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Abstract

One of the principal ways nations are responding to the COVID-19 pandemic is by locking

down portions of their economies to reduce infectious spread. This is expensive in terms of

lost jobs, lost economic productivity, and lost freedoms. So it is of interest to ask: What is

the optimal intensity with which to lockdown, and how should that intensity vary dynamically

over the course of an epidemic? This paper explores such questions with an optimal control

model that recognizes the particular risks when infection rates surge beyond the healthcare

system’s capacity to deliver appropriate care. The analysis shows that four broad strategies can

be optimal, ranging from brief lockdowns that only “smooth the curve” to sustained lockdowns

that prevent infections from spiking beyond the healthcare system’s capacity. Within this model,

it can be optimal to have two separate periods of locking down, so returning to a lockdown after

initial restrictions have been lifted is not necessarily a sign of failure. Relatively small changes

in judgments about how to balance health and economic harms can alter dramatically which

strategy is optimal. Indeed, there are constellations of parameters for which two or even three of

these distinct strategies can all be optimal for the same set of initial conditions; these correspond

to so-called triple Skiba points. The performance of trajectories can be highly nonlinear in the

state variables, such that for various times t, the optimal unemployment rate could be low,

medium, or high, but not anywhere in between. These complex dynamics emerge naturally
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from modeling the COVID-19 epidemic and suggest a degree of humility in policy debates.

Even people who share a common understanding of the problem’s economics and epidemiology

can prefer dramatically different policies. Conversely, favoring very different policies is not

evidence that there are fundamental disagreements.

Keywords: COVID-19, Lockdown, Skiba threshold, SIR model, optimal control

JEL codes: C61, I15

1. Introduction

A central strategy for responding to the COVID-19 pandemic is “locking down” parts of the

economy to reduce social interaction and, hence, contagious transmission. Multiple countries

have started aggressively, locking down all but essential services such as healthcare and public

safety, and then gradually re-opened increasing shares of the economy. Some have then seen

infection rates rebound and returned to a more stringent lockdown. Some places have also seen

such widespread infection that a nontrivial proportion of the population has passed through

infection to reach a “recovered state”, although there is uncertainty as to whether the resulting

immunity is brief (as with seasonal flu) or long-lasting (as with chicken pox).

All of these considerations raise the challenging question of what is the optimal degree to

which a country should lock down, and how that intensity should vary as the state of the epi-

demic evolves. We try to address that problem with an optimal control model. The heart of

the model is a classic SIR or Susceptible-Infected-Recovered differential equation model, but it

is enhanced in multiple ways. For example, the lethality of the infection varies depending on

whether there are so many infections that critical care capacity has been swamped. The most

fundamental extension, though, is creating an objective function that balances four considera-

tions: (1) Health harms (primarily COVID-related deaths), (2) Economic harm (primarily from

unemployment), and (3) Adjustment costs, meaning that sharp oscillations in the intensity of

the lockdown are costly because it becomes hard for people and businesses to constantly have

to adapt to changing rules.

Although businesses can be shut down quickly, re-opening is not as easy; policy makers

cannot just order by fiat all businesses to return to their previous levels of employment. So

the level of employment or economic activity is treated as a state variable, and the control is

adjustments to that level, with asymmetric costs reflecting that it is easier to destroy than to

create jobs. Another innovation is that public discontent with the duration and intensity of the

lockdown is represented by a fifth state variable that can enter the objective function directly
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and also modulates compliance with social distancing demands and, hence, the rate of infection.

The solutions are complex and span a range of qualitatively different strategies, such as

locking down sufficiently long and forcefully to drive infection rates down to low levels and, at

the other extreme, locking down only sparingly to merely soften the peak of infections, without

truly sparing most of the public from infection. Which strategy wins – in the sense of delivering

the lowest overall total cost – depends on the various parameter values in predictable ways,

but there are constellations of parameters for which two qualitatively different strategies may

perform equally well, even though they are very different. These tipping points have been

variously called Skiba, Sethi-Skiba, DNS, and DNSS points to celebrate the contributions of

various pioneers in the field.

Interestingly in this model there are not only conventional Skiba points separating two

alternate optimal strategies, but also “triple Skiba points” separating three different equally

appealing strategies, and even instances in which there are multiple triple Skiba points in the

same bifurcation diagram.

Importantly, there are Skiba thresholds depending on parameters that are either not known

scientifically or that reflect value judgments (such as how to trade off saving lives with creating

jobs). Hence, one meta-message of this analysis is that when two countries or two people

favor sharply different policies, that does not imply that they must have sharply different

understandings of the disease, its contagious spread, or even the extent of economic dislocation

lockdowns create. Preferences for sharply different policies does not imply there need be sharp

disagreements. Conversely, a degree of humility and generosity may be appropriate when talking

with people who favor very different policies.

This even extends to the number of lockdowns. There are optimal solutions that involve

locking down, ending the lockdown and reinstituting it. Hence, if a country endures a second

lockdown, that cannot be taken as proof that the first lockdown “failed”, or that policymakers

made mistakes.

There is now a growing literature on COVID-19 and its economic consequences as it is re-

lated to extended periods of economic lockdown. So far, only a few papers have investigated the

optimal timing, length and extent of the lockdown itself. Starting from the simple epidemiolog-

ical SIR model, Gonzalez-Eiras and Niepelt (2020) investigate the optimal lockdown intensity

and duration taking into account the tradeoff between health and economic consequences of

the lockdown itself. Alvarez et al. (2020) similarly employ a standard SIR model where they

control the fraction of the population going into lockdown. The model is derived with and
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without testing as a control variable. If testing is included, the optimal lockdown in the US

should be started one week after the outbreak of the virus and relaxed after one month. The

absence of testing shortens the optimal length of the lockdown, which is due to the dynamics

of the epidemiology, i.e. the fraction of recovered people over time increases, implying that the

efficiency of the lockdown decreases since also recovered people are locked down.

