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Abstract. We develop a new large-scale hydrological
and water resources model, the Community Water Model
(CWatM), which can simulate hydrology both globally
and regionally at different resolutions from 30 arcmin to
30 arcsec at daily time steps. CWatM is open source in the
Python programming environment and has a modular struc-
ture. It uses global, freely available data in the netCDF4 file
format for reading, storage, and production of data in a com-
pact way. CWatM includes general surface and groundwater
hydrological processes but also takes into account human ac-
tivities, such as water use and reservoir regulation, by calcu-
lating water demands, water use, and return flows. Reservoirs
and lakes are included in the model scheme. CWatM is used
in the framework of the Inter-Sectoral Impact Model Inter-
comparison Project (ISIMIP), which compares global model
outputs. The flexible model structure allows for dynamic
interaction with hydro-economic and water quality models
for the assessment and evaluation of water management op-
tions. Furthermore, the novelty of CWatM is its combination
of state-of-the-art hydrological modeling, modular program-
ming, an online user manual and automatic source code doc-
umentation, global and regional assessments at different spa-
tial resolutions, and a potential community to add to, change,
and expand the open-source project. CWatM also strives to

build a community learning environment which is able to
freely use an open-source hydrological model and flexible
coupling possibilities to other sectoral models, such as en-
ergy and agriculture.

1 Introduction

In recent years, the interactions between natural water sys-
tems, climate change, socioeconomic impacts, human man-
agement of water resources, and ecosystem management
have increasingly been incorporated into the processes of
large-scale hydrological models (Wada et al., 2017). Exam-
ples of these models are WaterGAP (Alcamo et al., 2003;
Flörke et al., 2013), H08 (Hanasaki et al., 2008, 2018), MAT-
SIRO (Pokhrel et al., 2012), LISFLOOD (De Roo et al.,
2000; Udias et al., 2016), PCR-GLOBWB (Van Beek et
al., 2011; Wada et al., 2014; Sutanudjaja et al., 2018), and
SAFRAN-ISBA-MODCOU (Habets et al., 2008; Decharme
et al., 2019). Human intervention in hydrology and water
resources is becoming essential for the realistic simulation
of global and regional hydrological processes. In particular,
simulations of human water demands from different sectors
such as agriculture, industry, and domestic could have a large
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impact on estimated hydrological storage (e.g., groundwater)
and fluxes (e.g., discharge) (Alcamo et al., 2007; Wada et al.,
2016). More efforts have gone into better groundwater rep-
resentation in large-scale hydrological models to realistically
simulate groundwater levels and surface–groundwater inter-
actions (Pokhrel et al., 2015; Wada, 2016; Reinecke et al.,
2019; de Graaf et al., 2015, 2017; Decharme et al., 2019).

In recent years, model intercomparison projects such as
the WaterMIP (Water and Global Change Water Model Inter-
comparison Project) (Haddeland et al., 2011), Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP) (Warsza-
wski et al., 2014), and the Coupled Model Intercomparison
Project Phase 6 (CMIP6) (Eyring et al., 2016) led to, among
other advantages, a systematic overview of models, a consis-
tent database of spatial input data and simulation protocols
and scenarios, and a shared database of results, all of which
facilitate analysis across different modeling sectors (e.g., wa-
ter, agriculture, energy, biome, and climate). This has also led
to a better understanding of how to assess future changes in
land use and climate in relation to water resource constraints
under given uncertainties of the forcing drivers such as cli-
mate.

Clark et al. (2011) and Bierkens (2015) indicate that model
intercomparison efforts have failed to lead to a better un-
derstanding of the origins and consequences of systematic
model bias and differences and thus to an improved outcome
of model components. Bierkens (2015) argues that while
there are many catchment hydrological models for specific
catchments specializing in their own sophisticated model pa-
rameterizations, few global hydrological models – compared
with the number of regional hydrological models – inter-
act with these regional models and modeling groups (e.g.,
Siderius et al., 2018). One way of overcoming this barrier
could be to implement multiple modeling or modular ap-
proaches into the unifying framework suggested by Clark
et al. (2015). Thus, we here develop a new large-scale hy-
drological and water resources model, the Community Wa-
ter Model (CWatM), which has a flexible modular structure
and unique global and regional spatial representations. Be-
cause of complex interactions of hydrology with food, en-
ergy, and ecosystems, it is expected that hydrological models
can cover these interactions as model components. To ad-
vance the move from large-scale hydrological models to bet-
ter model representations of hydrological processes, we be-
lieve that it is also necessary to create a community-driven
modeling environment that facilitates the exchange of ideas,
components or modules, data, and results in an easily com-
municable format. In a wider sense, a user-friendly and flexi-
ble model structure will enable more active engagement with
stakeholders and associated capacity training.

Therefore, CWatM includes the features detailed below:

– use of an open-source platform as a way to exchange
ideas and develop model codes that facilitate capac-
ity enhancement, especially in regions with limited ac-

cess to high-performance computing facilities and high-
resolution data;

– scalability to allow use of the model at the regional-
to-catchment scale and also at the continental-to-global
scale, which facilitates learning between global and re-
gional hydrological model applications;

– use of a flexible modular structure to explore the link-
ages with other sectoral models such as those relating to
land use, agriculture, and energy so that options and the
solution space can be integrated;

– existing linkages to state-of-the-art models for energy
(MESSAGE) (Sullivan et al., 2013), land use and
ecosystems (GLOBIOM) (Havlík et al., 2013), agricul-
ture (IIASA-EPIC) (Balkovič et al., 2014), water qual-
ity (MARINA) (Strokal et al., 2016), and the hydro-
economy (ECHO) (Kahil et al., 2018); and

– linkages to the political economy and stakeholder per-
spectives (Tramberend et al., 2020), e.g., social hydrol-
ogy (Sivapalan et al., 2012; Seidl and Barthel, 2017).

A model software architecture includes the aspects below:

– a high-level programming language for easy compre-
hension of the code and to facilitate extensibility;

– an interface to a fast computing language (e.g., C++)
for time-intensive operations (e.g., river routing);

– a multiplatform to adjust the model to the users’ needs
and capacity (e.g., Windows, Linux, Mac, and high-
performance clusters and supercomputers);

– a high level of modularity to be extensible for different
model options to solve the same process, e.g., evapora-
tion with Hargreaves, Hamon, Penman–Monteith, or for
a different purpose (e.g., flood forecasting, water–food
nexus, linking to hydro-economic modeling);

– documentation of the model and the source code in a
semiautomatic way to facilitate immediate documenta-
tion and comprehension of the concepts involved; and

– a state-of-the-art data structure for reading and writing
spatiotemporal data to allow for efficient management
of data storage and facilitate the development toward
high-resolution models.

As described above, the main novelty of CWatM lies not
in providing entirely new concepts for modeling hydrolog-
ical and socioeconomic processes but in combining existing
good practice in various scientific communities beyond hy-
drology itself. CWatM has a modular model structure which
is open source and uses state-of-the-art data storage proto-
cols as input and output data. Currently, CWatM can use dif-
ferent spatial resolutions from 30 arcmin (∼ 50 km by 50 km
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at the Equator) to 30 arcsec (∼ 1 km by 1 km), enabling it to
address both global and regional water management. The on-
line user manual and automatic source code documentation
make CWatM an easy-to-use tool which can be integrated
and coupled to other toolsets such as land use modeling and
hydro-economic modeling. CWatM also strives to build up a
community which can freely use an open-source hydrologi-
cal model with the possibilities of coupling it to other water
management models such as WEAP (Yates et al., 2005) and
ECHO (Kahil et al., 2018).

This paper describes the development of the model, in-
cluding its structure and modules, and gives some examples
of applications. Section 2 of this paper presents a detailed de-
scription of the model development of CWatM. Section 3 de-
scribes the data used for the model. Section 4 introduces the
calibration of the model. Section 5 shows results for several
calibrated catchments and two application examples. Sec-
tion 6 shows how CWatM is linked to other sectoral models.
Section 7 discusses the conclusions and the way forward.

2 Model description

2.1 Model concept

The Community Water Model (CWatM) is an integrated hy-
drological and channel routing model developed at the In-
ternational Institute for Applied Systems Analysis (IIASA).
CWatM quantifies water availability, human water use, and
the effect of water infrastructure, e.g., reservoirs, ground-
water pumping, and irrigation, in regional water resources
management. A schematic view of the processes is given in
Fig. 1. CWatM is a grid-based model, and its recent version
has spatial resolutions of 0.5◦ and 5′ (with subgrid resolution
taking into account topography and land cover) at daily tem-
poral resolution (with subdaily time stepping for soil, lakes
and reservoirs, and river routing). The model can also be ap-
plied at 30 arcsec. CWatM follows a modeling concept sim-
ilar to that of large-scale hydrological models such as H08
(Hanasaki et al., 2006, 2008, 2018), WaterGAP (Alcamo et
al., 2003; Flörke et al., 2013), LPJmL (Bondeau et al., 2007;
Rost et al., 2008), LISFLOOD (De Roo et al., 2000; Bu-
rek et al., 2013), PCR-GLOBWB (Van Beek et al., 2011;
Wada et al., 2014; Sutanudjaja et al., 2018), VIC (Xu et al.,
1994), MHM (Samaniego et al., 2011; Kumar et al., 2013),
and HBV (Bergström and Forsman, 1973; Lindström, 1997).
A comprehensive overview of existing global hydrological
models (GHMs) is given in Bierkens (2015), Kauffeldt et
al. (2016), Pokhrel et al. (2016), Wada et al. (2017), and
in the ISI-MIP project (Frieler et al., 2016), with the latter
having been used for model comparison of different GHMs.
Among these large-scale hydrological models, CWatM uses
a model implementation similar to that of PCR-GLOBWB
and LISFLOOD.

The philosophy of CWatM is the same as that described in
Bergstrom (1991) for the model HBV: as complex as neces-
sary but not more. This means that the model merges concep-
tual and physical modeling and is keeping a similar level of
physical complexity throughout the model. If a higher-detail
physical model is needed, it should be introduced as add-on
modules. For different tasks, different interactions to other
models and different descriptions of processes are needed.

The CWatM modeling system is written in Python 3.7 with
only a few Python packages (numpy, scipy, gdal, netCDF4)
and can be used on different platforms (Unix, Linux, Win-
dows, Mac). Excessive computational parts can be added via
an interface as C++ or Fortran code. For example, runoff
concentration within a grid cell or river routing using the
kinematic wave equation is done in C++. With this approach
the advantage of high-level languages like Python to write
and understand code quickly and effectively and the advan-
tage of languages like C++ for fast computing are preserved.
The focus of the model development is to build a flexible
model architecture and to present a full hydrological model
for calculating water availability and demand. The model can
handle different spatial resolutions from 1 to 50 km at a daily
temporal resolution for different tasks from global to regional
assessments.

