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Abstract
Age is a crucial variable in social sciences and particularly in population dynamics.
In this paper, we link methods from formal demography and Operations Research
to investigate age-structured models to study the greying of academia. As scientific
productivity is usually found to decrease at advanced ages, therewas a vivid discussion
on the ageing among tenured professors and faculty staff of universities.We investigate
population ageing in academia from two perspectives. First, we propose a two-state
optimal controlmodel to explain the substantial variations of scientific production over
the life cycle of researchers. We identify conditions under which typical hump-shaped
age-specific patterns of scientific production turn out to be optimal for individual
researchers. The second part of the paper deals with the dynamics of the age structure
of scientific institutions. Similar to the university professors, many European learned
societies experienced a rapid ageing of their member population, where they face the
dilemma that keeping young, i.e. electing young entrants, has the drawback of reducing
the replacement rate of members. It turns out that electing a mix of young and old
members delivers the optimal solution of the problem, i.e. guaranteeing a young age
structure, while ensuring a high recruitment rate.

B Maria Winkler-Dworak
maria.winkler-dworak@oeaw.ac.at

Gustav Feichtinger
gustav.feichtinger@tuwien.ac.at

Dieter Grass
dieter.grass@tuwien.ac.at

1 ORCOS, Institute of Statistics and Mathematical Methods in Economics, Vienna University of
Technology, Wiedner Hauptstraße 8–10, 1040 Vienna, Austria

2 Wittgenstein Centre for Demography and Global Human Capital, Vienna Institute of Demography,
Austrian Academy of Sciences, Welthandelsplatz 2/Level 2, 1020 Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-019-00661-w&domain=pdf
http://orcid.org/0000-0001-8815-0203
http://orcid.org/0000-0003-1904-2393
http://orcid.org/0000-0001-9555-0432


372 G. Feichtinger et al.

Keywords Age-structured models · Optimal control · Greying of academia ·
Scientific production over the life cycle · Optimal recruitment of learned societies

1 Introduction

Age is one of the most important variables in social sciences, psychology, biology and
other disciplines. By definition, age is the synchronous lapse of calendar time and indi-
vidual time. Not only that most physical and cognitive abilities are crucially dependent
on age (e.g. Skirbekk 2004), age also underlies the organisation of family, education,
work and leisure. Hence, whether through physiological capabilities, explicit age-
related rules or informal expectations, age structures individual life courses (Settersten
2003). Accordingly, the rate of occurrence of any demographic event varies strongly
with age. Therefore, age—besides gender—is the core variable in demography. With
some exaggeration one could say that demography is the science dealing with ‘age’.

Age is not only important for individual life courses, but the composition by age is
also crucial for the future development of aggregated entities such as nation states or
the world population. Changes in a population’s age structure will have implications
on almost all sectors of a society. The United Nations write in their World Population
Ageing report that “[p]opulation ageing—the increasing share of older persons in the
population—is poised to become one of the most significant social transformations of
the twenty-first century, with implications for nearly all sectors of society, including
labour and financial markets, the demand for goods and services, such as housing,
transportation and social protection, as well as family structures and inter-generational
ties” (United Nations 2017, p. 1).

The discussion on the consequences of population ageing has also reached scien-
tific institutions and a growing concern on the greying of academia has been expressed
(Stroebe 2010). In fact, the age distribution of faculty has gradually shifted to the right
(Ashenfelter and Card 2002) and the percentage of faculty members and tenured pro-
fessors aged 70 and older in American universities has substantially increased over
the past decades (Bombardieri 2006). While the ageing among college and univer-
sity faculty was commonly attributed to the abolishment of mandatory retirement in
American universities, others also emphasised the role of a hiring boom in the 1960s
and early 1970s and a slowdown in faculty inflow afterwards (Ashenfelter and Card
2002).

As a consequence, measures to rejuvenate the university faculty population were
proposed in order to create opportunities for promising young academics. The dis-
cussion on the consequences of the ageing of academia was further spurred by the
concern that older researchers are less likely to produce innovative research (Becker
2008). However, many of the arguments were rather of anecdotic nature, such as the
early age of path-breaking discoveries by later Nobel laureates.1

1 Albert Einstein published his famous articles on the theory of relativity at the age of 26 and Werner
Heisenberg derived his matrix mechanics at age 23 and the uncertainty principle at age 25, though as Jones
and Weinberg (2011) report, these very early ages of great achievements are special to physics at the time
and coincide with the development of quantum mechanics in the early 20th century.
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Several studies have investigated the relationship between scientific productivity
and age (for a review see e.g. Stroebe 2010). The most usual pattern found is an initial
increase with a peak around 40 to 45 years followed by a gradual decrease (Stroebe
2016). However, more recent studies showed that the usual hump-shaped pattern does
not always occur. For instance, Way et al. (2017) analysed the publication history of
tenure-track facultymembers in computer science departments of the U.S. and Canada
and they found that only one-fifth of the studied faculty exhibited the usual pattern of
an “initial rise and gradual decline” publication trajectory, while the remaining faculty
showed a large variety of other publication patterns over their working life course.

Nonetheless, many U.S. universities were concerned by a potential decreasing sci-
entific productivity due to the ageing of their faculty and introduced early retirement
incentive programmes. These programmes were partly motivated by the aim to cre-
ate opportunities for promising young scholars once the older faculty staff retires
(Stroebe 2010; Kim 2003). However, do such retirement programmes indeed consti-
tute an appropriate measure to rejuvenate the faculty staff? Parallel experiences from
European learned societies may provide informative insights into this question.

Around the turn of the millennium, several European learned societies got con-
cerned about the gradually increasing ageing of their membership population, which
has also been documented in a series of studies on European academies of sciences.2

Although membership is usually lifelong, the bye-laws of many learned societies state
a maximum size of members (under a certain statutory age), which allows elections
only when places fall vacant (i.e. when members surpass that statutory age threshold).
The bye-laws thus specify a similar mechanism as the early retirement programmes in
the universities—allowing recruitment of young scholarswhen oldermembers retire or
surpass the age threshold, while holding the total population size fixed. These restric-
tions, though, create a dilemma for the learned societies in the context of population
ageing, as Leridon (2004, p. 109) described it: “To counteract the spontaneous trends
in ag[e]ing in the institution, [...] new members would have to be elected at increas-
ingly younger ages year after year, which would have the drawback of reducing the
rate of population replacement.” However, the latter strategy is in conflict with the
academies’ desire of being representative for all research fields and thus being able to
elect a sufficient number of young scientists from emerging research disciplines.

The dilemma of the learned societies illustrates the basic principles of constant-
sized age-structured populations. In formal demography, it is stable population theory
(including stationary populations as special case) where the basic principles of the
study of age-structured populations have been formalised.3 In particular, mathematical

2 The studies examined the historic, present and future demographic developments of these learned societies
with a special focus on the statutory restrictions governing size and election procedures of the academies
and their impact on the age structure of the member population. See for the Académie des Sciences (Institut
de France) (Leridon 2004), the Royal Danish Academy of Sciences and Letters (Matthiessen 1998), the
Royal Netherlands Academy of Arts and Sciences (van de Kaa and de Roo 2008), the National Academy
of Sciences [of the U.S.] (Cohen 2003), the Austrian Academy of Sciences (Feichtinger et al. 2007) and
in an international comparison, the British Royal Society, the Russian Academy of Sciences, the Berlin-
Brandenburg Academy of Sciences and Humanities, and the Norwegian Academy of Sciences and Letters
(Riosmena et al. 2012).
3 Alfred J. Lotka, born in 1880 in Lemberg (at the time in Austria, now Lviv in Ukraine), can be considered
as founder of formal demography, in particular of the stable population theory (Lotka 1907, 1922, 1939;
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interrelationships between fertility and mortality rates with population age structure
have been derived within the stable population theory. The most crucial result of the
theory is strong ergodicity: it roughly says that in the long run, a population ‘forgets’
its past age structure if it is subject to constant age-dependent mortality and fertility
rates over time. That means, stable population theory states what age distribution is
implied by a given set of fixed age-specific birth and death rates (see e.g. Preston et al.
2000; Feichtinger 1979; Keyfitz 1985).