Köhler et al. (2020) analyze the impact of measures like social distancing which reduce the

infection rate. The paper distinguishes between different groups of infected, and assumes that

the mortality rate depends on the capacity of the health system. The objective is to minimize the

number of fatalities, but the authors take the societal and economic costs of the policy measures

into account by means of requiring these costs not to exceed the costs of some baseline policy.

To handle uncertainties, they promote a model predictive control based feedback strategy where

the policy measures are updated at discrete points in time.

Acemoglu et al. (2020) allow the intensity of lockdown to differ by different age-groups,

distinguishing between “young”, “middle-aged” and “old” populations, in a SIR model. It can

be shown that differentiated policy measures significantly outperform optimal uniform policies.

The gains can be realized by having stricter policies on the oldest age-group. Aspri et al. (2020)

extends a SEIRD model, where the population is divided into susceptibles, exposed, infected,

recovered and deceased, by an asymptomatic population compartment and obtain multiple

lockdowns as well as Skiba points.

We expand these previous attempts to model the optimal strategy of lockdowns by three

novel features. First, in the balance of economic and health consequences during a lockdown,

we consider a capacity constraint in the intensive care units of the health care system. If

the number of infected needing intensive care exceeds the constraint the death rate of these

patients increases. Second, we explicitly model the “memory of lockdowns” by an additional

state variable that accumulates the intensity and length of the lockdown. This “memory of

lockdowns” affects the efficiency of the lockdown and accounts for the fact that people get fed

up from long and drastic lockdowns. Third, we assume that adjusting the lockdown is costly.

In particular, we allow for an asymmetry in the costs for strengthening and weakening the

lockdown.

There is likewise a celebrated history of papers exploring Skiba thresholds (see Grass et al.

(2008), Sethi (2019)). Our paper belongs to this stream of literature, because in different scenar-

ios Skiba points occur. Comparable bifurcation analyses as in our paper can be found in Grass

(2012) and Kiseleva and Wagener (2010, 2015). However, in addition to these contributions,
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we found triple Skiba points and even multiple triple Skiba points for specific parameter con-

stellations. The first triple Skiba point was found when solving the two-state intensity splitting

production/inventory model in Steindl and Feichtinger (2004). Zeiler et al. (2011) is another

example where a solution with a triple Skiba point occurs. However, both of these contributions

consider optimal control models with infinite time horizon, whereas in our framework the time

horizon is finite. In that sense the model of Caulkins et al. (2015) is more related, but there

just Skiba points in the usual sense, i.e. separating “only” two different solutions with equal

objective value, occur.

We proceed by introducing the model. Section 3 presents the numerical results for the base

case parameters and provides an in-depth discussion of the implications of triple Skiba points.

In Section 4 the results are discussed and Section 5 concludes.

2. The Model

2.1. Lockdowns

A lockdown reduces interaction among people by closing down businesses and restricting

social interaction (e.g., preventing families from visiting loved ones in nursing homes). We

do not distinguish between business-related and non-business restrictions and so effectively

assume that they move together. If the rate of infection and other factors point to severe [mild]

restrictions on business, then one would expect greater [lesser] restrictions on personal social

interactions.

We define γ(t) to be the actual number of people working as a proportion of those who would

normally be working, so apart from COVID we would have γ(t) = 1. As soon as the lockdown

starts, γ(t) will drop below 1, which hurts the economy, but reduces social interactions and,

hence, the rate of new infections, in a manner described below.

Note that γ(t) is modeled as a state variable, not a control, for three reasons. First, outside

of a command-and-control state-run economy, policy makers do not get to choose directly the

level of employment. Second, adjusting the level of employment takes time and is costly. If

a country that has shut down its auto manufacturing supply chain permits that supply chain

to reopen, it will take time to reestablish connections (e.g., because some suppliers may have

gone bankrupt) and could even require some sort of fiscal stimulus to “prime the pump” in the

Keynesian sense of the term. We allow these costs to be asymmetric; it may well be easier to

shut down industries than to restart them.
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Third, and related, the final value of γ(t) at the model’s terminal time T (when a vaccine

renders lockdowns moot) enters into the salvage value function. The reasons is that if two

solutions rack up identical costs over the time period (0, T ) but one reaches time T with its

economy intact (i.e., γ(T ) is close to 1) and the other reaches time T in the midst of a deep

recession (γ(T ) well below 1), then the first solution should be preferred. This salvage function

reflects the hang-over effect of economic damage that extends beyond the period when the

infection’s dynamics are relevant. If γ(t) and, hence, γ(T ), were a control variable, then the

optimal solution would always choose to discontinuously jump γ(t) to 1 at time T to magically

make the long-run costs of the lockdown-induced dislocation disappear.

Hence, we let the change in the employment ratio u(t) be a control variable that has adjust-

ment costs, and add a state equation

γ̇(t) = u(t), γ(0) = 1,

which reflects a pre-COVID situation with γ(0) = 1.

We include a state constraint that

γ(t) ≤ 1, 0 ≤ t ≤ T,

since an economy having more than 100% employment makes no sense.

2.2. Lockdown fatigue

People are not robots, and the effectiveness of policies restricting activities depends, in

part, on the public’s level of cooperation and their dedication to public health protocols. A

country could restrict restaurants to take-out service, but if the kitchen workers refuse to wear

masks, wash hands frequently, or maintain social distancing during break times then some of

the potential benefits will not be realized.

Our sense is that in many jurisdictions the public’s tolerance for restrictions begins to wane

the more restrictive is the lockdown, and the longer it lasts. So the lockdown’s effect on virus

transmission depends not only on the instantaneous value of γ(t), but also on some accumulated

memory of how burdensome the lockdown has been up until time t.