The target audience of the model is hydrological model-
ers of varying levels of programming familiarity. Modelers
with no experience in programming languages like Python
can simply use the executable together with the settings file.
Modelers with only limited experience in Python can use
the platform-independent Python version with no need to
adapt the source code itself. Finally, modelers with program-
ming capacity in Python can engage with the source code
and adapt the model to their specific needs. The wide adop-
tion of Python as a programming language and the open-
source approach will allow for a community of developers
to engage with and further develop CWatM. The code itself
comes with a GNU General Public License and is hosted
on GitHub (https://github.com/CWatM/CWatM, last access:
27 June 2020), where every change is trackable and trans-
parent. The source code is programmed in the modern pro-
gramming language Python, with only certain computation-
ally demanding parts written in C++, such as river routing.
Each subroutine is documented for its design and purpose,
and 40 % of the source code lines is documentation. CWatM
follows a modular development pathway in several ways,
which simplifies the use of the model for the different user
groups. Firstly, the program is independent from the settings
file, which includes all information related to data, param-
eters for each process, and output options. This enable the
user to run the model without any understanding of Python,
while still providing flexibility of input and output options to
the user. Secondly, the modules for hydrological processes
and data handling (e.g., reading configuration, data read and
write routines, error handling) are handled separately; fur-
ther, the different hydrological processes (from calculation of
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Figure 1. Schematic figure of the processes included in the CWatM.

potential evaporation to river routing) are each handled inde-
pendently. This enables the advanced user to concentrate on
adapting specific processes or develop their own hydrologi-
cal modules to extend the modular structure (see Fig. S11 in
the Supplement for the CWatM modular structure). Thirdly,
each module is identically composed of an initialization class
and a dynamic class operating through time; this structure
is motivated by the PC-Raster framework (Karssenberg et
al., 2010). Alternative descriptions of processes (e.g., Harg-
reaves instead of Penman–Monteith for calculating potential
evaporation) can be included in a module as different initial
and dynamic classes, and the selection of the specific pro-
cess representation can be selected in the settings file. Link-
ing to other models can be done by transfer via input and
output files, where every global variable of CWatM (exam-
ples include evapotranspiration, lake and reservoir storage,
etc.) can be written as annual, monthly, or daily time series
as text files for specific points, aggregated to basins, or as
maps showing the value for each cell. Any variable can have
a meta information entry. This enables a simplified linking to
other models (e.g., hydro-economic) which might need only,
for example, monthly values of groundwater recharge per
basin. Linking to models like the land use model GLOBIOM
is done with pre- and postprocessing coupler functions, as
most of these models need aggregated data as ASCII files.
Coupling to MODFLOW (McDonald and Harbaugh, 1988;
Harbaugh, 2005) is done by using the FloPy Python pack-
age (Bakker et al., 2016). The user can switch on the MOD-
FLOW coupling in the settings file and in addition the nec-
essary data for the groundwater model (e.g., transmissivity
maps) have to be provided. Coupling to models using C++
can be done by an in-memory coupling using the ctypes li-

brary, as this is already done to embed the kinematic wave
routing routine. CWatM generally accepts netCDF, Geotiff,
and PCRaster input maps and uses netCDF4 formats for out-
puts and to store spatiotemporal data efficiently. This also
allows for meteorological forcing data to be used without the
need for reformatting. NetCDF4 also has the advantage that
the metadata are directly attached. CWatM uses the Climate
and Forecast (CF) Metadata Convention 1.6. Metadata infor-
mation (unit, long name, standard name, author, etc.) can be
included for every output netCDF file by adding this infor-
mation to the file metanetcdf.xml. Finally, to best support
and reach its community, CWatM has a Google group and fo-
rum (https://groups.google.com/d/forum/cwatm, last access:
27 June 2020); online documentation (https://cwatm.iiasa.ac.
at, last access: 27 June 2020) including model setup basics,
data information, and license information; and uses Sphinx
(https://www.sphinx-doc.org, last access: 27 June 2020) for
the auto-documentation of source code.

The model is accessible and customizable to the needs of
different users with varying levels of programming skill, al-
lowing for research questions of varying spatial scales from
global to local scales to be answered. This will support and
enable different stakeholder groups and scientific communi-
ties beyond hydrology and of varying capacities to engage
with a hydrological model and support their investigations
(see Sect. 6). We hope that we have appropriately represented
CWatM and its use of best practices in research software
as stated in Wilson et al. (2014) and Jiménez et al. (2017).
CWatM was already used in several scientific assessments,
including Wang et al. (2019a, b), He et al. (2019), Vinca
et al. (2019), and Kahil et al. (2020), and has a small but
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growing community of users in several countries around the
world.

2.2 General overview of the hydrological processes

CWatM can use different datasets of daily meteorologi-
cal forcing as inputs to calculate potential evaporation with
Penman–Monteith (Allen et al., 1998) as a default option, as
well as other methods such as the Hargreaves (Hargreaves
and Samani, 1958) and Hamon (Hamon, 1963) approaches.
Elevation data on the subgrid level and temperature are used
to split precipitation into rain and snow, while the degree-day
factor method (WMO, 1986) calculates snow melt.

CWatM calculates the water balance for six land cover
classes separately (forest, irrigated, paddy-irrigated, water
covered, sealed area, and “other” land cover class). Soil pro-
cesses, interception of water, and evaporation of intercepted
water are calculated separately for four different land cover
classes (forest, irrigated, paddy-irrigated, and other), and the
resulting flux and storage per grid cell is aggregated by the
fraction of each land cover class in each grid cell. Infiltra-
tion into the soil is calculated with the Xinanjiang model ap-
proach (Zhao and Liu, 1995; Todini, 1996). The model cal-
culates preferential bypass flow which bypasses the soil lay-
ers and percolates directly to groundwater, similar to the ap-
proaches of LISFLOOD (Burek et al., 2013), VarKast (Hart-
mann et al., 2015), and HBV (Lindström et al., 1997). Soil
moisture redistribution in three soil layers is calculated us-
ing the Van Genuchten simplification (Van Genuchten, 1980)
of the Richards equation. The depth of the first soil layer is
fixed at 5 cm so that its soil moisture can be compared with
products from remote sensing data. The second and third soil
layer depths depend on the root zone depth of each land cover
class and the total soil depth from data of the Harmonized
World Soil Database 1.2 (HWSD) (FAO et al., 2012). Wa-
ter uptake and transpiration by vegetation are based on an
approach by Supit et al. (1994) and Supit and van der Goot
(2003), where water stress reduces the maximal transpiration
rate. Direct evaporation from the soil surface is calculated
separately for two more land cover classes, namely, water
and sealed (impermeable) surface; evaporation and runoff are
also calculated separately.

Groundwater storage is modeled using a linear reservoir.
In the newest version of the model, a MODFLOW coupling
is also available, allowing users to include lateral flows be-
tween grid cells. Capillary rise from groundwater to the soil
layers is included. Runoff concentration in a grid cell is cal-
culated using a triangular weighting function. CWatM ap-
plies the kinematic wave approximation of the Saint-Venant
equation (Chow et al., 1998) for river routing.

Lakes and reservoirs are included in two different ways:
(i) a lake or reservoir has an upstream area beyond the actual
grid cell and is part of the grid linking the river routing sys-
tem and (ii) a lake or reservoir is only a part of the regional
river system within a grid cell. Reservoirs are simulated us-

ing a simple general reservoir operation scheme as used in
LISFLOOD (De Roo et al., 2000; Burek et al., 2013). Lakes
are simulated by using the modified Puls approach (Chow et
al., 1998; Maniak, 1997).

Water demand and consumptions are estimated for the
livestock, industry, and domestic sectors using the approach
of Wada et al. (2011). Water demand and consumption
for irrigation and paddy irrigation are calculated within
CWatM using the crop water requirement methods of Allen
et al. (1998). This irrigation scheme can also dynamically
link the daily surface and soil water balance with irrigation
water.

With these coupled processes, CWatM can facilitate as-
sessment of the changing pattern of water supply and de-
mand across scales under climate change at different spatial
resolutions. The modular structure also makes the linking of
CWatM with other IIASA models possible, e.g., MESSAGE
(Sullivan et al., 2013), GLOBIOM (Havlík et al., 2013), and
ECHO (Kahil et al., 2018, 2019), to develop an integrated as-
sessment modeling framework for nexus issues (e.g., water–
food–energy) or hydro-economic modeling for quantifying
water infrastructure investment options for regional water re-
sources management.

2.3 Methods

2.3.1 Meteorological forcing

CWatM is able to use different datasets of meteorological
forcing for the current climate – e.g., MSWEP (Beck et al.,
2017), WFDEI (Weedon et al., 2014), PGMFD (Sheffield et
al., 2006), GSWP3 (Kim et al., 2012), or EWEMBI (Lange,
2018) – or future climate projections from different general
circulation models (GCMs) (e.g., data from ISIMIP project,
Frieler et al., 2016). CWatM can use the netCDF4 reposito-
ries of original meteorological forcing without reformatting.
As long as the forcing data are using the CF 1.6 Conven-
tion, CWatM takes care of the different names of the input
variables and divides the dataset for the catchment or global
scale, depending on a mask map or predefined rectangular
selection. The forcing data are automatically regridded to the
model grid (e.g., 30′′ or 5′) using the delta change method
(Moreno and Hasenauer, 2016; Mosier et al., 2018) based
on high-resolution monthly data from WorldClim version2
(Fick and Hijmans, 2017).

Depending on the method used for calculating potential
evaporation, e.g., Penman–Monteith method (Allen et al.,
1998), Hargreaves method (Hargreaves and Samani, 1958),
or Hamon method (Hamon, 1963), different climate data are
needed. As a default, the Penman–Monteith needs as inputs
precipitation; humidity; long- and short-wave downward sur-
face radiation fluxes; maximum, minimum, and average 2 m
temperature; 10 m wind speed; and surface pressure. Tem-
perature data are additionally needed to distinguish between
snow and rain.
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2.3.2 Potential evaporation

Potential reference crop evaporation rate (ET0) is calculated
from a hypothetical reference vegetation with specific char-
acteristics and unlimited availability of water (Allen et al.,
1998). In the same way, the potential evaporation of an open
water surface (EW0) is calculated. ET0 and EW0 are treated
as pure climatic variables, because for calculation purpose
they are not influenced by land cover or soil properties. In
reality, the potential evapotranspiration might be different to
ET0 due to differences in vegetation characteristics, aerody-
namic resistance, or surface reflectivity (albedo). To account
for the variability of vegetation, ET0 is multiplied by an em-
pirical “crop coefficient” (kcrop) that lumps these differences
into one factor, yielding a potential crop evapotranspiration
rate (ETcrop). The method used here is based on work de-
scribed in Allen et al. (1998) and Supit and van der Goot
(2003).

2.3.3 Snow and frost

Precipitation is split into rainfall and snow, depending on the
temperature. If the average temperature is below 1 ◦C (de-
fault, but can be changed), all precipitation is assumed to be
snow. For large grid cells, e.g., 0.5◦ or 5′ resolution, there is
a considerable subgrid heterogeneity in elevation and there-
fore in temperature and snow accumulation and melt (Ander-
son, 2006). Because of this, snow accumulation and melt are
modeled in up to 10 separated elevation zones on the sub-
grid level using different elevation zones and a fixed, defined
moist adiabatic lapse rate.

Snow accumulates until it melts or evaporates. The rate
of snowmelt is estimated using a degree-day factor method,
which take into account the fact that snowmelt increases
when it is raining (Speers and Versteeg, 1979):

M = Cm ·CSeasonal(1+ 0.01 ·R1t)(Tavg− Tm) ·1t, (1)

where M is snowmelt per time step (mm), R is rainfall in-
tensity (mm d−1),1t is time interval (d), Tm is equal to 0 ◦C,
Cm is the degree-day factor (mm ◦C−1 d−1), and CSeasonal is
the seasonal variable melt factor.
CSeasonal is a factor depending on the day of the year,

which varies the snow melt rate. A similar factor is used in
several other models (e.g., Anderson, 2006; and Viviroli et
al., 2009). At high altitudes the model tends to accumulate
snow without any melting loss, because temperature never
exceeds 1 ◦C. In these altitudes snow is accumulated and
is converted into firn, which is then converted into ice as
glaciers move to lower regions over decades or even cen-
turies. In the ablation area, the ice is again melted. In CWatM
this process can be optionally simulated by melting the snow
at higher altitudes on an annual basis over summer using a
higher degree-day factor and temperature from a lower sub-
grid zone.