Formal demography and Operations Research—two seemingly unrelated fields—
share several methodological links. Conceptionally, a population can be considered
as a renewable aggregate of individuals, the investigation of which is part of renewal
theory that also plays a key role in Operations Research. The methodological analo-
gies become most apparent in parallel formulas in both fields (see e.g. the stationary
population identity and Little’s formula below).

The purpose of this paper is to show how methods from formal demography
and Operations Research—or more specifically, intertemporal optimisation—can be
linked to study the greying of academia.4 We investigate the topic from two per-
spectives. The first is located at the individual level and deals with the age pattern
of scientific productivity. In particular, we present an optimal control model, which
is able to explain the hump-shaped pattern of scientific production over age and we
identify conditions at which other patterns may occur.

Secondly, we address the ageing of academia at a more aggregate level from a
population dynamics perspective. In particular, we focus on the impact of the mea-
sures taken to counteract the ageing of the faculty staff, namely the early retirement
programmes, on the age structure of the faculty. As mentioned above, the mechanisms
introduced by early retirement programmes link recruitment and exits from faculty
while holding total faculty size constant. Hence, in more general terms, we inves-
tigate the increasing ageing in age-structured populations with fixed size. In doing
so, we draw on related research on European learned societies, more specifically on
the Austrian Academy of Sciences (in German “Österreichische Akademie der Wis-
senschaften, OEAW”). We examine the population dynamics as well as the impact of
various kinds of recruitment strategies and characteristics of the exit rates of OEAW
members on their age structure. In a next step, we present an optimal control model
designed to rejuvenate the age structure under the restriction of keeping the fixed size
of the organisation. Finally, we discuss how the approach can be extended to firms
and other hierarchical organisations as well. Note that models of this kind belong to
manpower (personnel) planning, another important field of Operations Research.

see also Keyfitz 1968), the core concept of population dynamics. Although it was formalised by Lotka in
the early 20th century, some features of the stable population theory had been known already much earlier.
In fact, it was Nathan Keyfitz, the second most influential formal demographer of the past century, who
discovered that already Leonhard Euler, the most productive mathematician of the 18th century, had been
aware of the concept of asymptotic stable populations (Euler 1760).
4 In contrast to demography, age-specific optimisation methods play an important role in economics, e.g.
in capital vintage models (see e.g. Feichtinger et al. 2006a; Feichtinger and Veliov 2007).
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Fig. 1 Distribution of individuals’ productivity trajectory parameters. Diverse trends in the individual
productivity fall into four quadrants based on their slopes. Plots show example publication trajectories to
illustrate general characteristics of each quadrant. The shaded triangular region (bottom center) corresponds
to the conventional narrative of early increase followed by gradual decline (Source: Way et al. 2017). The
permission to reproduce this figure by the first author of the cited paper is gratefully acknowledged

2 Optimal scientific production over the life cycle

Scientific creativity usually tends to vary with age. Typical life cycle patterns are
not only observed in academia, but also in artistic production (Simonton 2014). Not
strikingly, there are many studies of career paths of creative people since the famous
statistician Quetelet (1835) started researching this question almost 200 years ago.

The overwhelming majority of studies on the scientific career paths of creative peo-
ple illustrate a hump-shaped pattern with age (Stroebe 2010, 2016; Simonton 2014).
However, most of these studies were conducted in the 1960s and 1970s. Recently,Way
et al. (2017) identified several other distributions of research productivity over the life
cycle. Using a large dataset originating in computer science departments of the U.S.
and Canada, they showed that an age-specific hump-shaped productions trajectory
does not always occur. Figure 1 illustrates four productivity patterns found by Way
et al. (2017). In what follows, we try to provide a theoretical underpinning of the four
different research patterns detected by Way et al. (2017).

Previous models to explain the age pattern of scientific productivity were mainly
based on the human capital framework (see e.g. Diamond 1984; Levin and Stephan
1991; Stephan 1996), where the human capital stands for the professional prestige,
which is reflected by the number of citations. The prestige creates income and it can
be maintained by publishing papers, otherwise it depreciates. The main assumption in
Diamond (1984) is that the individual maximises lifetime income. The latter decreases
as individuals approach retirement and thus they invest less time in publishing papers
and building up prestige.

However, the model of Diamond (1984) was criticised that it overestimates the
importance ofmonetary income asmotivation for scientists. Indeed, amain component
in the reward structure of science is the importance of priority of discovery (Merton
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1957, 1968). Recognition for priority includes, besides eponymy, prizes—of these the
Nobel prize is best known—and election into prestigious institutions such as learned
societies (Stephan 1996; Stroebe 2010). Publications can be regarded as a smaller
form of recognition but are nonetheless a required step to establish priority. While
prestigious awards and memberships are perceived by most beyond their reach and
theyusually occur, if at all, at an advanced career age, it is the rewardof publishingone’s
work which is attainable for all scientists at any time in the career (Stephan 1996). In
addition, scientists derive satisfaction by the enjoyment of writing papers, conducting
research, gaining new knowledge, and solving a puzzle (Levin and Stephan 1991;
Stephan 1996; Stroebe 2010). Thus, later life cycle models (e.g. Levin and Stephan
1991) maximise a utility function that also includes research output.

Our model extends the previous literature by differentiating between human capital
as the stock of knowledge and the reputation of a scientist and by modelling their
evolution over the life cycle separately. The scientist can invest both in knowledge
accumulation but also in reputation by networking. Both knowledge and reputation
are inputs to the research output, which the scientist aims tomaximise. Another distinct
feature of our model is that the scientist values his reputation at the end of his career.

2.1 Themodel

The following deterministic continuous time-optimal control model has two state
variables. The first is the stock of knowledge (human capital), K (t) an individual
has accumulated at age t , while the second is the reputation R(t) of a scientist. The
output of a scientist is publishing papers, P . A necessary condition to do so is having
built up a stock of knowledge being strictly positive. Building up reputation can work
as a leverage with respect to productivity. To model this we introduce the scientific
production function

P = P(K , R) = K α(R + 1)β, (1)

with α and β denoting positive constants smaller than one. The functional form reflects
that one can be productive without working on reputation. Investing in knowledge at
a rate I (t) can be seen as a scientist’s major activity. Omitting the time arguments, the
dynamics of the human capital of an individual satisfies

K̇ (t) = g(K (t))I (t) − δK K (t), (2)

where g(K ) reflects that investment in knowledge is more fruitful if one has already
built up some knowledge, being an increasing function, and δK is the obsolescence
rate of the human capital.

