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A Model setup

In this appendix, we begin with the stylized model suggested by Boadway et al. [1] to describe national
economic considerations for deciding on greenhouse gas (GHG) emissions, which we call the basic climate
game (BCG; Definition A.1). Our interest in this study is to compare the outcome of two scenarios: one in
which countries independently decide on their emissions levels, vs. one in which countries enter a matching-
commitment agreement (i.e., play a matching climate game, MCG; see Definition A.9). In order to do so,
additional assumptions are necessary to guarantee well-defined outcomes for these scenarios.

Appendix A.1 lays out the assumptions of the BCG between n heterogeneous countries and identifies a
sufficient condition for it having a unique Nash equilibrium, which we interpret as the baseline emissions
profile. That this condition is indeed sufficient for the existence and uniqueness of a Nash equilibrium is
established in Appendix A.2. In Appendix A.3, we characterize when a socially optimal emissions profile
(which maximizes global welfare) also exists for the BCG. Appendix A.4 characterizes locally Pareto-efficient
emissions profiles, and Appendix A.5 compares locally Pareto-efficient emissions profiles with socially optimal
ones. Lastly, Appendix A.6 formally defines the matching climate game (MCG; Definition A.9) between n
countries and characterizes when the matching-commitment agreement’s stage-II best-response functions are
well-defined.

A.1 Assumptions, notation and terminology

We first define some convenient notation and terminology. For any emissions profile (i.e., a vector of the
emissions of all countries) e = (e1, . . . , en) ∈ Rn and country i (1 ≤ i ≤ n) we denote the vector of the
emissions of the n− 1 countries other than i by

e−i = (e1, . . . , ei−1, ei, . . . , en) . (A.1)

The payoff for country i at an emissions profile e is (with minor abuse of notation)

Πi(ei, e−i) = Bi(ei)−Di (e) , (A.2)

where e =
∑n
i=1 ei denotes the total emissions.

In the notation of Boadway et al. [1], we assume that

B′i(e) > 0 , (A.3a)

D′i(e) > 0 , (A.3b)

B′′i (e) < 0 , (A.3c)

D′′i (e) > 0 , (A.3d)

for all 1 ≤ i ≤ n.
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Definition A.1. The Basic Climate Game (BCG) is the game in which countries 1, . . . , n simultaneously
and non-cooperatively choose their emissions levels to determine their payoffs as follows: if the emissions
profile is e = (e1, . . . , en), then country i’s payoff (1 ≤ i ≤ n) is

Πi(e) = Bi(ei)−Di(e) , (A.4)

with its benefit and damage functions (Bi and Di, respectively) satisfying Equation (A.3).

Note that Equation (A.3) implies that

∂

∂ei
Πi = B′i(ei)−D′i (e) , (A.5a)

∂2

∂ei2
Πi = B′′i (ei)−D′′i (e) < 0 . (A.5b)

The BCG does not necessarily have a Nash equilibrium, but the following additional realistic hypothesis
ensures that it does1 (Lemma A.5):

Definition A.2. We say that global emissions are bounded if there is a box in the space of emissions profiles,

B =

n∏
i=1

[eli, e
u
i ] ⊂ Rn

such that

• for any emissions profile outside B, e ∈ Rn \ B, some country i (1 ≤ i ≤ n) satisfies

∂

∂ei
Πi (e) 6= 0 ; (A.6)

• for any emissions profile on the boundary of B, e ∈ ∂B, if country i’s emissions are on the boundary of
[eli, e

u
i ], then it is better off changing its emissions slightly so that ei is in the interior of [eli, e

u
i ]. More

precisely, if (ei, e−i) ∈ B and ei = eli then

∂

∂ei
Πi (e) > 0 ; (A.7)

if (ei, e−i) ∈ B and ei = eui then
∂

∂ei
Πi (e) < 0 . (A.8)

Lastly, we define BCGs with bounded individual emissions. In these games, no country has an incentive
to emit or abate without bound, no matter what other countries do.

Definition A.3. We say that individual emissions are bounded if for any country i (1 ≤ i ≤ n) and for any
emissions profile e−i by countries 1, . . . , i− 1, i+ 1, . . . , n, there exist emissions levels eri and eli such that if
ei > eri then ∂

∂ei
Πi (ei, e−i) < 0, and if ei < eli then ∂

∂ei
Πi (ei, e−i) > 0.

Because ∂2

∂ei2
Πi (ei, e−i) < 0, individual emissions are bounded if and only if (iff) for any emissions profile

e−i by countries 1, . . . , i− 1, i+ 1, . . . , n, there exists ei for which

∂

∂ei
Πi (ei, e−i) = 0 . (A.9)

Moreover, if ei satisfies Equation (A.9) then Πi (·, e−i) has a global maximum at ei, so ei is country i’s
best-response to e−i.

1Definition A.2 is analogous to the assumption of bounded industry output in Cournot games used in, for example, Kolstad
and Mathiesen [2] (Definition 4).
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Proposition A.4 (If global emissions are bounded, then individual emissions are bounded). If countries
play a BCG (Definition A.1) and global emissions are bounded (Definition A.2) then individual emissions
are bounded, so countries have well-defined best-response functions.

The following notation will be useful in proving Proposition A.4, as well as in the sequel: for any country
i, let

B−i =
∏

1≤j≤n
j 6=i

[elj , e
u
j ] ,

be the projection of the box B onto the space of emissions profiles of all other countries.

Proof of Proposition A.4. For any country i (1 ≤ i ≤ n), Equation (A.3) implies the existence of the following
limits:

lim
e→∞

B′i (e) = β+ ≥ 0 , (A.10a)

lim
e→−∞

B′i (e) = β− ∈ (β+,∞] , (A.10b)

lim
e→−∞

D′i (e) = δ− ≥ 0 , (A.10c)

lim
e→∞

D′i (e) = δ+ ∈ (δ−,∞] . (A.10d)

Let e−i ∈ B−i. Because global emissions are bounded (Definition A.2), Equation (A.5b) implies

0 ≤ ∂

∂ei
Πi

(
eli, e−i

)
< lim
e→−∞

∂

∂ei
Πi (ei, e−i) = β− − δ−

0 ≥ ∂

∂ei
Πi (eui , e−i) > lim

e→+∞
∂

∂ei
Πi (ei, e−i) = β+ − δ+ ,

(with the standard arithmetic and order relation on the extended real line R = [−∞,+∞]). It follows that
for any e−i ∈ Rn−1, we have

lim
e→−∞

∂

∂ei
Πi (ei, e−i) = β− − δ− > 0

lim
e→+∞

∂

∂ei
Πi (ei, e−i) = β+ − δ+ < 0 ,

and since ∂
∂ei

Πi (ei, e−i) is continuous, Equation (A.9) has a solution ei ∈ R.

A.2 The baseline emissions levels

If e is a Nash equilibrium for the BCG (Definition A.1) with bounded global emissions, then e must be in
the interior of the box B stipulated to exist in Definition A.2. In this section, we establish that the BCG
with bounded global emissions has a unique Nash equilibrium e ∈ B, as claimed in the following lemma:

Lemma A.5. Existence and uniqueness of Nash equilibrium for the BCG with bounded global emissions
The BCG (Definition A.1) exhibits bounded global emissions (Definition A.2), then it has exactly one

Nash equilibrium, which is the unique emissions profile e satisfying

B′i(ei) = D′i(e) for all i = 1, . . . , n . (A.13)

Proof. First, observe that Condition A.6 implies that there are no Nash equilibria exist outside of B. Second,
using Folmer and von Mouche’s [3] theorem 5 (part 2), since the BCG with emissions restricted to B is a
uniformly distributed formal transboundary pollution game (see definitions 1 and 2 in Folmer and von
Mouche [3]), the BCG with emissions restricted to B has a unique Nash equilibrium, which we denote e ∈ B.
Lastly, we must show that e remains a Nash equilibrium, even when strategies are not restricted to e, i.e.,
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that a unilateral deviation from e by country i to an emissions level ei 6∈ [eli, e
u
i ] does not increase country

i’s payoff. This follows from the fact that

∂

∂ei
Πi(e) = 0 , (A.14)

(because ei = ei is the best response to e−i when ei is restricted to[eli, e
u
i ]), so from Equation (A.5b), ei = ei

is a global maximum of Πi(ei; e−i). Lastly, Equation (A.14) is manifestly equivalent to Equation (A.13).

A.3 The social optimum

Suppose that n countries are playing the BCG, and let Π be the global welfare, that is, the total payoffs
of all countries,

Π =

n∑
j=1

Πj .

An emissions profile ê that locally (resp. globally) maximizes the global welfare Π is a local (resp. global)
social optimum (SO).

If ê is a social optimum, then each country’s emissions êi (1 ≤ i ≤ n), maximizes global welfare when all
other countries’ emissions are fixed, that is,

∂

∂ei
Π (ê) =

∂

∂ei

n∑
j=1

Πj (ê) = B′i (êi)−
n∑
j=1

D′j (ê) = 0 .

It follows that
∂

∂ei
Πi (ê) = B′i (êi)−D′i (ê) > 0 ,

so each country has an incentive to increase its emissions at an SO, and hence an SO cannot be a Nash
equilibrium of the BCG. Moreover, if the BCG has Nash equilibria, then the total emissions at an SO must
be lower than at any Nash equilibrium. To see this, let e be a Nash equilibrium, and suppose in order to
derive a contradiction that ê ≥ e. Then êi ≥ ei for at least one country i (1 ≤ i ≤ n), which (from Equations
(A.3c) and (A.3d)) implies that

0 =
∂

∂ei
Π (ê) = B′i (êi)−

n∑
j=1

D′j (ê) < B′i (êi)−D′i (ê) ≤ B′i (ei)−D′i (e) = 0 ,

a contradiction.
A similar calculation shows that at a Nash equilibrium of the BCG, decreasing any country’s emissions

will increase global welfare:

∂

∂ei
Π (e) = B′i (ei)−

n∑
j=1

D′j (e) = −
∑

1≤j≤n
j 6=i

D′j (e) < 0 .

Proposition A.6. An emissions profile ê is a local SO iff ∇Π = 0, that is,

B′i (êi) =

n∑
j=1

D′j (ê) ,

for each country i (1 ≤ i ≤ n); moreover, there is at most one local SO, which is necessarily a global SO.
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Proof. An SO is a global minimum of −Π. The Hessian matrix of −Π is

∇2 (−Π) = −


∂2

∂e1∂e1
Π, . . . , ∂2

∂en∂e1
Π

...
...

∂2

∂e1∂en
Π, . . . , ∂2

∂en∂en
Π


=

−B
′′
1 (e1) +

∑n
j=1D

′′
j (e) , . . . ,

∑n
j=1D

′′
j (e)

...
...∑n

j=1D
′′
j (e) , . . . , −B′′n (en) +

∑n
j=1D

′′
j (e)

 .

It follows from Corollary D.2 that −∇2 Π is positive definite. Consequently, −Π is everywhere strictly
convex [4], which implies that if ê solves ∇Π = 0 then it is a global maximum of Π.

The BCG (Definition A.1) is not guaranteed to have an SO. However, a natural necessary and sufficient
condition guaranteeing the existence of an SO is that it is not in the global interest to increase or decrease one
(or some) country’s emissions without bound. Mathematically, this statement is equivalent to the existence
of a compact set K outside of which global welfare is lower than its maximum inside K, i.e., such that for
any e 6∈ K, Π(e) < maxK Π.

A.4 Characterization of local Pareto efficiency

In this section, we consider the n-country BCG (Definition A.1) and derive a necessary and sufficient condi-
tion2 for an emissions profile e being locally Pareto efficient, that is, no small deviation from it can increase
the payoffs of all countries.

Lemma A.7. An emissions profile e is locally Pareto efficient iff

n∑
i=1

D′i (e)

B′i (ei)
= 1 . (A.15)

It follows immediately from Lemmas A.5 and A.7 that the baseline emissions profile is not Pareto-efficient.

Proof of Lemma A.7. Suppose that e is locally Pareto efficient. We will show that Equation (A.15) holds at
e.

First, define the Lagrangian

L (e) =

n∑
i=1

λiΠi (e) .

By theorem 22.15 of Simon and Blume [4], if e is locally Pareto efficient, then there exist λi ≥ 0 (1 ≤ i ≤ n)
not all zero, such that

∇L =

n∑
i=1

λi∇Πi (e) = 0 . (A.16)

Because ∂
∂ej

Πi (e) = δi,jB
′
i (ei)−D′i (e), Equation (A.16) becomes(

λ1B
′
1 (e1)−

n∑
i=1

λiD
′
i (e) , . . . , λnB

′
n (ei)−

n∑
i=1

λiD
′
i (e)

)
= 0 ,

2Lemma A.7 is equivalent to Samuelson’s [5] condition, as applied to the BCG.
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or, setting λ = (λ1, . . . , λn)
T

,

0 =

B
′
1 (e1)−D′1 (e) , . . . , −D′n (e)

...
...

−D′1 (e) , . . . , B′n (en)−D′n (e)

λ

=

diag
(
B′1 (e1) , . . . , B′n (e1)

)
−

D
′
1 (e) , . . . , D′n (e)

...
...

D′1 (e) , . . . , D′n (e)


λ . (A.17)

Lemma D.3 then implies that when Equation (A.15) holds, the set of solutions of Equation (A.17) is

span
{(

1/B′1 (e1) , . . . , 1/B′n (e1)
)T}

; (A.18)

when Equation (A.15) does not hold, Equation (A.17) implies λi = 0 for all i = 1, . . . , n. Thus, Equation
(A.15) must hold at a local Pareto optimum.

Now suppose that Equation (A.15) holds at e. We will show that e is locally Pareto efficient. By theorem
22.17 of Simon and Blume [4], a sufficient condition for the local Pareto efficiency of an emissions profile e
is that there exist λi ≥ 0 (1 ≤ i ≤ n) not all zero, such that

(a) Equation (A.16) holds;

(b) for any vector v 6= 0 satisfying λi∇Πiv = 0 for all i = 1, . . . , n,

vT ∇2 Lv < 0 . (A.19)

We will check that these conditions hold.
We have already seen that Equation (A.15) implies that Equation (A.16) holds iff

λ ∈ span
{(

1/B′1 (e1) , . . . , 1/B′n (e1)
)T}

.

Since we are interested in non-negative Lagrange multipliers, we restrict attention to

λ ∈
{
λ
(
1/B′1 (e1) , . . . , 1/B′n (e1)

)T ∣∣∣ λ > 0
}
. (A.20)

Now, to verify that there exist nontrivial solutions of Equation (A.16) such that Condition A.19 is
satisfied. First, we find the set of vectors v 6= 0 satisfying λi∇Πiv = 0 for all i such that 1 ≤ i ≤ n. From
Equation (A.20), λi > 0 for i = 1, . . . , n, so we must find the kernel of∇Π1

...
∇Πn

 =


∂
∂e1

Π1, . . . , ∂
∂en

Π1

...
...

∂
∂e1

Πn, . . . , ∂
∂en

Πn

 =

B
′
1 (e1)−D′1 (e) , . . . , −D′n (e)

...
...

−D′1 (e) , . . . , B′n (en)−D′n (e)



=

diag
(
B′1 (e1) , . . . , B′n (e1)

)
−

D
′
1 (e) , . . . , D′n (e)

...
...

D′1 (e) , . . . , D′n (e)


 .

which, as we have seen, is given by Equation (A.18).
Observe that

∇2 L =

λ1B
′′
1 (e1)−∑n

i=1 λiD
′′
i (e) , . . . , −∑n

i=1 λiD
′′
i (e)

...
...

−∑n
i=1 λiD

′′
i (e) , . . . , λnB

′′
n (en)−∑n

i=1 λiD
′′
i (e)


=

diag
(
λ1B

′′
1 (e1) , . . . , λnB

′′
n (e1)

)
−
(

n∑
i=1

λiD
′′
i (e)

)1, . . . , 1
...

...
1, . . . , 1


 ,
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and hence,

vT ∇2 Lv = vT diag
(
λ1B

′′
1 (e1) , . . . , λnB

′′
n (e1)

)
v −

(
n∑
i=1

λiD
′′
i (e)

)
vT

1, . . . , 1
...

...
1, . . . , 1

v
=

n∑
i=1

λiB
′′
i (ei) v

2
i −

(
n∑
i=1

λiD
′′
i (e)

)(
n∑
i=1

vi

)2

.

Because λi > 0 B′′i < 0 and D′′i > 0 for all i = 1, . . . , n, it follows that for all v 6= 0,

vT ∇2 Lv ≤
n∑
i=1

λiB
′′
i (ei) v

2
i < 0 .

Condition A.19 therefore holds on the subspace of vectors given in Equation (A.18), which completes our
proof3.

A.5 Comparison of Pareto-efficient and socially optimal emissions profiles

Lemma A.8 establishes that a locally Pareto-efficient emissions profile is almost never socially optimal (unless
all countries’ marginal benefits are equal). Moreover, at a locally Pareto-efficient emissions profile that is
not socially optimal (SO) a country whose marginal benefits are higher (resp. lower) than all others’ emits
less (more) than is socially optimal.

Lemma A.8 (Pareto-efficiency vs. social optimality). Consider n countries play the BCG (Definition A.1),
and let e be a locally Pareto-efficient emissions profile. Then, e is also SO iff all countries’ marginal benefits
at e are equal.

Moreover, suppose that an SO, ê, exists and is distinct from the Pareto-efficient profile e. If iM is
a country whose marginal benefit at e is maximal among all countries (i.e., B′iM (eiM) ≥ B′i (ei) for all
i = 1, . . . , n), then it emits more at the SO than at e, êiM > eiM ; similarly, if B′im (eim) ≤ B′i (ei) for all
i = 1, . . . , n, then êim < eim .

Proof. At a locally Pareto-efficient emissions profile e, Lemma A.7 implies that

B′j (ej) =

n∑
i=1

B′j (ej)

B′i (ei)
D′i (e) , (A.21)

so for any country j (1 ≤ j ≤ n),

∂

∂ej
Π (e) = B′j (ej)−

n∑
i=1

D′i (e) =

n∑
i=1

(
B′j (ej)

B′i (ei)
− 1

)
D′i (e) . (A.22)

If all countries’ marginal benefits at the Pareto-efficient emissions profile e are equal, then Equation (A.22)
gives ∇Π (e) = 0, so by Proposition A.6, it is SO.

If not all marginal benefits are equal at the Pareto-efficient emissions profile e, let im be a country with
the minimal marginal benefits at e, that is,

im ∈ arg min
1≤i≤n

{B′i (ei)} .

Then, for any country i (1 ≤ i ≤ n), B′im (eim) /B′i (ei) ≤ 1 with a strict inequality for at least one country.

Since D′i (e) > 0 (1 ≤ i ≤ n), it follows that ∂
∂eim

Π (e) < 0, and hence e is not socially optimal.

Now, let the country cost and benefit functions be such that an SO emissions profile ê exists, and that
it is distinct from the Pareto-efficient emissions profile e. From our proof thus far, we know that not all

3Because we show below that ∇2 L is negative definite, we actually do not need to restrict the space of v’s we consider in
Condition A.19.
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countries’ marginal benefits at the SPE emissions profile are equal. Letting iM be a country with maximal
marginal benefits at the Pareto-efficient emissions profile e, that is,

iM ∈ arg max
1≤i≤n

{B′i (ei)} ,

(similarly to im above), we have im 6= iM. In the remainder of this proof, we consider the emissions of these
two countries, im and iM.

Observe that Proposition A.6 implies that for any country j = 1, . . . , n, at the SO we have

B′j (êj) =

n∑
i=1

D′i (ê) .

Hence, from Equation (A.21), for any country j, we have

B′j (ej)−B′j (êj) =

n∑
i=1

[
B′j (ej)

B′i (ei)
D′i (e)−D′i (ê)

]
. (A.23)

Suppose, in order to derive a contradiction, that country im’s emissions at the SO are no less than at the
Pareto-efficient emissions profile, i.e., êim ≥ eim . Then for any i = 1, . . . , n, we have

B′i (ei) ≥ B′im (eim) ≥ B′im (êim) = B′i (êi) ,

(B′i (ei) decreases in ei; see Equation (A.3c)). Thus, êi ≥ ei for all i = 1, . . . , n, and the inequality must be
strict for at least one country (because we assume that e is not SO), so ê > e. Then, Equation (A.23) gives

B′im (eim)−B′im (êim) =

n∑
i=1

[
B′im (eim)

B′i (ei)
D′i (e)−D′i (ê)

]
≤

n∑
i=1

[
B′im (eim)

B′i (ei)
− 1

]
D′i (e) < 0 ,

where the rightmost inequality follows because B′im (eim) ≤ B′i (ei) for all i = 1, . . . , n with a strict inequality
for i = iM. Hence B′im (eim) < B′im (êim), so that eim > êim , a contradiction. Thus, eim > êim must hold.

Similarly, suppose that eiM ≥ êiM . Then for any i = 1, . . . , n, we have

B′i (ei) ≤ B′iM (eiM) ≤ B′iM (êiM) = B′i (êi) ,

which implies that ei ≥ êi, so that e > ê and hence D′i (ê) < D′i (e). Then Equation (A.23) gives

B′j (ej)−B′j (êj) >

n∑
i=1

[
B′j (ej)

B′i (ei)
− 1

]
D′i (e) ,

and consequently, for iM,
B′iM (eiM) > B′iM (êiM) ,

so êiM > eiM , contradicting our assumption. Thus, êiM > eiM holds.

A.6 The Matching Climate Game

We define the Matching Climate Game for n countries:

Definition A.9. Suppose that n countries have payoffs Πi (ı = 1, . . . , n) determined by their own emissions
(ei) and the emissions of all other countries e−i) as follows:

Πi(ei, e−i) = Bi(ei)−Di (e) , for all i = 1, . . . , n . (A.24)

Suppose in addition that benefits and damages are decelerating and accelerating functions of emissions (Equa-
tion (A.3)) and that global emissions are bounded (Definition A.2). Let the baseline emissions profile e be
the unique Nash equilibrium emissions profile (guaranteed by Lemma A.5).