Hydrological processes occurring near the soil surface are
affected and halted if the soil surface is frozen. To estimate
whether the soil surface is frozen, a frost index F is calcu-
lated to estimate whether the soil surface is frozen based on
Molnau and Bissell (1983). The frost index changes by day
at a rate given by

dF
dt
=−(1−Af )F − Tav · e

−0.04·K·ds/wes , (2)

where dF/dt is given (◦C d−1), Af is the decay coefficient
(here 0.97 d−1), K is snow depth reduction coefficient (here
0.57 cm−1), ds is grid average of depth of the snow cover
(mm equivalent water depth), and wes is snow water equiva-
lent.

For each time step, the value of F (◦C d−1) is updated as

F(t)= F(t − 1)+
dF
dt
1t. (3)

The soil is considered frozen when the frost index is above
a critical threshold of 56; then, every soil process in the first
two layers will be stopped. Precipitation bypasses soil and is
transformed into surface runoff until the frost index is again
lower than 56.

2.3.4 Interception, evaporation from soil, open water,
and sealed surface

The calculation for interception and evaporation is based on
Allen et al. (1998). For each land cover class, a maximum
interception storage is defined. Interception storage can be
filled by rainfall and depleted by evaporation using potential
evaporation from open water. The leftover interception stor-
age is added to the water available for infiltration in the other
time step. Evaporation from soil is calculated using the po-
tential reference evapotranspiration rate multiplied by a soil
crop factor (default: 0.2). Evaporation from sealed area or
open water is calculated using the potential evapotranspira-
tion for the open water rate multiplied by a factor (defaults:
0.2 for sealed, 1.0 for water).

2.3.5 Transpiration from plants

Potential transpiration from plants is calculated using the
potential reference evapotranspiration multiplied by a crop-
specific factor available as a spatially distributed dataset for
each land cover type for every 10 d over a year. The crop
coefficient is aggregated from MIRCA2000: a global dataset
of monthly irrigated and rainfed crop areas (Portmann et al.,
2010). The actual transpiration rate depends on the available
water and on the ability of the crop type to deal with water
stress. The energy already used up for the evaporation of in-
tercepted water is subtracted here in order to respect the over-
all energy balance. The actual transpiration rate is reduced by
a water stress factor which takes into account the ability of
the crop to deal with water stress and an index of water stress
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of the soil:

rws =
(w1−wwp1)

(wcrit1−wwp1)
, (4)

where rws is the reduction factor because of water stress, w1
is soil moisture in the two upper soil layers (mm),wwp1 is soil
moisture at wilting point (soil moisture potential pF 4.2), and
wcrit1 is soil moisture below which water uptake is reduced
and plants start closing their stomata.

The critical amount of soil moisture is calculated as

wcrit1 =(1−p) · (wfc1−wwp1)+wwp1

p = 1/(0.76+ 1.5 · Tmax)− 0.1
· (5 ·Cropgroup number), (5)

where p is soil depletion fraction; wfc1 is soil moisture at
field capacity; and Cropgroup number is the crop group number,
which is an indicator of adaptation to dry climate (e.g., olive
groves are adapted to dry climate and can therefore extract
more water from soil that is drying out than rice can).

The actual transpiration Ta is calculated as

Tact = rWS · Tpot. (6)

The procedure for estimating p and Rws is described in detail
in Supit and van der Goot (2003).

2.3.6 Infiltration into soil and preferential bypass flow

To estimate the infiltration capacity of the soil, the approach
of Xinanjiang (also known as VIC/ARNO model) (Zhao and
Liu, 1995 and Todini, 1996) is used. The saturated fraction of
a grid cell that contributes to surface runoff is related to the
overall soil moisture of a grid cell through a nonlinear dis-
tribution function. The saturated fraction As is approximated
by the following distribution function:

As = 1−
(

1−
w1

ws1

)b
, (7)

where ws1 and w1 are the maximum and actual soil mois-
ture in the upper two soil layers and b is an empirical shape
parameter.

INFpot =
ws1

b+ 1
−
ws1

b+ 1

[
1− (1−As)

b+1
b

]
(8)

To simulate the preferential bypass flow of the soil, a fraction
of the water available for infiltration is passed directly to the
groundwater zone. The fraction is calculated as a function of
the relative saturation of the first two soil layers.

Dpref,gw =Wav

(
w1

ws1

)cpref

, (9)

whereDpref,gw is preferential flow per time step,Wav is avail-
able water for infiltration, and cpref is empirical shape param-
eter.

A preferential flow component that lets more water bypass
the soil as the soil gets wetter is calculated.

The actual infiltration INFact is calculated as

INFact =min
(
INFpotWav−Dpref,gw

)
. (10)

2.3.7 Soil moisture redistribution and capillary rise

Unsaturated flow and transport processes can be described
with the 1D Richard equation, which requires a high spa-
tiotemporal distribution of the soil’s hydraulic properties and
a numerical solver.

1θ

1t
=
1

1z

[
K (θ)

(
1h(θ)

1z

)
− 1

]
− S (θ)

(1D Richard equation), (11)

where θ is soil volumetric moisture content [L3L−3], t is time
[T], h is soil water pressure head [L], K(θ) is unsaturated
hydraulic conductivity [LT−1], z is vertical coordinate, and
S is the source–sink term [T−1]

In order to apply an analytical and faster solution, Van
Genuchten (1980) hydraulic functions based on the model of
Mualem (1976) were adopted. It assumes a matric potential
gradient of zero, which implies a flow that is that is always
in a downward direction at a rate equal to the conductivity of
the soil, and free drainage as the lower boundary condition
in the lowest soil layer. The relationship between hydraulic
conductivity and soil moisture status is described by the Van
Genuchten (1980) equation.

K (θ)=Ks

(
θ − θr

θs− θr

)0.5
{

1−

[
1−

(
θ − θr

θs− θr

)1/m
]m}2

(Van Genuchten equation), (12)

where Ks is saturated conductivity of the soil (m d−1); K(θ)
is unsaturated conductivity;2, θs, and θr are the actual, max-
imum, and residual amounts of moisture in the soil (m); and
m is calculated from the pore-size index (λ): m= λ

λ+1 .
The soil hydraulic parameters 2, θs, θr, λ, and Ks

are needed to simulate soil water transport for the Van
Genuchten model and are derived via a pedotransfer func-
tion (e.g., model Rosetta of Zhang and Schaap, 2017) from
standard soil properties (soil texture, porosity, organic mat-
ter, and bulk density).

Once the unsaturated conductivity for each soil zone is de-
termined, the water flux to the next zone can be estimated. At
a time step of 1 d and highK(θ), the vertical flux can exceed
the available soil moisture:

K (θ) > θ − θr. (13)

Therefore, the soil moisture equation has to be solved itera-
tively on a subdaily time step.

Capillary rise occurs only when the groundwater level is
close to the surface. CWatM estimates the total fraction of the
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area with groundwater level of between 0 and 5 m from the
surface in discrete steps and calculates the flux from ground-
water to the soil layer based on unsaturated conductivity and
field capacity (Wada et al., 2014).

2.3.8 Groundwater

Groundwater storage and baseflow are modeled using a lin-
ear reservoir approach as in LISFLOOD (De Roo et al., 2000;
Udias et al., 2016). The groundwater zone is filled by the wa-
ter percolating from the lower soil zone and the preferential
flow and is emptied by capillary rise and baseflow. The out-
flow from the groundwater zone is given by

Qbase =
1

Tbase
Storage= Rcoeff Storage, (14)

where Qbase is baseflow or outflow from the groundwater
zone, Tbase is a groundwater reservoir constant in days, Stor-
age is water stored in the groundwater zone, and Rcoeff is a
recession coefficient of the groundwater zone.

For considering lateral fluxes among grid cells and the ex-
plicit computation of groundwater levels over finer spatial
domains, CWatM has an option to couple with MODFLOW
(McDonald and Harbaugh, 1988, Harbaugh, 2005) using the
FloPy Python package (Bakker et al., 2016) in a similar way
to PCR-GLOBWB (Sutanudjaja et al., 2014). The 5′ resolu-
tion version of CWatM is coupled with a one-layer MOD-
FLOW model at a finer MODFLOW resolution (from 4 km
to 400 m) with the aim of integrating the small-scale topo-
graphic control. The coupling is made on a daily to weekly
base water balance.

CWatM simulates the vertical soil water flow in three
soil layers, while MODFLOW simulates lateral groundwa-
ter flows. CWatM-MODFLOW is technically coupled (using
the Drain package) via capillary rise from groundwater to
the soil zones, groundwater recharge from the soil zones, and
baseflow outflow from groundwater to the river network sys-
tem. As the MODFLOW resolution can be smaller than the
CWatM resolution, the CWatM mesh is subdivided into two
parts: one part where groundwater recharge occurs and one
part where capillary rise from groundwater occurs. The area
of each part is determined by the percentage of MODFLOW
cell, where the water level reaches the lower soil layer inside
a CWatM mesh. To distinguish whether the groundwater flow
to the surface will be attributed to capillary rise or baseflow,
a percentage of rivers is attributed to each MODFLOW cells
and calculated based on a 200 m resolution topographic map.
Aquifer properties, like transmissivity or aquifer thickness,
are estimated using the approach of de Graaf et al. (2015)
and Gleeson et al. (2011). The results presented in Sect. 5 of
this work are calculated using the simplified linear reservoir
approach.

2.3.9 Runoff concentration within a grid cell

The process between runoff generation and river routing for
each grid cell is called runoff concentration. The runoff gen-
erated from each cell is routed to the corner of each cell.
Depending on land cover class, slope, and runoff group (sur-
face, interflow, or baseflow), a concentration time (peak time)
is determined. The total runoff for a grid cell is then calcu-
lated using a triangular weighting function.

Q(t)=
∑

land cover

∑
runoff

max∑
i

c (i) Qrunoff (t − i+ 1) , (15)

where Q(t) is the total runoff of a grid cell of a time step,
runoff is the runoff component (surface, interflow, baseflow),
Qrunoff is the runoff of land cover class of a runoff compo-
nent, t is time (1 d), and c(i) is a triangular function:

c (i)=

i∫
i−1

2
max
−

∣∣∣u− max
2

∣∣∣ · 4
max2 du. (16)

2.3.10 River routing

Flow through the river network is simulated using kinematic
wave equations. The basic equations used are the equations
of continuity and momentum. The continuity equation is

1Q

1x
+
1A

1t
= q, (17)

where Q is channel discharge (m3 s−1), A is cross-sectional
area of the flow (m2), and q is the amount of lateral inflow
per unit flow length (m2 s−1).

The momentum equation can also be expressed as in Chow
et al. (1998):

A= α ·Qβ . (18)

The coefficients α and β are calculated by putting in Man-
ning’s equation. This leads to a nonlinear implicit finite-
difference solution of the kinematic wave if you transform
the right side:

1t

1x
Q
j+1
i+1 +α

(
Q
j+1
i+1

)β
=
1t

1x
Q
j+1
i +α

(
Q
j

i+1

)β
+1t

(
q
j+1
i+1 + q

j

i+1

2

)
, (19)

where J is time index, I is the space index, and α and β are
coefficients.

With the coefficients α and β, the nonlinear equation can
be solved for each grid cell and for each time step using an
iterative approach given in Chow et al. (1998). The coeffi-
cients can be calculated using Manning’s equation.

A=

(
n ·P 2/3
√
S0

)3/5

Q3/5, (20)
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where n is Manning’s roughness coefficient, P is wetted
perimeter of a cross section of the surface flow (m), and S0 is
the topographical gradient.

Solving this for α and β gives

α =

(
nP 2/3
√
S0

)β
and β = 0.6, (21)

where P is the wetted perimeter approximated in CWatM: P
equals channel width plus 2 times the channel bankfull depth,
n is Manning’s coefficient, and S0 is gradient (slope) of the
water surface: S0 equals the change in elevation divided by
the channel length.