The state variable z(t) captures this “lockdown fatigue” through a standard accumulation

stock dynamic that is driven by the rate of COVID-induced unemployment. Since γ(t) measures

the proportion who are employed, 1− γ(t) is the proportion who are unemployed. Hence,

ż(t) = κ1 (1− γ(t))− κ2z(t).
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where κ1 governs the rate of accumulation of fatigue and κ2 measures its rate of exponential

decay. Note that if the worst imaginable lockdown (γ(t) = 0) lasted forever then z would grow

to its maximum possible value of zmax = κ1/κ2.

The foundation of our epidemic model is the standard SIR or Susceptible-Infected-Recovered

structure. In it, new infections are proportional to the number of susceptible people, the propor-

tion of people they meet who are infectious, and a proportionality factor β(t), which encompasses

both the number of interactions and the likelihood that an interaction produces an infection.

Numbers of interactions can be reduced by shutting down business and by adaptations on the

consumer side; e.g., only going to the grocery store once every two weeks instead of every week.

The likelihood of infection given an interaction is affected by things like mask wearing, hand

washing, and remaining at least two meters apart during an interaction.

The function β(z(t), γ(t)) should be convex in γ(t) because the first businesses that are

closed are the ones whose activities generate the most infections per unit of employment or

economic value. E.g., a society could be expected to first forbid concerts and other large public

gatherings, then socializing in bars and dine-in restaurants, and then, if the need is great

enough, to shut down manufacturing, construction, and other non-essential workplaces that do

not involve direct interaction with the public.

β := β(z, γ), βγ > 0, βγγ ≥ 0, βz > 0, β(1, 0) = β̄,

where β̄ stands for the rate of social interaction in pre-COVID times.

In the absence of lockdown fatigue, we might model β as some minimum level of infection

risk β1 that is produced just by essential activities (providing healthcare, food, and emergency

services) plus an increment β2 that is proportional to γ(t) raised to an exponent θ that is greater

than one to achieve the convexity.

We model the dependence of β on z and γ as follows:

β(γ, z) := β1 + β2

(
γθ + f

κ2

κ1
z(1− γθ)

)
.

For its properties see Appendix A.

This expression can be interpreted as follows. The term κ2
κ1
z(t) is the lockdown fatigue

expressed as percentage of its maximum possible value. So if f = 1 and z(t) reached its

maximum value, then all of the potential benefits of locking down and pushing γ(t) below

1.0 would be negated. In reality, the lockdown fatigue will not reach its maximum and we

choose a relatively small value of f = 0.05, so this attenuation of the lockdowns benefit by
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lockdown fatigue has a quite modest force in the analysis below. Nonetheless, we believe it

is important to at least acknowledge this human dimension of how a population responds to

extended lockdowns.

2.3. State dynamics

The state dynamics can then be written as

Ṡ(t) = νN(t)− β(z(t), γ(t))
S(t)I(t)

N(t)
− µS(t) + ϕR(t) (1a)

İ(t) = β(z(t), γ(t))
S(t)I(t)

N(t)
− (α+ µ+ µI)I(t) (1b)

Ṙ(t) = αI(t)− µR(t)− ϕR(t) (1c)

γ̇(t) = u(t), γ(0) = 1 (1d)

ż(t) = κ1(1− γ(t))− κ2z(t), z(0) = 0 (1e)

γ(t) ≤ 1, 0 ≤ t ≤ T (1f)

β(γ, z) := β1 + β2

(
γθ + f

κ2

κ1
z(1− γθ)

)
(1g)

where N(t) = S(t) + I(t) +R(t) is the total population.

These equations allow for births at rate ν, deaths from COVID-19 at rate µI , and deaths

from other causes at rate µ but we set those three parameters to zero because the COVID-19

epidemic is playing out over a time horizon that is short enough that births and deaths are not

greatly affecting the total population.

The equations also allow a backflow of recovered individuals back into the susceptible state

at a rate ϕ. How long acquired immunity lasts varies by disease. Immunity to smallpox was

once thought to be relatively brief (3-5 years), but is now understood to be longer. Immunity to

any specific cold rhinovirus is prolonged, but there are so many rhinoviruses that we can keep

getting colds year after year. How long immunity will last with SARS-CoV-2 virus is not known

at this time, but immunity to other corona viruses often lasts 3-5 years, so we set ϕ to 0.001 per

day in our base case, which corresponds to a mean duration of immunity of 1000/365 = 2.74

years.

2.4. Objective function

The other essential part of an optimal dynamic control model is the objective. Optimally re-

sponding to COVID-19 requires juggling three to five key considerations, depending on whether

one lumps all economic considerations together or breaks them out.
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Of course the primary consideration is health which we model as in an earlier paper, see

Caulkins et al. (2020). Deaths dominate health costs because the duration of sickness is rel-

atively short compared with diseases such as cancer, let alone dementia. An important con-

tribution of Caulkins et al. (2020) that we also include here is making the risk of death for

an infected individual depend on the population-prevalence because the healthcare system can

become swamped. In particular, if the number of infected individuals I(t) times the probability

that an infected person needs critical care p is less than the healthcare system’s capacity (Hmax)

then the death rate has one value (ξ1); otherwise it gets bumped up by an additional increment

(ξ2). Implementing that literally would require a function with a discontinuous derivative, but

as Caulkins et al. (2020) explain, it is possible to find a continuously differentiable function

which very closely approximates it. Hence, the health care cost component of the objective

function is:

Vh(I, γ) := M (ξ1pI(t) + ξ2 maxs({0, pI(t)−Hmax}, ζ))

with

maxs({0, pI −Hmax}, ζ) :=
1

ζ
log
(

1 + eζ(pI−Hmax)
)
, ζ � 1.

The only difference relative to our previous paper is that we have reduced the value of ξ1

since the healthcare system has developed better ways of caring for COVID-19 patients (when

its capacity to treat is not overwhelmed).