We say that the countries are playing the Matching Climate Game (MCG) if

10



• the countries play the following two stage game:

Stage I: Countries simultaneously and non-cooperatively choose their (non-negative) matching
factors, mi,j ≥ 0, to which they are subsequently committed.

Stage II: Countries simultaneously and non-cooperatively choose their unconditional abatement
levels, ai, with full knowledge of the matching factors chosen in stage I.

• country i’s payoff is given by
Πi = Bi (ei −Ai)−Di (e−A) , (A.25)

where each country’s abatement Ai is given by

Ai = ai +
∑

1≤j≤n
j 6=i

mi,jaj , (A.26)

e =
∑n
i=1 ei are the total baseline emissions and A =

∑n
i=1Ai is total abatement.

Some additional notation is convenient in the n-country setting. Letting mi,i = 1 for all i = 1, . . . , n, we
have

Ai =

n∑
j=1

mi,jaj .

We also denote the vector of unconditional abatements by a, the vector of the nonfocal (i.e., other)
countries’ unconditional abatements by a−i = (a1, . . . , ai−1, ai+1, . . . , an) and the vector of the factors
at which the focal country i matches the unconditional abatements of the nonfocal countries by mp

−i =
(mi,1, . . . ,mi,i−1,mi,i+1, . . . ,mi,n) (the superscript “p” indicates that i performs this matching). For i =
1, . . . , n, let the total matching received by country i be

mr
i =

∑
1≤j≤n
j 6=i

mj,i ,

(the superscript “r” indicates that i is the recipient of this matching).
It is in general possible that a given choice of matching factors in the MCG’s stage I can incentivize some

country to abate infinitely, and hence the MCG’s stage-II best-response functions may not be well-defined.
Proposition A.10 gives necessary and sufficient conditions guaranteeing the existence of well-defined best-
response functions for stage II of the MCG for any choice of matching factors mi,j ≥ 0 (i, j = 1, . . . , n,
i 6= j). Because this condition guarantees that no matching factors can incentivize infinite abatement (see
Equation (A.31) below), we call this condition bounded abatement with matching (BAM).

Proposition A.10 (The MCG’s stage-II best-response functions are well defined iff the BAM condition
holds). Suppose that n countries are parties to an MCG. The countries’ stage-II best-response functions are
well defined for all a−i ∈ Rn−1≥0 , given any mi,j ≥ 0 and mj,i ≥ 0 (j = 1, . . . , i, i + 1, . . . , n), iff for each
i = 1, . . . , n either

lim
e→−∞

B′i (e) =∞ , (A.27a)

or
lim

e→−∞
D′i (e) = 0 . (A.27b)

Proof. Fix a focal country i and note that

∂

∂ai
Πi = −B′i

(
ei − ai −mp

−ia−i
)

+ (1 +mr
i)D

′
i

(
e−

n∑
k=1

(1 +mr
k)ak

)
, (A.28)

and

∂2

∂ai2
Πi = B′′i

(
ei − ai −mp

−ia−i
)
− (1 +mr

i)
2D′′i

(
e−

n∑
k=1

(1 +mr
k)ak

)
< 0 . (A.29)
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Let mi,j ≥ 0, mj,i ≥ 0 (j = 1, . . . , i− 1, i+ 1, . . . , n) and a−i ∈ Rn−1≥0 . If

∂

∂ai
Πi

∣∣∣∣
ai=0

= −B′i
(
ei −mp

−ia−i
)

+ (1 +mr
i)D

′
i

e− ∑
1≤j≤n
j 6=i

(1 +mr
j)aj

 ≤ 0 ,

then Equation (A.29) implies that ∂
∂ai

Πi decreases with ai, so country i’s best-response to a−i, given mi,j

and mj,i (j = 1, . . . , i, i+ 1, . . . , n), is 0. Suppose then that

∂

∂ai
Πi

∣∣∣∣
ai=0

> 0 ,

(note that this holds for any fixed mp
−i ≥ 0 and a−i ≥ 0 if the matching received by i, mr

i, is sufficiently

large). Because ∂
∂ai

Πi decreases with ai, (Equation (A.29)), the limit limai→∞
∂
∂ai

Πi exists and

lim
ai→∞

∂

∂ai
Πi ∈ [−∞,+∞) .

It follows that if

lim
ai→∞

∂

∂ai
Πi > 0 ,

then Πi increases for all ai, and country i’s best-response to so country i’s best-response to a−i, given mi,j

and mj,i (j = 1, . . . , i, i+ 1, . . . , n), is unbounded, and thus undefined. Conversely, if

lim
ai→∞

∂

∂ai
Πi < 0 ,

then there exists a unique ai satisfying ∂
∂ai

Πi = 0; Πi is maximal at this ai, and hence country i’s best-
response to a−i, given mi,j and mj,i (j = 1, . . . , i, i+ 1, . . . , n), is well-defined and equal to ai.

To summarize what we have learned so far: Let a−i ∈ Rn−1≥0 , mi,j ≥ 0 and mj,i ≥ 0 (j = 1, . . . , i, i +
1, . . . , n).

• If

lim
ai→∞

∂

∂ai
Πi > 0 , (A.30)

that is, if mi,j ≥ 0 and mj,i ≥ 0 (j = 1, . . . , i, i+ 1, . . . , n) incentivize country i to abate infinitely, then
country i’s best-response to a−i, given mi,j and mj,i (j = 1, . . . , i, i+ 1, . . . , n), is undefined.

• If

lim
ai→∞

∂

∂ai
Πi < 0 , (A.31)

then country i’s best-response to a−i, given mi,j and mj,i (j = 1, . . . , i, i+ 1, . . . , n), is well-defined.

Now, observe that D′′i > 0, so D′i (e− a) decreases with a and is positive, and hence has a non-negative
limit,

lim
a→∞

D′i (ei − a) = lim
e→−∞

D′i (e) = δ− ∈ [0,∞) .

Similarly, since B′′i < 0 and B′i > 0

lim
a→∞

B′i (ei − a) = lim
e→−∞

B′i (e) = β− ∈ (0,∞] ,
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(β− = 0 is impossible because B′′i (ei − a) > 0 and increases with a). If β− =∞ then Equation (A.28) gives

lim
ai→∞

∂

∂ai
Πi = −∞ ,

and hence country i’s best-response is well defined for all a−i, mi,j and mj,i (j = 1, . . . , i, i+ 1, . . . , n).
If β− ∈ (0,∞) then Equation (A.28) gives

lim
ai→∞

∂

∂ai
Πi = (1 +mr

i)δ− − β− ,

and hence for any β− ∈ (0,∞) and δ− > 0, there exists mr
i large enough that

lim
ai→∞

∂

∂ai
Πi > 0 .

Thus, if β− ∈ (0,∞), country i’s best-response is well defined for all a−i, mi,j and mj,i (j = 1, . . . , i, i +
1, . . . , n), iff δ− = 0.

We have thus proved that country i’s stage-II best-response to a−i is well defined for all mi,j and mj,i

(j = 1, . . . , i, i+ 1, . . . , n), iff either
lim

e→−∞
B′i (e) =∞ , (A.32a)

or
lim

e→−∞
D′i (e) = 0 ; (A.32b)

if neither of these conditions are met then there are values of a−i, mi,j and mj,i (j = 1, . . . , i, i+ 1, . . . , n),
for which country i’s best-response is unbounded. Equation (A.32) means that at the limit of negative
unbounded emissions (or infinite abatement), either the marginal benefit of emissions is infinite, or the
marginal damage of emissions vanishes.

B Analysis of the matching climate game for two countries

B.1 Stage-II equilibria: choosing unconditional abatement levels

In stage II of the MCG, countries choose their unconditional emissions abatements (relative to their baseline
emissions, ei), given matching factors that were chosen in stage I, and country i’s payoff is then

Πi = Bi (ei −Ai)−Di (e−A) .

To find the best-response functions for the two countries, observe that if country j’s unconditional
abatement is aj , country i’s best-response is defined by

Ri(m1,m2; aj) = arg max
ai≥0

{
Πi

}
= arg max

ai≥0

{
Bi (ei −Ai)−Di (e−A)

}
. (B.33)

In Appendix A.6 we show that under the assumptions of the BCG (Definition A.1) the stage-II best-response
functions are well-defined and bounded iff for each country i = 1, 2

lim
e→−∞

B′i (e) =∞ , (B.34a)

or
lim

e→−∞
D′i (e) = 0 . (B.34b)

Because an unbounded best-response is unrealistic, we henceforth assume that one of these conditions holds
(for each country i = 1, 2).

Given matching factors m1 and m2, solutions of

a1 = R1(m1,m2; a2) , (B.35a)

a2 = R2(m1,m2; a1) , (B.35b)

constitute the set of Nash equilibria for the second stage of the game.
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B.1.1 Best-response functions

Under our assumptions, the best-response functions are well-defined (Appendix A.6). Since the expected
payoffs are differentiable, country i’s best-response to m1 ≥ 0, m2 ≥ 0 and aj , ai = Ri(m1,m2; aj), is either
on the boundary (ai = 0) or (using Equation (A.25)) satisfies4

∂

∂ai
Πi = −B′i (ei −Ai) + (1 +mj)D

′
i (e−A) = 0 . (B.36)

The following lemmas (proved in Appendices C.1 and C.2) characterize the best-response functions.

Lemma B.1 (Characterization of the best-response functions). If mj = 0, then country i’s best-response is
to abate nothing unconditionally, regardless of country j’s unconditional abatement, Ri(m1,m2; aj) ≡ 0.

If mj > 0 then Ri(m1,m2; aj) intercepts the aj axis at a unique point ainti,j (m1,m2) > 0 such that

Ri(m1,m2; aj) > 0 for all aj satisfying 0 ≤ aj < ainti,j , and Ri(m1,m2; aj) = 0 for all aj ≥ ainti,j . Moreover,

ainti,j is the unique solution of

∂

∂ai
Πi

∣∣∣∣
ai=0

= −B′i(ei −miaj) + (1 +mj)D
′
i (e− (1 +mi)aj) = 0 . (B.37)

Lemma B.2 (Continuity and derivatives of the best-response functions). Ri(m1,m2; aj) is continuous in
its arguments, m1, m2 and aj.

Moreover, if ~p = (m1,m2, aj) ∈ R3
≥0 satisfies Ri(~p) ≥ 0, then5

∂

∂aj
Ri(m1,m2; aj) = −miB

′′
i (ei −Ai)− (1 +mi) (1 +mj)D

′′
i (e−A)

B′′i (ei −Ai)− (1 +mj)
2
D′′i (e−A)

∣∣∣∣∣
ai=Ri(m1,m2;aj)

< 0 , (B.38a)

∂

∂mi
Ri(m1,m2; aj) = −aj

B′′i (ei −Ai)− (1 +mj)D
′′
i (e−A)

B′′i (ei −Ai)− (1 +mj)
2
D′′i (e−A)

∣∣∣∣∣
ai=Ri(m1,m2;aj)

< 0 , (B.38b)

∂

∂mj
Ri(m1,m2; aj) = −D

′
i (e−A)− (1 +mj)D

′′
i (e−A) ai

B′′i (ei −Ai)− (1 +mj)
2
D′′i (e−A)

∣∣∣∣∣
ai=Ri(m1,m2;aj)

. (B.38c)

In particular, wherever country i’s best-response function does not vanish, it is decreasing in country j’s
unconditional abatement.

Remark B.3 (Country i’s stage-II best-response when country j does not abate unconditionally). If mj > 0,
Ri(m1,m2; aj) decreases for aj ∈ [0, ainti,j ], and Ri(m1,m2; ainti,j ) = 0, so Ri(m1,m2; aj) intercepts the ai-axis

at a positive height ainti,i (m1,m2) = Ri(m1,m2; 0) > 0. Using Equation (B.36), ainti,i is the unique solution of

∂

∂ai
Πi

∣∣∣∣
aj=0

= −B′i (ei − ai) + (1 +mj)D
′
i (e− (1 +mj)ai) = 0 . (B.39)

Figure B.1 schematically illustrates the intercepts of country i’s stage-II best-response function Ri with
the unconditional abatement axes, ainti,i and ainti,j .

The following observations will also be of use:

Remark B.4 (Country i’s stage-II best response function when country j does not match). If mj = 0,
Ri(m1,m2; aj) ≡ 0 (Lemma B.1), so the intercept of Ri with the ai axis is ainti,i = 0. Note that even when

mj = 0, ainti,i = 0 is the unique solution of Equation (B.39).

In this case, we also let ainti,j = 0, so that (similar to the case when mj > 0), Ri(m1,m2; aj) = 0 for all

aj ≥ ainti,j .

Remark B.5. If m1 > 0 or m2 > 0, then (ainti,i , 0) is a Nash equilibrium iff ainti,i ≥ aintj,i (i, j ∈ {1, 2}, j 6= i).

4Since ∂
∂ai

Ai = 1 and, A = A1 +A2 = (1 +mi)aj + (1 +mj)ai, so ∂
∂ai

A = 1 +mj .
5In Equation (B.38), if ~p = (m1,m2, aj) ∈ ∂ R3

≥0, some of the derivatives are interpreted as right-hand derivatives.
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Figure B.1: Schematic illustration of the intercepts of the matching climate game’s (MCG) stage-II best-
response functions with the unconditional abatement axes. For a given pair of matching factors, (m1,m2),
country i’s stage-II best-response function Ri intercepts the aj axis at ainti,j , which is implicitly defined by

Equation (B.37), and intercepts the ai axis at ainti,i = Ri(m1,m2; 0), which is implicitly defined by Equation
(B.39).
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Fixing matching factors mi > 0 (i = 1, 2), it is convenient to analyze the vertical distance between the
two best-response functions in the a1–a2 plane,

∆R(m1,m2; a1) = R2(m1,m2; a1)−R−11 (m1,m2; a1) ,

(since Nash equilibria are intersections of the best-response functions; see Equation (B.35)). The following
proposition, proved in Appendix C.3, gives the slope of ∆R(m1,m2; a1) as a function of a1.

Proposition B.6 (Slope of the best-response difference for fixed matching factors). If mi > 0 for i = 1, 2,
then ∆R(m1,m2; a1) is continuously differentiable with respect to a1 for all a1 ∈ (0,min{aint1,1, a

int
2,1}), and

∂

∂a1
∆R(m1,m2; a1) =

∂

∂a1
R2(m1,m2; a1)− ∂

∂a1
R−11 (m1,m2; a1) ,

= −m2B
′′
2 (e2 −A2)− (1 +m2) (1 +m1)D′′2 (e−A)

B′′2 (e2 −A2)− (1 +m1)
2
D′′2 (e−A)

∣∣∣∣∣
a2=R2(m1,m2;a1)

+
B′′1 (e1 −A1)− (1 +m2)

2
D′′1 (e−A)

m1B′′1 (e1 −A1)− (1 +m1) (1 +m2)D′′1 (e−A)

∣∣∣∣∣
a2=R−1

1 (m1,m2;a1)

.

In particular, if an interior Nash equilibrium (a∗1, a
∗
2) exists, then

∂

∂a1
∆R(m1,m2; a∗1) =

(
1−m1m2

)[
(1 +m1)

2
D′′2 (e−A)−B′′2 (e2 −A2)

][
(1 +m1) (1 +m2)D′′1 (e−A)−m1B′′1 (e1 −A1)

]
×
[
B′′1 (e1 −A1)B′′2 (e2 −A2)− (1 +m1)B′′1 (e1 −A1)D′′2 (e−A)

− (1 +m2)B′′2 (e2 −A2)D′′1 (e−A)
]

(B.40)

where A1, A2 and A are evaluated at the Nash equilibrium (a∗1, a
∗
2). All the terms in square brackets are

positive, so ∂
∂a1

∆R(m1,m2; a∗1) is positive if m1m2 < 1, negative if m1m2 > 1 and vanishes if m1m2 = 1.

For equilibria (a∗i , a
∗
j ) = (ainti,i , 0), such that ainti,i = aintj,i , analogues of Equation (B.40) hold, where the

derivative is replaced with an appropriate one-sided derivative.

B.1.2 Nash equilibria when no interior Nash equilibrium exists

When no interior Nash equilibria exist, the only possible equilibria are ones in which at least one country does
not abate unconditionally. We refer to equilibria on the a1- or a2- axes excluding (0, 0) as edge equilibria,
because they are on the edges of the set of possible strategy combinations in the second stage of the game,
{(a1, a2) | ai ≥ 0 for i = 1, 2} . The strategy profile (a∗i , a

∗
j ) = (0, 0) results in the baseline emissions profile

e, and hence will also be referred to as the baseline emissions profile.
Finding the Nash equilibria is particularly simple when one or both countries’ best-response functions

are identically 0: there will be no interior Nash equilibria; either both countries do not abate, or one
country induces the other to abate unconditionally (but does not itself abate unconditionally). The next
two propositions, proved in Appendices C.4.1 and C.4.2, formally characterize these two possibilities.

Proposition B.7 (The baseline scenario). (a∗i , a
∗
j ) = (0, 0) is a Nash equilibria iff m1 = m2 = 0.

When mi = 0 and mj > 0, then country j’s best-response is identically 0, but country i’s is not, so the
unique Nash equilibrium is one in which only country i abates unconditionally:

Proposition B.8 (If one country will not match, the other will not abate unconditionally). If mi = 0 and
mj > 0, then the unique Nash equilibrium is (a∗i , a

∗
j ) = (ainti,i , 0).

Proposition B.9 (proved in Appendix C.4.3) lists the possibilities in the more complicated situation in
which both countries match (so neither country’s best-response function is identically 0), but no interior
equilibria exist. In this case, either one country can induce the other to abate unconditionally alone, or the
two countries play a game of “chicken” as regards their unconditional abatements (the latter is only possible
when m1m2 > 1).
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Proposition B.9 (Nash equilibria when both countries match, but no interior equilibrium exists). Let
mi > 0 for i = 1, 2 such that there are no interior Nash equilibria. Then,

if m1m2 < 1: If aint1,1 ≥ aint2,1 (or equivalently, aint1,2 > aint2,2) then the unique Nash equilibrium is (a∗1, a
∗
2) =

(aint1,1, 0); otherwise, aint2,1 > aint1,1, aint2,2 ≥ aint1,2, and the unique Nash equilibrium is (a∗1, a
∗
2) = (0, aint2,2);

if m1m2 = 1: If aint1,1 > aint2,1 (or equivalently, aint1,2 > aint2,2) then the unique Nash equilibrium is (a∗1, a
∗
2) =

(aint1,1, 0); otherwise, aint2,1 > aint1,1, aint2,2 > aint1,2, and the unique Nash equilibrium is (a∗1, a
∗
2) = (0, aint2,2);

if m1m2 > 1: Either one or two (edge) Nash equilibria exist.

• If aint1,2 > aint2,2 then aint1,1 > aint2,1 and the unique Nash equilibrium is (a∗1, a
∗
2) = (aint1,1, 0);

• If aint2,1 > aint1,1 then aint2,2 > aint1,2 and the unique Nash equilibrium is (a∗1, a
∗
2) = (0, aint2,2);

• Both (aint1,1, 0) and (0, aint2,2) are Nash equilibria iff either{
aint1,1 > aint2,1 ,

aint2,2 = aint1,2 ,
or

{
aint1,1 = aint2,1 ,

aint2,2 > aint1,2 .

B.1.3 Nash equilibria when matching factors are not reciprocal and an interior equilibrium
exists

The following proposition, proved in Appendix C.5, shows that if m1m2 6= 1 and there exists an interior
Nash equilibrium, then it is either the only Nash equilibrium, or there are two additional edge equilibria.

Proposition B.10 (Nash equilibria when m1m2 6= 1 and an interior equilibrium exists). If m1m2 6= 1 and
an interior Nash equilibrium (a∗1, a

∗
2) exists, then:

If m1m2 > 1 then the set of Nash equilibria is{
(aint1,1, 0), (0, aint2,2), (a∗1, a

∗
2)
}
.

Moreover, aint1,1 > aint2,1 and aint2,2 > aint1,2.

If m1m2 < 1 then (a∗1, a
∗
2) is the unique Nash equilibrium. Moreover, aint2,1 > aint1,1 and aint1,2 > aint2,2.

B.1.4 Equilibrium abatements with reciprocal matching factors

Let Mr be the set of reciprocal matching factors,

Mr =
{

(m1,m2)
∣∣mi > 0 for i = 1, 2 , and m1m2 = 1

}
.

We will show that

• there is a unique pair of reciprocal matching factors (mc
1,m

c
2) ∈Mr for which a continuum of interior

Nash equilibria in unconditional abatements exists. For (m1,m2) = (mc
1,m

c
2), each country’s total

abatement is constant over the set of equilibrium unconditional abatements, so while unconditional
abatements at equilibrium are indeterminate the equilibrium payoffs are uniquely defined.

• for all (m1, 1/m1) ∈ Mr (m1 > 0) such that m1 6= mc
1, the unique Nash equilibrium is an edge

equilibrium. In particular,

– if 0 < m1 < mc
1, the unique Nash equilibrium is (a∗1, a

∗
2) =

(
aint1,1, 0

)
;

– if m1 > mc
1, the unique Nash equilibrium is (a∗1, a

∗
2) =

(
0, aint2,2

)
.

Our claims are justified in the following sequence of lemmas (proved in Appendix C.6):
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Lemma B.11 (Best-responses for reciprocal matching factors). If (m1,m2) ∈ Mr, then ainti,i > 0, ainti,j > 0
and

Ri(m1,m2; aj) =

{
−miaj + ainti,i if 0 ≤ aj ≤ ainti,j ,
0 if aj > ainti,j .

(B.41)

In particular, ainti,i = mia
int
i,j . Moreover, Ri(m1,m2; aj) is injective for 0 ≤ aj ≤ ainti,j , and thus possesses an

inverse in the range 0 ≤ ai ≤ ainti,i ,

R−1i (m1,m2; ai) = −mjai + ainti,j .