Beside the major activity of knowledge production, the scientist is also embedded
in a network of colleagues. Thus, there is a mutual influence in course of their com-
mon work. The second state variable we include in our model is the reputation R(t),
measuring a scientist’s position within the scientific community. Denoting by N (t) the
second control variable, i.e. networking as collaboration with colleagues, conference
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presentations etc., the reputation develops according to

Ṙ(t) = h(K (t))N (t) − δR R(t), (3)

where h(K ) measures the efficiency of networking depending on the personal human
capital and δR is the obsolence rate of the reputation. Note the asymmetry of the right-
hand sides of (2) and (3), as both g(·) and h(·) depend on K . Investing in knowledge is
more effective if the researcher is already knowledgeable. Therefore g(K ) is increasing
in K . In addition, investing in networking pays off if the scientist is knowledgeable.
Then the scientist makes a good impression when presenting his research, talking to
other researchers, writing emails and so on. Therefore, h(K ) is increasing in K .

It makes sense to assume both g(K ) and h(K ) as being S-shaped, i.e. as convex-
concave (the latter referring to saturation effects). In particular, we use the following
S-shaped functions

g(K ) := a(l1 + K θ )

1 + K θ
, (4)

h(K ) := b(l2 + K σ )

1 + K σ
, (5)

where θ , σ , a, b, l1, and l2 are positive parameters.
The goal of the scientist is to maximise the, with rate r discounted, stream of his

or her scientific publication, net of the costs for investing both in knowledge and
networking

max
I (·),N (·)

∫ T

0
e−r t (c0P (K (t), R(t)) − C1(I (t)) − C2(N (t))) dt + e−rT (κR(T ))

(6)
s.t. to the system dynamics (2) and (3), the initial conditions

K (0) = K0 ≥ 0, R(0) = R0 = 0 (7)

and
I (t) ≥ 0, N (t) ≥ 0. (8)

An important feature of our model is the fact that doing research and networking
usually create utility for a scientist as long as it is done ’to a reasonable extent’. Only
if I and N exceed certain thresholds are these activities connected with disutilities,
i.e. they must be seen as costly.

For simplicity we assume linear-quadratic functions Ci (·) (i = 1, 2)

C1(I ) := d1 I
2 − c1 I and C2(N ) := d2N

2 − c2N , (9)

with c1, c2, d1 and d2 all positive.5

5 For simplicity, we do not consider a time constraint in this model. For optimal time allocation models
between research and teaching see e.g. El Ouardighi et al. (2013).
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Table 1 The specified parameter values for the (Skiba) base case

r a b l1 l2 θ σ δK δR α β c0 c1 c2 d1 d2 κ

0.04 0.5 0.5 0 0 1 1 0.2 0.1 0.8 0.5 1 1 1 1 1 10

Note that the reputation R(t) influences current utility only indirectly via the
research output, P(K (t), R(t)), but it is the reputation at the end of their career which
matters for scientists. The latter is reflected by the salvage value in (6) and the associ-
ated parameter κ > 0. However, the case of κ = 0 can be interpreted with the proverb
shrouds have no pockets. Usually, the phrase refers to material goods, but in this case,
there is of course the aspect of intellectual wealth.

2.2 Results

The application of Pontryagin’smaximumprinciple (see e.g.Grass et al. 2008) delivers
some interesting insights into the optimal investment patterns resulting in various
patterns of scientific output. In particular, it can be established that the four patterns
identified by Way et al. (2017) can be generated as optimal paths for appropriate
parameter values. If not otherwise noted, we set the parameter values according to
Table 1.

We show that typical and fading patterns usually arise in scenarios where scientists
themselves do not assign a too high positive value to being regarded as knowledgeable
or having a high reputation at the end of their career (see Fig. 1, pattern Q4 and Q3,
respectively). In such a case the scientist will opt for a typical pattern if the disutility
for hard working is not too high. Here it could help that scientists during their studies
obtain a lot of knowledge. This implies that when scientists start their career already
being quite knowledgeable, any investments in knowledge and networking become
more efficient.

If a scientist does assign a substantial positive value to being regarded as knowl-
edgeable with a high reputation at the end of his or her career, the patterns slump and
busy come into the picture (see Fig. 1, pattern Q2 and Q1, respectively). We show
that a slump pattern, where the scientist is not very productive halfway through her
career, can be avoided by high quality education. Again, starting the career with a lot
of knowledge makes further investments in knowledge and networking more efficient.
This raises productivity along the lifetime, resulting in the busy pattern. For details
see Feichtinger et al. (2018).

In the following, we discuss the possibility of multiple equilibria whose basins of
attraction are separated by Skiba thresholds. Starting at the threshold, the so-called
Skiba point, the scientist is indifferent what career to choose.

In Fig. 2 the bifurcation parameter is d1, which reflects the cost of investment in
knowledge. This means that d1 specifies how fast the marginal utility of the scientist
declines. For a large value of d1 it is therefore costly to increase knowledge and only
convergence to the small steady state takes place.

In the following we consider three typical examples for solutions lying in the dif-
ferent regions given by the bifurcation diagram Fig. 2. Each of these figures shows

123



The mathematics of ageing: linking demography and… 379

(a) (b)

Fig. 2 The solid line shows the bifurcation diagram in d1 for the equilibria of the canonical system. For
the parameter values between the dashed lines there exist Skiba solutions in finite time T = 50 with initial
condition R(0) = 0. Note that in an interval on the right side of the Skiba region only one equilibrium exists.
Thus, the existence of three equilibria is not necessary for the occurrence of a finite time Skiba solution

Fig. 3 This figure shows the
phase portrait for d1 = 1.4,
lying left to the region with
Skiba solutions. The single
manifold of the endpoints lies in
the upper right part of the state
space, starting at (1.78, 4.77)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

K

R

(a) State-space d1 = 1.4 (only finite solution)

the solution paths in the state space with initial values satisfying R(0) = 0 and
K (0) ∈ [0, 4]. Additionally the manifold of the endpoints, i.e.

{K (T ), R(T ) : K (0) > 0, R(0) = 0, T = 50} ,

is depicted as a grey curve in Figs. 3, 4, 5. This manifold can be seen as the counterpart
to a steady state of the infinite time horizon problem. Figure 3a shows optimal solution
paths for a relatively small value of d1. This means that it is easy for the scientist to
create knowledge and the positive value of κ = 10 indicates that the horizon date
reputation is positively valued. Therefore the solutions end up with large values of
reputation and values of knowledge above 1.5.
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0 0.5 1 1.5 2 2.5 3 3.5 4
0
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K̃ K K
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(a) State-space d1 = 3 (only finite solution)

10−4 10−3 10−2 10−1 100
10−3

10−2

10−1

100

K̃

R

(b) State-space d1 = 3 (only finite solution, log-
scale)

Fig. 4 For the second scenario with d1 = 3 there is a Skiba solution with K̃ = 0.475. The dashed lines
represent the two different solution paths starting in the Skiba point at R = 0. Left to the Skiba point K̃ the
solution paths end at a manifold very near the origin and is therefore hardly visibly in panel (a). Therefore
the K axis is logarithmically scaled in panel (b). This reveals that the manifold of the endpoints is separated
into two distinct arcs, which is the counterpart to two different equilibria for a usual Skiba solution

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

K

R

(a) State-space d1 = 3.2 (only finite solution)

10−4 10−3 10−2 10−1 100
0

0.5

1

1.5

2

2.5

K

R

(a) State-space d1 = 3.2 (only finite solution, log-
scale)

Fig. 5 For the last scenario d1 = 3.1 is chosen to lie in region III of Fig. 2, and therefore yields again
unique solutions. In the logarithmically scaled figure panel (b) it becomes apparent that the two previously
disconnected manifolds of endpoints are now combined to a single continuous manifold

For the intermediate case (see Fig. 4) with values of d1 between 1.53 and 3.09
the solutions are history-dependent in the following sense: For small initial values of
knowledge, i.e. K (0) < K̃ = 0.4754, the solutions end up with very low reputation
and knowledge (see Fig. 4b). In such a case, it might not be advisable to start an
academic career. On the other hand, for larger values than K̃ the researcher starts a
scientific career and ends up with a high value of reputation and knowledge.