Two of the economic costs are the same as in Caulkins et al. (2020). The first is the reduction

in economic activity up until time T , when a vaccine is widely deployed. Economic activity

is modeled with a standard Cobb-Douglas form so output is proportional to the number of

workers L(t) times the proportion who are working γ(t) raised to an exponent σ that is less

than one (2/3 in our base case parameter set). Infected individuals are assumed to be too sick

to work, so L(t) = S(t) +R(t). Since the time horizon is relatively short, capital K is assumed

to be fixed, and without loss of generality is set equal to 1, meaning the units of the objective

function are a day’s economic output at full employment pre-COVID. The economic loss to

be minimized is the difference between what production would have been through time T in

the absence of COVID (TKL(0)σγ(0)σ) – which sits outside the integral over time since it is a

constant – minus the equivalent term with L(t) and γ(t) varying over time due to COVID.

The second that is the same as in Caulkins et al. (2020) is the residual loss in economic

activity after the vaccine is deployed, because it takes time for full employment to be restored.

This is the difference between economic output at time T versus time 0 multiplied by a constant
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Γ representing the restoration time. For example, if residual unemployment declined linearly

to zero over two years, then Γ would be one year (or 365 days) taking into account that over

these two years, on average residual unemployment equals half of the amount of unemployment

at time T . We use that as our base case parameter value, but note that it does not imply a

linear recovery; any shape of decay that integrated out to the equivalent of one year would be

equivalent.

The third economic term is the cost of adjusting employment γ(t). This is not the cost of

people being unemployed but rather the cost of opening or closing businesses, such as loss of

perishable inventory upon shut down and start-up costs when re-opening. As is customary we

make these quadratic in the control u(t) and allow for them to be asymmetric with different

constants for shutting down businesses cl and reopening them cr, with an extra penalty for

reopening after an extended shut down so that

Vu(u(t), γ(t)) :=


clu(t)2 u(t) ≤ 0

cr(z(t) + 1)u(t)2 u(t) > 0

Putting all of these elements together, the resulting optimal control model will be the fol-

lowing:
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V (X0, u(·)) :=

∫ T

0
(Vl(L(t), γ(t))− Vh(I(t), γ(t))− Vu(u(t), γ(t))) dt

− TKL(0)σγ(0)σ − Γ (KL(0)σγ(0)σ −KL(T )σγ(T )σ)

(2a)

V ∗(X0) := max
u(·)

V (X0, u(·)) (2b)

X(t) := (S(t), I(t), R(t), γ(t), z(t)), L(t) := S(t) +R(t), N(t) := S(t) + I(t) +R(t).

(2c)

s.t. Ṡ(t) = νN(t)− β(γ(t))
S(t)I(t)

N(t)
− µS(t) + ϕR(t) (2d)

İ(t) = β(γ(t))
S(t)I(t)

N(t)
− (α+ µ+ µI)I(t) (2e)

Ṙ(t) = αI(t)− µR(t)− ϕR(t) (2f)

γ̇(t) = u(t), γ(0) = 1 (2g)

ż(t) = κ1(1− γ(t))− κ2z(t), z(0) = 0 (2h)

γ(t) ≤ 1, 0 ≤ t ≤ T (2i)

β(γ, z) := β1 + β2

(
γθ + f

κ2

κ1
z(1− γθ)

)
(2j)

Vl(L(t), γ(t)) := Kγ(t)σL(t)σ (2k)

Vh(I(t), γ(t)) := M (ξ1pI(t) + ξ2 maxs({0, pI(t)−Hmax}, ζ)) (2l)

Vu(u(t), γ(t)) :=


clu(t)2 u(t) ≤ 0

cr(z(t) + 1)u(t)2 u(t) > 0

(2m)

2.5. Necessary Optimality Conditions

The Hamiltonian1 is

H(X,u,Λ) = Vl(L, γ)− Vh(I, γ)− Vu(u, γ) + Λ′Ẋ, (3a)

= Vl(L, γ)− Vh(I, γ)− Vu(u, γ) + Λ1

(
νN − β(γ)

SI

N
− µS + ϕR

)
+ Λ2

(
β(γ)

SI

N
− (α+ µ+ µI)I

)
+ Λ3 (αI − µR− ϕR) (3b)

+ Λ4u+ Λ5 (κ1(1− γ)− κ2z)

1In the subsequent we omit time argument t unless needed.
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with Λ := (Λ1,Λ2,Λ3,Λ4,Λ5) denoting the costate variables. We use the indirect adjoining

approach for the pure state constraint (2i), see Hartl et al. (1995). Therefore we define the

Lagrangian

L(X,u,Λ, ψ) := H(X,u,Λ) + ψu. (3c)

For the derivatives we find

∂

∂u
H(X,u,Λ) =


2clu+ Λ4 u ≤ 0

2cru(z + 1) + Λ4 u > 0

(3d)

∂2

∂u2
H(X,u,Λ) =


2cl u ≤ 0

2crz u > 0

(3e)

Let (X∗(·), u∗(·)) be an optimal solution. Then the Hamiltonian maximizing condition yields

for γ∗(t) < 1

u∗(t) = argmax
u

H(X∗(t), u,Λ(t)) =


−Λ4(t)

2cl
Λ4(t) ≥ 0

− Λ4(t)

2cr(z∗(t) + 1)
Λ4(t) < 0

(3f)

For z(t) > 0 the second order derivative is strictly positive and the Hamiltonian is regular. For

z(t) = 0 we find from the state dynamics (1e) that these properties only hold true if γ(t) = 1.