Thus, R−1j (m1,m2; aj) is parallel to country i’s best-response function Ri(m1,m2; aj) in the interior of
the quadrant of positive unconditional abatements,. There are then two possible cases:

• Ri(m1,m2; aj) > R−1j (m1,m2; aj) for all aj ∈
[
0,min

{
ainti,j , a

int
j,j

} ]
for (i, j) = (1, 2) or (2, 1): In this

case, country i’s best-response function is always above country j’s in the interior of that quadrant.
Then, the unique Nash equilibrium is the edge equilibrium (a∗i , a

∗
j ) =

(
ainti,i , 0

)
.

• The two best-response functions overlap in the interior of that quadrant. In this case, for any a1 ∈
[0, aint1,1], (a∗1, a

∗
2) =

(
a1,R2(m1,m2; a1)

)
is a Nash equilibrium, that is, the equilibrium unconditional

abatements are indeterminate.

The next two lemmas show that there exists a unique pair of matching factors (m1,m2) ∈Mr for which
there are interior Nash equilibria in unconditional abatements:

Lemma B.12 (Uniqueness of reciprocal matching factors yielding interior Nash equilibria). If (m1,m2) ∈
Mr,

• ∆R(m1,m2; a1) is constant for all a1 ∈ [0,min(aint1,1, a
int
2,1)] and thus can be written as ∆R (m1);

• if ∆R (m1) = 0 then d
dm1

∆R (m1) > 0.

Thus, there is at most a unique pair of reciprocal matching factors (mc
1,m

c
2) ∈Mr for which the two country’s

best-response functions overlap in the interior of the quadrant of positive unconditional abatements.

Lemma B.13 (Existence of reciprocal matching factors yielding interior Nash equilibria). There exists a
pair of matching factors, (mc

1,m
c
2) ∈ Mr such the best-response functions overlap in the interior of the

quadrant of positive unconditional abatements.

Lemma B.14 combines the results of the previous lemmas with characterizations of the reciprocal matching
factors for which there is a continuum of Nash equilibria, and of the set of Nash equilibria.

Lemma B.14 (Characterization of Nash equilibria for reciprocal matching factors). There are unique m > 0
and a > 0 satisfying

B′1 (e1 − a) = (1 +m)D′1
(
e− (1 +m)a

)
, (B.42a)

mB′2 (e2 −ma) = (1 +m)D′2
(
e− (1 +m)a

)
. (B.42b)

Then, letting (mc
1,m

c
2) = (1/m,m), we have (mc

1,m
c
2) ∈ Mr. Moreover, for any pair of reciprocal

matching factors (m1,m2) ∈Mr,

• if 0 < m1 < mc
1 the unique Nash equilibrium is (a∗1, a

∗
2) =

(
aint1,1, 0

)
;

• if m1 > mc
1, the unique Nash equilibrium is (a∗1, a

∗
2) =

(
0, aint2,2

)
;

• if m1 = mc
1, the set of Nash equilibria are{(

a1,R2(m1,m2; a1)
) ∣∣∣ a1 ∈ [0, aint1,1

] }
;

on this set of Nash equilibria, the countries’ abatements remain constant and equal to A1 = a and
A2 = ma.
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Figure 3 consolidates the results of this appendix (Appendix B.1) about the existence of stage-II equilibria
for each pair of matching factors, dividing the set of non-negative matching factors R2

≥0 into regions in which
the stage-II best-response functions behave differently. In Appendix C.7, we justify Figure 3 by showing that
for a given mj ≥ 0, the equation

ainti,i (m1,m2) = aintj,i (m1,m2) , (B.43)

can be solved to give the matching factor mi = φi(mj) at which the intercepts of R1 and R2 with the ai
axis are equal. Moreover, we show that the stage-II delimiter curves φi (i = 1, 2) are differentiable,
increasing, unbounded, and have the following properties:

• these curves intersect only at m1 = m2 = 0 and at (mc
1,m

c
2);

• the curve φ−11 (m1) is above (resp. below) φ2(m1) in the region m1m2 < 1(> 1);

• for any (mi,mj) 6= (0, 0), (a∗i , a
∗
j ) = (ainti,i , 0) is a stage-II Nash equilibrium iff mi ≤ φi(mj).

Remark B.15 (On Boadway et al.’s [1] argument identifying the SPE matching factors). Boadway et al.’s
proof of their Proposition 1 (on the existence and uniqueness of an SPE) relies on the assertion that there
is a unique pair of reciprocal matching factors (i.e., satisfying m1m2 = 1) such that the two stage-II best-
response functions overlap in the quadrant of positive unconditional abatements (similar to the conclusions
of Lemmas B.12 and B.13).

Boadway et al.’s [1] argument for the uniqueness of such matching factors (in footnote 5 on page 356)
is as follows: if (m1,m2) are reciprocal, and such that the two best-response functions overlap for positive
unconditional abatements, then a small increase in country 1’s matching factor, from m1 to m′1, (without
changing country 2’s matching factor) causes country 2’s stage-II best-response function to be everywhere
above country 1’s; a subsequent decrease in country 2’s matching factor (keeping country 1’s matching factor
at its new value, m′1) has the same effect. Consequently, the stage-II best response functions do not overlap for
positive unconditional abatements when m′2 = 1/m′1 and m′1 > m1 (an analogous claim holds for m′1 < m1).

In justifying this argument, Boadway et al. infer whether one of the best-response functions is above the
other in the quadrant of positive unconditional abatements from their intersections with the a1-axis. This
is manifestly valid when matching factors are reciprocal, because the stage-II best-response functions are
parallel for positive unconditional abatements. But when (m′1,m2) are played, m′1m2 6= 1, so the stage-
II best-response functions need not be parallel, and two additional assertions are needed to complete this
argument:

1. When the countries’ matching factors are (m′1,m2) the two countries’ stage-II best-response functions
do not intersect in the quadrant of positive unconditional abatements. This is justified in the second
paragraph of page 366 of Boadway et al. [1] (though not referred to in footnote 5).

2. The stage-II best-response functions are continuous (which Boadway et al. implicitly assumed). Our
Proposition A.10 and Lemma B.2 establish that this is indeed true iff the BAM condition holds.

Along with these assertions, Boadway et al.’s [1] argument establishes the uniqueness of a pair of reciprocal
matching factors for which the two stage-II best-response functions overlap; however the existence of such
matching factors does not follow from this argument. In order to do so, an argument similar to the proof of
Lemma B.13 can be used.

B.2 Stage-I equilibria: choosing matching factors

For any pair of matching factors, each choice of Nash equilibria in the second stage defines the two players’
payoffs for these matching factors; however, for matching factors mi (i = 1, 2) that yield multiple Nash
equilibria in stage II, each choice of equilibrium may yield a different payoff. From Appendix B.1, we know
that for a given pair of matching factors, mi (i = 1, 2), there are either one, two , three or a continuum of
Nash equilibria in unconditional abatements. Thus, infinitely many possible combinations of Nash equilibria
in stage II give rise to infinitely many possible payoff functions for stage I, even when we assume equilibrium
play in stage II.

Conveniently, when equilibrium play in stage II is assumed, the pair of matching factors for which a con-
tinuum of equilibria exists in stage II, (mc

1,m
c
2), has uniquely defined payoffs: we observed (in Lemma B.14)
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that when a continuum of Nash equilibria exists, the countries’ abatements are constant over the set of equi-
librium unconditional abatement levels, and thus the total abatement is also constant over this set. Since the
payoff functions depend only on the two countries’ abatements (rather than their unconditional abatements),
if a continuum of equilibria exists, the countries’ expected payoffs are constant over the set of equilibrium
unconditional abatements. Thus, when a continuum of equilibria exists, the second-stage equilibrium payoffs
of the two countries are well-defined and given by Equation (A.25) (evaluated at any of the equilibria).

Consequently, any pair of matching factors m1,m2 ≥ 0 yields either one, two or three possible equilibrium
payoffs (assuming equilibrium play in stage II):

• three payoffs are possible in stage I for all m1, m2 yielding an interior Nash equilibrium and two edge
equilibria in stage II;

• two payoffs are possible in stage I for all m1, m2 yielding two edge equilibria (and no interior equilib-
rium) in stage II;

• otherwise, the stage I payoff is uniquely defined.

Let A be the set of stage-II equilibrium choices, that is, pairs of functions, ai (m1,m2) : R2
≥0 → R

such that for any pair of matching factors, (m1,m2) ∈ R2
≥0, if (m1,m2) are played in stage I then(

a1 (m1,m2) , a2 (m1,m2)
)
,

is a Nash equilibrium in stage II. Any such stage-II equilibrium choice
(
a1 (m1,m2) , a2 (m1,m2)

)
∈ A defines

a continuous-strategy 2-player game in stage I by setting (with slight abuse of notation)

Πi(m1,m2) = Πi

(
m1,m2, a1 (m1,m2) , a2 (m1,m2)

)
. (B.44)

Letting Emult be the set of matching factors for which there are multiple equilibria, we note that (mc
1,m

c
2) ∈

Emult, and for (mc
1,m

c
2) there are infinitely many possible Nash equilibria in stage II. Thus, there are infinitely

pairs of functions ai (m1,m2) (i = 1, 2) in A. Moreover, in Appendix C.8 we show that there are infinitely
many pairs of matching factors yielding multiple stage-II equilibria, and for which different stage-II equilibria
generate different payoffs. Consequently, there are infinitely many possible games in stage I, depending on
the choice of equilibria in stage II. Note that the multiplicity of possible stage I payoffs for a given pair of
matching factors (assuming equilibrium play in stage II) implies that the two countries’ payoff functions in
the resulting stage I game need not be continuous.

If the stage I game has a Nash equilibrium (µ1, µ2), then the two-stage (i.e., full) game has an SPE,
in which the two countries’ strategy profiles are

(
µi, ai (m1,m2)

)
i = 1, 2. Conversely, if a strategy profile(

µi, ai (m1,m2)
)

(i = 1, 2) is an SPE, then if (m1,m2) is played in stage I then
(
a1 (m1,m2) , a2 (m1,m2)

)
is one of the possible Nash equilibria in stage II (for any (m1,m2)), and hence (µ1, µ2) is a Nash equilibrium
for the stage I game with payoffs given by Equation (B.44).

A matching-commitment agreement achieves two things: first, it causes the baseline emissions profile to
cease being an equilibrium (Proposition B.16 proved in Appendix C.9); second, it generates a cooperative
SPE (i.e., one in which both countries abate) for any stage-II equilibrium choice (see Proposition B.17 proved
in Appendix C.10). Importantly, both countries do better at the cooperative SPE emissions profile identified
in Proposition B.17 than they do at their baseline emissions levels.

Proposition B.16. The baseline scenario is not an SPE outcome of the MCG.

Proposition B.17 (A cooperative SPE exists and dominates baseline). Let m > 0 and a > be the unique
positive solutions of

B′1 (e1 − a) = (1 +m)D′1
(
e− (1 +m)a

)
, (B.45a)

mB′2 (e2 −ma) = (1 +m)D′2
(
e− (1 +m)a

)
, (B.45b)

and let
(
mc
i ,m

c
j

)
= (1/m,m).

For any stage-II equilibrium choice(
a1 (m1,m2) , a2 (m1,m2)

)
∈ A , (B.46)
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the strategy profile (
mc
i , ai (m1,m2)

)
for i = 1, 2 ,

is an SPE. At any such SPE, the countries’ abatements are A1 = a and A2 = ma, and the total abatement is
A = (1 +m)a. Moreover, both countries’ payoffs are higher at the SPE emissions profile than at the baseline
emissions profile e.

Proposition B.17 implies that the MCG generates multiple SPEs (because there are multiple possible
choices for the stage-II equilibria; see Equation (B.46)). However, we show in Proposition B.18 (proved in
Appendix C.11) that only (mc

1,m
c
2) are played on an SPE path. When (m1,m2) = (mc

1,m
c
2) is played in

stage I the abatements Ai and payoffs Πi (i = 1, 2) do not depend on the choice of stage-II Nash equilibria,
so the SPE outcome is for all intents and purposes uniquely defined6.

Proposition B.18 (Uniqueness of subgame-perfect emissions profile). If(
mc
i , ai (m1,m2)

)
for i = 1, 2 ,

is an SPE, then mi = mc
i (i = 1, 2) are as in Proposition B.17. Thus, while multiple SPEs exist, the

subgame-perfect emissions profile is uniquely determined and given by

(e1, e2) = (e1 − a, e2 −ma) ,

with m and a as in Proposition B.17. Consequently, the SPE payoffs are also uniquely determined.

Lastly, Equation (B.42) implies that Equation (A.15) holds at the SPE emissions profile, so from
Lemma A.7, it is locally Pareto efficient. This, along with Propositions B.17 and B.18 justifies the fol-
lowing:

Theorem B.19. Consider two countries playing the MCG (Definition A.9) for which the BAM condition
holds (Equation (A.27)). Then, the MCG has infinitely many SPEs, but there is a unique pair of matching
factors (mc

1,m
c
2) that is played in all SPEs. The equilibrium abatement (Ai) levels (and therefore payoffs Πi)

for the MCG are uniquely defined in the sense that they do not depend on which SPE is chosen, and result
in a locally Pareto efficient emissions profile7. Moreover, at an SPE of the MCG both countries’ emissions
are lower, but their payoffs are higher than at the baseline emissions profile (i.e., the Nash equilibrium of
the BCG, in which these countries independently and simultaneously select their emissions levels). The
equilibrium matching factors, abatements and emissions profile are given (implicitly) in Propositions B.17
and B.18.

C Auxiliary proofs for matching-commitment agreements between
two countries

C.1 Characterization of the best-response functions (proof of Lemma B.1)

Because

∂2

∂ai2
Πi =

∂2

∂ai2

[
Bi (ei −Ai)−Di (e−A)

]
= B′′i (ei −Ai)− (1 +mj)

2D′′i (e−A) < 0 , (C.47)

it follows that if
∂

∂ai
Πi

∣∣∣∣
ai=0

≤ 0 ,

then country i’s best-response is to abate nothing,

Ri(m1,m2; aj) = arg max
ai≥0

{
Πi

}
= 0 ;

6Boadway et al. [1] claim that the SPE they identify is unique. However, their justification for this claim is problematic; see
Appendix C.11.6.

7By locally Pareto efficient, we mean that a small deviation from the SPE emissions profile must decrease at least one
country’s payoff.
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otherwise, there is a unique positive level of unconditional abatement ai > 0 that solves Equation (B.36),
and

Ri(m1,m2; aj) = arg max
ai≥0

{
Πi

}
= ai .

Now, recalling that e is a Nash equilibrium,

∂

∂ei
Πi (ei, e−i) = B′i (ei)−D′i (e) = 0 ,

which implies that
∂

∂ai
Πi

∣∣∣∣
ai=aj=0

= −B′i (ei) + (1 +mj)D
′
i (e) = mjD

′
i (e) ,

so ∂
∂ai

Πi

∣∣∣
ai=aj=0

= 0 if mj = 0 and ∂
∂ai

Πi

∣∣∣
ai=aj=0

> 0 otherwise. Noting that

∂

∂ai
Πi

∣∣∣∣
ai=0

= −B′i(ei −miaj) + (1 +mj)D
′
i (e− (1 +mi)aj) ,

we have
∂

∂aj

[
∂

∂ai
Πi

∣∣∣∣
ai=0

]
= miB

′′
i (ei −miaj)− (1 +mi)(1 +mj)D

′′
i (e−A) < 0 , (C.48)

and hence ∂
∂ai

Πi

∣∣∣
ai=0

decreases with aj . It follows that if mj = 0 then ainti,j = 0 for all aj . If mj > 0 then

using Equation (B.34),

lim
aj→∞

∂

∂ai
Πi

∣∣∣∣
ai=0

< 0 ,

so there exists ainti,j > 0 such that ∂
∂ai

Πi

∣∣∣
ai=0

> 0 for all aj ∈ (0, ainti,j ), and ∂
∂ai

Πi

∣∣∣
ai=0

≤ 0 for all aj ≥ ainti,j .

Consequently, Ri(m1,m2; aj) > 0 for all aj < ainti,j , and Ri(m1,m2; aj) = 0 for all aj ≥ ainti,j .

C.2 Continuity and derivatives of the best-response functions (Lemma B.2)

We show that Ri(m1,m2; aj) is continuous in its domain of definition, i.e., for any triplet of parameters
~p = (m1,m2, aj) ∈ R3

≥0. We will divide the domain of Ri(m1,m2; aj) into the three following cases:

1. ~p = (m1,m2, aj) ∈ R3
≥0 such that Ri(~p) = 0;

2. ~p = (m1,m2, aj) ∈ R3
>0 such that Ri(~p) > 0;

3. ~p = (m1,m2, aj) ∈ ∂ R3
≥0 such that Ri(~p) > 0.

These cases are analyzed in Appendices C.2.1 to C.2.3, respectively.
We will use Lemma C.1, which relates country i’s stage-II best-response function to the derivative of

its expected payoff Πi with respect to its own unconditional abatement ai; Lemma C.1 follows immediately

from the fact that ∂2

∂ai2
Πi < 0 for all ai ≥ 0 (Equation (C.47)).

Lemma C.1.

1. If Ri(~p) = 0 then ∂
∂ai

Πi

∣∣∣
~p
< 0 for all ai > 0.

2. If Ri(~p) > 0 then ai = Ri(~p) is the unique solution of

∂

∂ai
Πi = −B′i (ei −Ai) + (1 +mj)D

′
i (e−A) = 0 .

Moreover, ∂
∂ai

Πi

∣∣∣
~p
> 0 for all ai ∈

[
0,Ri(~p)

)
and ∂

∂ai
Πi

∣∣∣
~p
< 0 for all ai ∈

(
Ri(~p),∞

)
.
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C.2.1 Case one: continuity of Ri(~p) for ~p ∈ R3
≥0 such that Ri(~p) = 0

Consider a triplet of arguments ~p = (m1,m2, aj) ∈ R3
≥0 for which Ri(~p) = 0, and a sequence {~pr}∞r=0 ⊂ R3

≥0
such that ~pr

r→∞−−−→ ~p. We wish to show that

lim
r→∞

Ri(~pr) = 0 = Ri(~p) = Ri( lim
r→∞

~pr) . (C.49)

Our proof proceeds as follows: we first show that Ri(~pr) is bounded, and then that 0 is the unique partial
limit of Ri(~pr); these two facts imply Equation (C.49).

Suppose, in order to derive a contradiction, that Ri(~pr) is not bounded. Then, because Ri(·) ≥ 0,

without loss of generality, we can assume that Ri(~pr) is increasing, Ri(~pr) r→∞−−−→ ∞ and that Ri(~pr) > 0
for all r ≥ 0. From Lemma C.1, for any integer r ≥ 0, ∂

∂ai
Πi (~pr; ai) is positive for all ai ∈

[
0,Ri(~pr)

)
and

negative for all ai ∈
(
Ri(~pr),∞

)
. In particular, fixing any ai > 0, there is a large enough integer R ≥ 0

such that ∂
∂ai

Πi (~pr; ai) > 0 for all r ≥ R. However, ∂
∂ai

Πi is manifestly continuous in the arguments m1,

m2 and aj , and Ri(~p) = 0 implies that ∂
∂ai

Πi (~p; ai) < 0 for all ai > 0 (Lemma C.1), so for r large enough,
∂
∂ai

Πi (~pr; ai) < 0, which is a contradiction. Consequently, Ri(~pr) must be bounded.
Let {~prk}k≥0 be a subsequence of {~pr}r≥0 such that {Ri(~prk)}k≥0 is convergent, and suppose in order to

derive a contradiction, that
lim
k→∞

Ri(~prk) = ai,∞ > 0 .

Because Ri(~prk) = 0 for at most finitely many k’s (otherwise, 0 would be a partial limit of Ri(~prk), contra-
dicting the assumption that limk→∞Ri(~prk) > 0), no generality is lost by assuming that Ri(~prk) > 0 for all
integer k ≥ 0.

Since Ri(~prk) > 0,
∂

∂ai
Πi (~prk ; ai)

∣∣∣∣
ai=Ri(~prk )

= 0 for all k ≥ 0 ,

(Lemma C.1) and because ∂
∂ai

Πi is manifestly continuous in m1, m2, aj and ai, the limit k →∞ gives

∂

∂ai
Πi (~p; ai,∞) = 0 .

From Lemma C.1, this implies that Ri(~p) = ai,∞ > 0, which contradicts our assumption that Ri(~p) = 0.
Thus, 0 is the unique partial limit of Ri(~pr), which concludes our proof of Equation (C.49).

C.2.2 Case two: continuous differentiability of Ri(~p) for ~p ∈ R3
>0 such that Ri(~p) > 0

Let ~p = (m1,m2, aj) ∈ R3
>0 satisfy Ri(~p) > 0, Because ∂2

∂ai2
Πi < 0 (Equation (C.47)) and ∂

∂ai
Πi is con-

tinuously differentiable in all its variables, it follows from the implicit function theorem [6] that there is a
neighbourhood of ~p in which Ri(~p) is defined implicitly by Equation (B.36) and continuously differentiable
with respect to its arguments.

Now, from Lemma B.1, Ri(m1,m2; aj) > 0 for all aj such that 0 ≤ aj < ainti,j . Observe that

d

daj

(
Ai|ai=Ri(m1,m2;aj)

)
=

∂

∂aj
Ri(m1,m2; aj) +mi , (C.50a)

d

daj

(
A|ai=Ri(m1,m2;aj)

)
= (1 +mj)

∂

∂aj
Ri(m1,m2; aj) + (1 +mi) . (C.50b)

Substituting ai = Ri(m1,m2; aj) into Equation (B.36) and differentiating with respect to country j’s uncon-
ditional abatement aj we see that for interior solutions of Equation (B.33) (i.e., wheneverRi(m1,m2; aj) > 0)

0 =

(
∂

∂aj
Ri(m1,m2; aj) +mi

)
B′′i (ei −Ai)

−
(

(1 +mj)
∂

∂aj
Ri(m1,m2; aj) + (1 +mi)

)
(1 +mj)D

′′
i (e−A) ,
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which, after rearrangement becomes

∂

∂aj
Ri(m1,m2; aj) = −miB

′′
i (ei −Ai)− (1 +mi) (1 +mj)D

′′
i (e−A)

B′′i (ei −Ai)− (1 +mj)
2
D′′i (e−A)

∣∣∣∣∣
ai=Ri(m1,m2;aj)

< 0 ,

so country i’s best-response function is decreasing country j’s unconditional abatement.
Similarly,

d

dmi

(
Ai|ai=Ri(m1,m2;aj)

)
=

∂

∂mi
Ri(m1,m2; aj) + aj ,

d

dmj

(
Ai|ai=Ri(m1,m2;aj)

)
=

∂

∂mj
Ri(m1,m2; aj) ,

d

dmi

(
A|ai=Ri(m1,m2;aj)

)
= (1 +mj)

∂

∂mi
Ri(m1,m2; aj) + aj ,

d

dmj

(
A|ai=Ri(m1,m2;aj)

)
= (1 +mj)

∂

∂mj
Ri(m1,m2; aj) +Ri(m1,m2; aj) .