To calculate α, CWatM uses a fixed network depending
on the spatial resolution, and, for each grid cell, the chan-
nel width, depth, length, gradient, and Manning’s roughness
have to be known. As water can travel a distance greater than
a cell size in 1 d, river routing and the lake and reservoir rou-
tines are performed on a subdaily time step, based on the
chosen spatial resolution.

2.3.11 Reservoirs and lakes

Reservoirs and lakes (RL), based on the HydroLakes
database (Messager et al., 2016; Lehner et al., 2011), are sim-
ulated as part of the channel network. Using the approach of
Hanasaki et al. (2018) and Wisser et al. (2010), we distin-
guish between global RL and local RL. Global RL are lo-
cated in the main channel of a grid cell with a catchment
upstream of this grid cell. Local RL are more or less situ-
ated inside one grid cell at the tributaries of the main channel
and not attached to the main river. Local RL are defined in
CWatM depending on the spatial resolution. All RL with an
RL area of less than 200 km2 at 0.5◦ (5 km2 for 5′) or with a
watershed of less than 5000 km2 at 0.5◦ (200 km2 for 5′) are
defined as “global” RL. The approach for calculating water
storage and outflow of RL is the same for local and global
RL, but the retention effect of local RL will be calculated
during the runoff concentration process within a grid cell,
while the effect of global RL will be calculated during the
river routing process and includes the whole river network of
a catchment.

Reservoir operation method

The method of simulating reservoir operations is taken from
LISFLOOD (Burek et al., 2013). A total storage capacity
S is assigned to each reservoir, and the fraction of filling
of a reservoir is calculated. Three filling levels are defined.
(a) The “conservative storage limit” fraction because a reser-
voir should never be completely empty (default set to 10 %
of the total storage). For prevention of damage in case of
flooding, a reservoir should not be filled to the full storage
capacity. (b) The “flood storage limit” (Lf) represents this
maximum allowed storage fraction (default set to 90 % of
the total storage); (c) the “normal storage limit” (Ln) defines

the buffering capacity and the available storage of a reservoir
between Ln and Lf.

Another three parameters define how the outflow of a
reservoir is regulated. (a) Each reservoir has a “minimum
outflow” Omin. The default is set to 20 % of the average dis-
charge, e.g., for ecological reasons. (b) A maximum possi-
ble outflow or the “non-damaging outflow”, Ond, is defined
which causes no problems downstream in case of flood. The
default for this outflow is set to 400 % of the average dis-
charge. (c) Between the state of flood and normal storage
limit, a reservoir is managed as much as possible to deliver a
constant outflow so that there is also a constant energy out-
put from hydropower generation. “Normal outflow”, Onorm,
is set as a default value to average discharge.

The outflow Ores, is calculated depending on the fraction
of the filling of the reservoir as

Ores =min
(
Omin,

1
1t
F · S

)
F ≤ 2Lc; (22)

Ores =Omin+ (Onorm−Omin)(
F − 2Lc

Ln− 2Lc

)
Ln ≥ F > 2Lc; (23)

Ores =Onorm+
(F −Ln)

(Lf−Ln)
·max[(Ires−Onorm) ,

(Ond−Onorm)]Lf ≥ F > Ln; (24)

Ores =max
(
(F −Lf)

1t
SOnd

)
F > Lf; (25)

where S is reservoir storage capacity (m3), F is reservoir fill
fraction (1 at total storage capacity) (–), Lc is conservative
storage limit (–), Ln is normal storage limit (–), Lf is flood
storage limit (–), Omin is minimum outflow (m3 s−1), Onorm
is normal outflow (m3 s−1), Ond is non-damaging outflow
(m3 s−1), and Ires is reservoir inflow (m3 s−1).

Lake method

Lakes are simulated using the modified Puls approach (Chow
et al., 1998, Maniak, 1997) similar to the approach as in LIS-
FLOOD (Burek et al., 2013). As lake inflow, the channel flow
upstream of the lake location is used. As lake evaporation, the
potential evaporation rate of an open water surface is taken.
The modified Puls approach assumes that lake retention is
a special case of flood retention with horizontal water level
and the equations of river channel routing (see Sect. 2.3.10,
“River routing”) can be written as

(QIn1+QIn2)

2
−
(QOut1+QOut2)

2
=
(S2+ S1)

1t
, (26)

where QIn1 is inflow to lake at time 1 (t), QIn2 is inflow to
lake at time 2 (t +1t), QOut2 is outflow from lake at time 1
(t), QIn2 is outflow from lake at time 2 (t +1t), S1 is lake
storage at time 1 (t), and S2 is lake storage at time 2 (t+1t).
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The change in storage is inflow minus outflow and open
water evaporation. The equation is solved by calculating the
lake storage curve as a function of sea level, S = f (h), and
the rating curve as a function of sea level, Q= f (h). Lake
storage and discharge are linked by the water level.

The assumptions made here to simplify the equation are
the following.

1. A modification of the weir equation by Poleni from
Bollrich and Preißler (1992) is assumed:

Q= µcb
√

2g ·H 3/2
= α ·H 3/2. (27)

2. If the weir does not have a rectangular form but a
parabola form, the equation can be simplified to

Q= α ·H 2. (28)

3. The lake storage function is simplified to a linear rela-
tion:

S = A ·H, (29)

where S is lake storage, A is lake area, and H is sea
level.

2.3.12 Water use module

Irrigation water demand

Irrigation is by far the biggest consumer of water at around
70 % of global gross water demand (Döll et al., 2009). Irriga-
tion water demand is calculated by following the method de-
veloped in PCR-GLOBWB (Wada et al., 2011, 2014) using
the MIRCA2000 crop calendar of Portmann et al. (2010) and
irrigated areas from Siebert et al. (2005) to account for sea-
sonal variability, different crops, and different climatic con-
ditions. MIRCA2000 explicitly considers multiple cropping.
The associated crop- and stage-specific crop coefficients are
derived from the Global Crop Water Model (Siebert et al.,
2010). The crops are then aggregated into paddy and non-
paddy and the crop coefficients are similarly aggregated by
weighing the area of each crop class. Then, the cell-specific
crop coefficient as it changes in time is related to the crops
growing in this cell, inclusive of multiple cropping con-
sidered in the MIRCA2000 dataset. We refer to Wada et
al. (2014) for the detailed descriptions. In brief, irrigation and
water withdrawal and consumption are calculated separately
for paddy (rice) irrigation and irrigation of other crops. To
represent flooding irrigation of paddy fields, a 50 mm sur-
face water depth is maintained until a few weeks before the
harvest. Paddy irrigation demand is a function of the storage
change of the surface water layer, net precipitation, infiltra-
tion to lower soil layers, and open water evaporation from the
surface water layer. For non-paddy irrigation, the irrigation
demand is calculated using the difference between total and

available water in the first two soil layers where total water is
equal to the amount of water between field capacity and wilt-
ing point and available water is equal to the amount of water
between current status and wilting point. Water withdrawal
is calculated using the water efficiency rate of FAO (2012)
and Frenken and Gillet (2012).

Livestock water demand

Livestock water demand is assumed to be the same as live-
stock water consumption and is calculated by the number
of livestock in a grid cell with the daily drinking water re-
quirement per individual livestock type (six livestock types
in total) and per air temperature for seasonal change in drink-
ing water requirement. The approach is taken from Wada et
al. (2011).

Industrial and domestic water demand

Calculation of industrial water demand also follows the
method of Shen et al. (2008) and Wada et al. (2011) using
the gridded industrial water demand data for 2000 from Shik-
lomanov (1997) and multiplying it by water use intensity.
Water use intensity is a function of gross domestic product
(GDP), electricity production, energy consumption, house-
hold consumption, and a technological development rate per
country. Domestic water demand is calculated by multiplying
the population in a grid cell by a country-specific per capita
domestic water withdrawal rate taken from FAO (2007) and
Gleick et al. (2009). Adjustments for air temperature and for
country-based economic and technological development are
carried out based on the approach of Wada et al. (2011).

Water withdrawal and return flows

The approach for calculating water withdrawal from differ-
ent sources, water consumption, and return flows is based
on the work of de Graaf et al. (2014), Wada et al. (2014),
Sutanudjaja et al. (2018), and Hanasaki et al. (2018). Wa-
ter demand can be fulfilled by surface water and groundwa-
ter. Based on the work of Siebert et al. (2010), groundwa-
ter for irrigation can be only used in areas that are equipped
for irrigation. Groundwater is, at first, only abstracted from
the renewable groundwater storage. Water demand that can-
not be fulfilled purely from groundwater uses surface water
from rivers, reservoirs, and lakes. An environmental flow cap
can be set in order to sustain environmental needs for rivers,
reservoirs, and lakes. If water demand still cannot be ful-
filled, additional water is taken from nonrenewable ground-
water. At 5′ resolution, water demand cannot always be cov-
ered by surface or groundwater resources in the same grid
cell; therefore, CWatM uses the approach of LISFLOOD
(Burek et al., 2013) and takes water from up to five grid cells
downstream moving along the local drainage direction.

Return flow and associated losses (i.e., conveyance, appli-
cation) are calculated using the approaches of LPJmL (Rost
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et al., 2008) and H08 (Hanasaki et al., 2018). Return flow is
the flow which is withdrawn from surface water or ground-
water but is not consumed. For the return flow rate, we follow
the approach of Hanasaki et al. (2018). For irrigation, the re-
turn flow is calculated using the irrigation efficiency by Döll
and Siebert (2002). For domestic and industrial use, the re-
turn rate is based on Shiklomanov (2000) (i.e., 90 % for the
industrial sector and 85 % for the domestic sector). Fifty per-
cent of return water from irrigation is lost to evaporation and
50 % is returned to the channel network. This assumption is
taken from Hanasaki et al. (2018). Domestic and industrial
return flow 100 % is returned to the river channel network.

3 Data

3.1 Mask map

CWatM can be run globally at 0.5◦ (30′ or∼ 50km×50 km)
or 5′ (∼ 10km×10 km) but also at regional scales of 30′, 5′,
or even 30′′ resolutions, as long as the mask map is specified.
To speed up the runs, a set of coordinates or a mask map can
be defined to run CWatM locally but using a global dataset.
The use of the netCDF format facilitates this operation.

3.2 Global datasets

Various global datasets were used to set the framing condi-
tions for CWatM. The model provides full global datasets
for the 30 and 5′ resolutions. For both resolutions, subgrid
variability is considered for certain processes; for example,
for snow the subgrid variability of elevation is used, and
for the effect of land cover, the subgrid variability of land
use/cover in each grid cell is used. Table 1 gives an overview
of the global datasets. Further descriptions of these datasets
are given in the Supplement.

4 Calibration

Most of the global hydrological models are uncalibrated
with few exceptions, e.g., WaterGAP (Müller Schmied et al.,
2014). One of the main reasons for calibrating a model is the
uncertainty of its input data, parameters, model assumptions,
and grid cell heterogeneity, especially at low resolution as,
for example, 0.5◦ or even 5′. Samaniego et al. (2017) gives
a good overview of the main challenges to improving model
parametrization. Calibrating CWatM is of major importance,
as the model is developed to quantify water demand versus
availability for detailed regional water resources assessments
that will act as the basis for interactions with stakeholders
and regional policy development. For assessments of water
resources and water demand and consumption such as these,
realistic simulations of water resources use and availability
are necessary.

The main challenge of global calibration is not only the
large uncertainty of input data, as well as the lack of data and
validation data, but also that the hotspots of water crisis oc-
cur in data-poor regions such as Africa and parts of Asia. For
CWatM, calibration uses an evolutionary computation frame-
work in Python called DEAP (Fortin et al., 2012). DEAP im-
plemented the evolutionary algorithm NSGA-II (Deb et al.,
2002), which is used here as single objective optimization.