Due to the initial condition z(0) = 0, it holds that z(t) = 0 can only be satisfied for t ∈ [0, Ts]

with some Ts ≥ 0, which necessarily implies γ(t) = 1, t ∈ [0, Ts] and either T = Ts or γ(t) < 1

for Ts < t < Ts + ε with some ε > 0. Therefore, in order to have z(t) = 0 for t ∈ [0, Ts], it has

to hold that u(t) = 0. Thus, the control value is unique and hence, the control u(·) continuous.

For the Lagrangian multiplier ψ we formally solve

∂

∂u
L(X,u,Λ, ψ) :=

∂

∂u
H(X,u,Λ)|u=0 + ψ = 0

yielding

ψ = −Λ4

and

ψ̇ = −Λ̇4.

Let (X∗(·), u∗(·)) be an optimal solution. Let τi, i = 1, . . . n be connecting times 0 < τ1 < . . . <

τn < T and Is, Ie and Ix three pairwise disjoint sets with Is ∪ Ie ∪ Ix = {1, . . . , n}. These sets
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are defined as

j ∈ Is iff for some ε > 0 u(t)


< 0 τj − ε < t < τj

= 0 t = τj

> 0 τj < t < τj + ε

j ∈ Ie iff for some ε > 0 γ(t)


= 1 τj ≤ t < τj + ε

< 1 τj − ε < t < τj

j ∈ Ix iff for some ε > 0 γ(t)


= 1 τj − ε < t ≤ τj

< 1 τj < t < τj + ε.

The set Is contains the switching times for the control from being strictly positive to strictly

negative. Ie is the set of entry times and Ix the set of exit times for the state constraint.

Then there exists a costate Λ(·) being continuously differentiable for t ∈ (τi, τi+1), i =

0, . . . n with τ0 := 0 and τn+1 := T . The Lagrangian multiplier ψ(·) is piecewise continuously

differentiable. For each i ∈ Ie there exists χi ∈ R. In each interval (τi, τi+1), i = 0, . . . n the

costates Λ(·) satisfy the adjoint ODEs

Λ̇(t) = − ∂

∂X
H(X∗(t), u∗(t),Λ(t)), t ∈ (τi, τi+1), i = 0, . . . n. (4)

At the connecting times for the state, costates and Lagrangian multiplier it holds that

X(τ−i ) = X(τ+
i ), i = 1, . . . , n

Λ(τ−j ) = Λ(τ+
j ), j ∈ Is ∪ Ix

Λ1,2,3,5(τ−j ) = Λ1,2,3,5(τ+
j ), j ∈ Ie

Λ4(τ−j ) = Λ4(τ+
j )− χj , j ∈ Ie

with

χj ≥ 0, j ∈ Ie.

The Lagrangian multiplier ψ(·) satisfies the complementary slackness condition

ψ(t)(1− γ(t)) = 0

and

ψ(t) ≥ 0, τj ≤ t ≤ τj+1, j ∈ Ie or j + 1 ∈ Ix

ψ(τ+
j ) = χj , j ∈ Ie.
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Additionally ψ̇(·) has to satisfy

ψ̇(t) ≤ 0, τj ≤ t ≤ τj+1, j ∈ Ie or j + 1 ∈ Ix.

For γ(T ) < 1 the costates satisfy the transversality conditions

Λ(T ) = −K ∂

∂X
L(T )σγ(T )σ

and for γ(T ) = 1 the costate Λ4 has to satisfy

Λ4(T ) = −K ∂

∂γ
L(T )σγ(T )σ + χT

with

χT ≥ 0.

Table 1 shows the base case parameter values; compare also Caulkins et al. (2020).

α β1,2 Hmax p M K Γ f κ1

1
15 0, 0.2 2× 10−4 2.25× 10−2 ∗ 1 365 0.05 0.15

κ2 σ µ ν µI ζ ξ1 ξ2 ϕ cl cr θ

0.2 2
3 0 0 0 5000 0.03 1 0.001 1000 5000 2

Table 1: Base case parameter values.

3. Results

3.1. Results with base case parameters

For the base case parameters in Table 1 three qualitatively different solution strategies can

be optimal depending on the value of M , which denotes the value of preventing a death due to

COVID-19. Trajectories for γ, the level of employment, are shown in panels (a), (b), and (c) of

Fig. 1.

The first regime applies for small values of M ; it has only one relatively brief lockdown early

on to dampen the intensity of the epidemic (Panel (a)). In the second regime, for intermediate

values of M , it is optimal to have two separate lockdowns, one early and another – often smaller

– later, shortly before the vaccine gets widely deployed (Panel(b)). In the third regime, with

larger values of M , there is just one lockdown, but it is sustained (Panel (c)). In this case, that
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Figure 1: Panels (a), (b) and (c) show solution paths for each of the three regimes which differ with respect to

the size of the social cost of a death M . On the blue part of the solution paths the value of the control u is

negative, on the green part it is positive and on the red part it is zero with the constraint γ ≤ 1 being active.

effectively drives the epidemic down to minimal levels for an extended time. We call these the

“short lockdown”, “double lockdown” and “sustained” strategies; they correspond to Regimes

I, II, and III in Fig. 2, respectively.
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Figure 2: Objective value of the optimal solution path depending on the social cost of a death M for the base

case parameters given in Table 1. There are three regimes which differ by the duration, intensity as well as the

number of lockdowns of the optimal solutions. For the values of M highlighted by a vertical black line (M = 619.4

and M = 761) two different solution paths are optimal.

Naturally, as Fig. 2 shows, the objective function value is decreasing in M ; the more costly
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a death, the less well the social planner can do. The slope is initially steep because with only

a brief initial lockdown, there are many infections, and so many deaths. Increasing the cost

per death reduces the objective function value at a steep rate. That is also true in the second

regime that has two lockdowns, implying that the total number who become infected is rather

large for that strategy as well. Only when M becomes large and it is optimal to sustain a strong

lockdown that sharply reduces deaths does the dependence of V on M become less steep.