Substituting ai = Ri(m1,m2; aj) into Equation (B.36) and differentiating with respect to the matching
factors mi and mj , we see that interior solutions of Equation (B.33) satisfy

0 =

(
∂

∂mi
Ri(m1,m2; aj) + aj

)
B′′i (ei −Ai)

−
(

(1 +mj)
∂

∂mi
Ri(m1,m2; aj) + aj

)
(1 +mj)D

′′
i (e−A) ,

0 =

(
∂

∂mj
Ri(m1,m2; aj)

)
B′′i (ei −Ai) +D′i (e−A)

−
(

(1 +mj)
∂

∂mj
Ri(m1,m2; aj) +Ri(m1,m2; aj)

)
(1 +mj)D

′′
i (e−A) ,

and hence,

∂

∂mi
Ri(m1,m2; aj) = −aj

B′′i (ei −Ai)− (1 +mj)D
′′
i (e−A)

B′′i (ei −Ai)− (1 +mj)
2
D′′i (e−A)

∣∣∣∣∣
ai=Ri(m1,m2;aj)

< 0 ,

∂

∂mj
Ri(m1,m2; aj) = −D

′
i (e−A)− (1 +mj)D

′′
i (e−A) ai

B′′i (ei −Ai)− (1 +mj)
2
D′′i (e−A)

∣∣∣∣∣
ai=Ri(m1,m2;aj)

.

C.2.3 Case three: continuous differentiability of Ri(~p) for ~p ∈ ∂ R3
>0 such that Ri(~p) > 0

In the MCG, the matching factors mi and mj , and the unconditional abatement levels ai and aj , are assumed
to be non-negative. However, the payoff function Πi is well-defined for any (m1,m2; a1, a2) ∈ R4. For the
remainder of this proof, we allow the arguments of Πi to take on negative values, as this considerably
simplifies our proof.

Suppose that ~p ∈ ∂ R3
≥0 satisfies Ri(~p) > 0. From Lemma B.1, ai = Ri(~p) solves the equation

∂

∂ai
Πi (~p; ai) = 0 ,

so mj > 0. Thus, because ~p ∈ ∂ R3
≥0, mi = 0 or aj = 0 (or both). ∂

∂ai
Πi has continuous partial derivatives

in its four arguments (in all of R4), and using Equation (C.47), there is a neighbourhood of
(
~p;Ri(~p)

)
in

which
∂2

∂ai2
Πi (~p; ai) < 0 ,
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(all that is required for this to hold is that mi > −1). It follows from the implicit function theorem [6]
that there is a neighbourhood of ~p in which Ri(~p) is defined implicitly by Equation (B.36) and continu-
ously differentiable with respect to its arguments, and the formulae for the derivatives of Ri(~p) obtained in
Appendix C.2.2 remain valid (and in particular, hold for the one-sided derivatives of Ri(~p)).

C.3 Slope of the best-response difference, ∆R (Proposition B.6)

Suppose that mi > 0 for i = 1, 2. Then from Lemma B.2, ∂
∂a1
R2(m1,m2; a1) and ∂

∂a2
R1(m1,m2; a2) are

continuously differentiable for all a1 ∈ (0, aint2,1) and a2 ∈ (0, aint1,2), and satisfy

∂

∂a1
R2(m1,m2; a1) = −m2B

′′
2 (e2 −A2)− (1 +m2) (1 +m1)D′′2 (e−A)

B′′2 (e2 −A2)− (1 +m1)
2
D′′2 (e−A)

∣∣∣∣∣
a2=R2(m1,m2;a1)

< 0 ,

∂

∂a2
R1(m1,m2; a2) = −m1B

′′
1 (e1 −A1)− (1 +m1) (1 +m2)D′′1 (e−A)

B′′1 (e1 −A1)− (1 +m2)
2
D′′1 (e−A)

∣∣∣∣∣
a1=R1(m1,m2;a2)

< 0 .

From the inverse function theorem [6], R−11 (m1,m2; a1) is locally invertible and continuously differentiable
for all a1 ∈ (0, aint1,1). Moreover, if a1 = R1(m1,m2; a2), then a2 = R−11 (m1,m2; a1) and

∂

∂a1
R−11 (m1,m2; a1) =

1
∂
∂a2
R1(m1,m2; a2)

∣∣∣∣∣
a2=R−1

1 (m1,m2;a1)

= − B′′1 (e1 −A1)− (1 +m2)
2
D′′1 (e−A)

m1B′′1 (e1 −A1)− (1 +m1) (1 +m2)D′′1 (e−A)

∣∣∣∣∣
a2=R−1

1 (m1,m2;a1)

< 0 .

Thus, ∆R(m1,m2; a1) is continuously differentiable with respect to a1 for all a1 ∈
(
0,min{aint1,1, a

int
2,1}

)
, and

∂

∂a1
∆R(m1,m2; a1) =

∂

∂a1
R2(m1,m2; a1)− ∂

∂a1
R−11 (m1,m2; a1) ,

= −m2B
′′
2 (e2 −A2)− (1 +m2) (1 +m1)D′′2 (e−A)

B′′2 (e2 −A2)− (1 +m1)
2
D′′2 (e−A)

∣∣∣∣∣
a2=R2(m1,m2;a1)

+
B′′1 (e1 −A1)− (1 +m2)

2
D′′1 (e−A)

m1B′′1 (e1 −A1)− (1 +m1) (1 +m2)D′′1 (e−A)

∣∣∣∣∣
a2=R−1

1 (m1,m2;a1)

.

At an interior Nash equilibrium (a∗1, a
∗
2), a∗i = Ri(m1,m2; a∗j ) > 0 for (i, j) = (1, 2) and (2, 1). Thus

R−11 (m1,m2; a∗1) = a∗2 = R2(m1,m2; a∗1) .

Consequently,

∂

∂a1
∆R(m1,m2; a∗1) =

(
−m2B

′′
2 (e2 −A2)− (1 +m2) (1 +m1)D′′2 (e−A)

B′′2 (e2 −A2)− (1 +m1)
2
D′′2 (e−A)

+
B′′1 (e1 −A1)− (1 +m2)

2
D′′1 (e−A)

m1B′′1 (e1 −A1)− (1 +m1) (1 +m2)D′′1 (e−A)

)∣∣∣∣∣a1=a∗1
a2=a

∗
2

.

It follows that

∂

∂a1
∆R = −N1

D1
+
N2

D2
=
N2D1 −N1D2

D1D2
,
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where

N1 = m2B
′′
2 (e2 −A2)− (1 +m2) (1 +m1)D′′2 (e−A) ,

D1 = B′′2 (e2 −A2)− (1 +m1)
2
D′′2 (e−A) ,

N2 = B′′1 (e1 −A1)− (1 +m2)
2
D′′1 (e−A) ,

D2 = m1B
′′
1 (e1 −A1)− (1 +m1) (1 +m2)D′′1 (e−A) ,

and we implicitly evaluate all terms at the Nash equilibrium (a1, a2) = (a∗1, a
∗
2).

Simplifying, we have

N2D1 = B′′1 (e1 −A1)B′′2 (e2 −A2)

− (1 +m1)2B′′1 (e1 −A1)D′′2 (e−A)

− (1 +m2)
2
B′′2 (e2 −A2)D′′1 (e−A)

+ (1 +m1)2 (1 +m2)
2
D′′1 (e−A)D′′2 (e−A) .

and,

N1D2 = m1m2B
′′
1 (e1 −A1)B′′2 (e2 −A2)

−m1(1 +m1) (1 +m2)B′′1 (e1 −A1)D′′2 (e−A)

−m2(1 +m1) (1 +m2)B′′2 (e2 −A2)D′′1 (e−A)

+ (1 +m1)2 (1 +m2)
2
D′′1 (e−A)D′′2 (e−A) ,

so

N2D1 −N1D2 = (1−m1m2)B′′1 (e1 −A1)B′′2 (e2 −A2)

−
(
(1 +m1)2 −m1(1 +m1) (1 +m2)

)
B′′1 (e1 −A1)D′′2 (e−A)

−
(
(1 +m2)2 −m2(1 +m1) (1 +m2)

)
B′′2 (e2 −A2)D′′1 (e−A)

= (1−m1m2)B′′1 (e1 −A1)B′′2 (e2 −A2)

−
(
1 +m1 −m1 (1 +m2)

)
(1 +m1)B′′1 (e1 −A1)D′′2 (e−A)

−
(
1 +m2 −m2(1 +m1)

)
(1 +m2)B′′2 (e2 −A2)D′′1 (e−A) ,

or

N2D1 −N1D2 =
(
1−m1m2

)[
B′′1 (e1 −A1)B′′2 (e2 −A2)− (1 +m1)B′′1 (e1 −A1)D′′2 (e−A)

− (1 +m2)B′′2 (e2 −A2)D′′1 (e−A)
]
.

Thus,

∂

∂a1
∆R =(

1−m1m2

)
×
[
B′′1 (e1 −A1)B′′2 (e2 −A2)− (1 +m1)B′′1 (e1 −A1)D′′2 (e−A)

− (1 +m2)B′′2 (e2 −A2)D′′1 (e−A)
]

/[(
B′′2 (e2 −A2)− (1 +m1)

2
D′′2 (e−A)

)
×
(
m1B

′′
1 (e1 −A1)− (1 +m1) (1 +m2)D′′1 (e−A)

)]
. (C.51)

Note that because the terms in square brackets are positive, the signs of ∂
∂a1

∆R(m1,m2; a∗1) and 1−m1m2

are identical.
Lastly, if (aint1,1, 0) is an equilibrium, since ∂

∂a1
R2(m1,m2; a1) and ∂

∂a1
R−11 (m1,m2; a1) are continuous in

a left-neighbourhood of a1 = aint1,1 and each approaches a finite limit as a1 → aint1,1, the derivation leading to

Equation (C.51) still holds, and hence the right-sided derivative of ∆R(m1,m2; a1) at a1 = aint1,1 exists and is

equal to the right hand side of Equation (C.51). An analogous statement holds if (0, aint2,2) is an equilibrium.
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C.4 Nash equilibria when no interior equilibrium exists

C.4.1 The baseline scenario (proof of Proposition B.7)

If m1 = m2 = 0 then, Lemma B.1, implies that ∂
∂ai

Πi ≤ 0 for i = 1 and i = 2, so both best-response
functions are identically 0 (i.e., both countries are better off not abating unconditionally, regardless of
the other country’s unconditional abatement). The unique Nash equilibrium is the (a1, a2) = (0, 0) (i.e.,
baseline).

Conversely, Lemma B.1 implies that if Ri(m1,m2; 0) = 0 then Ri(m1,m2; aj) = 0 for all aj > 0, and
hence mi = 0. Consequently, if (ai, aj) = (0, 0) is a Nash equilibrium, then m1 = m2 = 0.

C.4.2 If one country will not match, the other will not abate unconditionally (proof of Propo-
sition B.8)

If mi = 0 and mj > 0, then by Lemma B.1, Rj(m1,m2; ai) ≡ 0, and there is ainti,j > 0 such that

Ri(m1,m2; aj) > 0 for all aj satisfying 0 ≤ aj < ainti,j , and Ri(m1,m2; aj) = 0 for all aj ≥ ainti,j . Thus,

(a∗i , a
∗
j ) = (ainti,i , 0) is the unique point at which the best-response functions intersect (Equation (B.35)), and

so the only Nash equilibrium.

C.4.3 Nash equilibria when both countries match, but no interior equilibrium exists (proof
of Proposition B.9)

Suppose that mi > 0 for both i = 1 and 2, but not interior equilibria exist. Lemma B.1 implies that neither
country i’s best-response function is identically 0: there exists ainti,j > 0 such that Ri(m1,m2; aj) > 0 for

all aj satisfying 0 ≤ aj < ainti,j , and Ri(m1,m2; aj) = 0 for all aj ≥ ainti,j . Since there are no interior Nash

equilibria, the best-response functions do not intersect at any (ai, aj) ∈ R2
>0. Because the best-response

functions are continuous, this implies that one country’s best-response function must be higher than the
other’s in the interior of the quadrant of positive unconditional abatements: either R1(m1,m2; a2) is higher
than R2(m1,m2; a1) in that quadrant, in which case{

aint1,1 ≥ aint2,1 ,

aint1,2 ≥ aint2,2 ,
(C.52a)

or R2(m1,m2; a1) is higher than R1(m1,m2; a2) there, in which case{
aint2,1 ≥ aint1,1 ,

aint2,2 ≥ aint1,2 .
(C.52b)

It follows that the only possible Nash equilibria are (aint1,1, 0) and (0, aint2,2) (Remark B.5).
We now examine in more detail the combinations of strict inequalities and equalities allowed for in

Equation (C.52). First, observe that if both inequalities in Equation (C.52a) are made strict, that is,{
aint1,1 > aint2,1 ,

aint1,2 > aint2,2 ,
(C.53)

then from Remark B.5 (aint1,1, 0) is the unique Nash equilibrium, and similarly, if{
aint2,1 > aint1,1 ,

aint2,2 > aint1,2 ,
(C.54)

then (0, aint2,2) is the unique Nash equilibrium. Note that Equations (C.53) and (C.54) are possible if m1m2 <
1, m1m2 = 1 or m1m2 > 1.

Next, we consider the cases in which the best-response functions intersect one another at their intercepts
with at least one of the axes, that is, either aint2,2 = aint1,2 or aint1,1 = aint2,1.
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Observe that if m1m2 = 1, then using Lemma B.11, if aint2,2 = aint1,2 or aint1,1 = aint2,1, then the two best-
response functions overlap in the interior of the quadrant of positive unconditional abatements, contradicting
our assumption that there are no interior equilibria. Thus, if m1m2 = 1 then the only possibilities are
Equations (C.53) or (C.54).

Now suppose that m1m2 6= 1.

• If aint1,1 = aint2,1, then ∆R(m1,m2; aint1,1) = 0 and from Proposition B.6,

lim
a1→(aint1,1)

+

∂

∂a1
∆R > 0 if m1m2 < 1 ,

lim
a1→(aint1,1)

+

∂

∂a1
∆R < 0 if m1m2 > 1 ,

Because there are no interior equilibria (by assumption), ∆R has a constant sign over (0, aint1,1):{
∆R < 0 ∀a1 ∈ (0, aint1,1) if m1m2 < 1 ,

∆R > 0 ∀a1 ∈ (0, aint1,1) if m1m2 > 1 .

In particular, {
aint1,2 > aint2,2 if m1m2 < 1 ,

aint1,2 < aint2,2 if m1m2 > 1 .

• Similarly, if aint2,2 = aint1,2, then{
∆R > 0 ∀a1 ∈ (0, aint1,1) if m1m2 < 1 ,

∆R < 0 ∀a1 ∈ (0, aint1,1) if m1m2 > 1 ,

and {
aint1,1 < aint2,1 if m1m2 < 1 ,

aint1,1 > aint2,1 if m1m2 > 1 .

To sum up, if mi > 0 for i = 1 and 2, and there are no interior equilibria, then using Remark B.5:

If m1m2 < 1 then either {
aint1,1 ≥ aint2,1 ,

aint1,2 > aint2,2 ,
or

{
aint1,1 < aint2,1 ,

aint1,2 ≤ aint2,2 ,

in which case the unique Nash equilibrium is (aint1,1, 0) or (0, aint2,2), respectively.

If m1m2 = 1 then either {
aint1,1 > aint2,1 ,

aint1,2 > aint2,2 ,
or

{
aint1,1 < aint2,1 ,

aint1,2 < aint2,2 ,
(C.55)

in which case the unique Nash equilibrium is (aint1,1, 0) or (0, aint2,2), respectively.

If m1m2 > 1 then either Equation (C.55) holds (with Nash equilibria determined identically to the case
m1m2 = 1), or {

aint1,1 = aint2,1 ,

aint1,2 < aint2,2 ,
or

{
aint1,1 > aint2,1 ,

aint1,2 = aint2,2 ,

and the Nash equilibria are both (aint1,1, 0) and (0, aint2,2).
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C.5 Nash equilibria when no interior equilibrium exists and matching factors
are not reciprocal (proof of Proposition B.10)

To prove Proposition B.10, we require the following lemma:

Lemma C.2 (Sufficient condition for a unique zero crossing). Let f : I → R be a differentiable function
defined on a nontrivial open interval I = (a, b) ⊆ R (a, b ∈ R and a < b). If f(x) = 0 implies f ′(x) > 0,
then the equation f(x) = 0 has at most one solution in I.

Proof. Suppose that x1, x2 ∈ I satisfy f(x1) = f(x2) = 0 and that x1 < x2. Let

O =
{
x ∈ (x1, x2]

∣∣ f(x) = 0
}
,

and x0 = inf O (note that O 6= φ because x2 ∈ O). Since f is continuous, f(x0) = 0. Because f ′(x1) > 0
x0 > x1. Since f is continuous and is never 0 on the interval (x1, x0), it has constant sign on it. But
f ′(x1) > 0 implies that f is positive on (x1, x0), and f ′(x0) > 0 implies that f is negative on this interval—a
contradiction. Thus, f(x) = 0 has at most one solution in I.

We now proceed with the proof of Proposition B.10: If m1m2 < 1, and (a∗1, a
∗
2) is an interior Nash

equilibrium, then by Proposition B.6,

∂

∂a1
∆R(m1,m2; a∗1) > 0 ,

that is, at a1 = a∗1, ∆R(m1,m2; a1) increases through 0 as a function of a1. It follows immediately from
Lemma C.2 above that no other interior Nash equilibrium exists.

An analogous argument shows that at most one interior Nash equilibrium exists when m1m2 > 1 (the
difference being that in this case, ∂

∂a1
∆R(m1,m2; a1) < 0 at an interior Nash equilibrium, and we can apply

Lemma C.2 to −∆R(m1,m2; a1)).
Thus:

If m1m2 < 1 then because ∆R(m1,m2; a1) increases through 0 as a function of a1,

∆R(m1,m2; a1) < 0 for all a1 ∈ (0, a∗1) , (C.56a)

∆R(m1,m2; a1) > 0 for all a1 ∈ (a∗1, a
int
1,1) . (C.56b)

and by continuity of ∆R(m1,m2; a1),

aint1,1 ≤ aint2,1 , (C.57a)

aint1,2 ≥ aint2,2 . (C.57b)

In fact, we show below that these inequalities are strict, so no edge equilibria exist. Thus, (a∗1, a
∗
2) is

the unique Nash equilibrium.

To see that Equation (C.57) can be made strict, that is,

aint1,1 < aint2,1 ,

aint1,2 > aint2,2 ,

(or equivalently, that ∆R(m1,m2; 0) < 0 and ∆R(m1,m2; aint1,1) > 0) we exploit the existence of the

right- and left-sided limits of ∂
∂a1

∆R(m1,m2; a1) at aint1,1 and a1 = 0 (respectively).

Suppose, in order to derive a contradiction, that ∆R(m1,m2; aint1,1) = 0, so that (aint1,1, 0) is a Nash
equilibrium. From Proposition B.6,

lim
a1→(aint1,1)

−

∂

∂a1
∆R(m1,m2; a1) > 0 .
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Since ∆R(m1,m2; aint1,1) = 0 by assumption, there is a left-neighbourhood of a1 = aint1,1 in which

∆R(m1,m2; a1) < 0 ,

contradicting Equation (C.56b). Thus, ∆R(m1,m2; aint1,1) > 0 as required.

Analogously, if i.e., (0, aint2,2) is a Nash equilibrium, then Proposition B.6 implies

lim
a1→0+

∂

∂a1
∆R(m1,m2; a1) > 0 ,

and because ∆R(m1,m2; 0) = 0, ∆R(m1,m2; a1) > 0 in a right-neighbourhood of a1 = 0, contradicting
Equation (C.56a). Thus, ∆R(m1,m2; aint1,1) < 0.

If m1m2 > 1 then because ∆R(m1,m2; a1) decreases through 0 as a function of a1,

∆R(m1,m2; a1) > 0 for all a1 ∈ (0, a∗1) ,

∆R(m1,m2; a1) < 0 for all a1 ∈ (a∗1,min{aint1,1, a
int
2,1}) ,

and by continuity of ∆R(m1,m2; a1), aint2,2 ≥ aint1,2 and aint1,1 ≥ aint2,1. It follows from Remark B.5 that two

edge equilibria exist (in addition to the interior equilibrium8): (0, aint2,2) and (aint1,1, 0).

An argument similar to the one used to show that the inequalities in Equation (C.57) can be made
strict also establishes that aint1,1 > aint2,1 and aint2,2 > aint1,2.

C.6 Proofs for reciprocal matching factors

C.6.1 Best-responses for reciprocal matching factors (proof of Lemma B.11)

If (m1,m2) ∈ Mr, then m1m2 = 1 and mi > 0. Thus, ainti,j and ainti,i > 0 (see Lemma B.1 and Remark B.3)

and for 0 ≤ aj < ainti,j , Equation (B.38) becomes

∂

∂aj
Ri(m1,m2; aj) = − (1/mj)B

′′
i (ei −Ai)− (1 + 1/mj) (1 +mj)D

′′
i (e−A)

B′′i (ei −Ai)− (1 +mj)
2
D′′i (e−A)

= − 1

mj

B′′i (ei −Ai)− (1 +mj)
2
D′′i (e−A)

B′′i (ei −Ai)− (1 +mj)
2
D′′i (e−A)

= −mi , (C.58)

so Ri(m1,m2; aj) is linear in the range 0 ≤ aj ≤ ainti,j ; for aj > ainti,j , Ri(m1,m2; aj) = 0, justifying Equation
(B.41).

