cze (PgC) is atmospheric CO2 burden at the time
emissions reach zero, CO (PgC) is the carbon content of the

ocean, and CL (PgC) is the carbon content of land. COze
(PgC) is the carbon content of the ocean at the time emis-
sions reach zero and CLze (PgC) is the carbon content of land
when emissions reach zero. Thus, the derivative of CA is as
follows:

dCA

dt
=−

dCO

dt
−

dCL

dt
, (B8)

where dCO
dt is the flux of carbon into the ocean fO, and dCL

dt
is the flux of carbon into land fL.

dCA

dt
=−fO− fL (B9)

Substituting Eq. (B9) in Eq. (B6) we find:

dF
dt
=−R

fO+ fL

CA
, (B10)

which can be split into

dF
dt
=−R

fO

CA
−R

fL

CA
, (B11)

which can be substituted into Eq. (B3):

λ
dT
dt
=−R

fO

CA
−R

fL

CA
− ε

dN
dt
. (B12)

If we integrate Eq. (B12) from time emissions that reach
zero, we get the following equation:

λTZEC =−R

∞∫
t=ze

fO

CA
dt−R

∞∫
t=ze

fL

CA
dt−ε(N−Nze), (B13)

where TZEC (K) is ZEC, Nze (W m−2) is the planetary heat
uptake when emissions cease.The integrals

∫
∞

t=ze
fO
CA

dt and∫
∞

t=ze
fL
CA

dt can be computed numerically from ZECMIP out-
put. Therefore, we define the following terms:

Focean = R

∞∫
t=ze

fO

CA
dt, (B14)

and

Fland = R

∞∫
t=ze

fL

CA
dt, (B15)

and thus

λTZEC =−Focean−Fland− ε(N −Nze). (B16)
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Appendix C: ZEC values for A2 and A3 experiments

Table C1. Temperature anomaly relative to the year that emissions ceased, averaged over a 20-year time window centred on the 25th, 50th,
and 90th year following the cessation of anthropogenic CO2 emissions (ZEC25, ZEC50, and ZEC90, respectively) for the A2 (750 PgC 1 %)
experiment.

Model ZEC25 (◦C) ZEC50 (◦C) ZEC90 (◦C)

ACCESS −0.03 −0.06 −0.12
GFDL −0.26 −0.31 −0.26
MIROC−ES2L −0.04 −0.17 −0.20
UKESM 0.13 0.11 0.08

Bern 0.03 −0.02 −0.09
DCESS 0.12 0.07 −0.02
IAPRAS 0.34 0.30 0.08
LOVECLIM −0.06 −0.06 0.05
MESM 0.0 −0.07 −0.13
MIROC−lite 0.0 −0.06 −0.09
P. GENIE 0.03 −0.13 −0.12
UVic 0.02 −0.03 −0.06

Mean 0.02 −0.03 −0.07
Median 0.0 −0.06 −0.09
Standard deviation 0.13 0.15 0.10

Table C2. Temperature anomaly relative to the year that emissions ceased averaged over a 20-year time window centred on the 25th, 50th,
and 90th year following the cessation of anthropogenic CO2 emissions (ZEC25, ZEC50, and ZEC90, respectively) for the A3 (2000 PgC 1 %)
experiment.

Model ZEC25 (◦C) ZEC50 (◦C) ZEC90 (◦C)

ACCESS 0.21 0.52 0.65
CanESM5 0.01 −0.06 −0.05
GFDL −0.12 −0.14 −0.06
MIROC−ES2L 0.03 −0.07 −0.12
UKESM 0.37 0.51 0.75

Bern 0.17 0.17 0.15
DCESS 0.09 0.06 −0.01
IAPRAS 0.34 0.28 0.0
MESM 0.12 0.13 0.11
MIROC−lite 0.08 0.03 −0.02
P. GENIE −0.15 −0.40 −0.48
UVic 0.11 0.21 0.33

Mean 0.11 0.10 0.10
Median 0.10 0.10 −0.01
Standard deviation 0.16 0.26 0.34
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Appendix D: Efficacy evolution

Figure D1. Evolution of efficacy for the four EMICs without substantial internal variability. The red horizontal line is the efficacy value
estimated from the 1pctCO2 experiment, and the vertical blue line marks 50 years after emissions cease.

Biogeosciences, 17, 2987–3016, 2020 https://doi.org/10.5194/bg-17-2987-2020



A. H. MacDougall et al.: Zero Emissions Commitment 3011

Data availability. ESM data are published and freely available as
per CMIP6 data policy on the Earth System Grid Federation (https:
//esgf-node.llnl.gov/projects/cmip6/, World Climate Research Pro-
gram, 2020). EMIC data are published and freely available on a
dedicated server (http://terra.seos.uvic.ca/ZEC, Eby, 2020). The an-
nual global mean variables used for the present analysis will also be
made available on the server.
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