The vertical lines in Fig. 2 passing through the kinks in V (M) are points at which two

different strategies perform equally well, which is illustrated in Fig. 3. For example, when

M = 619.4 the solid and dashed trajectories perform equally well overall, even though the

Regime I strategy limits unemployment to less than 10% whereas the Regime II approach

allows unemployment to exceed 30% at one point. Likewise, Fig. 3 Panel (b) shows two very

different trajectories that perform equally well when M = 761. The solid line is a double

lockdown strategy that is very similar to the double lockdown strategy in Fig. 3a; the dashed

line shows a sustained and radically more aggressive lockdown that suffers unemployment over

40% for more than a year but – as noted – greatly reduces infections and deaths.
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Figure 3: Optimal time paths of the the proportion of working people corresponding to the different regions

shown in Fig. 2. Panel (a) and (b) return the optimal solutions for the values of M highlighted by the vertical

black line (for (a) M = 619.4 and (b) M = 761 ).

These points at which there are alternate optimal strategies are Skiba points. From the same

initial point, two different trajectories emerge but which produce the same optimal objective

function value.

Fig. 4 shows in greater detail the consequences of following the two strategies that are

16



optimal when M = 619.4. Note that both strategies involve roughly the same number of people

getting infected, but the double lockdown strategy (dashed line) starts with a larger and longer

initial lockdown; that flattens the curve considerably. With the single, small lockdown (solid

dark lines), at the epidemic’s peak a quarter of the population is infected at one time, which

would completely swamp hospital’s treatment capacity. That is, when M is small, not only does

the optimal strategy allow many people to become infected, it lets many of them get infected

at the same time, so many who need critical care cannot receive it, increasing the number of

deaths. Indeed, the epidemic’s trajectory with that strategy is not so different than it would be

with no lockdown (the light lines).

Quite a few people still become infected with the double lockdown strategy, as can be seen

by the decline in the number of susceptibles (Panel (c)) and increase in the number of Recovered

individuals (Panel (e)), but the infections are spread out over time.

Fig. 5 gives further detail contrasting the two solutions that are optimal when M = 761.

These strategies differ even more markedly, as is perhaps best seen in Panel (b), which shows

that with this sustained strategy, the infection rate never exceeds the hospital’s capacity which

is indicated by the horizontal solid line.

It is very interesting to contrast the different strategies’ variation over time in the epidemic’s

effective reproductive number (Reff), meaning the raw reproductive number modified by both

the control intervention and also the accumulation of people in the Recovered state. Both,

the two-lockdown and the sustained strategies for these parameter values keep Reff close to 1

throughout most of the time horizon.

The only exception is that the sustained strategy allows the effective reproductive rate to

increase just before the vaccine is distributed. At that point the number of infections is so low,

that even a month or two of spread does not push the absolute number of infections up very

high.

Note that strategies involving a change in policy a month or two before the vaccine is widely

deployed are not unrealistic. Although it is not possible to predict when a vaccine will be

invented, there is a lag between invention and widespread deployment during mass production

and distribution. The production and distribution stages are reasonably well-understood pro-

cesses, so their duration is fairly predictable. That means a strategy that calls for a change 30

or 60 days before the vaccine has been fully deployed is feasible.

The speed of the epidemic’s spread requires this hovering of Reff near 1.0 for any “interior”

solution with a substantial pool of susceptibles. The time from infection to end of infectiousness
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Figure 4: Time paths for the Skiba solutions at M = 619.4. Panel (a) depicts the control and panel (b) the

proportion of working people. Panel (c) shows the number of susceptibles, panel (d) the number of infected

(above the red horizontal line hospital capacity is exceeded), panel (e) the number of recovered patients. In panel

(f) the effective reproduction number can be seen and in panel (g) the perceived lockdown intensity z. The gray

line shows the uncontrolled epidemic’s time path.
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Figure 5: Time paths for the Skiba solution at M = 761. Panel (a) depicts the proportion of working people,

panel (b) the number of infected and panel (c) the effective reproduction number.

is short; about two weeks. So within a 52-week year, that reproductive rate can effectively get

raised to the 26th power. If it is anything other than about 1, that will cause the number of

infected individuals to vary rapidly. Regime I strategies dispense with that stability, with Reff

swinging from 3 to one-third over just three months, before rebounding to well above 1, and

that variation is driven by variation in the numbers in the susceptible and recovered states.

So in a sense, one can think of the three strategies as follows. Regime I: Let the epidemic

run its course, more or less. Regime II: Smooth out the epidemic curve with intermittent pulses

of locking down. Regime III: Use a sustained, deep lockdown to forestall the epidemic.

3.2. Triple Skiba points

The model produces rich behavior, including the possibility of a triple Skiba point from

which three distinct optimal trajectories emerge. The additional strategy at these points in-

volves a double pulse lockdown but without ending it completely in between. That is in some

sense intermediate between Regimes II and III because some degree of lockdown is maintained

throughout (as in Regime III) but there are two distinct waves of locking down (as in Regime

II).

Fig. 7 Panel (d) illustrates a typical trajectory with this new Regime IV strategy.

Fig. 6 Panel (a) shows two triple-Skiba points in a bifurcation diagram in the space of pa-

rameters M (cost of a death) and cr, which governs the adjustment costs of reopening businesses

that have been shut down. In Panel (c), which corresponds to the left-hand triple Skiba point

at cr = 75, 672.5 and M = 869, there is a standard Regime I strategy (solid line), a standard

Regime II strategy (dot-dashed line) and a new (Regime IV) type strategy (dashed line). At this

particular point, the Regime IV strategy appears only very slightly different than the Regime
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II strategy because γ comes very close to 1.0 near the end of year 1 and beginning of year 2.
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Figure 6: Bifurcation diagram in the M–cr space, for ϕ = 0.001, β1 = 0, β2 = 0.2 and κ1 = 0.15, κ2 = 0.2, cl =

1000, ξ1 = 0.03, ξ2 = 1 (panel (a)). The blue curves show the Skiba curves and the dots denote the triple Skiba

points (red), examples for the Skiba solutions (green) and examples for the different regions (black). Panels (b)

and (c) show the time paths of γ starting at the triple Skiba points occurring for cr = 69, 632.7,M = 883 and

cr = 75, 672.5,M = 869.