Finally for values of d1 > 3.09 the spectrum of research careers is continuous
(cf. Fig. 5a, b). This means that with increasing initial knowledge the attractivity to
start a scientific career increases continuously. Thus, other than in the previous Skiba
case, researchers with some intermediate knowledge at the beginning also end up with
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(a) d1 = 1.4

0 5 10 15 20 25 30 35 40 45
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

t

(b) d1 = 3
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(c) d1 = 3.2
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(d) d1 = 2.75

Fig. 6 Panels a–c show time paths of the production function P(K , R) for the three cases, starting at the
Skiba state K̃ = 0.475. Panel d depicts a second example from the Skiba region II, with d1 = 2.75

average values of knowledge and reputation. There is no abrupt change in knowledge
and reputation at the end like it was at K̃ . This is due to the relatively high costs of
knowledge increase.

In Fig. 6 the time paths of productivity for the three previously explained scenarios
are plotted. To make the results comparable, the initial states are chosen equally,
namely R(0) = 0 and K (0) = K̃ , the Skiba value from d1 = 3. In the first case,
for the low value of d1 = 1.4 productivity is steadily increasing until it reaches its
maximum P(R, K ) = 4.84 at t = 44. Finally it drops down to a rather high value of
P(R, K ) = 4 (cf. Fig. 6a).

For comparable high costs d1 = 3.2 the situation is quite different. The low maxi-
mum of productivity P(R, K ) = 0.24 is already reached at t = 5.27 and drops down
to the vanishing value of P(R, K ) = 0.004 (cf. Fig. 6c).

For the Skiba case we find both patterns qualitatively repeated: a) the productive
researcher, reaches his or her maximum at t = 38.75 and finally only loses around
30% of its productivity, whereas b) the less productive researcher reaches maximum
productivity already at t = 7.6 and loses 94%of his or her highest productivity (cf. Fig.
6b).

The absolute value of the productive researcher in the Skiba cases is low compared
to the researcher in Scenario I. This is due to the fact that we have chosen a high value
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d1 = 3 for the Skiba case, a choice we made for pragmatic reasons, since in this way
the manifold of low end points in Fig. 4 was better visible.

Considering a lower value of d1 = 2.75 in region II we find a qualitatively different
solution pattern for less productive researchers. In that case we find the so-called
fading career, where researchers gradually reduce their research activities over time
(cf. Fig. 6d). For an explanation of the different behaviour for both Skiba cases, we
have to note that for lower d1 the Skiba point K̄ = 0.107 is smaller than the Skiba
point for d1 = 3 with K̃ = 0.475. Therefore, the starting situation for both cases
differs substantially.

Summing up, in this section we tried to provide a theoretical underpinning of
the four different research patterns detected by Way et al. (2017). In particular, we
showed that the age-specific distribution Q4 of scientificwork occurs if two conditions
are fulfilled. A sufficiently high education level at the beginning of scientists’ careers
usually leads to an increase of sufficient productivity. If they do not bother much about
their reputation at the end of their career, the number of publications then gradually
decreases until retirement.

3 The dilemma of learned societies

The following section uses methods from formal demography and Operations
Research in conjunction to study the greying of academia at amore aggregate level.We
use cohort component projection to illustrate the impact of the age at recruitment on
the age structure of scientific institutions, where we distinguish between effects from
past recruitment and long-term effects of various kinds of potential future recruitment
policies. Next, we formalise the relationship between age at recruitment and retirement
within the framework of stable (stationary) population theory and use intertemporal
optimisation techniques to derive the optimal trade-off between recruitment of young
academics and the mean age of the scientific institution. For this purpose, we draw on
earlier work conducted for the Austrian Academy of Sciences (OEAW),6 which was
facing a significant ageing of its member population.7 In the following paragraphs,
we present, discuss and update selected results from related previous research arti-
cles (Dawid et al. 2009; Feichtinger and Veliov 2007; Feichtinger et al. 2007, 2012;
Riosmena et al. 2012; Winkler-Dworak 2008).

6 In 2005, the presidency of the OEAW got concerned on the ageing membership and they asked the first
author of the present paper on possible measures to be taken to counter the increasing ageing of its member
population given the statutory conditions. In a subsequent research project funded by the Austrian Science
Fund (FWF, “Age Structured Populations with Fixed Size”, contract no. P20408-G14), we thoroughly
Footnote 6 continued
analysed the age dynamics of the Austrian Academy of Sciences, projected the future age distribution of
the Academy members based on several alternative scenarios, and developed an age-structured optimal
control model to determine the optimal trade-off between the rate of elections and the mean age of the
academicians (Dawid et al. 2009; Feichtinger and Veliov 2007; Feichtinger et al. 2007, 2012; Riosmena
et al. 2012).
7 In Feichtinger et al. (2007) the population of the OEAW has been studied in detail. Appendix A briefly
depicts the structure and data from the OEAW and shows the accelerated ageing of the member population.
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Fig. 7 Histogram of age distribution at election of members of the Austrian Academy of Sciences (both
sections combined, 2000–2015) and density plots of alternative projection scenarios

In principle, the population dynamics of the Academy can be studied using the
same methods as those employed when studying any other population. However, the
Academy’s vital events differ from those of a conventional population. There, the
current generation of individuals will spawn the following one, and current academy
memberswill also elect the next generationof academicians, but different from fertility,
where the intake occurs in the lowest age groups, an Academy’s intake may take place
in all age groups, similar to immigration (see e.g. Espenshade et al. 1982; Feichtinger
and Steinmann 1992). In addition, the total number of members is limited by the bye-
laws. Hence, the number of elections is strictly determined by the number of exits
from the Academy, i.e. mortality,8 out-migration or leaving the Academy for other
reasons, and retirement (i.e. surpassing the statutory age threshold of 70 years).

3.1 Projecting the impact of the age at election of Academymembers

The population dynamics in hierarchical bodies in which the total membership size
remains constant is determined by the rate of intake, the age distribution at entry into
a given status, the number of exits (deaths or dismissals), the statutory retirement
age and the population size. The intake itself is solely determined by the number of
deaths and retirements. The only scope for modifying the age structure lies in the
age distribution of entries, e.g. at election. Figure 7 shows the histogram of the age
distribution of election into the OEAW for the years 2000–2015.