By definition, Ri(m1,m2; ainti,j ) = 0, so substituting aj = ainti,j in Equation (B.41) gives ainti,i = mia
int
i,j .

Since mi 6= 0 (because m1m2 = 1), country i’s best-response function is decreasing in the range 0 ≤ aj ≤
ainti,j , and thus has an inverse

R−1i (m1,m2; ai) = − 1

mi
ai + ainti,j = −mjai + ainti,j , (C.59)

defined for 0 ≤ ai ≤ ainti,i .

C.6.2 Uniqueness of reciprocal matching factors yielding interior Nash equilibria (proof of
Lemma B.12)

Consider the vertical distance between the two best-response functions in the a1–a2 plane when the matching
factors are reciprocal, i.e.,

∆R(m1, 1/m1; a1) = R2(m1, 1/m1; a1)−R−11 (m1, 1/m1; a1) , (C.60)

8In this case, the interior equilibrium is unstable and the two edge equilibria are stable in the sense of “cobweb stability” [7,
p. 287].
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where
a1 ∈ I =

[
0,min{aint1,1, a

int
2,1}

]
.

We wish to analyze how the distance between the best-response functions changes with the matching factors
(constrained to being reciprocal). From Lemma B.11, R2(m1, 1/m1; a1) and R−11 (m1, 1/m1; a1) are positive,
linear and parallel for all a1 ∈ I, so the distance ∆R(m1, 1/m1; a1) is independent of a1 ∈ I. More formally,
using Lemma B.11, we see that for a1 ∈ I, Equation (C.60) becomes

∆R(m1, 1/m1; a1) =
(
−m2a1 + aint2,2

)
−
(
−m2a1 + aint1,2

)
= aint2,2 − aint1,2 . (C.61)

Hence, ∆R(m1, 1/m1; a1) does not depend on a1, and we can (with minor abuse of notation) write ∆R(m1);
note that since the matching factors are reciprocal, aint2,2, aint1,2 and ∆R(m1, 1/m1; a1) can be written as
functions of either one of the matching factors.

In order to calculate d
dm1

∆R, we must calculate the derivatives of aint2,2 and aint1,2 with respect to m1.

Recall from Remark B.3 that ainti,i , is the unique solution of ∂
∂ai

Πi

∣∣∣
aj=0

= 0, that is,

−B′i (ei − ai) + (1 +mj)D
′
i

(
e− (1 +mj)ai

)
= 0 , (C.62a)

and from Lemma B.1, ainti,j , is the unique solution of ∂
∂ai

Πi

∣∣∣
ai=0

= 0, that is,

−B′i(ei −miaj) + (1 +mj)D
′
i

(
e− (1 +mi)aj

)
= 0 . (C.62b)

Taking the derivative of Equation (C.62a) with respect to mj , keeping m1m2 = 1, yields

B′′i
(
ei − ainti,i

) d

dmj
ainti,i +D′i

(
e− (1 +mj)a

int
i,i

)
− (1 +mj)D

′′
i

(
e− (1 +mj)a

int
i,i

)(
ainti,i + (1 +mj)

d

dmj
ainti,i

)
= 0 ,

or
d

dmj
ainti,i = −

D′i
(
e− (1 +mj)a

int
i,i

)
− (1 +mj)D

′′
i

(
e− (1 +mj)a

int
i,i

)
ainti,i

B′′i
(
ei − ainti,i

)
− (1 +mj)2D′′i

(
e− (1 +mj)ainti,i

) . (C.63)

Similarly, taking the derivative of Equation (C.62b) with respect to mi (subject to m1m2 = 1) yields

B′′i
(
ei−mia

int
i,j

) d

dmi

(
mia

int
i,j

)
− (1 +mj)D

′′
i

(
e− (1 +mi)a

int
i,j

) d

dmi

(
(1 +mi)a

int
i,j

)
−
D′i
(
e− (1 +mi)a

int
i,j

)
m2
i

= 0 ,

which simplifies to

d

dmi
ainti,j =

m2
jD
′
i

(
e− (1 +mi)a

int
i,j

)
−
(
B′′i
(
ei −mia

int
i,j

)
− (1 +mj)D

′′
i

(
e− (1 +mi)a

int
i,j

))
ainti,j

miB′′i
(
ei −miainti,j

)
− (1 +mi)(1 +mj)D′′i

(
e− (1 +mi)ainti,j

) < 0 .

(C.64)

We are interested the derivative of ∆R(m1) at matching factors m1 for which ∆R(m1) = 0. Using

the facts that aint2,2 = aint1,2 at such a zero crossing of ∆R, and that (1 + m1)(1 + m2) = (1+m1)
2

m1
(because

m1m2 = 1), Equation (C.64) gives

d

dm1
aint1,2 =

1
m2

1
D′1
(
e− (1 +m1)aint2,2

)
−
(
B′′1
(
e1 −m1a

int
2,2

)
− 1+m1

m1
D′′1
(
e− (1 +m1)aint2,2

))
aint2,2

m1B′′1
(
e1 −m1aint2,2

)
− (1+m1)2

m1
D′′1
(
e− (1 +m1)aint2,2

)
=

D′1
(
e− (1 +m1)aint2,2

)
−
(
m2

1B
′′
1

(
e1 −m1a

int
2,2

)
−m1(1 +m1)D′′1

(
e− (1 +m1)aint2,2

))
aint2,2

m3
1B
′′
1

(
e1 −m1aint2,2

)
−m1(1 +m1)2D′′1

(
e− (1 +m1)aint2,2

) .

(C.65)
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Using Equations (C.61), (C.63) and (C.65),

d

dm1
∆R =

d

dm1
aint2,2 −

d

dm1
aint1,2

= −D
′
2

(
e− (1 +m1)aint2,2

)
− (1 +m1)D′′2

(
e− (1 +m1)aint2,2

)
aint2,2

B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e− (1 +m1)aint2,2

)
−
D′1
(
e− (1 +m1)aint2,2

)
−
(
m2

1B
′′
1

(
e1 −m1a

int
2,2

)
−m1(1 +m1)D′′1

(
e− (1 +m1)aint2,2

))
aint2,2

m3
1B
′′
1

(
e1 −m1aint2,2

)
−m1(1 +m1)2D′′1

(
e− (1 +m1)aint2,2

) .

(C.66)

To simplify notation, for i = 1, 2, let bi = B′′i
(
e1 − m1a

int
2,2

)
< 0, di = D′i

(
e − (1 + m1)aint2,2

)
> 0, and

d′i = (1 +m1)D′′i
(
e− (1 +m1)aint2,2

)
> 0. Then, Equation (C.66) becomes

d

dm1
aint1,2 = − d2 − d′2aint2,2

b2 − (1 +m1)d′2
− d1 −

(
m2

1b1 −m1d
′
1

)
aint2,2

m3
1b1 −m1(1 +m1)d′1

= −
(
d2 − d′2aint2,2

)(
m3

1b1 −m1(1 +m1)d′1
)

+
(
d1 −

(
m2

1b1 −m1d
′
1

)
aint2,2

)(
b2 − (1 +m1)d′2

)
(
b2 − (1 +m1)d′2

)(
m3

1b1 −m1(1 +m1)d′1

)
=
m2

1a
int
2,2b1b2 −m3

1b1d2 − b2d1 +m1(1 +m1)d2d
′
1 −m1a

int
2,2b2d

′
1 + (1 +m1)d1d

′
2 −m2

1a
int
2,2b1d

′
2(

b2 − (1 +m1)d′2

)(
m3

1b1 −m1(1 +m1)d′1

) ,

which is positive since each of the summands in the numerator is positive, and the two factors in the
denominator are negative. Thus, at a zero crossing of ∆R(m1),

d

dm1
∆R(m1) > 0 . (C.67)

Since ∆R(m1) is continuous (indeed, differentiable) when m1 > 0, this implies that ∆R can have at
most one zero crossing (Lemma C.2), which corresponds to a unique pair of reciprocal matching factors for
which the best-response functions overlap.

C.6.3 Existence of reciprocal matching factors for which interior equilibria exist (proof of
Lemma B.13)

We have shown that for reciprocal matching factors, the distance between the best-response functions is
continuous and must increase with m1 at a zero crossing of ∆R (Equation (C.67)), and that there is at most
one such zero crossing (Appendix C.6.2). It follows that there exists m1 > 0 such that ∆R(m1) = 0 iff

lim
m1→0+

sign ∆R(m1) = −1 ,

and
lim

m1→∞
sign ∆R(m1) = 1 .

Observe that since R2(·) is continuous (Lemma B.2) and R2(0, ·; ·) ≡ 0 (Lemma B.1),

lim
m1→0+

m2=1/m1

aint2,2 = 0 . (C.68)

Since aint1,2 increases as m1 → 0+ and m2 = 1/m1 (from Equation (C.64)), either lim m1→0+

m2=1/m1

aint1,2 = ∞,

or there is some α ∈ R such that lim m1→0+

m2=1/m1

aint1,2 = α. Suppose, in order to derive a contradiction, that

lim m1→0+

m2=1/m1

aint1,2 = α. Recall (from Equation (C.62b)) that aint1,2 is the unique solution of

−B′1(e1 −m1a2) + (1 +m2)D′1
(
e− (1 +m1)a2

)
= 0 ,
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which, with m1m2 = 1, simplifies to

−m1B
′
1(e1 −m1a2) + (1 +m1)D′1

(
e− (1 +m1)a2

)
= 0 .

Taking m1 → 0+ and using the continuity of B′1 and D′1, α must satisfy

D′1
(
e− α

)
= 0 ,

which contradicts our assumption that D′1 > 0. Thus, lim m1→0+

m2=1/m1

aint1,2 =∞. This, combined with Equations

(C.61) and (C.68) implies that
lim

m1→0+
∆R(m1) = −∞ . (C.69)

To see that ∆R(m1) > 0 for large enough m1, interchange countries 1 and 2. An argument analogous
to the one justifying Equation (C.61) shows that the vertical distance between the non-zero segments of the
two best-response functions in the a2–a1 plane, does not depend on a2, and is equal to aint1,1 − aint2,1. Arguing
as we did to justify Equation (C.69),

lim
m2→0+

m1=1/m2

aint1,1 − aint2,1 = −∞ .

Now, the sign of ∆R(m1) = aint2,2 − aint1,2 is opposite to the sign of aint1,1 − aint2,1, and as m2 decreases to 0,
m1 = 1/m2 increases to ∞, so for large enough m1, ∆R(m1) is positive, as claimed.

It now follows that ∆R(m1) must vanish for some m1 ∈ (0,∞).

C.6.4 Characterization of the continuum of Nash equilibria (proof of Lemma B.14)

From Lemmas B.12 and B.13, there exists a unique pair of matching factors, (mc
1,m

c
2) ∈ Mr such that

country 2’s best-response function is overlaps with country 1’s in the interior of the quadrant of positive
unconditional abatements, forming a continuum of Nash equilibria. Recall that aint1,1 and aint2,1 satisfy

B′1
(
e1 − aint1,1

)
= (1 +mc

2)D′1
(
e− (1 +mc

2)aint1,1

)
,

B′2
(
e2 −mc

2a
int
2,1

)
= (1 +mc

1)D′2
(
e− (1 +mc

2)aint2,1

)
,

(see Lemma B.1 and Remark B.3). Letting m = mc
2 = 1/mc

1 and a = aint1,1 = aint2,1, we have

B′1 (e1 − a) = (1 +m)D′1
(
e− (1 +m)a

)
, (C.70a)

mB′2 (e2 −ma) = (1 +m)D′2
(
e− (1 +m)a

)
. (C.70b)

Conversely, if there exist m > 0 and a > 0 satisfying Equation (C.70) then setting m2 = m, Remark B.3
implies that aint1,1 = a, and similarly, setting m1 = 1/m2 = 1/m, a also solves Equation (B.37), so Lemma B.1

implies that aint2,1 = a. Recalling that ∆R(m1, 1/m1; a1) is constant for 0 ≤ a1 ≤ aint1,1, it follows that

∆R(m1, 1/m1; a1) = 0 for all 0 ≤ a1 ≤ aint1,1, so (mc
1,m

c
2) = (1/m,m) ∈ Mr yields a continuum of Nash

equilibria in stage II of the MCG. Consequently, stage II of the MCG has a continuum of Nash equilibria
iff (mc

1,m
c
2) = (1/m,m) are played in stage II, where m and a are the unique positive solutions of Equation

(C.70).
To find the countries’ abatements when there is a continuum of Nash equilibria, let (m1,m2) = (mc

1,m
c
2) =

(1/m,m), where m and a are the unique positive solutions of Equation (C.70). Then, the best-responses over-
lap for positive unconditional abatements, and from the continuity of the best-response functions (Lemma B.2),
there are two edge equilibria, (0, aint2,2) and (aint1,1, 0) in addition to the interior equilibria. Thus, the set of
Nash equilibria is {(

a1,R2(m1,m2; a1)
) ∣∣∣ a1 ∈ [0, aint1,1

] }
,
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so the equilibrium unconditional abatements are indeterminate. However, using Equations (C.50) and (C.58),
country 2’s abatement and the total abatement satisfy

d

da1

(
A2|a2=R2(m1,m2;a1)

)
= −m2 +m2 = 0 ,

d

da1

(
A|a2=R2(m1,m2;a1)

)
= (1 +m1)(−m2) + (1 +m2) = 0 .

Hence, the two countries’ abatements, Ai and the total abatement A are constant over the set of all Nash
equilibria; because the best-response functions Ri(m1,m2; aj) ((i, j) = (1, 2) or (2, 1)) are continuous, the
countries’ abatements Ai (i = 1, 2) are given by A1 = aint1,1 and A2 = aint2,2 at any of the existing Nash
equilibria.

Since the best-response curves overlap in the interior of the quadrant of positive unconditional abatements,
and are continuous, aint1,1 = aint2,1, so Equation (C.59) implies that −m2a

int
1,1 + aint2,2 = 0, and hence

A1 = aint1,1 = a ,

A2 = aint2,2 = m2a
int
1,1 = ma ,

A = (1 +m)a .

Alternatively,

A = (1 +m)a = (1 +m2)
A2

m2
= (1 +m1)aint2,2 .

C.7 Map of the matching plane

C.7.1 The stage-II delimiter curves are well-defined

Lemma B.1 and Remark B.3, imply that ainti,i = aintj,i = a ∈ R≥0 iff

−B′j(ej −mja) + (1 +mi)D
′
j

(
e− (1 +mj)a

)
= 0 , (C.71a)

−B′i (ei − a) + (1 +mj)D
′
i

(
e− (1 +mj)a

)
= 0 . (C.71b)

The unique solution of Equation (C.71b) is a = ainti,i ≥ 0 (Remark B.3), which depends only on mj (but

not mi). We thus abuse notation slightly by writing ainti,i (mj). Plugging this into Equation (C.71a), we must
show that for a given mj there is a unique mi ≥ 0 which solves

−B′j
(
ej −mja

int
i,i (mj)

)
+ (1 +mi)D

′
j

(
e− (1 +mj)a

int
i,i (mj)

)
= 0 . (C.72)

The unique solution is

mi = φi(mj) = −
−B′j

(
ej −mja

int
i,i (mj)

)
+D′j

(
e− (1 +mj)a

int
i,i (mj)

)
D′j
(
e− (1 +mj)ainti,i (mj)

) . (C.73)

To see that this solution is non-negative, observe that using Equation (C.72),

φi(mj) ≥ φi(mj)−mi = −
−B′j

(
ej −mja

int
i,i (mj)

)
+ (1 +mi)D

′
j

(
e− (1 +mj)a

int
i,i (mj)

)
D′j
(
e− (1 +mj)ainti,i (mj)

) = 0 .

Thus, for a given mj ≥ 0, there is a unique mi = φi(mj) ≥ 0 such that Equation (B.43) holds.

C.7.2 The stage-II delimiter curves are differentiable and increasing

The mapping mj 7→ mi = φi(mj) is continuous (because ainti,i (mj) is continuous; see Lemma B.2). Moreover,
we will next show that it is differentiable, and calculate its derivative. The Jacobian matrix of the left hand
side of Equation (C.71), with respect to mi and a, is

Ĵ =

(
D′j
(
e− (1 +mj)a

)
mjB

′′
j (ej −mja)− (1 +mi)(1 +mj)D

′′
j

(
e− (1 +mj)a

)
0 B′′i (ei − a)− (1 +mj)

2D′′i
(
e− (1 +mj)a

) )
,
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which is invertible because its determinant is nonzero:

det Ĵ = D′j
(
e− (1 +mj)a

)[
B′′i (ei − a)− (1 +mj)

2D′′i
(
e− (1 +mj)a

)]
< 0 , (C.74)

(Equation (A.3)). Hence, from the implicit function theorem [6],

d

dmj

(
φi(mj)
ainti,i (mj)

)
= −Ĵ−1

(
a
[
B′′j (ej −mja)− (1 +mi)D

′′
j

(
e− (1 +mj)a

)]
D′i
(
e− (1 +mj)a

)
− a(1 +mj)D

′′
i

(
e− (1 +mj)a

)) ,

where we implicitly set a = ainti,i (mj) and mi = φi(mj). Since

Ĵ−1 =
1

det Ĵ

(
B′′i (ei − a)− (1 +mj)

2D′′i
(
e− (1 +mj)a

)
−mjB

′′
j (ej −mja) + (1 +mi)(1 +mj)D

′′
j

(
e− (1 +mj)a

)
0 D′j

(
e− (1 +mj)a

) )
,

we get

det Ĵφ′i(mj) =
[
B′′i (ei − a)− (1 +mj)

2D′′i
(
e− (1 +mj)a

)]
× a
[
−B′′j (ej −mja) + (1 +mi)D

′′
j

(
e− (1 +mj)a

)]
+
[
−mjB

′′
j (ej −mja) + (1 +mi)(1 +mj)D

′′
j

(
e− (1 +mj)a

)]
×
[
−D′i

(
e− (1 +mj)a

)
+ a(1 +mj)D

′′
i

(
e− (1 +mj)a

)]
= −aB′′i (ei − a)B′′j (ej −mja)

+ (1 +mi)aB
′′
i (ei − a)D′′j

(
e− (1 +mj)a

)
+ (1 +mj)

2aB′′j (ej −mja)D′′i
(
e− (1 +mj)a

)
− (1 +mi)(1 +mj)

2aD′′i
(
e− (1 +mj)a

)
D′′j
(
e− (1 +mj)a

)
+mjB

′′
j (ej −mja)D′i

(
e− (1 +mj)a

)
−mj(1 +mj)aB

′′
j (ej −mja)D′′i

(
e− (1 +mj)a

)
− (1 +mi)(1 +mj)D

′
i

(
e− (1 +mj)a

)
D′′j
(
e− (1 +mj)a

)
+ (1 +mi)(1 +mj)

2aD′′i
(
e− (1 +mj)a

)
D′′j
(
e− (1 +mj)a

)
= −aB′′i (ei − a)B′′j (ej −mja)

+ (1 +mi)aB
′′
i (ei − a)D′′j

(
e− (1 +mj)a

)
+ (1 +mj)aB

′′
j (ej −mja)D′′i

(
e− (1 +mj)a

)
+mjB

′′
j (ej −mja)D′i

(
e− (1 +mj)a

)
− (1 +mi)(1 +mj)D

′
i

(
e− (1 +mj)a

)
D′′j
(
e− (1 +mj)a

)
< 0 ,

since all of the summands on the right hand side are non-positive, and the last two are strictly negative. It
follows from Equation (C.74) that det Ĵ < 0 , so

φ′i(mj) > 0 ,

and hence φi is an increasing (and thus injective) function of mj .

C.7.3 The stage-II delimiter curves are onto R≥0

Observe that since ainti,i (0) = 0 (Remark B.3) and B′j(ej) = D′j(e) (Lemma A.5), so from Equation (C.73) we
have

φi(0) = −
−B′j

(
ej
)

+D′j
(
e
)

D′j (e)
= 0 . (C.75)
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We claim that
lim

mj→∞
φi(mj) =∞ , (C.76)

which implies that φi is onto R≥0 (since it is continuous).
To justify Equation (C.76), suppose, in order to derive a contradiction, that

lim
mj→∞

φi(mj) 6=∞ .

Because φi is increasing (Appendix C.7.2), this implies that

lim
mj→∞

φi(mj) = µi ∈ (0,∞) .

Let {mj,k}∞k=1 ⊂ R≥0 be an increasing, unbounded sequence such that

lim
k→∞

ainti,i (mj,k) = α = lim inf
mj→∞

ainti,i (mj) ∈ [0,∞] ,

There are two possibilities:

α > 0: From Equation (C.71a), we have

B′j
(
ej −mj,ka

int
i,i (mj,k)

)
=
(
1 + φi (mj,k)

)
D′j
(
e− (1 +mj,k)ainti,i (mj,k)

)
,

which implies that

lim
e→−∞

B′j(e) = (1 + µi) lim
e→−∞

D′j
(
e
)
,

contradicting Equations (A.10) and (B.34).

α = 0: Taking mj →∞ in Equation (C.71b), we have

B′i (ei) = lim
k→∞

B′i
(
ei − ainti,i (mj,k)

)
= lim
k→∞

(1 +mj,k)D′i
(
e− (1 +mj,k)ainti,i (mj,k)

)
.

It follows that

lim
k→∞

D′i
(
e− (1 +mj,k)ainti,i (mj,k)

)
= 0 ,

and hence

lim
k→∞

mj,ka
int
i,i (mj,k) = lim

mj,k→∞
(1 +mj,k)ainti,i (mj,k) =∞ .

Equation (C.71a) then gives

lim
e→−∞

B′j(e) = lim
k→∞

B′j
(
ej −mj,ka

int
i,i (mj,k)

)
= lim
k→∞

(
1 + φi (mj,k)

)
D′j
(
e− (1 +mj,k)ainti,i (mj,k)

)
= 0 ,

in contradiction to the fact that lime→−∞B′j(e) ∈ (0,∞] (Equation (A.10)).