Note that it makes sense that the line dividing Regions I and II/IV slopes upward in this

bifurcation diagram. Larger values of M place greater value on reducing infection, justifying

more locking down, and smaller values of cr mean that two waves of locking down is not

prohibitive because the cost of businesses rebuilding after a lockdown is not so high (small cr).

Panel (b), which corresponds to the right-hand triple Skiba point with cr = 69, 632.7 and

M = 883, has a Regime II strategy (solid line), a Regime IV strategy (dot-dashed line), and a

Regime III near-eradication strategy (dashed line).

The upward slope of the line separating the II/IV and III regimes again makes sense. Larger

M favors a sustained lockdown, so Regime III is to the right. Also, Regime III involves a deeper

trough in employment and so a steeper rebuilding, so that option does well when reopening

shuttered industries is not too expensive (cr is small).

Fig. 8 show that it is also possible to have a triple Skiba involving trajectories from Regimes

I and III. Triple Skiba involving both Regime II & IV strategies and one other are perhaps

unsurprising; both Regimes II and IV are both in some sense double lockdown strategies. They

are distinguished in Fig. 6 only by whether the interlude between the two pulses was long enough

to allow γ to recover all the way to 1.0. That a decision maker could be indifferent between a

Regime I and III strategy (as well as one from Regime II or IV) might seem more surprising

because the Regime I and III strategies in Fig. 8 appeared to be near opposites. The Regime

I trajectory involved very little in the way of locking down and the Regime III strategy was at
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Figure 7: Time paths of γ for the four different regimes depicted in Fig. 6.
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the other extreme.
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Figure 8: Bifurcation diagram in the M–cr space, for f = 0.25 (panel (a)) and time paths of γ (panel (b)) for

solutions starting at the triple Skiba point for M = 1145.3, cr = 175904.5 depicted by a red dot in panel (a).

Fig. 9 shows how results differ if it takes three not two years to develop and deploy an

effective vaccine. The qualitative results seem little changed. In particular, the two lockdown

strategy continues to employ just two lockdowns; it did not morph into a three lockdown

strategy. Likewise, that second lockdown continues to come soon before the vaccine is deployed,

not a certain, fixed time after the first lockdown ends.
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Figure 9: Bifurcation diagram in the M–cr space for T = 1, 095.
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4. Discussion

Perhaps the most basic conclusion of this analysis is that very different strategies for re-

sponding to the COVID-19 pandemic can be optimal with the exact same set of parameter

values. Exact equality of performance is a knife-edge case, occurring only exactly at the Skiba

point. However, there are neighborhoods around the Skiba points where alternate, very different

strategies perform nearly as well.

A second basic conclusion is that even when only a single strategy is optimal, which specific

strategy wins can change quickly when certain parameters values vary over a relatively limited

range. This is perhaps best illustrated with respect to M , the parameter standing for the cost

to the social planner per premature death. There is a long literature discussing what is the

appropriate value to use for that parameter in social welfare analysis. There is some common

understanding as to the order of magnitude, but considerable debate as to the particular value.

That is not surprising inasmuch as it is not an empirical constant akin to the atomic mass of an

element so much as an expression of values, and different people can have different values about

how they wish to trade-off life and health with economic outcomes (such as unemployment) and

happiness more generally (including freedom of association).

Fig. 6 shows that for our base case value of parameter cr = 5, 000 (standing for the cost of

reopening shuttered businesses), varying parameter M by less than 10% (from slightly below

800 up to 860) carries one all the way across the bifurcation diagram. When M is (a bit smaller

than) 800, one is in Regime I where it is optimal to more or less let the regime run its course.

When M is a bit larger than 800, it is optimal to have two distinct lockdowns, both lasting well

less than a year. And by the time M reaches 860, it is optimal to have one sustained lockdown

that involves a very substantial loss of employment, but also a very substantial reduction in

infection and death.

A third observation is simply that strategies involving two lockdowns can be optimal. A

number of jurisdictions that locked down then opened up are now having to reinstitute restric-

tions. For example, Israel was once in the top five highest in the world for new infections per

capita. It drove that all the way down to below 0.2 per 100,000 per day and so appeared to

have largely eliminated infections, but has recently bounced back up into the top 5 as of this

writing, with about 19 new confirmed infections per 100,000 per day. Superficially, that appears

to be a policy disaster and, indeed, Israel’s resurgence of infections may indicate policy failure

in this case; certainly Prime Minister Netanyahu is facing strident protests for his leadership on

this issue. But the model shows that the mere presence of a resurgence necessitating a second
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lockdown is not in and of itself proof of error. A double lockdown can be an optimal strategy

and part of an optimal plan from the outset.

A fourth observation concerns the Skiba points. Skiba points separate distinct optimal

solution trajectories that spread out from a common initial condition in different directions. In

a one-state problem, there would generally be one strategy that moves left and another that

moves right from that common initial condition. Yet when plotted in state space, particularly

with respect to γ, which stands for the rate of employment still permitted despite the lockdown,

the alternative trajectories here do not appear to be so sharply resolved. With respect to several

of the triple Skiba points observed here, all three optimal strategies start with a lockdown that

drives down γ, albeit with varying intensities. And in Fig. 8, in particular, the three strategies

seem all to be in the interior and on a continuum. Implicitly, if two trajectories are both optimal,

then all strategies that are “in between” must be worse. So for every point in time t, we have

the following odd situation in Fig. 8. A moderate amount of unemployment is ideal. A little

more is bad. Still more brings one back to ideal. Yet more is bad again. But still more is back

to being ideal. Not only is social welfare not a monotonic function of unemployment, at every

time t, it is a triple-peaked function.