In the period 2000–2015, ages at election ranged over nearly 30 years of age, where
the youngest member was elected at age 37 years, while it was age 65 years for the
oldest member at election. The mean age of the age distribution at election was around
53.6 years with a standard deviation of 6.6 years. A Gaussian kernel estimate of the
density function (see e.g. Hartung et al. 2002) yields a bimodal curve with the first

8 The OEAW members have shown to exhibit a substantially lower mortality than the general Austrian
population and Austrian tertiary-educated population. For more details see Appendix A.
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mode around age 50 and the second mode around age 58 years (dark blue curve in
Fig. 7). In principle, a bimodal function at election may arise because of a conjunction
of two motives: on the one hand, electing young members may signify rewarding
excellence, while on the other, electing older ones means a recognition of lifetime
achievement.9

In order to study the impact of the age distribution at election on the structure of
the Academy population, we use demographic projection methods. First, we project
the number of members per section for each single-year age group alive in the next
year. The survivorship rates are based on forecasted age-specific life table death rates
from Statistik Austria (2015), which were adjusted for the lower mortality of the
academicians (see Appendix A; for more details on the adjustment see Feichtinger
et al. 2007). The difference between the number of survivors and the maximum size
of each section yields the number of vacant places in each section. We assume that
vacant seats are immediately filled in the following year by electing new Academy
members.

For the age distribution at election of new members, we consider two alternative
scenarios. The first scenario represents the continuation of the status quo (dark blue
curve in Fig. 7) and is captured by the estimated density of the observed age distribution
at election from the years 2000–2015 for both sections combined. Second, we model
the twomotives of rewarding excellence vs lifetime recognition in a strongly polarised
pattern by assuming a bimodal age distribution (green curve in Fig. 7), wheremembers
are uniformly elected only at very young ages (i.e. 37–47 years) and at older ages (i.e.
59–69 years). Note that such an election strategy is quite the opposite of current
practice, as the vast majority of the members were elected at medium ages between
2000–2015 (cf. Fig. 7). Nonetheless, the mean ages of both election scenarios are very
close to each other, whereas the standard deviation of the bimodal scenario is almost
the double of the status quo one.

Figure 8 (top panel) depicts the projected number of vacancies from 2015–2075
for the two alternative scenarios and both sections combined.10 Over the transitionary
period ranging into the 2040s, the number of vacancies sharply fluctuates due to
the initial age structure of members in 2015 and then stabilises for the status quo
scenario around five elections per year. In contrast, the number of vacancies under the
bimodal scenario seems to be characterised by longer-period waves in the later part
of the projection horizon. Evidently, the number of vacancies in the first five years is
almost solely determined by the age structure of members in 2015 and only afterwards
small differences become visible between the alternative scenarios. In particular, the
higher number of members elected close to the statutory age limit under the bimodal
scenario results in a slightly higher projected number of vacancies than for the status
quo scenario in the 2020s, while it is the opposite from mid-2030s onwards. The
trough in the number of vacancies for the bimodal scenario in the early 2040s results
from the fact that medium-aged scientists are not considered for election under the
latter scenario. Only when the first very young elected members reach the statutory

9 We are grateful to Warren Sanderson for this interpretation.
10 TheKolmogorov–Smirnov test did not yield any statistically significant differences in the age distribution
at election between the sections (p = 0.9).
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Fig. 8 Projected number of vacancies/elections (top panel) and mean age of members (bottom panel) for
the Austrian Academy of Sciences, 2015–2075

age threshold does the number of vacancies start rising again, reaching the projected
number of vacancies for the status quo scenario in the early 2060s. As we assumed
that vacancies are immediately filled, the longer tenure associated with the very young
new members implies a decrease in the projected number of vacancies towards the
end of the projection horizon. The latter result clearly demonstrates the trade-off of
the academies between a young age structure of the members and high number of
vacancies.

The bottom panel of Fig. 8 finally plots the projected mean age of members for
the two scenarios, again for both sections combined (solid lines). In addition, the
dashed lines represent the mean age of members only for those aged less than the
statutory age threshold. Apart from around 2030 to 2040, the projected mean age of
all members continuously increases over the projection period and eventually amounts
to about 73.7 years for the status quo scenario. In contrast, the projected mean age
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under the bimodal scenario fluctuates around 71 years. Considering only members
aged less than the statutory age threshold, the differences between the scenarios are
more pronounced. While the projected mean age for the status quo stabilises around
60.6 years, the corresponding value for the bimodal scenario fluctuates between 55.2
and 57.6 years.

Summing up, the bimodal scenario would yield a substantially lower mean age for
Academy members than a continuation of the current election practice, although both
election policies exhibit a similar mean age. Intuitively, a lower/higher mean age at
election should decrease/increase the mean age of the member population. However,
the results of the projections suggest that other characteristics such as the spread
of the age distribution at election substantially affect the mean age of the member
population as well. In the next sections, we will formalise the trade-off between a
young age structure and a high number of recruitment in constant-sized populations
and we derive a relationship between the mean age of members and the characteristics
of the age distribution of members. Later we will develop an age-structured optimal
control model to counteract the ageing of the Academy population while ensuring a
sufficient number of vacancies.

3.2 Formalising the dilemma of the academies

Intuitively, to counteract the trendof ageing, newmembers have to be elected at increas-
ingly young ages. As mentioned earlier, this would have the drawback of reducing the
inflow of new members. Thus, there is a fundamental dilemma in a constant-sized,
age-structured population, such as in an academy of sciences: the desire to maintain a
young age structure, while ensuring a high recruitment rate.

The following thought experiment by OEAW member Gerhart Bruckmann (cited
in Feichtinger et al. 2007) illustrates this trade-off: “If the Academy elects only 47.5
year old members, they stay—neglecting mortality and other possibilities for exit—
22.5 years in the membership population decisive for the maximum size. The OEAW
comprises 90 full members (45 in each section) below the statutory age, which yields
90:22.5 = 4 entrants each year. If, on the other hand, only 55 year old members
are elected, the same calculation results 90:15 = 6 entrants per year.” Carrying the
argument to extremes, if all members are elected at age 69, then therewill bemaximum
recruitment every year.

These simple calculations of a constant-sized population are based on a fundamental
identity in demography. Denoting by M the total size of the population, by R the
number of annual new entrants and by T the mean duration in the population, the
stationary state is characterised by the relation

M = RT . (10)

For conventional populations, the stationary state arises for a constant flowof births and
unchanging age-specific death rates over time. Then, R denotes the annual constant
number of births and the average duration T equals life expectancy at birth of the
stationary population. Hence, the identity connects the three most important indicators
of a stationary population, namely population size (stock), the births (entrants) and
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life expectancy (average duration).11 Note that in queuing theory, which is based on
birth-death processes, the identity (10) is known as Little’s formula (see Hillier and
Lieberman 1974, p. 384)

For the sake of simplicity, we consider in what follows only the Academy members
below the statutory age threshold as it is the total size of that group which is limited
by the bye-laws. They correspond to a fixed-sized organisation (i.e. Eq. 10 holds) with
a prescribed retirement age ω.

In this case, Dawid et al. (2009) derive an interesting relation between the mean
age of the academicians, the mean age of entrants and the variance of the recruitment
distribution:

Ā = 1

2

(
ω + m − σ

ω − m

)
, (11)

where Ā denotes the mean age of the fixed-sized organisation, m the mean age of
recruitment distribution, σ 2 its variance, and ω the statutory age.