As objective function, we used the modified version of the
Kling–Gupta efficiency (Kling et al., 2012), with r as the
correlation coefficient between simulated and observed dis-
charge (dimensionless), β as the bias ratio (dimensionless),
and γ as the variability ratio.

KGE′ = 1−
√
(r − 1)2+ (β − 1)2 + (γ − 1)2, (30)

where β = µs
µo

and γ = CVs
CVo
=

σs/µs
σo/µo

, where CV is the coef-
ficient of variation, µ is the mean streamflow (m3 s−1), and σ
is the standard deviation of the streamflow (m3 s−1). KGE′,
r , β, and γ have their optimum at unity. KGE′ measures the
Euclidean distance from the ideal point (unity) of the Pareto
front and is therefore able to provide an optimal solution
which is simultaneously good for bias, flow variability, and
correlation. For a discussion of the KGE objective function
and its advantages over the often used Nash–Sutcliffe effi-
ciency (NSE) or the related mean squared error, see Gupta et
al. (2009) and Hrachowitz et al. (2013).

The calibration uses a general population size (µ) of 256, a
recombination pool size (λ) of 32. The number of generations
is set to 30, which we found to be sufficient to achieve con-
vergence for stations. The calibration parameters are listed in
Table 2. For the example of the Rhine catchment at 5′ resolu-
tion, a single simulation of 20 years (5 years as spin-up time
and 15 years for comparing to observed data) takes around
40 min. After an initial 256 simulations for the general popu-
lation, another 960 simulations are run (30 generation times
32 pool sizes). Altogether, these 1216 simulations are run on
32 CPU cores in parallel sessions in around 25 h.

5 Results

5.1 Computational performance of CWatM

With a daily time step, a global run of 100 years takes around
12 h, i.e., 7.2 min per year (on a Linux single CPU core –
2400 MHz with Intel Xeon CPU E5-2699A). For the global
setting, soil processes are the most time-consuming part, tak-
ing 50 % of all computing time, followed by routing with
25 % and runoff concentration with 10 %.

A basin run – e.g., for the Rhine basin which is
160 800 km2 in size, using a mask map from the global
dataset (netCDF map sets) – needs 40 min (0.5◦) or 3 h
(5′) for 100 years, i.e., 24 s yr−1 for the 0.5◦ version and
110 s yr−1 for the 5′ version. For the Rhine basin, reading
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Table 1. Global dataset, source of dataset and submodule of CWatM.

Dataset Source Original spatial
resolution

Submodule in CWatM

Elevation SRTM (Jarvis et al., 2008); Hydro1k (USGS, 2002) 3′′, 1 km Snow

Flow direction map DDM30 (Döll and Lehner, 2002); DRT (Wu et al., 2011) 30 and 5′ Routing, lakes

Lakes and reservoirs HydroLakes database (Messager et al., 2016; Lehner et al.,
2011)

Shapefile Lakes, routing

Soil Harmonized World Soil Database 1.2 (HWSD) (FAO et al.,
2012)

30′′ Soil

Soil pedotransfer Rosetta3 (Zhang and Schaap, 2017) – Soil

Groundwater GLHYMPS (Gleeson et al., 2011, 2014; Huscroft et al., 2018) Groundwater

Land cover Forest land cover (Hansen et al., 2013)
Impervious area (Elvidge et al., 2007)
Irrigated areas (Döll and Siebert, 2002; Siebert et al., 2005,
2010)
Hyde 3.2 database (Klein Goldewijk et al., 2017)

1′′

30′′

5′

5′

Soil, land cover, water
demand

Crop coefficient MIRCA2000 (Portmann et al., 2010) 5′ Soil, water demand

Albedo GlobAlbedo dataset (Muller et al., 2012) 3′ Pot. evaporation

Discharge GRDC (Global Runoff Data Centre, 2007) Station Calibration

Population and GDP Hyde 3.2 database (Klein Goldewijk et al., 2017)
SSP Database at IIASA (Riahi et al., 2017)
SSP population and GDP projections:
Spatial disaggregation on 30 and 5′ (Jones and O’Neill, 2016;
Gao, 2017; Kummu et al., 2018; and Gidden et al., 2018)

5′

Country
7.5′, 30′′

Water demand

Livestock water
demand

Gridded livestock densities (FAO, 2007; Steinfeld et al., 2006)
Livestock per country (FAO, 2012)

5′ Water demand

Industry water
demand

Gridded industrial water data (Shiklomanov, 1997) 5′ Water demand

Domestic water
demand

domestic water withdrawal per capita (FAO, 2012; Gleick et al.,
2009)

5′ Water demand

Meteorological forcing WFDEI.GPCC (Weedon et al., 2014)
PGMFD v.2 – Princeton (Sheffield et al., 2006)
GSWP3 (Kim et al., 2012)
MSWEP (Beck et al., 2017)
EWEMBI (Lange, 2018)
Downscaling to 5′ WorldClim version2 (Fick and Hijmans,
2017)

30′

30′

30′

6′

30′

30′′

Almost all

input maps takes up 79 %, which is by far the most time-
consuming process, followed by 10 % for routing (kinematic
wave) and 8 % for soil processes.

5.2 Global water balance

The main global water balance components are calculated for
the period 1979–2016 with the standard deviation of interan-
nual variation. The spatial extent is from 90◦ N to 60◦ S. The
global 0.5◦ run uses a noncalibrated global standard param-

eter set. The meteorological forcing uses the WFDEI data
(Weedon et al., 2014). Table 5 shows the estimated global
water balance components. Global average annual precipita-
tion is around 125 000 km3 yr−1, which is 850 mm yr−1 (as-
suming the CRU (Climate Research Unit) land mask and the
WGS84 ellipsoid). Average runoff is 51 000 km3 yr−1 and
average actual evaporation is 71 700 km3 yr−1. This is in the
range of other global hydrological models (Haddeland et al.,
2011). The runoff fraction is 0.42, which is at the lower end
compared to other models (Haddeland et al., 2011) but can
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Table 2. Calibration parameters (with flexibility to adjust the number and different parameters).

Snow Snowmelt coefficient (in m ◦C−1 d−1) as a degree-day factor

Evapotranspiration Crop factor as an adjustment to crop evapotranspiration

Soil Soil depth factor: a factor for the overall soil depth of soil layers 1 and 2
Preferential bypass flow: empirical shape parameter of the preferential flow relation
Infiltration capacity parameter: empirical shape parameter b of the ARNO model

Groundwater Interflow factor: factor to adjust the amount which percolates from interflow to groundwater
Recession coefficient factor: factor to adjust the base flow recession constant
(the contribution from groundwater to baseflow)

Routing Runoff concentration factor: a factor for the concentration time of runoff in each grid cell
Channel Manning’s n factor: a factor roughness in channel routing

Reservoir and lakes Normal storage limit: the fraction of storage capacity used as normal storage limit
Lake “A” factor: factor to channel width and weir coefficient as a part of the Poleni’s weir
equation
Lake and river evaporation factor: factor to adjust open water evaporation

Table 3. Computational time for a 0.5◦ global run in sequence of
hydrological process (rain to river) and module setup.

Process % runtime
∑

% runtime
0.5◦ version 0.5◦ version

1 Read meteo. data 6.2 6.2
2 Evaporation pot. 1.4 7.6
3 Snow 1.2 8.8
4 Soil 50.6 59.4
5 Groundwater 0.1 59.5
6 Runoff concentration 10.6 70.1
7 Lakes 0.3 70.4
8 Routing 25.1 95.5
9 Output 4.5 100.0

be explained because CWatM takes into account evapora-
tion from lakes and rivers. Groundwater recharge amounts
to 19 000 km3 yr−1, which is higher than some of the GHMs
(Mohan et al., 2018), such as WaterGAP or FAO statistics,
but lower than PCR-GLOBWB2 (Sutanudjaja et al., 2018) or
MATSIRO (Koirala et al., 2012). Figure 2 shows the spatial
distribution of discharge and groundwater recharge which is
similar to the distributions shown in Koirala et al. (2012) and
Mohan et al. (2018).

It is important to note that water withdrawals from the
agricultural sector (irrigation and livestock), industry, and
domestic sector (households) have been increasing over the
years. The range in Table 5 for domestic and industry with-
drawals has been rising constantly from 1981 to 2016. Agri-
cultural withdrawals have been increasing over time but
achieved their maxima during globally warm years, e.g.,
2002, 2009, and 2012. Water withdrawal from either surface
water or groundwater is within the range of other models. It

Figure 2. Average global discharge (in m3 s−1, 1979–2016).

has also been affected by the increasing water withdrawal for
agriculture, industry, and households.

5.3 Global model validation

We used daily discharge simulations (0.5◦ resolution) for
the 1971–2010 period to compare against observed discharge
from the Global Runoff Data Centre (GRDC, Koblenz, Ger-
many). Simulated discharge is based on a standard parame-
ter set used globally before any catchment calibration shown
in Sect. 5.4. Observed river discharge from GRDC includes
more than 9800 (by 2019) stations worldwide with daily and
monthly records of discharge. We used the approach and
dataset of Zhao et al. (2017) to select a suitable set of daily
discharge time series. The selection is based on (a) a mini-
mum of 5 years coverage during the period 1971–2010; (b) a
minimum catchment size of 9000 km2, to have at least three
grid cells representing the basin; and (c) keeping stations
with no more than 30 % difference in upstream area based
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Table 4. Computational time for 0.5◦ and 5′ runs – Rhine basin (same as Table 3).

Process % runtime
∑

% runtime % runtime
∑

% runtime
0.5◦ version 0.5◦ version 5′ version 5′ version

1 Read meteo. data 79.4 79.4 86.4 86.4
2 Evaporation pot. 1.1 80.5 1.1 87.5
3 Snow 0.4 80.9 0.4 87.9
4 Soil 7.9 88.8 11.9 89.8
5 Groundwater 0.1 88.9 3.1 92.9
6 Runoff concentration 0.7 89.6 0.7 93.6
7 Lakes 0.2 89.8 1.2 94.8
8 Routing 9.8 99.6 4.8 99.6
9 Output 0.4 100.0 0.4 100.0

Table 5. Global water balance components over the period 1981–2016 simulated by CWatM.

Variable Estimate (km3 yr−1) ±1δ Compared to other studies (km3 yr−1)

Water balance Precipitation 125 100± 3000
Runoff 51 800± 1880 42 393a range: 42 000–66 000d

Evaporation 71 700± 1880 65 754a range: 60 000–85 000d

1 water storage 1600± 760

Groundwater Groundwater recharge 19 000± 920 27 756a 13 466b range: 12 666–29 900c

Withdrawal by sector Agricultural 2000 range: 1250–2400 2735a

Domestic 430 range: 270–590 380a

Industrial 900 range: 680–1130 798a

Total 3330 range: 2200–4200 3912a

Return flow 950 range: 750–1150 1546b

Withdrawal by source Surface water 2650 range: 2060–3100 3172a

Groundwater 680 range: 610–950 737a range: 570–952b

a Sutanudjaja et al. (2018), b Hanasaki et al. (2018), c Mohan et al. (2018), d Haddeland et al. (2011).

on GRDC in comparison with the upstream area calculated
based on the river network DDM30 (Döll and Lehner, 2002).
This led to a set of 1366 stations with daily data. For every
station, four performance metrics were computed by compar-
ing daily simulated discharge with observed discharge. These
include Kling–Gupta efficiency (KGE), Nash–Sutcliffe ef-
ficiency (NSE), Pearson’s correlation (R), and percent bias
(PBias) of mean. Table 2 shows the results of the perfor-
mance metrics, and Fig. 3 shows the global distribution of
the KGE. The R values ranked better than the KGE or the
NSE value, and the results are in general better for Europe,
South America, and the east and west coasts of North Amer-
ica, but there are poor results for Africa. The histograms in
Fig. 4 show that a better performance is mostly apparent for
larger basins. Sutanudjaja et al. (2018) showed similar re-
sults with the model PCR-GLOBWB and explained the lack
of performance partly with the poor performance of meteo-
rological forcing. A better explanation of performance differ-
ences in global hydrological models will be given by the ISI-

Table 6. Performance metrics based on 1366 GRDC stations.