It is worth reflecting on how peculiar this is. Imagine there were seven identical countries

that all started at the same point, and we stopped them at some time t in the middle of the

epidemic and rank ordered them from “best” to “worst” in terms of amounts of unemployment.

Having done that, every second country on that rank-ordered list could be following an optimal

policy (meaning countries #2, #4, and #6 are optimal), while every other country is not on an

optimal trajectory, even though all started in exactly the same place.

In a way, this is not altogether surprising. We have a five-state problem, so projections

onto a single state can be deceiving, and the objective function is a highly nonlinear function of

the state variables. On the other hand, all of that nonlinearity and all of those state variables

arise naturally from a modeling of the problem; this is not an artificial model constructed just

to produce curious results. It is a model that makes a good faith effort to capture the most

important dynamics of the epidemic.

One contributor to this seemingly odd behavior is the inherent instability of an epidemic

whose total time from infection to end of infectiousness is as short as 14-days. It moves through

the population very quickly. That speed forces society into one of three broad postures: (1)

High employment but also high infections, (2) High unemployment in order to achieve very

low infections, and (3) Walking a delicate balance with multiple pulses of locking down that
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tolerates a moderate amount of infection but nonetheless keeps the epidemic’s reproductive rate

close to 1.0.

So the instability of the epidemic naturally produces a standard double-Skiba point, akin to

the “eradicate vs. accommodate” options seen in past models, see Tragler et al. (2001), Grass

et al. (2008). But it is possible, at least in this model, to delicately walk a fine line in between,

that avoids the Draconian measures required for eradication but also keeps the epidemic from

massively overwhelming hospital capacity. And the feasibility – and indeed potential optimality

– of such intermediate paths is what produces the triple Skiba points and the extreme non-

monotonicity of overall performance with respect to state variables, including even the level of

unemployment.

5. Conclusion

In sum, this relatively simple model produces a wide range of interesting behaviors that are

directly interpretable in terms of the policy context. There are, as always, abundant opportu-

nities for further work and refining the model. Among its limitations at present, we mention

a few that are salient. One is not modeling and including a control for testing and contact

tracing. It may be that once the number of infections has been driven down sufficiently low,

that aggressive testing and tracing could keep the number of infections from rebounding even if

everyone went back to work. That would open up a strategy that locks down very aggressively

and for a moderately long time, but does not need to sustain the lockdown all but up to the

point at which the vaccine becomes widely deployed. That approach would enjoy the best of

both worlds – but only after a moderately long period of economic pain.

Another realistic extension would be to recognize that there are different geographic regions

with at least some degree of movement between regions. When the two regions are out of synch

in terms of their epidemics, then that movement might trigger a resurgence in a low prevalence

region with migrants from a high prevalence region. That possibility has led to very widespread

border closures and restrictions on freedom of movement that would have been unimaginable

just twelve months ago, and the likes of which have not been seen since the fall of the Soviet

Union. It would be tremendously valuable to determine whether all those border closures are

truly needed.

Another class of important extensions would be to recognize heterogeneity along at least

two dimensions. One is age. Simply put, the infection fatality rate is much, much higher for

older people, and for those with certain preexisting medical conditions, than it is for young
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healthy people. So the tradeoff between economic loss and health harm involves a very large

distributional issue. It is working age people who become unemployed and (for the most part)

retirees who reap the majority of the health benefits of that loss of income.

There is also important heterogeneity across people in terms of how active they are socially

or, in the jargon of HIV/AIDS models, how many risky acts they pursue. Some people are

naturally socially isolated even before quarantine; others are social butterflies who frequent

indoor places with much circulation of people and little recirculation of the air. Because of

stochastic selectivity, high-rate transmitters will be disproportionately over-represented among

those who get infected and recover early. That means the effective amount of herd immunity will

be greater than is reflected in this model, which treats all people as homogenous with respect

to the number of risky contacts they have per unit time.

Of course many more such extensions would be possible. So we close with a final meta-

observation. When a central policy response to a pandemic involves shutting down the economy,

there are not only complex value tradeoffs, but also complex state dynamics that provide ample

fodder for interesting optimal control modeling. Since COVID-19 is unlikely to be the last

important pandemic in our lifetimes, that suggests there may be considerable value in analyzing

models now that are inspired by COVID-19, but which do not slavishly model it exactly. Instead,

there is value in abstracting somewhat to capture the general tensions and considerations that

such pandemics create. That way we can not only deal more effectively with the current crisis,

but also be better prepared to respond to the next one.

A. Properties of the function β(γ, z)

We choose β1 and β2 such that β1 +β2 = β̄, where β̄ is the contact rate of the “uncontrolled”

epidemics and 0 ≤ f ≤ 1, θ ≥ 1.

β(γ, z) := β1 + β2

(
γθ + f

κ2

κ1
z(1− γθ)

)
(A.1a)
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yields

β(1, z) = β1 + β2 = β̄ (A.1b)

β(γ, z) > β1 + γθβ2, for z > 0, 0 ≤ γ < 1 (A.1c)

β(γ, 0) = β1 + γθβ2 (A.1d)

β(γ, z) < β̄, γ < 1 (A.1e)

∂

∂γ
β(γ, z) = β2θγ

θ−1

(
1− f κ2

κ1
z

)
> 0, γ > 0 (A.1f)

∂

∂z
β(γ, z) = β2f

κ2

κ1
(1− γθ) > 0, γ < 1 (A.1g)

Inequalities Eqs. (A.1d) to (A.1g) follow from

z(t) <
κ1

κ2
, for all t with z(0) = 0.
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