It follows that Equation (C.76) must hold.

C.7.4 Intersections of the stage-II delimiter curves

We wish to characterize the pairs of matching factors (m1,m2) ∈ R2
≥0 for which m1 = φ1(m2) and m2 =

φ2(m1).

• If m1 = 0, then from Equation (C.75), m2 = φ2(m1) = 0, and m1 = φ1(0) = 0, so φ1 and φ2 intersect
at the origin, m1 = m2 = 0, and do not intersect at any other (m1,m2) on the axes (i.e., such that
m1m2 = 0).

• If m1m1 6= 1, Proposition B.9 implies that aint1,1 = aint2,1 and aint2,2 = aint1,2 cannot both simultaneously
hold, and hence φi (i = 1, 2) do not intersect at (m1,m2).

• If m1m2 = 1, Lemma B.14 implies that aint1,1 = aint2,1 and aint2,2 = aint1,2 iff (m1,m2) = (mc
1,m

c
2).

Thus, the curves φi (i = 1, 2) intersect only at (m1,m2) = (0, 0) and (mc
1,m

c
2).
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C.7.5 Edge equilibria and the stage-II delimiter curves

Since ainti,i −aintj,i is continuous (because the best-response functions are continuous; see Lemma B.2) and zero
iff φi(m1) = m2, its sign must be constant on each of the sets

{(m1,m2) | φi(m1) > m2} and {(m1,m2) | φi(m1) < m2} .

From Lemma B.1 and Remark B.3, if mi > 0 and mj = 0 then aintj,i > 0 and ainti,i = 0, so ainti,i − aintj,i < 0

for all (m1,m2) such that mi > φi(mj). Similarly, if mi = 0 and mj > 0 then aintj,i = 0 and ainti,i > 0, so

ainti,i − aintj,i > 0 for all (m1,m2) such that mi < φi(mj).

Remark B.5 then implies that for any (mi,mj) 6= (0, 0), (a∗i , a
∗
j ) = (ainti,i , 0) is a stage-II Nash equilibrium

iff mi ≤ φi(mj).

C.7.6 The distance between the stage-II delimiter curves

Let ∆φ be the distance between the curves φi (i = 1, 2) along the m2 axis,

∆φ(m1) = φ2(m1)− φ−11 (m1) .

Since φi intersect only at (m1,m2) = (0, 0) and (mc
1,m

c
2) (Appendix C.7.4), ∆φ(m1) is 0 iff m1 = 0 or mc

1,
and the sign of ∆φ(m1) must be constant on each of the intervals (0,mc

1) and (mc
1,∞). We will show that

∆φ(m1) < 0 if (0,mc
1) and ∆φ(m1) > 0 if m1 ∈ (mc

1,∞).
To see that ∆φ(m1) < 0 on (0,mc

1), suppose, in order to derive a contradiction, that ∆φ(m1) > 0 for
some m1 ∈ (0,mc

1). Let m2 ∈
(
φ−11 (m1), φ2(m1)

)
. Since m2 < φ2(m1), by Appendix C.7.5, aint2,2 − aint1,2 > 0

and (a∗1, a
∗
2) = (0, aint2,2) is a stage-II Nash equilibrium. Similarly, m2 > φ−11 (m1) so (since φ1 is increasing;

see Appendix C.7.2), φ1(m2) > m1, and hence aint1,1 − aint2,1 > 0 and (a∗1, a
∗
2) = (aint1,1, 0) is a stage-II Nash

equilibrium. However, this contradicts Proposition B.9, so ∆φ(m1) < 0 for all m1 ∈ (0,mc
1).

The proof that ∆φ(m1) > 0 for all m1 ∈ (mc
1,∞) is analogous to the above argument showing that

∆φ(m1) < 0 for all m1 ∈ (0,mc
1).

It follows that φ−11 (m1) > φ2(m1) if 0 < m1 < mc
1 and φ2(m1) > φ−11 (m1) if m1 > mc

1, or geometrically,
φi is closer (resp. farther) than φj to (from) the aj-axis for 0 < m1m2 < 1 ( m1m2 > 1).

C.8 Multiple possible stage I payoffs under stage-II equilibrium play

In this appendix, we show that for any benefit and damage functions Bi, Di (i = 1, 2), there are matching
factors for which the payoff functions of the stage I game, assuming equilibrium play in stage II, are not
uniquely defined. This follows immediately from the following proposition (proved below):

Proposition C.3. There exist infinitely many matching factors (m1,m2) satisfying m1m2 > 1 and for
which two edge equilibria coexist with an interior equilibrium in stage II. Moreover, when this occurs, each
country’s payoff is lowest at the stage-II equilibrium in which it does not abate unconditionally, and highest
at the equilibrium in which the other country does not abate unconditionally.

The relationship between the countries’ payoffs at the edge equilibria also holds for (m1,m2) that yield
only two edge equilibria: country i’s payoff is highest at the equilibrium (ainti,i , 0).

Proof. First, recall from Appendix C.7.6 that ∆φ(m1) > 0 for all m1 ∈ (mc
1,∞). Thus, for any m1 > mc

1,(
φ−11 (m1), φ2(m1)

)
6= φ. From Appendix C.7.5, for any pair of matching factors (m1,m2) such that m2 ∈(

φ−11 (m1), φ2(m1)
)
aint1,1 > aint2,1 and aint2,2 > aint1,2, and Propositions B.9 and B.10 imply that there are three

stage-II equilibria: two edge equilibria and an interior equilibrium. Note also that for such a pair of matching
factors, since φ1 is increasing and m1 > mc

1,

m2 > φ−11 (m1) > φ−11 (mc
1) = mc

2 ,

so m1m2 > 1.
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Now consider (m1,m2) such that m1m2 > 1 and for which there are two edge equilibria and an inte-
rior equilibrium (a∗1, a

∗
2) in stage II. To order country 1’s payoffs at the three equilibria, note first that if

0 < a2 < aint1,2,

d

da2
Π1 (m1,m2,R1(a2), a2) =

∂

∂a2
Π1 (m1,m2, a1, a2)

∣∣∣∣
a1=R1(a2)

+
∂

∂a1
Π1 (m1,m2, a1, a2)

∣∣∣∣
a1=R1(a2)

∂

∂a2
R1 (a2) .

Because a2 ∈ (0, aint1,2), a1 = R1 (a2) solves Equation (B.36), that is,

∂

∂a1
Π1 (m1,m2, a1, a2) = −B′1 (e1 −A1) + (1 +m2)D′1 (e−A) = 0 , (C.77)

and hence

d

da2
Π1 (m1,m2,R1(a2), a2) =

∂

∂a2
Π1 (m1,m2, a1, a2)

∣∣∣∣
a1=R1(a2)

= −m1B
′
1 (e1 −A1) + (1 +m1)D′1 (e−A) ,

where

A1 = R1(a2) +m1a2 ,

A = (1 +m1)a2 + (1 +m2)R1(a2) .

But from Equation (C.77), B′1 (e1 −A1) = (1 +m2)D′1 (e−A), so since m1m2 > 1, we have

d

da2
Π1 (m1,m2,R1(a2), a2) = −m1(1 +m2)D′1 (e−A) + (1 +m1)D′1 (e−A)

= (1−m1m2)D′1 (e−A) < 0 , (C.78)

implying that
Π1(m1,m2, 0, a

int
1,2) < Π1(m1,m2, a

∗
1, a
∗
2) < Π1(m1,m2, a

int
1,1, 0) . (C.79)

Note also that for all a2 > aint1,2

∂

∂a1
Π1(m1,m2, a1, a2)

∣∣∣∣
a1=0

= −B′1 (e1 −m1a2) + (1 +m2)D′1
(
e− (1 +m1)a2

)
< 0 ,

(Equations (B.37) and (C.48)), and because m1m2 > 1

∂

∂a2
Π1(m1,m2, 0, a2) = −m1B

′
1 (e1 −m1a2) + (1 +m1)D′1

(
e− (1 +m1)a2

)
< −m1(1 +m2)D′1

(
e− (1 +m1)a2

)
+ (1 +m1)D′1

(
e− (1 +m1)a2

)
= (1−m1m2)D′1

(
e− (1 +m1)a2

)
< 0 . (C.80)

In particular, since aint2,2 > aint1,2,

Π1(m1,m2, 0, a
int
2,2) < Π1(m1,m2, 0, a

int
1,2) . (C.81)

Equation (C.81) is intuitive: when a2 = aint1,2, country 1 does best by abating nothing; if country 2 then
increases its unconditional abatement (a2), then country 1 does worse because it cannot decrease its uncon-
ditional abatement (it is already 0), and its abatement increases (A1 = m2a2).

Combining Equation (C.81) with Equation (C.79) gives

Π1(m1,m2, 0, a
int
2,2) < Π1(m1,m2, a

∗
1, a
∗
2) < Π1(m1,m2, a

int
1,1, 0) .
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This result is surprising: country 1 prefers the equilibrium in which country 2 contributes no unconditional
abatement to the one in which country 1 contributes no unconditional abatement. This is because country
1’s payoff Π1 decreases along its best-response function a1 = R1(m1,m2; a2) (Equation (C.79)). This in
turn is a result of country 1’s abatement (A1) increasing, but the total abatement (A) decreasing along R1,
which can be seen using Lemma B.2:

∂

∂a2

[
A1|a1=R1(a2)

]
=

∂

∂a2
R1(a2) +m1 = −m1B

′′
1 (e1 −Ai)− (1 +m1) (1 +m2)D′′1 (e−A)

B′′1 (e1 −A1)− (1 +m2)
2
D′′1 (e−A)

+m1

=
−m1B

′′
1 (e1 −Ai) + (1 +m1) (1 +m2)D′′1 (e−A) +m1B

′′
1 (e1 −A1)−m1 (1 +m2)

2
D′′1 (e−A)

B′′1 (e1 −A1)− (1 +m2)
2
D′′1 (e−A)

=
(1−m1m2) (1 +m2)D′′1 (e−A)

B′′1 (e1 −A1)− (1 +m2)
2
D′′1 (e−A)

> 0 ,

∂

∂a2

[
A|a1=R1(a2)

]
= (1 +m2)

∂

∂a2
R1(a2) + 1 +m1

= −(1 +m2)
m1B

′′
1 (e1 −Ai)− (1 +m1) (1 +m2)D′′1 (e−A)

B′′1 (e1 −A1)− (1 +m2)
2
D′′1 (e−A)

+ 1 +m1

=
−(1 +m2) [m1B

′′
1 (e1 −Ai)− (1 +m1) (1 +m2)D′′1 (e−A)]

B′′1 (e1 −A1)− (1 +m2)
2
D′′1 (e−A)

+
(1 +m1)

[
B′′1 (e1 −A1)− (1 +m2)

2
D′′1 (e−A)

]
B′′1 (e1 −A1)− (1 +m2)

2
D′′1 (e−A)

=
(1−m1m2)B′′1 (e1 −Ai)

B′′1 (e1 −A1)− (1 +m2)
2
D′′1 (e−A)

< 0 .

Now note that if {
aint1,1 = aint2,1 ,

aint2,2 > aint1,2 ,

Equations (C.78) and (C.80) still imply that

Π1(m1,m2, 0, a
int
2,2) < Π1(m1,m2, a

int
1,1, 0) ;

this is also true if {
aint1,1 > aint2,1 ,

aint2,2 = aint1,2 ,

(but only Equation (C.78) is required to see this).
A symmetric argument shows that analogous inequalities hold for country 2’s payoff, Π2.

C.9 Baseline is not an equilibrium of the matching climate game (proof of
Proposition B.16)

If m2 = 0, then for any m1 > 0 the unique stage-II Nash equilibrium is (0, aint2,2) (Proposition B.8). We
can thus use Lemma C.6 (or alternatively Lemma C.5) and the continuity of the best-response functions
(Lemma B.2) to see that

lim
m1→0+

d

dm1
Π1

(
m1, 0, 0, a

int
2,2(m1, 0)

)
=
−D′1 (e)D′2 (e)

B′′2 (e2)−D′′2
(
e
) > 0 .

It follows that if both countries play m1 = m2 = 0, and equilibrium play is assumed in stage II, country
1 can increase its payoff by increasing its matching factor unilaterally, so m1 = m2 = 0 cannot be on
the equilibrium path of an SPE. A similar argument shows that country 2 can also increase its payoff by
increasing its matching factor.
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C.10 A cooperative equilibrium exists and dominates baseline (proof of Propo-
sition B.17)

C.10.1 Proof of existence of cooperative equilibrium

Here, we prove that for any stage-II equilibrium choice(
a1 (µ1, µ2) , a2 (µ1, µ2)

)
∈ A ,

the strategy profile (
mc
i , ai (µ1, µ2)

)
for i = 1, 2 ,

is an SPE. To do so, we show that country 1 has no incentive to deviate from its strategy; an analogous
argument also applies to country 2.

Suppose that country 1 alters its strategy to
(
m1, αi (µ1, µ2)

)
. First, note that (from the principle of

backwards induction; see [8]) we can assume that for any pair of matching factors chosen in stage I, Nash equi-
libria are played in stage II, that is,

(
α1 (µ1, µ2) , a2 (µ1, µ2)

)
∈ A. Country 1 then has no incentive to deviate

only in stage II, because when the matching factors (mc
1,m

c
2) are played in stage I

(
a1 (mc

1,m
c
2) , a2 (mc

1,m
c
2)
)

is a Nash equilibrium in stage II. Thus, we can further restrict attention to situations in which m1 6= mc
1.

Since country 1 deviates unilaterally, the pairs of matching factors possible in stage I are m1 ∈ R≥0\{mc
1}

and m2 = mc
2. Lemma C.4 (which follows immediately from Appendix C.7.5) characterizes the stage-II Nash

equilibria that can occur when country 1 plays m1 6= mc
2 in stage 1.

Lemma C.4 (stage-II Nash equilibria when country 1 deviates from equilibrium matching). If m2 = mc
2

then for any m1 6= mc
1, there is a unique Nash equilibrium in stage II: if m1 < mc

1 then the Nash equilibrium
is (aint1,1, 0), and if m1 > mc

1 then it is (0, aint2,2).

Thus, since we can assume equilibrium play in stage II, country 1’s payoff is

Π1(m1,m
c
2) =

{
B1

(
e1 − aint1,1

)
−D1

(
e− (1 +mc

2)aint1,1

)
for m1 ∈ (0,mc

1] ,

B1

(
e1 −m1a

int
2,2

)
−D1

(
e− (1 +mc

1)aint2,2

)
for m1 ∈ (mc

1,∞) .

Observe that Π1(m1,m
c
2) is continuous at m1 = mc

1, because aint1,1 and aint2,2 are continuous in m1 (Lemma B.2)
and because if (m1,m2) = (mc

1,m
c
2), then A1 and A are constant over the set of stage-II Nash equilibria,

which contains (aint1,1, 0) and (0, aint2,2) (Lemma B.14), so in particular,

Π1(mc
1,m

c
2) = B1

(
e1 − aint1,1

)
−D1

(
e− (1 +mc

2)aint1,1

)
= B1

(
e1 −mc

1a
int
2,2

)
)−D1

(
e− (1 +mc

1)aint2,2

)
.

Consider first the case in which country 1 plays m1 < mc
1. From Lemma C.5 in Appendix C.10.3, aint1,1 is

constant as a function of m1, so

Π1(m1,m
c
2) = B1

(
e1 − aint1,1(m1,m

c
2)
)
−D1

(
e− (1 +mc

2)aint1,1(m1,m
c
2)
)

= B1

(
e1 − aint1,1(mc

1,m
c
2)
)
−D1

(
e− (1 +mc

2)aint1,1(mc
1,m

c
2)
)

= Π1(mc
1,m

c
2) . (C.82)

Consequently, country 1 has no incentive to decrease its matching factor.
The case in which country 1 plays m1 > mc

1 is slightly more involved. However, Lemma C.6 in Ap-
pendix C.10.4 shows that ∂

∂m1
Π1 < 0 for all (m1,m2) such that m1 > mc

1 and m2 = mc
2, and hence

Π1(m,m
c
2) decreases for m1 ∈ [mc

1,∞) and country 1 has no incentive to increase its matching factor.

C.10.2 Both countries’ payoffs are higher at the cooperative equilibrium emissions profile
than at baseline

From Equation (C.82)

Π1(0,mc
2) = Π1(mc

1,m
c
2) .
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We will show that for all m2 ∈ (0,mc
2),

d

dm2
Π1(0,m2) > 0 ,

which will imply that

Π1(0, 0) < Π1(0,mc
2) = Π1(mc

1,m
c
2) .

Because the baseline emissions profile is the unique stage-II equilibrium whenm1 = m2 = 0 (Proposition B.7),
this will complete our proof.

If m1 = 0 and m2 ∈ (0,mc
2), the (aint1,1, 0) is the unique stage-II Nash equilibrium (Proposition B.8), so

country 1’s payoff is

Π1

(
0,m2

)
= B1

(
e1 − aint1,1(0,m2)

)
−D1

(
e− (1 +m2)aint1,1(0,m2)

)
.

Using Remark B.3, we have

B′1
(
e1 − aint1,1(0,m2)

)
= (1 +m2)D′1

(
e− (1 +m2)aint1,1(0,m2)

)
,

so (writing A = (1 +m2)aint1,1(0,m2) for convenience)

d

dm2
Π1

(
0,m2

)
= −B′1

(
e1 − aint1,1

) ∂

∂m2
aint1,1 +D′1

(
e−A

) ∂

∂m2
A

= −(1 +m2)D′1 (e−A)
∂

∂m2
aint1,1 +D′1

(
e−A

) ∂

∂m2
A

= D′1 (e−A)

[
−(1 +m2)

∂

∂m2
aint1,1 +

∂

∂m2

(
(1 +m2)aint1,1

)]
= D′1 (e−A) aint1,1 > 0 ,

as claimed.

C.10.3 Derivatives of the intercepts of the best-response functions with the unconditional
abatement axes

In this section, we prove the following lemma:

Lemma C.5 (Derivatives of the intercepts of the best-response functions with the unconditional abatement
axes). If m1,m2 > 0, then

∂

∂m1
aint1,1 = 0 ,

∂

∂m1
aint2,2 = −D

′
2

(
e− (1 +m1)aint2,2

)
− (1 +m1)aint2,2D

′′
2

(
e− (1 +m1)aint2,2

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e− (1 +m1)aint2,2

) ,

∂

∂m1
aint1,2 = −aint1,2

B′′1
(
e1 −m1a

int
1,2

)
− (1 +m2)D′′1

(
e− (1 +m1)aint1,2

)
m1B′′1

(
e1 −m1aint1,2

)
− (1 +m1)(1 +m2)D′′1

(
e− (1 +m1)aint1,2

) < 0 ,

∂

∂m1
aint2,1 = − D′2

(
e− (1 +m2)aint2,1

)
m2B′′2

(
e2 −m2aint2,1

)
− (1 +m1)(1 +m2)D′′2

(
e− (1 +m2)aint2,1

) > 0 ;

analogous formulae hold for the derivatives of aint1,1 a
int
1,2, aint2,1 and aint2,2 with respect to m2, mutatis mutandis.

Proof. Since ainti,i = Ri(m1,m2; 0) > 0 (Remark B.3), by setting aj = 0 in Equations (B.38b) and (B.38c) we

immediately obtain ∂
∂m1

aint1,1 = 0, and

∂

∂m1
aint2,2 = −D

′
2

(
e− (1 +m1)aint2,2

)
− (1 +m1)aint2,2D

′′
2

(
e− (1 +m1)aint2,2

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e− (1 +m1)aint2,2

) .

41



From Lemma B.1, aint1,2, is the unique solution of ∂
∂a1

Π1

∣∣∣
a1=0

= 0, that is,

−B′1(e1 −m1a2) + (1 +m2)D′1
(
e− (1 +m1)a2

)
= 0 .

Implicitly differentiating with respect to m1 gives

B′′1 (e1 −m1a2)

(
aint1,2 +m1

∂

∂m1
aint1,2

)
− (1 +m2)D′′1

(
e− (1 +m1)aint1,2

)(
aint1,2 + (1 +m1)

∂

∂m1
aint1,2

)
= 0 ,

and hence

∂

∂m1
aint1,2 = −aint1,2

B′′1
(
e1 −m1a

int
1,2

)
− (1 +m2)D′′1

(
e− (1 +m1)aint1,2

)
m1B′′1

(
e1 −m1aint1,2

)
− (1 +m1)(1 +m2)D′′1

(
e− (1 +m1)aint1,2

) < 0 .

Similarly, aint2,1 is the unique solution of

−B′2(e2 −m2a1) + (1 +m1)D′2
(
e− (1 +m2)a1

)
= 0 ,

and implicitly differentiating with respect to m1 gives

m2B
′′
2 (e2 −m2a

int
2,1)

∂

∂m1
aint2,1 +D′2

(
e− (1 +m2)aint2,1

)
− (1 +m1)(1 +m2)D′′2

(
e− (1 +m2)aint2,1

) ∂

∂m1
aint2,1 = 0 ,

so
∂

∂m1
aint2,1 = − D′2

(
e− (1 +m2)aint2,1

)
m2B′′2

(
e2 −m2aint2,1

)
− (1 +m1)(1 +m2)D′′2

(
e− (1 +m2)aint2,1

) > 0 .

Interchanging countries 1 and 2 yields similar formulae for the derivatives of aint1,1 a
int
1,2, aint2,1 and aint2,2.

C.10.4 Derivative of country 1’s payoff with respect to its own matching factor, when only
country 2 abates unconditionally

In this appendix, we prove the following lemma:

Lemma C.6. If m1 > 0 then

d

dm1
Π1

(
m1,m2, 0, a

int
2,2(m1,m2)

)
=

1

B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)×{[
(1 +m2)D′1 (e−A)−B′1 (e1 −A1)

][
aint2,2B

′′
2

(
e2 − aint2,2

)
−m1D

′
2 (e−A)

]
AB′1 (e1 −A1)D′′2 (e−A)−m2a

int
2,2D

′
1 (e−A)B′′2

(
e2 − aint2,2

)
− (1−m1m2)D′1 (e−A)D′2 (e−A)

}
.