Number of stations∗ with Kling–Gupta efficiency (KGE),
Nash–Sutcliffe efficiency (NSE), and correlation (R) ≥ threshold

≥ 0.5 ≥ 0.6 ≥ 0.7 ≥ 0.8 ≥ 0.9

KGE 243 151 72 24 0
NSE 108 60 33 2 0
R 858 627 363 160 19

Number of stations with percent bias (PBias) ≤ threshold

≤50 % ≤40 % ≤30 % ≤20 % ≤10 %

PBias 725 620 511 362 181

∗ based on sample size of 1366 GRDC stations

MIP (Warszawski et al., 2014) model intercomparison where
CWatM is part of the ISIMIP2bmodel consortium.

Some model papers (e.g., Döll et al., 2014; and Sutanud-
jaja et al., 2018) use observed discharge stations or the Grav-
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Figure 3. Global map of Kling–Gupta efficiency based on 1366
GRDC stations.

ity Recovery and Climate Experiment (GRACE) (Tapley et
al., 2004) to evaluate the global results of their models. As
CWatM is a part of the ISIMIP intercomparison project, we
think it is best to show the performance of a model in the
framework of ISIMIP by comparing it to other models like
in Zhang et al. (2017) or Scanlon et al. (2018). An upcoming
paper by Pokhrel (2020) on global terrestrial water storage
will include a comparison of seven global terrestrial hydrol-
ogy models (including CWatM) against GRACE data.

5.4 Global calibration results

For calibration, an evolutionary algorithm with KGE as ob-
jective function was applied and WFDEI meteorological data
were used as forcing. For all stations, the calibration im-
proved the streamflow simulations compared to the baseline
simulation with a default parameter set. During the calibra-
tion, human activities (e.g., water abstraction, reservoirs, and
changing land cover of time) are included. However, the per-
formance varied depending on the quality of the discharge
data and the meteorological forcing, as well as on the pro-
cesses included in CWatM, as shown in Table 7. Calibra-
tion and validation results are shown for each station in the
Supplement part 3. Simulating processes such as backflow
or large evaporation losses due to swamps in the Nile and
Niger basin are still challenging. But this simulation shows
the suitability of CWatM for representing the major water
balance components and the necessity of calibrating cer-
tain basins, especially where water availability is being com-
pared with water withdrawal. A further step in global calibra-
tion must be performed by regionalization of model param-
eters, e.g., by using model parameters from well-performing
basins for basins with similar climate and other characteris-
tics (Samaniego et al., 2010, 2017; Beck et al., 2016). A big
challenge is the unevenly distributed observed discharge data
around the world with big spatial gaps in Africa and Asia.
Even if calibration with an objective function based on ob-
served discharge is the best option, the gap might be filled
with some sort of Budyko calibration (Greve et al., 2016),
where at least the empirical function of actual evapotranspi-
ration against potential evaporation is fitted or satellite-based

river levels could replace discharge missing from the obser-
vations (Revilla-Romero et al., 2015; Gleason et al., 2018).

5.5 Regional water balance: example of East Africa

5.5.1 The extended Lake Victoria basin

The essential component of the Water Futures and Solution
Initiative of IIASA (Burek et al., 2016; Wada et al., 2016) is
the assessment of the balance of water supply and demand
for the present and into the future. With the support of the
Government of Austria through the Austrian Development
Agency (ADA), we aim to provide a deeper understanding
of critical parameters for achieving water security in East
Africa. This is in the context of competing demands for ba-
sic water supply, sanitation, food security, economic devel-
opment, and the environment. UN-Water (2013, p. 1) defines
water security as the following:

The capacity of a population to safeguard sustain-
able access to adequate quantities of and accept-
able quality water for sustaining livelihoods, hu-
man well-being, and socio-economic development,
for ensuring protection against waterborne pollu-
tion and water-related disasters, and for preserving
ecosystems in a climate of peace and political sta-
bility.

Water security is also a key ambition expressed in the “Vi-
sion 2050” of the East African Community (EAC, 2016) as
rapid growth of the economy and population and a high rate
of urbanization are expected for the region and will lead to
increased water demand in all sectors as well as further pres-
sure on the water quality status.

The examples of operational areas for CWatM in this pa-
per are not presented with specific results in mind, nor do
they reflect results from the project’s intensive stakeholder
processes. They are there to demonstrate the value of a global
hydrological model used in a regional case study that com-
bines the spatiotemporal scale dependencies of water sys-
tems produced through a scenario analysis designed to in-
clude both the regional and global scales. An “East Africa
Regional Vision Scenario” (EA-RVS) was developed (Tram-
berend et al., 2019, 2020), based on regional visions, and we
used available regional scenarios and data that were devel-
oped in the context of global studies. As well as regional
visions, the study also integrates into the widely applied
global scenario development process of the Intergovernmen-
tal Panel on Climate Change (IPCC). It is characterized by
a Scenario Matrix Architecture (van Vuuren et al., 2014)
including the community-developed Shared Socioeconomic
Pathways (SSPs) (Jiang and O’Neill, 2017) and the Repre-
sentative Concentration Pathways (RCPs) (van Vuuren et al.,
2011) for the characterization of climate change.

The study area, the extended Lake Victoria basin (eLVB),
is a transboundary basin in the tropics. It comprises the head-
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Table 7. Calibration results for some catchments worldwide.

Continent Catchment Station Calibration
(validation) period

Results for 30′ Results for 5′

Europe Rhine Lobith
Germany
Area: 160 800 km2

1995–2010a

(1980–1994)
Uncal. KGE: 0.55
(30′)
Uncal. KGE: 0.58
(5’)

KGE: 0.92 (0.89)
NSE: 0.84 (0.81)
R2: 0.93 (0.91)

KGE: 0.90 (0.88)
NSE: 0.80 (0.78)
R2: 0.91 (0.90)

Danube Kienstock
Austria
Area: 95 970 km2

1995–2010b

(1980–1994)
Uncal. KGE: 0.50

KGE: 0.81 (0.81)
NSE: 0.65 (0.62)
R2: 0.82 (0.81)

Danube Zimnicea
Romania
Area: 658 400 km2

1995–2010a

(1980–1994)
Uncal. KGE: 0.61

KGE: 0.84 (0.83)
NSE: 0.64 (0.63)
R2: 0.87 (0.86)

America Yukon Pilot Station
USA
Area: 831 400 km2

2001–2014 3
(1985–1997)
Uncal. KGE: 0.54

KGE: 0.63 (0.37)
NSE: 0.50 (0.49)
R2: 0.83 (0.83)

Sacramento River Wilkins Slough
USA
Area: 33 500 km2

1991–2010c

(1979–1990)
Uncal. KGE: 0.29

KGE: 0.85 (0.80)
NSE: 0.69 (0.69)
R2: 0.87 (0.89)

Amazonas Óbidos
Brazil
Area: 4 680 000 km2

1985–1998a

(1970–1984)
Uncal. KGE: 0.43

KGE: 0.89 (0.87)
NSE: 0.80 (0.73)
R2: 0.91 (0.88)

Australia Murray River Wakool Junction
Australia
Area: 78,000 km2

2000–2012d

(1990–1999)
Uncal. KGE: −2.23

KGE: 0.70 (0.51)
NSE: 0.32 (0.48)
R2: 0.74 (0.74)

Africa White Nile Jinja
Uganda
Area: 263 000 km2

1996–2006e
∗

Uncal. KGE: 0.43

KGE: 0.94
NSE: 0.90
R2: 0.95

Zambezi Lukulu
Zambia
Area: 206 500 km2

1979–1989a
∗

Uncal. KGE: 0.12

KGE: 0.87
NSE: 0.79
R2: 0.89

Zambezi Matundo-Cais
Mozambique
Area: 940 000 km2

1979–1989a
∗

Uncal. KGE: 0.33

KGE: 0.57
NSE: 0.14
R2: 0.57

Asia Olenek 7.5 km mouth of Pur
Russia
Area: 198 000 km2

2000–2011a

(1991–1999)
Uncal. KGE: 0.52

KGE: 0.75 (0.72)
NSE: 0.73 (0.69)
R2: 0.86 (0.87)

Yangtze Datong
China
Area: 1 705 400 km2

2003–2013
1976–1986
Uncal. KGE: 0.54

KGE: 0.84 (0.76)
NSE: 0.69 (0.56)
R2: 0.87 (0.86)

KGE: 0.90 (0.78)
NSE: 0.75 (0.61)
R2: 0.90 (0.86)

∗ All observed data used for calibration period. Data for calibrating discharge are from a GRDC, Global Runoff Data Centre, https://www.bafg.de/GRDC (last access: 27
June 2020); b viadonau, viadonau Österreichische Wasserstrassen-Gesellschaft, http://www.viadonau.org (last access: 27 June 2020); c USGS, United States Geological
Survey, https://www.usgs.gov (last access: 27 June 2020); d MDBA, Murray–Darling Basin Authority, https://riverdata.mdba.gov.au (last access: 27 June 2020); and
e Ministry for Water and Environment, Uganda, https://www.mwe.go.ug (last access: 27 June 2020).
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Figure 4. Histograms of Kling–Gupta efficiency and correlation for different basin sizes based on 1366 GRDC stations.

Figure 5. Calibration results for some chosen stations globally.

waters of the Nile and includes an area of over 460 000 km2.
The Equator crosses the region approximately in the mid-
dle of the eLVB just south of Kampala. The eLVB includes
the source of the Nile and major lakes in East Africa, fore-
most Lake Victoria, Lake Albert, Lake Edward, and Lake
Kyoga. The eLVB has been subdivided into interconnected
subbasins. According to the water flow regime, we have ag-
gregated the 61 basins into eight major basins (see Fig. 6).
The CWatM model setup uses the default global dataset at
5 arcmin. Discharge data for calibrating river discharge were
made available courtesy of the Ministry of Water and Envi-
ronment, Uganda. Calibration is performed for three stations.
The calibration parameters are valid for the subbasin up to
the gauging station. The upstream station is calibrated us-
ing the best fit of the downstream calibrated subbasins. The
10 years of available observed data are used for the calibra-
tion period. Therefore, no other time period is available for a
validation period.

5.5.2 Seasonal pattern of the discharge regime

For assessing climate change impact, RCP6.0 was chosen as
the most plausible future for East Africa by the “EAC Vi-
sion 2050” (EAC, 2016) even though it represents a rather
pessimistic outlook of global temperature increases despite
being published after the Paris Climate Agreement of 2015.
We have chosen the two general circulation models (GCMs)
of HadGEM2-ES and MIROC5 out of the four GCMs (see
Table 8) used in ISIMIP 2b (Frieler et al., 2016) as being
the most feasible for eLVB as the discharge results that were
run with CWatM for the historical runs of the GCMs GFDL-
ESM2M and IPSL-CM5A-LR showed a large discrepancy
from historical results.

Discharge is the variable which incorporates all the me-
teorological and hydrological processes into a basin and en-
compasses all the storage components in a basin (i.e., soil,
groundwater, lakes, and reservoirs) Especially with the large
lakes in the basin, discharge in eLVB has a long memory of
past conditions.
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Figure 6. The 61 subbasins of the eLVB and their aggregation into eight major basin regions.