On this formula, two issues are remarkable: (1) intuitively, the average age of
the stock Ā increases with the mean age of entrants, m. However, it can be shown
that the latter holds if and only if ω − m > σ , which is numerically fulfilled for
the age distributions at elections, which we considered. The latter case also implies
that the mean age of the population Ā and the mean duration in the system (i.e. the
average tenure) T = ω − m are inversely related. (2) The variance of the recruitment
distribution, σ 2, influences Ā negatively as suggested by the difference in the mean
age of members between the two projection scenarios above.

Note again the parallels between population dynamics and Operations Research:
The remarkable property that the arithmetic mean Ā depends only on the first two
moments of the recruitment distribution, m and σ 2 has an interesting analogue in
queueing theory. For the single-channel queueing system M/G/1, i.e. exponentially
distributed independent interarrival times and independent and identically distributed
general service time distributions, the so-called Pollaczek-Khinchin formula is valid
(Gross and Harris 1974). It says that the expected number of customers in the system
depend exclusively on the first two moments of the service time distribution. More
precisely, the length of an M/G/1 queue increases both with the mean duration of
service as well as its variance. Note that the latter dependency is just opposite to the
formula (11), where a concentrated entrance distribution yields the highest mean age.

As pointed out in the beginning of the subsection, academies are faced with two
conflicting goals: to obtain a young age structure (or, mathematically equivalent, a
high average duration), while ensuring a high recruitment rate. However, since the
product of the right-hand side of identity (10) is constant, it is not possible to increase
both R and T simultaneously. Hence, we define an objective function as a weighted
mean of R and T , which we aim to maximise, i.e.

11 The stationary model is applicable to any kind of population. An example widely used in textbooks and
lecture notes refers to student cohorts at university (see e.g. Preston et al. 2000): a graduate program enrols
R = 10 students per year and has a student body of M = 40; it can be assumed to have a mean duration
in graduate school of T = 4 years. If due to financial restrictions, the student body M must shrink, there
are essentially two possibilities to reach this target: either the admissions R have to decrease or the mean
length of the studies T must be reduced.
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Fig. 9 Illustration of maximising weighted sum of number of recruitments and mean length of tenure T
subject to trade-off between recruitment R and average tenure T (blue curve) with alternative optimal corner
solutions. The parallel grey lines represent indifference curves of equal objective value (color figure online)

max
R,T

(αR + βT ), (12)

where α and β are non-negative weights with α + β = 1.
The maximisation of the objective function (12) subject to the condition (10) is

depicted in Fig. 9. While the side condition (10) is represented by a hyperbola in
the state space, the parallel lines with slope α/β indicate the objective function with
equal values. The higher the intercept of the lines, the higher the value of the objective
function.

Figure 9 illustrates that corner solutions are optimal. If α dominates, then it is
optimal to elect a maximum number of entrants, who stay for only one year (point
B in Fig. 9, left panel), while for large values of the weight β all entrants stay in the
system for the maximal possible tenure (point A in Fig. 9, right panel). Note that the
tangent to the hyperbola (point C in Fig. 9) refers to the smallest feasible value of the
objective (12).

3.3 An optimal age-structured control model

Let M(a, t) denote the number of members of a learned society at time t and age a.
The dynamics of the age-structured population M(a, t) can be expressed in form of
theMcKendrick equation used in formal demography (McKendrick 1926; Keyfitz and
Keyfitz 1997).

Mt (t, a) + Ma(t, a) = −μ(a)M(t, a) + R(t)u(t, a), (13)

The population gains new members, not through birth or immigration, but by way of
elections (recruitment of new members) indicated by the term R(t)u(t, a).

R(t) = M(t, ω) +
∫ ω

0
μ(a)M(t, a) da, (14)
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with the side conditions

M(0, a) = M0(a), M(t, 0) = 0, (15)

where we used the following notation: μ(a) the time-invariant mortality rate of mem-
bers at age a, R(t) the intensity of recruitment at time t , u(t, ·) is the age density12
of recruitment at time t , M0(·) is the initial age-density of members, ω is a fixed exit
(retirement) age of members, Mt + Ma is the sum of the partial derivatives of M
(strictly speaking, this is the derivative of M in the direction (1,1) in the (t, a)-plane,
i.e. the change along a diagonal in the Lexis diagram).

The dynamics of the age structure of the learned society is given by the classical
McKendrick equation (13), while (14) indicates that the size of the organisation is
fixed and equals M̄ = ∫ ω

0 M0(a) da (this can be easily seen by integrating (13) over
a and utilizing the assumption for fixed size). Alternatively (14) can be understood as
follows: At any time t the recruitment R(t) is determined by the number of people
reaching the threshold age ω (first term on the r.h.s.) and the number of deaths, where
the latter is determined by the sum of age-specific deaths (second term on the r.h.s.).

The following constraints are posed for the recruitment density, u(t, ·), which is
considered as the control (decision) variable:

0 ≤ u(t, a) ≤ ū(a),

∫ ω

0
u(t, a) da = 1, (16)

where ū(a) is an upper bound for the control.
As mentioned above, we focus our analysis on two objectives:

– the recruitment intensity, R(t), which is to be maximised;
– the average age 1

M

∫ ω

0 aM(t, a) da, which is to be minimised.

Since two (conflicting) objectives are involved, we employ the Pareto optimisation
framework, considering the aggregated objective function

max
∫ ∞

0
e−r t

[
αR(t) − β

∫ ω

0
aM(t, a) da

]
dt, (17)

where r > 0 is a time-preference rate, α > 0 and β ≥ 0 are weights attributed to the
two objectives. The first objective is to maximise the recruitment intensity R(t), while
the second objective is to minimize the average age

∫ ω

0 aM(t, a) da of the members.
An important step to solve the optimal control problem Eqs. (13)–(17) is the fact

that under a certain regularity assumption for stationary mortality patterns μ(a), the
time-invariant optimal control problem shows a remarkable property, which is crucial
in population dynamics, namely strong ergodicity. This means that the age density
of the population tends to a steady state, which is independent of the initial density
(for a proof see Feichtinger and Veliov 2007). Moreover, it can be shown that the

12 To avoid misunderstanding we stress that M(t, ·) need not be a probability density, while u(t, ·) is
assumed to be a probability (normalised) density, in the sense given by the equality in (16) below.

123



390 G. Feichtinger et al.

optimal control (i.e. recruitment density) is time-invariant and can be characterised by
an ordinary differential equation.

In Dawid et al. (2009), it is shown that applying the Lagrange principle for the
stationary version of the control problem Eqs. (13)–(17) with the Lagrange multipliers
for

∫ ω

0 M0(a) da = M̄ and Eq. (16), we obtain a simple ordinary differential equation
for the adjoint variable ξ(a). This shadow price ξ(a) measures the marginal value of
a newly elected person at age a.

Assuming themortality rateμ(a) is a non-negative continuously differentiable con-
vex function and increasing with age (which is satisfied for adult persons), the optimal
recruitment policy, u(a), has the following structure: there are (possibly degenerate)
intervals [0, θ ] and [τ, ω] such that

u(a) =
{
ū(a), for a ∈ [0, θ ] ∪ [τ, ω]
u(a), for a ∈ (θ, τ ).

(18)

Thus, the optimal strategy is to balance recruitment between as many candidates
as possible of both young and old ages, but to recruit as few as possible who are
middle-aged. This principle of bimodal recruitment has been established and has been
proven within a somewhat different framework in Feichtinger and Veliov (2007) (also
for non-stationary societies). It says essentially: that if the average age matters for the
organization, then this has a polarising effect on the optimal recruitment policy: it shifts
recruitment away from candidates of middle ages, while causing the organisation to
concentrate its recruitment efforts partly on candidates of younger ages and partly on
candidates of older ages.