In particular, if in addition m1m2 ≥ 1 and aint2,2 > aint1,2, then

d

dm1
Π1

(
m1,m2, 0, a

int
2,2(m1,m2)

)
< 0 . (C.83)

Proof. If the countries play (a1, a2) = (0, aint2,2) in stage II, then

A1 = m1a
int
2,2 ,

A2 = aint2,2 ,

A = (1 +m1)aint2,2 .
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Using Lemma C.5

∂

∂m1
aint2,2 = − D′2

(
e−A

)
−AD′′2

(
e−A

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

) ,
so using A = (1 +m1)aint2,2, it follows that

∂

∂m1
A1 = aint2,2 +m1

∂

∂m1
aint2,2

= aint2,2

B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)
−m1

D′2
(
e−A

)
−AD′′2

(
e−A

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)
=
aint2,2B

′′
2

(
e2 − aint2,2

)
−AD′′2

(
e−A

)
−m1D

′
2

(
e−A

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

) > 0 ,

∂

∂m1
A = aint2,2 + (1 +m1)

∂

∂m1
aint2,2

= aint2,2

B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)
− (1 +m1)

D′2
(
e−A

)
−AD′′2

(
e−A

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)
=
aint2,2B

′′
2

(
e2 − aint2,2

)
− (1 +m1)D′2

(
e−A

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

) > 0 .

It follows from Equation (A.25) that

d

dm1
Π1 = −B′1 (e1 −A1)

∂

∂m1
A1 +D′1 (e−A)

∂

∂m1
A

= −B′1 (e1 −A1)
aint2,2B

′′
2

(
e2 − aint2,2

)
−AD′′2

(
e−A

)
−m1D

′
2

(
e−A

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)
+D′1 (e−A)

aint2,2B
′′
2

(
e2 − aint2,2

)
− (1 +m1)D′2

(
e−A

)
B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)
=

1

B′′2
(
e2 − aint2,2

)
− (1 +m1)2D′′2

(
e−A

)×{[
(1 +m2)D′1 (e−A)−B′1 (e1 −A1)

][
aint2,2B

′′
2

(
e2 − aint2,2

)
−m1D

′
2 (e−A)

]
AB′1 (e1 −A1)D′′2 (e−A)−m2a

int
2,2D

′
1 (e−A)B′′2

(
e2 − aint2,2

)
− (1−m1m2)D′1 (e−A)D′2 (e−A)

}
. (C.85)

To see that if (m1,m2) such that m1m2 ≥ 1 and aint2,2(m1,m2) > aint1,2(m1,m2) the Equation (C.83) holds,
note that since the denominator in Equation (C.85) is negative, we must only show that the numerator of
Equation (C.85) (in curly brackets) is positive.

First, observe that since m1m2 ≥ 1

−(1−m1m2)D′1 (e−A)D′2 (e−A) ≥ 0 .

Next, since B′i > 0, B′′i < 0, D′i > 0 and D′′i > 0 for i = 1, 2,

AB′1 (e1 −A1)D′′2 (e−A)−m2a
int
2,2D

′
1 (e−A)B′′2

(
e2 − aint2,2

)
> 0 .
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It remains to show that[
(1 +m2)D′1 (e−A)−B′1 (e1 −A1)

][
aint2,2B

′′
2

(
e2 − aint2,2

)
−m1D

′
2 (e−A)

]
≥ 0 ,

which we do by showing that the terms in square brackets are non-positive.
To see this, observe that because B′′i < 0 and D′i > 0

aint2,2B
′′
2

(
e2 − aint2,2

)
−m1D

′
2 (e−A) < 0 .

Now, note that m1,m2 > 0 (because m1m2 ≥ 1) and aint2,2(m1,m2) > aint1,2(m1,m2). It follows from Re-

mark B.5 that (a1, a2) = (0, aint2,2) is a Nash equilibrium, and hence country 1 cannot increase its payoff by
increasing a1, so

∂

∂a1
Π1(m1,m2, a1, a2)

∣∣∣∣ a1=0
a2=a

int
2,2

= −B′1 (e1 −A1) + (1 +m2)D′1 (e−A) ≤ 0 ,

so Equation (C.83) holds as claimed.

C.11 Uniqueness of equilibrium matching factors (proof of Proposition B.18)

In this appendix, we show that for any (µ1, µ2) ∈ R2
≥0 \{(mc

1,m
c
2)} and

(
a1 (m1,m2) , a2 (m1,m2)

)
∈ A, the

strategy profile (
µi, ai (m1,m2)

)
for i = 1, 2 , (C.86)

is not a SPE9. To do so, we divide the space of possible matching factors the five regions10 schematically
drawn in Figure C.2,

M1 =
{

(m1,m2) ∈ R2
≥0
∣∣m1m2 > 1 ,m1 ≤ φ1(m2) and m2 ≤ φ2(m1)

}
, (C.87a)

M2 =
{

(m1,m2) ∈ R2
≥0
∣∣m1 > φ1(m2) and m2 > φ2(m1)

}
, (C.87b)

M3 =
{

(m1,m2) ∈ R2
≥0
∣∣ 0 ≤ m2 < mc

2 and m1 ≤ φ1(m2)
}
, (C.87c)

M4 =
{

(m1,m2) ∈ R2
≥0
∣∣m1m2 < 1 and m2 ≥ mc

2

}
, (C.87d)

M5 =
{

(m1,m2) ∈ R2
≥0
∣∣m1m2 ≥ 1 and m2 > φ2(m1)

}
, (C.87e)

where φi (i = 1, 2) are the stage-II delimiter curves. In Appendices C.11.1 to C.11.5 we show that profitable
unilateral deviations from matching factors in each of these regions exist; these profitable deviations are
summarized in Figure C.3.

Also, note that on any equilibrium path (mc
1,m

c
2) is played in stage I. Recall from Lemma B.14 that

if the matching factors (mc
1,m

c
2) are played in stage I, then both countries’ abatements are independent of

which Nash equilibrium is chosen in stage II, so it follows that the countries’ abatements and payoffs on an
equilibrium path are independent of which SPE is chosen.

In the following proofs, we will simplify notation by letting

Ψi =
∂

∂ai
Πi = −B′i

(
ei −Ai

)
+ (1 +mj)D

′
i

(
e−A

)
, (C.88)

for i = 1, 2, so that

∂

∂ai
Ψi = B′′i

(
ei −Ai

)
− (1 +mj)

2D′′i
(
e−A

)
< 0 , (C.89a)

∂

∂aj
Ψi = miB

′′
i

(
ei −Ai

)
− (1 +mi)(1 +mj)D

′′
i

(
e−A

)
< 0 , (C.89b)

∂

∂mi
Ψi = aj

(
B′′i
(
ei −Ai

)
− (1 +mj)D

′′
i

(
e−A

))
≤ 0 , (C.89c)

∂

∂mj
Ψi = D′i

(
e−A

)
− ai(1 +mj)D

′′
i

(
e−A

)
. (C.89d)

9Note that for any (µ1, µ2) ∈ R2
≥0, if

(
a1 (m1,m2) , a2 (m1,m2)

)
6∈ A, then the strategy profile given by Equation (C.86) is

not an SPE.
10The arguments ruling out the matching factors in regions M3, M4 and M5 in Figure C.2 from being played on an SPE

path apply (mutatis mutandis) to their symmetric counterparts.
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Regions in which unilateral deviations
are qualitatively different

Country 1’s
matching factor, m1
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No
matching

m1m2 = 1

M1
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M5

Figure C.2: Different regions of the space of matching factors for which unilateral deviations yield quali-
tatively different outcomes, as listed in Equation (C.87). The horizontal dotted line is at height m2 = mc

2.
The dashed curve (separating M4 from M5) is the locus of pairs of reciprocal matching factors, Mr (i.e.,
those satisfying m1m2 = 1). The solid black curves separating M2 from M3, and M1 from M5, are the
stage-II delimiter curves φ1 and φ2, respectively.

Lastly, in Appendix C.11.6 we discuss a flaw in the argument given by Boadway et al. [1] to justify their
claim that the SPE they find is unique.

C.11.1 Region 1

Here, we show that for any stage-II equilibrium choice,(
a1 (µ1, µ2) , a2 (µ1, µ2)

)
∈ A ,

no pair of matching factors (m1,m2) ∈M1 lies on the equilibrium path of an SPE11.
Suppose that (m1,m2) ∈M1, so that either two or three stage-II equilibria exist:

(
0, aint2,2

)
,
(
aint1,1, 0

)
and

possibly the interior equilibrium
(
a∗1(m1,m2), a∗2(m1,m2)

)
. In particular, ai (m1,m2) 6= 0 for at least one

country i (i = 1 or 2). From Proposition C.3,

Π1

(
m1,m2, a

int
1,1, 0

)
> Π1 (m1,m2, a

∗
1, a
∗
2) > Π1

(
m1,m2, 0, a

int
2,2

)
, (C.90a)

Π2

(
m1,m2, 0, a

int
2,2

)
> Π2 (m1,m2, a

∗
1, a
∗
2) > Π2

(
m1,m2, a

int
1,1, 0

)
, (C.90b)

whereas if (m1,m2) 6= (mc
1,m

c
2) is on the boundary ∂M1,

Π1

(
m1,m2, a

int
1,1, 0

)
> Π1

(
m1,m2, 0, a

int
2,2

)
, (C.91a)

Π2

(
m1,m2, 0, a

int
2,2

)
> Π2

(
m1,m2, a

int
1,1, 0

)
. (C.91b)

If a2 (m1,m2) 6= 0, then country 1 can lower its matching factor unilaterally to m′1 (e.g., m′1 = 0) such
that only the equilibrium (aint1,1, 0) exists for (m′1,m2), and hence(

a1 (m′1,m2) , a2 (m′1,m2)
)

=
(
aint1,1 (m′1,m2) , 0

)
.

11This claim is also made by Boadway et al. [1]. However, they only consider the situation in which the interior equilibrium
is played in the entirety of M1, in which case each country’s payoff increases with its matching factor (see Footnote 12 and
Appendix C.11.6).
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Profitable unilateral deviations

Country 1’s
matching factor, m1
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a ∗1
>

0

Figure C.3: Profitable unilateral deviations in different regions of the space of matching factors (defined in
Equation (C.87) and analyzed in Appendices C.11.1 to C.11.5). RegionM1: Which deviations are profitable
depends on the equilibrium played at the chosen matching factors (which may be interior or on either edge).
If country i abates unconditionally at the equilibrium, country j may increase its payoff by decreasing its
matching factor so that country i abates only conditionally (although country payoffs need not be monotonic
along the dashed lines). Regions M2 through M5: Country 1’s payoff is constant along the dotted lines
and increases with its matching factor m1 on the solid horizontal line. Country 2’s payoff decreases with its
matching factor m2 along the vertical solid lines. The arrows indicate unilateral profitable deviations.
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Using Lemma C.5, for all µ1 > 0

∂

∂µ1
Π1

(
µ1,m2, a

int
1,1(µ1,m2), 0

)
=

∂

∂µ1

[
B1

(
e1 − aint1,1(µ1,m2)

)
−D1

(
e− (1 +m2)aint1,1(µ1,m2)

)]
= 0 ,

so

Π1

(
m′1,m2, a1 (m′1,m2) , a2 (m′1,m2)

)
= Π1

(
m′1,m2, a

int
1,1 (m′1,m2) , 0

)
= Π1

(
m1,m2, a

int
1,1 (m1,m2) , 0

)
> Π1

(
m1,m2, a1 (m1,m2) , a2 (m1,m2)

)
.

Thus, country 1 can increase its payoff by deviating unilaterally from (m1,m2).
If a2 (m1,m2) = 0 then a1 (m1,m2) 6= 0, and an analogous argument shows that country 2 can increase

its payoff by unilaterally lowering its matching factor.

C.11.2 Region 2

Here, we show that any (m1,m2) ∈ M2 is not played on the equilibrium path of an SPE, because either
country can increase its payoff by unilaterally increasing its matching factor.

Let (m1,m2) ∈ M2. Then the unique stage-II Nash equilibrium (a∗1, a
∗
2) is interior and satisfies the

simultaneous equations

Ψi =
∂

∂ai
Πi = 0 for i = 1, 2 . (C.92)

The left-hand side of Equation (C.92) has continuous partial derivatives (Lemma B.2), and its Jacobian
matrix with respect to the unconditional abatements is

J =

( ∂
∂a1

Ψ1
∂
∂a2

Ψ1
∂
∂a1

Ψ2
∂
∂a2

Ψ2

)
.

The Jacobian determinant is

det J =
∂

∂a1
Ψ1

∂

∂a2
Ψ2 −

∂

∂a2
Ψ1

∂

∂a1
Ψ2

=
[
B′′1
(
e1 −A1

)
− (1 +m2)2D′′1

(
e−A

)] [
B′′2
(
e2 −A2

)
− (1 +m1)2D′′2

(
e−A

)]
−
[
m2B

′′
2

(
e2 −A2

)
− (1 +m2)(1 +m1)D′′2

(
e−A

)] [
m1B

′′
1

(
e1 −A1

)
− (1 +m1)(1 +m2)D′′1

(
e−A

)]
= (1−m1m2)B′′1

(
e1 −A1

)
B′′2
(
e2 −A2

)
−B′′1

(
e1 −A1

)
(1 +m1)2D′′2 (e−A)

+m1B
′′
1

(
e1 −A1

)
(1 +m2)(1 +m1)D′′2 (e−A)

− (1 +m2)2D′′1 (e−A)B′′2
(
e2 −A2

)
+ (1 +m1)(1 +m2)D′′1 (e−A)m2B

′′
2

(
e2 −A2

)
= (1−m1m2)

[
B′′1
(
e1 −A1

)
B′′2
(
e2 −A2

)
− (1 +m1)B′′1

(
e1 −A1

)
D′′2 (e−A)

− (1 +m2)B′′2
(
e2 −A2

)
D′′1 (e−A)

]
, (C.93)

and because m1m2 6= 1, det J 6= 0 at the interior Nash equilibrium (a∗1, a
∗
2).

It follows from the implicit function theorem [6] that for any (m1,m2) ∈M2 there exists a neighbourhood
N(m1,m2) of (m1,m2) and continuously differentiable functions ai (µ1, µ2) (i = 1, 2), defined on N(m1,m2) that

satisfy Equation (C.92) there; moreover J
(
µ1, µ2, a1 (µ1, µ2) , a2 (µ1, µ2)

)
is invertible in N(m1,m2) and (with

minor abuse of notation),

∂

∂µi

(
a1
a2

)
= −J−1 ∂

∂µi

(
Ψ1

Ψ2

)∣∣∣∣a1=a1(µ1,µ2)
a2=a2(µ1,µ2)

.
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Because for all (µ1, µ2) ∈ N(m1,m2),
(
a1 (µ1, µ2) , a2 (µ1, µ2)

)
satisfy Equation (C.92), these abatements are

are interior stage-II Nash equilibria for the corresponding matching factors.
For brevity, henceforth and until the end of Appendix C.11.2, a1, a2, A1, A2 and A are implicitly

evaluated at (a1, a2) =
(
a1 (m1,m2) , a2 (m1,m2)

)
, and the damage and benefit functions Di and Bi (and

their derivatives) are evaluated at the total emissions e−A and country i’s emissions ei −Ai, respectively.

J−1 =
1

det J

( ∂
∂a2

Ψ2 − ∂
∂a2

Ψ1

− ∂
∂a1

Ψ2
∂
∂a1

Ψ1

)
,

so

∂

∂mi

(
a1
a2

)
=
−1

det J

( ∂
∂a2

Ψ2 − ∂
∂a2

Ψ1

− ∂
∂a1

Ψ2
∂
∂a1

Ψ1

)
∂

∂mi

(
Ψ1

Ψ2

)
=

1

det J

( ∂
∂a2

Ψ1
∂
∂mi

Ψ2 − ∂
∂a2

Ψ2
∂
∂mi

Ψ1
∂
∂a1

Ψ2
∂
∂mi

Ψ1 − ∂
∂a1

Ψ1
∂
∂mi

Ψ2

)
.

Substituting Equation (C.89) yields

det J
∂

∂m1
a1 = − ∂

∂m1
Ψ1

∂

∂a2
Ψ2 +

∂

∂a2
Ψ1

∂

∂m1
Ψ2

= −a2
(
B′′1 − (1 +m2)D′′1

)(
B′′2 − (1 +m1)

2
D′′2
)

+
(
m1B

′′
1 − (1 +m1) (1 +m2)D′′1

)(
D′2 − a2 (1 +m1)D′′2

)
= −a2B′′1B′′2 + a2 (1 +m1)

2
B′′1D

′′
2 + a2 (1 +m2)D′′1B

′′
2 − a2 (1 +m1)

2
(1 +m2)D′′1D

′′
2

+m1B
′′
1D
′
2 − a2m1 (1 +m1)B′′1D

′′
2 − (1 +m1) (1 +m2)D′′1D

′
2 + a2(1 +m1)2 (1 +m2)D′′1D

′′
2

= −a2B′′1B′′2 + a2 (1 +m1)B′′1D
′′
2 + a2 (1 +m2)B′′2D

′′
1 +m1D

′
2B
′′
1 − (1 +m1) (1 +m2)D′2D

′′
1 < 0 ,

det J
∂

∂m1
a2 = − ∂

∂m1
Ψ2

∂

∂a1
Ψ1 +

∂

∂a1
Ψ2

∂

∂m1
Ψ1

= −
(
D′2 − a2 (1 +m1)D′′2

)(
B′′1 − (1 +m2)

2
D′′1
)

+
(
m2B

′′
2 − (1 +m2) (1 +m1)D′′2

)
a2

(
B′′1 − (1 +m2)D′′1

)
= −D′2B′′1 + (1 +m2)

2
D′2D

′′
1 + a2 (1 +m1)B′′1D

′′
2 − a2 (1 +m1) (1 +m2)

2
D′′1D

′′
2

+ a2m2B
′′
1B
′′
2 − a2m2 (1 +m2)B′′2D

′′
1 − a2 (1 +m1) (1 +m2)B′′1D

′′
2 + a2 (1 +m1) (1 +m2)2D′′1D

′′
2

= −D′2B′′1 + (1 +m2)
2
D′2D

′′
1 + a2m2B

′′
1B
′′
2 − a2m2 (1 +m2)B′′2D

′′
1 − a2m2 (1 +m1)B′′1D

′′
2 > 0 .

It follows that

det J
∂

∂m1
A1 = det J

(
∂

∂m1
a1 + a2 +m1

∂

∂m1
a2

)
= det Ja2

− a2B′′1B′′2 + a2 (1 +m1)B′′1D
′′
2 + a2 (1 +m2)B′′2D

′′
1 +m1D

′
2B
′′
1 − (1 +m1) (1 +m2)D′2D

′′
1

+m1

[
−D′2B′′1 + (1 +m2)

2
D′2D

′′
1 + a2m2B

′′
1B
′′
2 − a2m2 (1 +m2)B′′2D

′′
1 − a2m2 (1 +m1)B′′1D

′′
2

]
= det Ja2 − (1−m1m2)

[
a2B

′′
1B
′′
2 − a2 (1 +m1)B′′1D

′′
2 − a2 (1 +m2)B′′2D

′′
1 + (1 +m2)D′2D

′′
1

]
,

and using Equation (C.93),

det J
∂

∂m1
A1 = a2(1−m1m2)

[
B′′1B

′′
2 − (1 +m1)B′′1D

′′
2 − (1 +m2)B′′2D

′′
1

]
− (1−m1m2)

[
a2B

′′
1B
′′
2 − a2 (1 +m1)B′′1D

′′
2 − a2 (1 +m2)B′′2D

′′
1 + (1 +m2)D′2D

′′
1

]
= −(1−m1m2) (1 +m2)D′2D

′′
1 . (C.94a)
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Similarly,

det J
∂

∂m1
A2 = det J

(
∂

∂m1
a2 +m2

∂

∂m1
a1

)
= −D′2B′′1 + (1 +m2)

2
D′2D

′′
1 + a2m2B

′′
1B
′′
2 − a2m2 (1 +m2)B′′2D

′′
1 − a2m2 (1 +m1)B′′1D

′′
2

+m2

[
− a2B′′1B′′2 + a2 (1 +m1)B′′1D

′′
2 + a2 (1 +m2)B′′2D

′′
1 +m1D

′
2B
′′
1 − (1 +m1) (1 +m2)D′2D

′′
1

]
= −(1−m1m2)D′2B

′′
1 + (1−m1m2) (1 +m2)D′2D

′′
1 = −(1−m1m2)D′2

(
B′′1 − (1 +m2)D′′1

)
= −1−m1m2

a2
D′2

∂

∂m1
Ψ1 , (C.94b)

and

det J
∂

∂m1
A = det J

∂

∂m1

(
A1 +A2

)
= −(1−m1m2) (1 +m2)D′2D

′′
1 − (1−m1m2)D′2

(
B′′1 − (1 +m2)D′′1

)
= −(1−m1m2)D′2B

′′
1 .

Note that since the unconditional abatements
(
a1 (m1,m2) , a2 (m1,m2)

)
are interior Nash equilibria,

B′1 = (1 +m2)D′1 ,

(because Ψ1 = ∂
∂a1

Π1 = 0, see Equation (B.36)), so

∂

∂m1
Π1(m1,m2) =

∂

∂m1

(
B1 (e1 −A1)−D1(e−A)

)
= −B′1

∂

∂m1
A1 +D′1

∂

∂m1
A

= −(1 +m2)D′1
∂

∂m1
A1 +D′1

∂

∂m1
A = D′1

[
∂

∂m1
A− (1 +m2)

∂

∂m1
A1

]
= D′1

[
∂

∂m1
A2 −m2

∂

∂m1
A1

]
.