Table 8. General circulation models (GCMs).

GCM Resolution (Long × lat, degree) Institute Nation

HadGem2-ES 1.875× 1.250 Met Office Hadley Centre UK
IPSL-CM5A-LR 3.750× 1.875 Institut Pierre Simon Laplace France
GFDL-ESM2M 2.500× 2.000 NOAA Geophysical Fluid Dynamics Laboratory USA
MIROC-ESM-CHEM 2.810× 1.770 JAMSTEC, AORI, The University of Tokyo, NIES Japan

The seasonal pattern of discharge in Fig. 7 shows more
discharge for 2040 (10-year period 2036–2045) and 2050
(10-year period 2046–2055) in the river system from Lake
Victoria, especially for the 2040 period. This is due to a wet-
ter period of weather in the two GCMs from 2038 to 2049
and the strong memory effect of groundwater and the lakes.
It also shows the big influence of interannual variability in
the eLVB. Even if a general trend of less runoff in the 2050
period can be detected, long-lasting periods of wetter condi-
tions can nevertheless be superimposed over this trend. Be-
cause of the strong interannual variability in the lower lati-
tudes, it is difficult to assess the effect of a general climate
change impact towards a wetter or drier climate. But under
climate change, southwestern Uganda will show generally
drier conditions than the western part of the eLVB.

5.5.3 Water scarcity indicators

Available water resources per capita, the Water Crowding In-
dex (WCI) (also called the Falkenmark indicator), is one of
the most widely used measures of water stress (Falkenmark
et al., 1989). Based on per capita water availability, the water
conditions in an area can be categorized into different cate-
gories of stress expressed as cubic meters (m3) of water avail-

able per capita and per year. Another indicator is the Water
Resources Vulnerability Index (Raskin et al., 1997) that is
also known as Water Exploitation Index (WEI) (EEA, 2005),
defined as the ratio of total annual withdrawals for human
use to total available renewable surface water resources. Re-
gions are considered water scarce if annual withdrawals ex-
ceed the percentage of annual supply (Alcamo et al., 2003).
The thresholds for both indicators are shown in Table 9.

The WCI and WEI are mainly shown as annual indicators,
but in regions with high intra-annual variability the rainy sea-
sons show a different picture from that of the dry season. An
example in Fig. 8 shows the WCI and WEI for the dry sea-
son and the most water-scarce month, July, for 61 subbasins
of the extended Lake Victoria basin by comparing the situa-
tions of 2010 and 2050. The figure shows that there is a clear
increase in the WCI. While in the current situation (2010)
about half of the subbasins are exposed to some level of wa-
ter scarcity with some subbasins indicating absolute water
scarcity, in 2050 almost all subbasins that are neither directly
crossed by the river Nile nor adjacent to a lake experience
stress or scarcity and many of them absolute water stress.
The water resource availability for the WEI is also based on
the RCP6.0 climate scenario and includes the effect of hu-
man consumption and effects of land use change up to 2050.
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Figure 7. Change of seasonal discharge pattern from 2010 to 2040 and for 2050.

Table 9. Water Crowding Index and Water Exploitation Index.

Category Water Crowding Index Water Exploitation Index,
(m3 per capita per year) water withdrawal or water availability (%)

No stress > 1700 < 20
Stress > 1000–1700 ≥ 20
Scarcity 500–1000 ≥ 20
Absolute scarcity ≤ 500 ≥ 40

Looking at this index for the month of July only, it shows
that 9 out of 61 subbasins are likely to experience water
scarcity and even severely water-scarce situations by 2050.
Such subbasins are mainly located at the south and southeast-
ern shores of Lake Victoria and in densely populated areas of
Rwanda and Burundi.

Interestingly, the WEI shows a much lower signal of wa-
ter scarcity compared to the WCI. The WCI assumes that,
regardless of the socioeconomic conditions, every person on
the globe has the same “water demand entitlement”. The Wa-
ter Exploitation Index is based on the in situ situation and on

balancing changing water availability and water demand. The
fact that both indices show a rather different picture might
be interpreted as an indication of economic water scarcity.
The situation of low economic development for the extended
Lake Victoria basin may still prevail in 2050 (at least com-
pared to the global average). This is the main reason for the
relatively low actual water demand compared to global aver-
ages and therefore relatively low water scarcity signal for the
WEI compared to the WCI.
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Figure 8. Water Crowding Index and Water Exploitation Index in July for the extended Lake Victoria basin.

5.6 Regional water balance: example of the Zambezi

5.6.1 Calibration and comparison with other GHMs

The hydrological model CWatM is intended to be scalable
and can be applied over finer spatial scales (e.g., the basin).
CWatM has been calibrated for the Zambezi, using six sub-
catchments and measured discharge provided by the Global
Runoff Data Centre (2007). Figure 9 shows two time series
of measured vs. simulated river discharge, and the compari-
son shows good agreement of the modeled discharge with the
measured data. The station Matundo-Cais is downstream of
the two big reservoirs Kariba Dam and Cahora Bassa, which
are included in the model. The reservoir operations are cal-
culated with the approach in Sect. 2.3.11.

By comparing the outputs of the hydrological model en-
semble, we see that, especially for sub-Saharan Africa, there
is a strong overestimation of river discharge, which indicates
an erroneous picture if compared, for example, to water de-
mands for calculating water scarcity. Figure 10 shows a com-
parison of discharge for the Lukulu in the Zambezi basin of
different hydrological models as a violin plot which shows
the probability density of the data. While a box plot shows
some statistics like mean and quartiles a violin plot shows
the full distribution of the data.

The GHMs in Fig. 10 use the WFDEI (Weedon et al.,
2014) as forcing meteorological data from 1981 to 2004.
Apart from WaterGAP and CWatM (both calibrated), one can

see a strong overestimation of discharge for all other models
compared to the observed discharge and some models also
show a different shape than the observed data.

Average discharge is overestimated for the noncalibrated
models from 2 up to 3 times and maximum discharge up to
7 times. This shows the need to put efforts into calibration of
the hydrological model for regional applications to be in line
with measured water resources and to minimize the uncer-
tainty from hydrological modeling. Setting up model calibra-
tion has been time-consuming but inevitable for the Zambezi
case study.

Calibration for the Zambezi basin is performed for six
stations (Lukulu, Kongola, Katima, Kafue Hook, Luangwa
Road Bridge, Tete – see Fig. 6). The calibration parameters
are valid for the subbasin up to the gauging station. The up-
stream station is calibrated using the best fit of the down-
stream calibrated subbasins. The parameter set is valid for the
subbasin except for the downstream subbasins which have
their own parameter sets.

5.6.2 Assessment of water stress

In a second phase, the CWatM calibrated model is used to
assess water scarcity until 2050 in the Zambezi basin. Water
resources at each grid cell are dependent on climate; water
management (e.g., reservoirs); and water use for irrigation,
livestock, domestic, or industry.
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Figure 9. Calibration results for two stations in the Zambezi basin.

Figure 10. Discharge for Lukulu/Zambezi from 1981 to 2004 for 11 different global hydrological models from the ISIMIP 2a ensemble
compared with observed discharge. Each violin plot shows the probability density of the data for the different GHMs. The lines show the
average discharge for each model.
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Figure 11. Parameter sets of different hydrological variables.

Figure 12. Subbasins of the Zambezi basin for aggregating data
from CWatM.

For each cell (at 5′) (see Fig. 11) and for aggregated
regions, water resources can be related to water demand
from different sectors. Results from the distributed hydro-
logical model CWatM are aggregated into 21 subbasins (see
Fig. 12) based on a regional distribution shared by the Zam-
bezi Water Commission (http://zamwis.wris.info, last access:
27 June 2020). In addition, the regions of Kariba, Kafue, and
Tete are split into, respectively, four, two, and four subbasins
to look specifically into the more densely populated areas.

Projection of future water resources builds on quantifica-
tions of climate scenarios CMIP5 (Distributed by the Cou-
pled Model Intercomparison Project (CMIP); see https://
pcmdi.llnl.gov/index.html, last access: 27 June 2020) based
on the RCPs from the Inter-Sectoral Impact Model Intercom-
parison Project (ISI-MIP) (Frieler et al., 2016). We applied
climate change projections from four GCMs (see Table 8)
for a first setting of RCP6.0. Land use data projection is used
from the GLOBIOM model (Havlík et al., 2013). Nineteen
different crop types with different classes of farming inten-
sity and eight land use classes (e.g., forest, build up classes)
of GLOBIOM output, for different RCPs and SSPs, are trans-

Figure 13. Water demand projection for scenario SSP2/RCP6.0 to
2050 based on population, GDP, and irrigation area projections.

formed to fit into the arrangement of six land use classes of
CWatM.

Water demand for agriculture is taken from calculations
within CWatM. Water demand for domestic, livestock, and
industry is calculated within CWatM using the approach of
Wada et al. (2011). The socioeconomic background needed
for this approach uses data and methods for spatial disaggre-
gation for the SSP2 scenario from Jones and O’Neill (2016),
Gao (2017), Klein Goldewijk et al. (2017), Kummu et
al. (2018), and Gidden et al. (2018).

Water Exploitation Index for Zambezi

The WEI is defined in Falkenmark et al. (1989), Falkenmark
(1997), and Wada et al. (2011) as comparing blue water avail-
ability with net total water demand. A region is considered
“severely water stressed” if the WEI exceeds 40 % (Alcamo
et al., 2003). The yearly WEI in Fig. 12 shows no water stress
for the whole basin in 2010, but water stress will intensify up
to 2050 for the business-as-usual (BAU) scenario (composed
of the SSP2 and RCP6.0 scenarios), mainly due to agricul-
tural and domestic water demand increasing by a factor of 5;
as annual mean river discharge is only increasing by 6 %. Au-
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gust is chosen for monthly comparison as this is the month
with the highest rate of water withdrawal (WW) and a mean
monthly discharge (MMD) that is only slightly higher than in
November. The eastern part of the Zambezi basin, except for
the main course of the Zambezi river, was already showing
severe water stress in 2010. This will increase in 2050, but
the western part is still not suffering from water stress.

6 Linking and integration with other sectoral models

The modular structure of CWatM helps to link and integrate
with other models. The independent settings files offer pos-
sibilities to adapt the input and output to other models. For a
lot of applications, no intervention into the code is necessary.
If code has to be customized to the linked model, the modular
structure of CWatM easily allows users to identify the point
of intervention.

To explore potential sustainable pathways for the Zam-
bezi basin, an integrated assessment framework is needed.
Therefore CWatM provides data on water availability (runoff
and discharge) and water demand (irrigation, domestic, and
industrial demands) at subbasin level to the “Extended
Continental-scale Hydroeconomic Optimization” (ECHO)
model (Kahil et al., 2018) and to the water quality model
“Model to Assess River Inputs of Nutrients to seas” (MA-
RINA) (Strokal et al., 2016). Figure 15 gives an overview of
the interactions between models and the data flow.

ECHO is a hydro-economic optimization model. Its ob-
jective function minimizes the costs of water management
options subject to several resource and management con-
straints across subbasins within river basins over a long-
term planning horizon (e.g., a decade or more). ECHO in-
cludes a wide range of supply- and demand-side water man-
agement options spanning over the water, energy, and agri-
cultural systems. The supply options are surface water di-
version, groundwater pumping, desalination, and wastewater
recycling technologies. Other supply options considered in
ECHO are surface water reservoirs and interbasin transfer in-
frastructure. The water demand management options consist
of different technologies for irrigation (flood, sprinkler, and
drip) and several measures to improve crop water manage-
ment in irrigation and water use efficiency in the domestic
and industrial sectors (Kahil et al., 2018, 2019).