To summarise ourmain result: the intertemporal optimisation procedure reveals that
it is optimal to elect a mix of young and old entrants to guarantee a young Academy
while avoiding a freeze of recruitment altogether. It should be noted that the election
of medium-aged persons is the worst solution in terms of the proposed target (compare
also Fig. 10).

4 Conclusions

Population ageing has becomeone of themajor challenges in the 21st century, affecting
all sectors in society. The purpose of the paper is to show how mathematical methods
of demography can be used to investigate population ageing problems on the example
of the greying of academia.

Several universities and colleges got alarmed by the gradual ageing of their fac-
ulty staff over the past decades and these concerns were at least partly fueled by the
belief that science is a young man’s game. In fact, many studies on age and scientific
achievement asserted that productivity rapidly increases to a peak around age 40 to 45
years and then declines. However, Stroebe (2010) ascertained that age only accounted
for eight percent of the variance in productivity in these studies whereas Over (1982,
p. 519) found that “a person’s previous research productivity was a far better predictor
of subsequent research output than age was.”
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Fig. 10 Stationary shadow price ξ(a) of a person elected at age a, where a varies between 40 and 70, for
α = β = 0.5; The bold red lines denote the lower and upper boundary age intervals in which persons are
recruited (color figure online)

Indeed, productivity patterns vary substantially across individuals and over the life
cycle. Lotka (1926) stressed the highly skewed nature of scientific publications. In
physics, for instance, he observed that six per cent of publishing scientists produced
half of all papers. The inherent inequality of scientists has been formulated byGoodwin
and Sauer (1995) as follows: “While some authors publish papers like a well-oiled
machine, others produce at an erratic rate, and some others show early promise but
become deadwood after a certain time.”

Several factors have been suggested to contribute to the inequality in productivity
between scientists.While Symonds et al. (2006) refer to discrepancies betweenwomen
and men appearing early in their scientific careers, the ‘Matthew Effect’ in science
(Merton 1968) states that past success in research usually acts as leverage for future
productivity (‘the winner takes it all’).

Despite the observed utmost inequality of scientific productivity (compare e.g.
Stephan 1996), the predominant pattern was a rapid rise followed by a gradual decline
over the life course. Such hump-shaped life cycle patterns are not only observed in
academia, but also in other fields as in artistic production, consumption of illegal
drugs as well as other criminal behaviour. Demographers will note the similarity to
the age-specific first marriage and fertility curves.

In ‘TheWiley Handbook of Genius’, Simonton (2014) provides a rich collection of
various forms of creativity. While almost all models dealing with the dynamics of sci-
entific productivity are descriptive (for an interesting example see Rinaldi et al. 2000),
there are a few normative approaches using the human capital approach proposed by
Becker (1962), see Diamond (1984), Levin and Stephan (1991) and Stephan (1996)
for such examples.

The approach we have chosen in part 1 of the present paper may be seen in this line.
Assuming that the scientific output depends not only on knowledge, i.e. the human
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capital accumulated by a researcher but also on the network of colleagues he or she
is embedded in, we are able to explain various productivity patterns over the life
cycle identified empirically by Way et al. (2017). The present paper can be seen as a
theoretical foundation of these empirical facts.

In the intertemporal optimisation model we assumed that the scientists derive util-
ity from publishing papers and from performing research and networking. However,
working too hard causes disutility, i.e. too large investments in knowledge and net-
working are costly.

If scientists do not bother about their reputation at the end of their career, we show
that a sufficient education level is needed for scientists to develop a typical research
pattern where productivity increases in the beginning of their career while declining
towards retirement. If the education level is not sufficient, a fading research pattern
will result where productivity declines over time. On the other hand, when a scientist is
eager to have a good reputation at the end of his or her career, sufficient education will
result in increasing productivity over the career lifetime, preventing a midlife slump.

Let us briefly mention a few possible extensions of the proposed model. While
we did capture that the efficiency of research depends on the stock of knowledge
already accumulated, the functions g and h in (2) and (3), respectively, might also
depend on the quality of the colleagues in one’s network, i.e. on the reputation of the
scientists. Another extension would be that the efficiency of accumulating knowledge
and reputation explicitly depends on age, i.e. on time t . Thus, in a more realistic
scenario, the effects of ageing and/or learning should be included. Moreover, in our
model the scientist derives utility from reputation either indirectly by levering research
output or directly at the end of the career as the prestigious rewards usually occur in
an advanced career stage. A further extension may also incorporate reputation into the
instantaneous utility. Lastly, a potential further extension of our model might be the
introduction of leisure time, which adds utility but curtails time spent on investment
into knowledge and reputation.

Scientists reaching a notably high level of reputation in their career are likely to
be elected into an academy of sciences. The second part of the paper deals with the
ageing of such learned societies. Similar to the U.S. faculty staff, European learned
societies has experienced a pronounced ageing of its member population with marked
shifts in the age distribution towards older ages. Taking the example of the Austrian
Academy of Sciences (OEAW), we investigated the ageing of learned societies with
special focus on the statutory restrictions on size and election policies. In particular, the
statutory requirement of a maximum number of members below a certain statutory age
threshold defines that election into the Academy is only possible if places fall vacant.
As the inflow in such hierarchical organisations is predetermined by the current age
structure of members, it is the age distribution at election which will govern the future
age dynamics of the academies.

By employing demographic projection, we investigated how the age structure of
the Academy might evolve if the current election policy were to be continued and
contrasted the latter to alternative election scenarios. Our results highlighted that it is
not only the mean age at election but also other characteristics such as the spread of
the age distribution at election which affect the future age dynamics of the Academy.
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In a second step, we developed an age-structured optimal control model in order
to derive an optimal trade-off between the two conflicting goals of minimising the
average age of the learned society and maximising the number of recruitments per
year. Our results indicate that it is best to elect new members who are either young or
old, with as few middle-aged new entrants as possible. Although the current election
policy displays a somewhat bimodal pattern, the modes are still more concentrated
around the mean than in the derived optimal recruitment policy.

Which lessons can be learned from the analysis of the European academies of
sciences for the U.S. faculty? The purpose of the early retirement programmes was
to rejuvenate the faculty by opening positions for young academics once the older
faculty staff retires. Such a policy might be tempting in times of an ageing faculty,
particularly if many of the staff are close to retirement. If the then vacant positions will
be immediately filled with young promising academics, the mean age of the faculty
will drop substantially as many young scholars will replace their older colleagues.
However, the effect will only be temporary. As the newly appointed faculty will age
with time, the mean age will rise again. But—unless additional positions will be
created—the inflow of young scholars will be limited as long as the formerly young
faculty will reach retirement age, and thus not be able to counteract the rising mean
age of the established colleagues.

In the case of the European learned societies, a bimodal election policy turned out
to be optimal. For the universities, this would imply to divide open positions to recruit
on the one hand young academics and on the other hand scholars in an advanced career
stage.

However, the assumption of being strictly increasing between entry age and statu-
tory retirement age made on the mortality rate, or more general on the exit rate, is
essential for the validity of the bimodal recruitment principle. It is usually satisfied for
human populations at older adult ages and if membership is tenured. However, if the
exit rate happens to reach a maximum at some intermediate age due to resignations or
dismissals, then the bimodal recruitment pattern may not be optimal.