Using Equations (C.94a) and (C.94b), we have

det J

[
∂

∂m1
A2 −m2

∂

∂m1
A1

]
= −(1−m1m2)D′2

(
B′′1 − (1 +m2)D′′1

)
+m2(1−m1m2) (1 +m2)D′2D

′′
1

= −(1−m1m2)D′2B
′′
1 + (1−m2m1) (1 +m2)

2
D′2D

′′
1

= −(1−m1m2)D′2
[
B′′1 − (1 +m2)

2
D′′1
]

= −(1−m1m2)D′2
∂

∂a1
Ψ1 ,

so,

det J
∂

∂m1
Π1(m1,m2) = −(1−m1m2)D′1D

′
2

∂

∂a1
Ψ1 .

Equation (C.93), then gives

∂

∂m1
Π1(m1,m2) =

−D′1D′2
[
B′′1 − (1 +m2)

2
D′′1
]

B′′1B
′′
2 − (1 +m1)B′′1D

′′
2 − (1 +m2)B′′2D

′′
1

> 0 . (C.95)

Analogously,

∂

∂m2
Π2(m1,m2) > 0 .

To summarize, if the matching factors (m1,m2) ∈ R2
>0 yield a unique interior stage-II Nash equilibrium(

a1 (m1,m2) , a2 (m1,m2)
)
, then a unique interior Nash equilibrium exists for all (µ1, µ2) sufficiently close to

49



(m1,m2); if both countries play the unique interior Nash equilibrium near (m1,m2), then either country can
increase its payoff by increasing its matching factor12. Because any (m1,m2) ∈ M2 yields a unique interior
stage-II equilibrium, it follows immediately that no such matching factors are on an equilibrium path of an
SPE.

C.11.3 Region 3

Here, we show that pairs of matching factors (m1,m2) ∈M3 are not played on an SPE path.
If (m1,m2) ∈M3 \ {(0, 0)}, then

m1 ≤ φ1(m2) .

For µ1 ∈ [m1, φ1(m2)], the stage-II equilibrium is unique and independent of µ1,(
a1 (µ1,m2) , a1 (µ1,m2)

)
= (aint1,1, 0) ,

(recall that from Lemma C.5, ∂
∂µ1

aint1,1 = 0)13.

Noting that φ−12 (m2) > φ1(m2) (from Appendix C.7.6, with the two country labels reversed), let ∆1 =
φ−12 (m2)−φ1(m2) > 0. It follows that

(
φ1(m2)+δµ1,m2

)
∈M2 for all δµ1 ∈ (0,∆1). From Equation (C.95),

country 1’s payoff increases with µ1 on the open interval
(
φ1(m2), φ1(m2) + ∆1

)
, and hence it increases on

[φ1(m2), φ1(m2) + ∆1] (because
(
a1 (µ1,m2) , a1 (µ1,m2)

)
, and hence Π1 (µ1,m2), are continuous in µ1).

Consequently,

Π1 (m1,m2) = Π1 (φ1(m2),m2) < Π1 (φ1(m2) + ∆1,m2) = Π1

(
φ−12 (m2),m2

)
,

so a profitable unilateral deviation exists for country 1.
Lastly, we have already seen that (m1,m2) = 0 is not on an SPE path (Proposition B.16).

C.11.4 Region 4

We will show that for all (m1,m2) ∈M4, country 2 can increase its payoff by decreasing its matching factor,
and thus (m1,m2) is not on the equilibrium path of an SPE.

For any (m1,m2) ∈M4, if δµ2 ∈ R>0 is small enough then (µ1, µ2) = (m1,m2 + δµ2) satisfies µ1µ2 < 1,
µ1 < mc

1 and µ2 > mc
2, so (µ1, µ2) ∈M4. Thus, (aint1,1(µ1, µ2), 0) is the unique stage-II Nash equilibrium and

country 2’s payoff assuming equilibrium play in stage II is

Π2(µ1, µ2) = B2

(
e2 − µ2a

int
1,1(µ1, µ2)

)
−D2

(
e− (1 + µ2)aint1,1(µ1, µ2)

)
.

Recall from Lemma C.4 (with the two country labels reversed) that if (mc
1, µ2) are played in stage I then

since µ2 > mc
2 the unique stage-II Nash equilibrium is

(
aint1,1(mc

1, µ2), 0
)
, and so country 2’s payoff assuming

equilibrium play in stage II is

Π2(mc
1, µ2) = B2

(
e2 − µ2a

int
1,1(mc

1, µ2)
)
−D2

(
e− (1 + µ2)aint1,1(mc

1, µ2)
)
. (C.96)

Since aint1,1 does not depend on m1 (Lemma C.5), it follows that Π2(m1, µ2) = Π2(mc
1, µ2). Moreover,

Appendix C.11.4 holds in a neighbourhood of any (m1,m2) ∈M4, and since aint1,1 is continuously differentiable
at (m1,m2) (Lemma C.5),

∂

∂m2
Π2 (m1,m2) = lim

µ2→m+
2

∂

∂µ2
Π2 (m1, µ2) .

12If countries choose (m1,m2) ∈ intM1 in stage I, and if both countries play the unique interior stage-II equilibrium in
a neighborhood of (m1,m2) then a similar derivation shows that Equation (C.95) still holds, and hence either country can
increase its payoff by increasing its matching factor.

13If m1 = φ1(m2), the interval [m1, φ1(m2)] is degenerate, but this does not affect our argument.
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Using Lemma C.6 (with the country labels reversed),

∂

∂m2
Π2(m1,m2) = lim

µ2→m+
2

∂

∂µ2
Π2 (m1, µ2) = lim

µ2→m+
2

∂

∂µ2
Π2 (mc

1, µ2)

= lim
µ2→m+

2

1

B′′1
(
e1 − aint1,1

)
− (1 + µ2)2D′′1

(
e−A

)×{[
(1 +mc

1)D′2 (e−A)−B′2 (e2 −A2)
][
aint1,1B

′′
1

(
e1 − aint1,1

)
−mc

1D
′
1 (e−A)

]
AB′2 (e2 −A2)D′′1 (e−A)−mc

1a
int
1,1D

′
2 (e−A)B′′1

(
e1 − aint1,1

)
− (1− µ2m

c
1)D′1 (e−A)D′2 (e−A)

}
.

Noting that m2 ≥ mc
2 implies that mc

1m2 ≥ 1, an argument similar to the proof of Lemma C.6 (specifically,
the justification of Equation (C.83)) implies that the limit on the right hand side of the above equation is
negative. It follows that country 2 can increase its payoff by unilaterally decreasing its matching factor m2,
and so (m1,m2) cannot be on the equilibrium path of an SPE14.

C.11.5 Region 5

For (m1,m2) ∈ M5, aint1,1 > aint2,1, and the only stage-II equilibrium is (aint1,1, 0) (Proposition B.9). Since
m1m2 ≥ 1, it follows from Lemma C.6 (reversing the roles of countries 1 and 2) that country 2 can increase
its payoff by decreasing its matching factor, so such matching factors are not on the equilibrium path of an
SPE.

C.11.6 On the argument given by Boadway et al. [1] for the uniqueness of the equilibrium

Boadway et al. [1] claim (in their proposition 1), that the matching-commitment agreement generates a
unique SPE (up to a choice of stage-II equilibrium for the matching factors that yield two stage-II best-
response functions that overlap for positive unconditional abatements). In this section, we focus on the
argument for the uniqueness of the SPE, described in appendix A of Boadway et al. [1], and assume that the
remainder of Boadway et al.’s argument holds. We show that this argument does not address the multiplicity
of stage-II equilibria that occurs for some matching factors that are not played at subgame-perfect equilibria
(similar to the multiplicity of stage-II Nash equilibria inM1), which is problematic for two reasons, described
below.

For convenience, denote the pair of matching factors for which the two countries’ stage-II best-response
functions overlap15 by (mc

1,m
c
2). The first issue with Boadway et al.’s [1] argument, is that their Proposition

1 correctly identifies the SPE matching factors and total abatements, but neglects the fact that SPE are also
defined by the unconditional abatements played for (m1,m2) 6= (mc

1,m
c
2) (i.e., off of the equilibrium path).

The multiplicity of stage-II Nash equilibria in M1 generates infinitely many possible SPEs in addition to
those identified by Boadway et al., because each stage-II equilibrium choice yields a different SPE (similar
to Proposition B.17).

Second, and more importantly, Boadway et al.’s justification for the claim that any (m1,m2) 6= (mc
1,m

c
2)

is not played on an SPE path remains problematic, even given a particular stage-II equilibrium choice,(
a1 (µ1, µ2) , a2 (µ1, µ2)

)
∈ A .

To see this, it is useful to define the regions of the quadrant of non-negative matching factors, in which
the effects of unilateral stage-I deviations differ, assuming Nash equilibria are played in stage II (similar
to Mi, i = 1, . . . , 5, defined in Equation (C.87), in which we assumed that the baseline emissions profile
e is a Nash equilibrium of the BCG). For convenience, we use analogous notation here: M1 and M2 are
the closures of the regions in which either both edge equilibria and an interior equilibrium exist, or only an

14Unfortunately, we cannot directly apply Lemma C.6 to show that ∂
∂m2

Π2(m1,m2) < 0 in this region (because m1m2 < 1).
15We stress that Boadway et al.’s argument justifying the existence of such matching factors is problematic, but can be

completed into a rigorous proof (see Remark B.15).
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interior equilibrium exists, respectively, both excluding the point (mc
1,m

c
2). For matching factors (m1,m2)

such that country 2 does not abate unconditionally at a stage-II Nash equilibrium, M3 is the region for
which (µ1,m2) ∈M2 for some µ1 > m1,M4 is the region for which m1m2 < 1 and (µ1,m2) ∈M1 for some
µ1 > m1, and M5 is the region for which m1m2 ≥ 1 and (µ1,m2) ∈ M1 for some µ1 > m1. Note also that
Boadway et al. argue thatM1 (resp. M2) is above (below) the curve m1m2 = 1, so Figure C.2 can be used
as a graphical aid for the discussion that follows.

Boadway et al.’s argument is divided into the following cases16 (which we reorder for convenience):

1. m1m2 > 1:

a. Boadway et al. claim that if
(
a1 (m1,m2) , a2 (m1,m2)

)
is interior (i.e., if (m1,m2) ∈ M1), then

each country can increase its payoff by increasing its matching factor. They justify this by
calculating the partial derivatives of the countries’ payoffs with respect to their own matching
factors, but in doing so implicitly assume that the interior equilibrium is played at all (m1 +
δm1,m2) such that |δm1| is sufficiently small (that is, for small unilateral deviations by country
1). This need not be the case: for example, the equilibrium (aint2,2, 0) may be played when |δm1| > 0
but is sufficiently small, in which case the country payoffs are neither continuous, nor differentiable
at (m1,m2), with respect to country 1’s matching factor; moreover, in this case, a small change
in country 1’s matching factor would only lower its payoff (using an argument analogous to the
proof of Equation (C.90)).

In fact, any stage-II equilibrium choice yields payoffs that are discontinuous somewhere in M1.
For example, suppose that the interior equilibrium is played in all of intM1. Then, as M5

is approached from the interior of M1, the interior stage-II equilibrium approaches the edge-2
equilibrium, but whenM1 is approached fromM5, only the edge-1 equilibrium exists, so similar to
Equation (C.91) (which also holds when the baseline emissions profile e is not a Nash equilibrium
of the BCG), both countries’ payoffs are discontinuous at the border between M1 and M5. We
will return to this discontinuity in case 2b below.

b. If
(
a1 (m1,m2) , a2 (m1,m2)

)
is an edge 1 equilibrium (i.e., if (m1,m2) ∈M5, or possibly (m1,m2) ∈

M1), Boadway et al. argue—also based on calculating the partial derivative of Π2 (m1,m2) with
respect to m2—that country 2 can increase its payoff by decreasing its matching factor unilat-
erally. This argument holds in M5 (similar to our argument in Appendix C.11.5), but may fail
in M1, depending on the specific stage-II equilibrium choice: for example, if (m1,m2) ∈ intM1

and the interior equilibrium is played in a deleted neighbourhood of (m1,m2), then Π2 is neither
continuous nor differentiable at (m1,m2) with respect to m2, and a small change in m2 can only
decrease country 2’s payoff (similar to Equation (C.91)).

2. m1m2 < 1: Note that when the stage-II equilibrium is on edge 1 (i.e., in M3 and M4) Boadway et
al. argue that country 1’s payoff remains unchanged if it increases its matching factor until country 2’s
“stage II first order condition is just binding”; denote country 1’s matching factor when this happens
by m′1. They then consider two situations:

a. If m′1m2 < 1, which occurs if (m1,m2) ∈M3, then further increasing country 1’s matching factor
increases its payoff (similar to our argument in Appendix C.11.3).

b. If m′1m2 > 1, which occurs if (m1,m2) ∈ M4, then Boadway et al. refer to their argument for
case 1. This leaves some ambiguity as to their reasoning, in that they could be referring to case 1a
or 1b; we discuss these two possibilities below.

If case 1a is invoked, the argument is that country 1 can increase its payoff by increasing
its matching factor further to some µ1 > m′1 such that the interior equilibrium is played at
(µ1 + δµ1,m2) for all sufficiently small |δµ1|. However, country 1’s payoff is constant for all
(µ1,m2) ∈M4 (because country 2 does not abate unconditionally), and is higher than its payoff

16Boadway et al. [1] consider stage-II Nash equilibria that are either interior, or on the a2-axis, i.e., of the form (0, aint2,2). We

rewrite their argument considering edge-1 equilibria—i.e., of the form (aint1,1, 0)—instead of the former, so that Figure C.2 can
be used to develop intuition.
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at either the a2-edge equilibrium that exists when (µ1,m2) ∈ M1, or the interior equilibrium
that exists when (µ1,m2) ∈ intM1 (similar to Equation (C.90)). In addition, country 1’s payoff
at any (µ1,m2) ∈ M1 such that the a1-equilibrium is chosen in stage II is also equal to its
original payoff, Π1 (m1,m2). Thus, country 1 cannot increase its payoff beyond its value at the
initial matching factors (m1,m2) in the way Boadway et al. describe, and hence they do not rule
out such (m1,m2) being played at an SPE. The reason that the above version of Boadway et
al.’s argument fails is that the stage-II equilibrium chosen (and thus country 1’s payoff) must be
discontinuous, somewhere along the section of the horizontal line passing at (m1,m2) that lies in
M1. For example, choosing the interior equilibrium in all of intM1 creates a discontinuity in the
payoff Π1 (µ1, µ2) at the boundary between M5 and M1 (see case 1a); even though country 1’s
payoff then increases with its matching factor µ1 in the interior of M1, it remains lower than its
original value, Π1(m1,m2).

If case 1b is invoked, the argument is that country 2 can then increase its payoff by decreasing
its matching factor m2. The problem here is that their argument relies on country 1 increasing
its matching factor from m1 to m′1, and country 2 decreasing its matching factor from m2. In
other words, rather than showing that one of the countries can increase its payoff by unilaterally
changing its matching factor, this argument shows that there exist (µ1, µ2) at which country
2’s payoff is higher than at (m1,m2) (assuming equilibrium play in stage II). Consequently, this
argument does not exclude SPEs existing in M4.

Note also that cases 2a and 2b do not cover the possibility that m′1m2 = 1 (when e is the Nash
equilibrium of the BCG, this occurs on the boundary between M3 and M4). Hence, even ignoring
the problems described above, Boadway et al.’s proof of the uniqueness of the SPE matching factors
remains incomplete.

Thus, Boadway et al.’s argument does not justify the claim that the same pair of matching factors is played
at all existing SPEs.

D Linear-algebraic lemmas

This appendix collects some simple results from linear algebra that are useful in our analysis of the basic
climate game (Appendix A).

Lemma D.1. For any integer k ≥ 2, let

Ak =


1, ρ1, . . . , ρ1
ρ2, 1, . . . , ρ2
...

. . .
...

ρk, . . . , ρk, 1

 =

ρ1, . . . , ρ1
...

...
ρk, . . . , ρk

− diag(ρ1, . . . , ρk) + I .

Then, detAk > 0 for all (ρ1, . . . , ρk) ∈ (0, 1)k.

Proof. We prove our claim by induction. First, observe that since ρ1, ρ2 ∈ (0, 1)

detA2 =

∣∣∣∣ 1, ρ1
ρ2, 1

∣∣∣∣ = 1− ρ1ρ2 > 0 .

Now suppose our claim is true for all integers k such that 2 ≤ k < K. We will show that it also holds for
k = K, which implies that our claim is true for all k ≥ 2. We do this in three steps:

1. detAK 6= 0 for all (ρ1, . . . , ρK) ∈ (0, 1)K ;

2. detAK has constant sign on (0, 1)K ;

3. detAK is positive for (ρ1, . . . , ρK) ∈ (0, 1)K sufficiently close to 0, and thus is positive in all (0, 1)K .
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For ease of notation, denote ρk = (ρ1, . . . , ρk) (k an integer such that 2 ≤ k ≤ K).
The first step is the most complicated. To prove it, we must show that AK is invertible. By subtracting

the vector ρi × (1, ρ1, . . . , ρ1) (a multiple of the first row of AK) from the ith row of AK (i = 2, . . . ,K) and
expanding along the first column we see that

detAK =

∣∣∣∣∣∣∣∣∣
1, ρ1, . . . , ρ1
0, 1− ρ2ρ1, . . . , ρ2(1− ρ1)
...

. . .
...

0, ρK(1− ρ1), . . . , 1− ρKρ1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1− ρ2ρ1, . . . , ρ2(1− ρ1)

...
. . .

...
ρK(1− ρ1), . . . , 1− ρKρ1

∣∣∣∣∣∣∣ . (D.97)

Next, factoring 1− ρiρ1 out of the ith row on the right hand side of Equation (D.97), we obtain

detAK =

[
K∏
i=2

(1− ρiρ1)

]
×

∣∣∣∣∣∣∣∣
1, ρ2(1−ρ1)

1−ρ2ρ1 , . . . , ρ2(1−ρ1)
1−ρ2ρ1

...
. . .

...
ρK(1−ρ1)
1−ρKρ1 , . . . , ρK(1−ρ1)

1−ρKρ1 , 1

∣∣∣∣∣∣∣∣ . (D.98)

Now,
ρi(1− ρ1)

1− ρiρ1
=

1− ρiρ1
1− ρiρ1

+
ρi − 1

1− ρiρ1
= 1− 1− ρi

1− ρiρ1
∈ (0, 1) ,

because ρ1, ρi ∈ (0, 1) implies that 1−ρi
1−ρiρ1 ∈ (0, 1). Consequently, the determinant on the right hand side of

Equation (D.98) is of a matrix of the form

AK−1 =


1, ρ′1, . . . , ρ′1
ρ′2, 1, . . . , ρ′2
...

. . .
...

ρ′K−1, . . . , ρ′K−1, 1

 ,

with (ρ′1, . . . , ρ
′
K) ∈ (0, 1)K−1. By our induction assumption, detAK−1 6= 0. Furthermore,

∏K
i=2 (1− ρiρ1) 6=

0 because ρK ∈ (0, 1)K , so it follows that detAK 6= 0, justifying our first claim.
Since detAK is a polynomial in ρ1, . . . , ρK , it is continuous. Thus, if there are two vectors ρK and

ρ′K in (0, 1)K at which detAK has opposite signs, then (because (0, 1)K is convex) there is another vector
ρ′′K ∈ (0, 1)K at which detAK = 0, contradicting step 1. Hence, detAK has constant sign on (0, 1)K ,
justifying our second claim. Since detAk is continuous and detAk = 1 when ρK = 0, detAK is positive in
a neighbourhood of the origin, ρK = 0. Since such a neighbourhood must intersect with (0, 1)K , it follows
that detAK > 0 for all ρK ∈ (0, 1)K (confirming claim 3 and completing our proof).

Corollary D.2. For any α1, . . . , αn > 0 and β > 0, the matrix

A = diag (α1, . . . , αn) +

β, . . . , β
...

...
β, . . . , β

 ,

is positive definite.

Proof. A’s kth leading principal minor (1 ≤ k ≤ n) is∣∣∣∣∣∣∣
α1 + β, . . . , β

...
...

β, . . . , αk + β

∣∣∣∣∣∣∣ ,
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which can be rewritten as

[
k∏
i=1

(αi + β)

]
× det


1, ρ1, . . . , ρ1
ρ2, 1, . . . , ρ2
...

. . .
...

ρk, . . . , ρk, 1

 ,

where

ρi =
β

αi + β
∈ (0, 1) .

By Lemma D.1, all of A’s principal minors are positive, and because A is symmetric, it follows from Sylvester’s
criterion [9, p. 558] that it is positive definite.

Lemma D.3. Let n ≥ 2, if α1, . . . , αn > 0, β1, . . . , βn ≥ 0, and

A = diag (α1, . . . , αn)−

β1, . . . , βn
...

...
β1, . . . , βn

 .

If
n∑
i=1

βi
αi

= 1 , (D.99)

then A has rank n − 1 and kerA = span
{

(αn/α1, . . . , αn/αn−1, 1)
T
}

; otherwise, A is invertible (and thus

rankA = n and kerA = {0}).

Proof. Subtracting the last row of A from all other rows, we get
α1, 0, . . . , 0 −αn
0, α2, 0, . . . , 0 −αn
...

. . .
...

0, . . . , 0, αn−1, −αn
−β1, . . . , −βn αn − βn

 ,

and dividing row i by αi for i = 1, . . . , n− 1 gives
1, 0, . . . , 0 −αn/α1

0, 1, 0, . . . , 0 −αn/α2

...
. . .

...
0, . . . , 0, 1, −αn/αn−1
−β1, . . . , −βn−1 αn − βn

 .

Eliminating the n− 1 first elements of the last row (using multiples of the n− 1 first rows) yields
1, 0, . . . , 0 −αn/α1

0, 1, 0, . . . , 0 −αn/α2

...
. . .

...
0, . . . , 0, 1, −αn/αn−1
0, . . . , 0 αn

(
1−∑n−1

i=1
βi
αi

)
− βn

 .

If Equation (D.99) holds, then the last row of the matrix above is 0, so A has rank n− 1 and

kerA = span
{

(1/α1, . . . , , 1/αn)
T
}

;

otherwise, A is manifestly invertible.
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