To assess the impacts of human activities on water quality,
the MARINA model (Strokal et al., 2016) is used to estimate
nitrogen loads and concentrations. MARINA quantifies nu-
trient (nitrogen and phosphorus) export to rivers and sea at
the subbasin scale. It is primarily used for long-term trend
analysis and for source attribution, which could guide the
identification of effective policy and management measures
to reduce water pollution.

Moreover, MARINA uses data from GLOBIOM (Havlík
et al., 2013) for land use and agricultural nitrogen inputs
to the basin and socioeconomic projections (population and

GDP) to estimate nitrogen inputs from human waste. ECHO
uses information on existing capacities of various water man-
agement options and the costs of investment and operation of
these options. Nitrogen loads and concentrations calculated
by MARINA are compared with nitrogen standards for dif-
ferent sectors to categorize the suitability of water use by dif-
ferent users, which can be further used by ECHO to optimize
water allocation and explore economically optimal manage-
ment options. The source attribution at the subbasin scale by
MARINA (Fig. 15) provides prior information for ECHO to
prioritize the most relevant nitrogen management options for
each subbasin, such as sewer connections, wastewater treat-
ment, and manure and mineral fertilizer use in agriculture.
Lastly, the coupling of MARINA and ECHO with CWatM
enables analysis of the impacts of climate change and vari-
ability on nutrient export, water allocation, and adaptation
costs. CWatM outputs from different climate forcing could
be used in MARINA and ECHO to investigate the impacts of
intrabasin spatial variability and interannual temporal vari-
ability of runoff and discharge. Figure 16 is an example
of MARINA output of total dissolved nitrogen (TDN, in
kg km−2 yr−1) for the Zambezi river basin. It illustrates the
increase in river export of TDN to the sea between 2010
and 2050 (BAU scenario), the increasing share of anthro-
pogenic nitrogen sources, and high spatial variability in the
Zambezi basin (Tang et al., 2019). Another example of data
exchange between CWatM and MARINA is given in Wang
et al. (2019a) for Lake Taihu in the Yangtze basin.

Figure 17 is an example of ECHO simulation results. It
shows the costs for water supply and management in order
to satisfy sectoral water demands (irrigation, livestock, do-
mestic, and industrial) and environmental constraints (i.e.,
minimum environmental flow requirements and groundwa-
ter sustainability constraints) in the Zambezi river basin over
the 2010–2050 period.

7 Conclusion and future work

We presented the new global hydrological model CWatM,
which can be used globally and regionally at different reso-
lutions with different datasets. The model is open source in
the Python environment and has a flexible modular structure.
It uses global, freely available data in the state-of-the art for-
mat of netCDF4 files to store and produce data in a compact
way. It includes major hydrological processes but also takes
human water use into account by calculating water demand,
water consumption, and return flows. Reservoirs and lakes
are included in the model scheme. CWatM is being devel-
oped to include a routing scheme related to reservoirs and
canals to better simulate water availability in both agricul-
tural and urban contexts.

It is shown that CWatM can be used in the framework of
ISIMIP as a global model and also as part of a model inte-
gration of hydrological, hydro-economic, and water quality
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Figure 14. Water Exploitation Index for 21 regions of the Zambezi for 2010 and 2050 using the business-as-usual (BAU) scenario (yearly
and for the month of August).

Figure 15. Schematic view of the interaction among CWatM, ECHO, and MARINA.

models for assessing and evaluating water management op-
tions. This study also presented the need for a hydrological
model to be calibrated to be able to estimate a detailed re-
gional balance of water demand and water availability.

An external limitation and a source of uncertainty is the
quality of meteorological forcing driving the hydrological
models. As shown in Müller Schmied et al. (2014), there
are still discrepancies among the CMIP5 datasets and among
the datasets and observations. The use of CMIP6 datasets
(Eyring et al., 2016) is expected to reduce these uncertainties.
Another external model limitation and source of uncertainty
is the availability of gauging station data, which is generally

globally decreasing, completely unavailable, or difficult to
access for some parts of the world. Continuous, consistent,
and long-term river discharge data as an integral parameter
over the whole basin are essential for basin modeling, water
resources management, and flood forecasting. Although the
model represents the key hydrological processes, the ground-
water model is relatively simple. But groundwater assess-
ments (e.g., Bierkens et al., 2019) are becoming more and
more important, as also is the importance of including lat-
eral processes that increase the resolution of the model. Some
other hydrological processes representation, e.g., evaporation
from swamps, namely, the Sudd in the Nile basin and the
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Figure 16. Increase in river export of total dissolved nitrogen to sea
between 2010 and 2050 (business-as-usual scenario).

Figure 17. Investment (INV) and operating (O&M) costs for water
supply and management in the Zambezi basin between 2010 and
2050 (business-as-usual scenario).

Niger river swamps, need to be improved. The main direction
of improvement should be better representation of human ac-
tivities, e.g., management of reservoirs, including intra- and
interbasin water transfer, and improving water demand re-
quirements from agricultural sector by including irrigation
schemes and plant phenology.

Future work will include (1) intensifying the development
of a full dynamic coupling with a 2D groundwater model,
(2) developing a global calibration scheme that also takes
sparse observation of discharge into account, (3) a finer-
resolution setting for 1 km working for the upper Bhima
basin in India as part of the Food–Water–Energy for Urban
Sustainable Environments project (https://fuse.stanford.edu,
last access: 27 July 2020) supported by the Belmont Forum,
(4) an interdisciplinary project aimed at better understanding
the effect of certain nexus policy interventions and solution
options linked to ECHO and beyond, and (5) improving soft-
ware management by building up an automated testing, eas-

ier installation via the Python Package Index, and building
containers and improving communication with the users.

Code and data availability. CWatM is written in Python 3.7 and
C++ as an open-source project under the term of the GNU General
Public License version 3. License and download information are
at https://cwatm.iiasa.ac.at/license.html (last access: 27 July 2020).
The code can be used on different platforms (Unix, Linux, Win-
dows, Mac) and is provided through a GitHub repository: https:
//github.com/cwatm/cwatm (CWatM github sourcecode, 2020). It
comes with the code, an executable program for Windows, a test
case (river Rhine basin), and a settings file, as well as some tools
such as the calibration routine. The version of the model used
to produce the results in this paper is stored as version 1.04 in
the GitHub repository and at Zenodo with the associated DOI:
https://doi.org/10.5281/zenodo.3361478 (Burek et al., 2019). A
global dataset at 0.5◦ and a dataset for the river Rhine are stored at
https://doi.org/10.5281/zenodo.3528098 (Burek and Satoh, 2019).

Climate forcing data can be found on the ISI-MIP server (Frieler
et al., 2016) or any other climate forcing dataset stored as netcdf
can be used. Online documentation including documentation on the
source code can be found on https://cwatm.iiasa.ac.at (last access:
27 July 2020). Development and maintenance of the official version
of CWatM is conducted by the IIASA Water Program. Contribution,
ideas, and users are very welcome. Global data for 0.5◦ or 5′ can be
requested and stored on an IIASA FTP server.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-3267-2020-supplement.

Author contributions. PB wrote the original draft, prepared the
manuscript and is main developer of the software; YS contributed
to the water demand software development; TK contributed to
the methodology writing and the results part of linking to hydro-
economic modeling and produced Fig. 17; TT contributed to the
methodology writing and the results part of linking to water qual-
ity and produced Figs. 15 and 16. PG, MS and LG all contributed
to software development of the evaporation, water demand and
groundwater modules. FZ provided processed daily observation
data for the calibration validation, and YW coordinated the fund-
ing acquisition and contributed to conceptualization, methodology
writing and reviewing.

Competing interests. The author declares that there is no conflict of
interest.

Acknowledgements. The authors acknowledge the Global Environ-
ment Facility (GEF) for funding the development of this research
and the CWatM model development as a part of the Integrated So-
lutions for Water, Energy, and Land (ISWEL) project (GEF Con-
tract Agreement: 6993) and the support of the United Nations In-
dustrial Development Organization (UNIDO). The authors also ac-
knowledge the continuous support of the Asian Development Bank

https://doi.org/10.5194/gmd-13-3267-2020 Geosci. Model Dev., 13, 3267–3298, 2020

https://fuse.stanford.edu
https://cwatm.iiasa.ac.at/license.html
https://github.com/cwatm/cwatm
https://github.com/cwatm/cwatm
https://doi.org/10.5281/zenodo.3361478
https://doi.org/10.5281/zenodo.3528098
https://cwatm.iiasa.ac.at
https://doi.org/10.5194/gmd-13-3267-2020-supplement


3292 P. Burek et al.: Development of the Community Water Model (CWatM v1.04)

(ADB), the Austrian Development Agency (ADA), and the Aus-
trian Federal Ministry of Sustainability and Tourism to the Wa-
ter Futures and Solutions (WFaS) initiative at Water Program of
IIASA. This study and the model development were also conducted
as part of the Belmont Forum Sustainable Urbanisation Global Ini-
tiative (SUGI)/Food–Water–Energy Nexus theme for which coordi-
nation was supported by the US National Science Foundation un-
der grant ICER/EAR-1829999 to Stanford University. The Global
Runoff Data Centre (GRDC, Koblenz, Germany) is thanked for
providing the observed discharge data. We appreciate all the other
open-source projects which we used to collect ideas and which, on
the other side, we hope to cross-fertilize with our ideas. We are very
grateful to all the freely available datasets. Any opinions, findings,
and conclusions or recommendations expressed in this material do
not necessarily reflect the views of the funding organizations. This
study is also partly supported by financial support from the Austrian
Research Promotion Agency (FFG) under the FUSE project funded
by the Belmont Forum (grant agreement: 730254), the EUCP (Eu-
ropean Climate Prediction System) project funded by the Euro-
pean Union under Horizon 2020 (grant agreement: 776613), and
CO-MICC project which is part of ERA4CS, an ERA-NET initi-
ated by JPI Climate with co-funding by the European Union and
the Austrian Federal Ministry of Science, Research and Economy
(BMWFW).

Financial support. This study and the model development were
also conducted as part of the Belmont Forum Sustainable Urban-
isation Global Initiative (SUGI)/Food–Water–Energy Nexus theme
for which coordination was supported by the US National Science
Foundation under grant ICER/EAR-1829999 to Stanford Univer-
sity. This study is also partly supported by financial support from
the Austrian Research Promotion Agency (FFG) under the FUSE
project funded by the Belmont Forum (Grant Agreement: 730254),
EUCP (European Climate Prediction System) project funded by the
European Union under Horizon 2020 (Grant Agreement: 776613),
and CO-MICC project which is part of ERA4CS, an ERA-NET ini-
tiated by JPI Climate with co-funding by the European Union and
the Austrian Federal Ministry of Science, Research and Economy
(BMWFW).

Review statement. This paper was edited by Wolfgang Kurtz and
reviewed by three anonymous referees.

References

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch,
T., and Siebert, S.: Development and testing of the WaterGAP 2
global model of water use and availability, Hydrolog. Sci. J., 48,
317–338, https://doi.org/10.1623/hysj.48.3.317.45290, 2003.

Alcamo, J., Flörke, M., and Märker, M.: Future long-term
changes in global water resources driven by socio-economic
and climatic changes, Hydrolog. Sci. J., 52, 247–275,
https://doi.org/10.1623/hysj.52.2.247, 2007.

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.:
Crop evapotranspiration-Guidelines for computing crop water

requirements-FAO Irrigation and drainage paper 56, FAO, Rome,
300, D05109, 1998.

Anderson, E.: Snow Accumulation and Ablation Model – SNOW-
17, Technical report, 2006.

Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T.,
Starn, J. J., and Fienen, M. N.: Scripting MODFLOW Model De-
velopment Using Python and FloPy, Groundwater, 54, 733–739,
https://doi.org/10.1111/gwat.12413, 2016.
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