Another important factor contributing to the ageing of populations in general, but
also particularly for academic and scientific institutions, are the continuing declines
in mortality. Members of learned societies exhibit an outstanding longevity and are
vanguards in the development of life expectancy. Indeed, the academicians’ life
expectancy at age 50 of around twenty years ago has still not been reached by the
Austrian total population of today. It has been suggested that the exceptional longevity
is not only the result of selectivity into election to membership of academicians (for
an extensive discussion see Andreev et al. 2011; Winkler-Dworak and Kaden 2013).
According to the literature on the social gradient in mortality (e.g. Mackenbach et al.
1999), factors beneficial to health, such as a high educational level, upper professional
status associated with high income accumulate for academicians and also for faculty
staff.

However, Academy members may even enjoy a further longevity advantage com-
pared to average scientists by the social circumstances that the status confers (Link
et al. 2013): election into anAcademy not only indicates (and rewards) scientific excel-
lence and an outstanding contribution to science, but it certainly entails an enlargement
of one’s personal academic network, providing further research opportunities and
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thus facilitating to stay scientifically active beyond retirement. Continued demanding
mental activities to very high ages are clearly associated with less cognitive decline
(Schooler and Mulatu 2001; Kliegel et al. 2004) and higher longevity (Ghisletta et al.
2006; Gondo and Poon 2007). On the other hand, it are the improvements in longevity
which allows the faculty and academicians to stay active and productive into advanced
ages (Weingart and Winterhager 2011).

Despite the large gains in life expectancy, the role of the latter has largely been
ignored in the discussion on population ageing.However, a person aged 60 is nowadays
considered middle-aged, while a century ago a person of the same age would have
been considered elderly. In fact, a 60-year old Austrian male nowadays enjoys the
same period life expectancy as a 50-year old peer in 1970 (Statistik Austria 2019), and
the Austrian academicians have experienced even faster increases in life expectancy
than the Austrian general population since the 1950s (Winkler-Dworak 2008).

Recently, new demographic indicators have been derived in order to allow compar-
ison on population ageing over periods where life expectancy has varied considerably
(Sanderson and Scherbov 2007, 2008, 2010, 2015; Scherbov and Sanderson 2016).
These new indicators are prospective, i.e. they are based on the expected number
of remaining years of life rather than on chronological age. Using these prospective
age indicators, faster increases in life expectancy result in slower population ageing
(Sanderson and Scherbov 2015). If the 60s are the new 50s, one may wonder how
the assessment of population ageing of the academia would change if prospective
rather than chronological age indicators were to be used. For sure, the ageing of the
academicians would be decelerated, but might they even have become younger over
time?
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Appendix A: The rapid ageing of the Austrian Academy of Sciences

In Feichtinger et al. (2007) the population of the OEAW has been studied in detail,
using data from the biographic records of the members of the Austrian Academy of
Sciences (Hittmair and Hunger 1997; Österreichische Akademie der Wissenschaften
1996) from its foundation in 1847 to 2005. In December 2015, the presidency of the
Academy asked for a re-evaluation of the ageing of the Academy and kindly provided
updated records.

The Austrian Academy of Sciences was funded in 1847 as “Kaiserliche Akademie
der Wissenschaften in Wien” (Imperial Academy of Sciences in Vienna) under the
auspices of Emperor Ferdinand I. The Academy is structured around two sections:
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Fig. 11 Age distribution of full members of the Austrian Academy of Sciences for selected years. Note
The statutory maximum number of members per section was 33 below age 70 in 1975 and was raised to 45
below age 70 in 1991

the section for mathematics and natural sciences and the section for humanities and
social sciences. Membership distinguishes between honorary members, full members
and corresponding members. Full membership requires residence in Austria. If a full
member moves abroad, his or her status changes to that of a corresponding member
abroad. In a similar vein, corresponding membership distinguishes between residence
in Austria and abroad. For an illustrative example of multiple changes in membership
status see that of the famous physicist Ludwig Boltzmann in Feichtinger et al. (2006b).

The bye-laws of the OEAW specify that the Academy comprises (at most) 90 full
members, evenly divided between the two sections. Although membership is lifelong,
members aged 70 years and above are, while fully retaining their rights, not considered
for the maximum number of members. Finally, it is the full members who elect new
Academy members.

The accelerated ageing of the Austrian Academy of Sciences becomes visible in
Fig. 11, where the shares of members at older ages have been strongly rising across
years. These shifts in the age distribution to higher ages have been attributed to a
secular increasing trend in age at election but also to a remarkable longevity of the
academicians.

Indeed, academies of sciences age more rapidly than national populations as mem-
bers of learned societies have shown to exhibit a substantially lower mortality than
the corresponding national populations. This finding has been documented for vari-
ous European academies including the Austrian Academy of Sciences, see Andreev
et al. (2011) for the Royal Society and the Russian Academy of Sciences; Matthiessen
(1998) for the Royal Danish Academy of Sciences and Letters, van de Kaa and de Roo
(2008) for the Royal Netherlands Academy of Arts and Sciences, Leridon (2005) for
the French Academy of Sciences, and Winkler-Dworak and Kaden (2013) for the
Saxon Academy of Sciences and Humanities in Leipzig, and Winkler-Dworak (2008)
for the Austrian Academy of Sciences. The latter author investigated the mortality
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of the members of the Austrian Academy of Sciences since its foundation in 1847 to
2005 and contrasted it to life table death rates for the Austrian population. The analysis
concerned only members residing in Austria and, due to the historically low number
of women among Academy members, was limited only to male members. Winkler-
Dworak (2008) found that during the first hundred years of the Academy’s existence,
the members did not exhibit a significantly lower mortality than the general Austrian
population, but after World War II a clear survival advantage of the academicians
emerged (Winkler-Dworak 2008).

Figure 12 replicates the analysis presented in Winkler-Dworak (2008) for the life
expectancy at age 50 in the second half of the 20th century and complements it with
corresponding recent life expectancy values for the entire Austrian population and for
those with tertiary education. Over the second half of the past century, academicians
showed an increasingly higher life expectancy at age 50 than the Austrian male pop-
ulation, which is even more remarkable given the fact that also life expectancy for
the latter has been steeply increasing since the 1970s. At the turn of the past cen-
tury, Austrian academicians had a remaining life expectancy of about 35.1 years (95%
confidence interval [32.9, 37.3]), about seven years more than the Austrian male pop-
ulation at the time. The survival advantage even persists, though at a smaller extent of
about 3 years, compared to the population with tertiary education.

From a time perspective, the latest available value for the life expectancy at age
50 of the Austrian tertiary educated population in 2011 is still slightly lower than the
corresponding value for the Academy members a decade earlier. What is even more
striking is that only very recently average Austrian men have reached a life expectancy
value at age 50 similar to that which academicians already enjoyed around 1980.
Therefore, several authors concluded that academicians indeed represent a vanguard
group in the achievement of longevity (Andreev et al. 2011; Winkler-Dworak and
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Kaden 2013), and thus, academies age more rapidly than other population groups or
general populations. However, in addition to the exceptionally high and increasing
longevity, many European academies have experienced an upward secular trend in the
mean age at election contributing to the ageing of academies via the inflow (Riosmena
et al. 2012).
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