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ABSTRACT

Population projections are simply extrapolations of demo-
graphic patterns that have remained constant in the past into
the future. This observation by Keyfitz simultaneously pro-
vides a philosophical base for forecasting techniques and sets
off a search for demographic patterns. We begin with a dis-
cussion of the reasons for disaggregate projections, how the
reasons effect data requirements, and how models relieve the
strain. The next section discusses advances in demographic
models, especially extensions of the relational methods developed
by Brass. Finally, we discuss how time-series models, in con-
junction with model patterns, can be used to make forecasts
with appropriate confidence intervals. The paper motivates the
techniques through examples of Swedish life tables, and de-
scribes appropriate mathematical properties for projection
models.
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ADVANCES IN MATHEMATICAL MODELS FOR
POPULATION PROJECTIONS

INTRODUCTION

Population projections are simply extrapolations of demo-
graphic patterns that have remained constant in the past. This
simple observation of Nathan Keyfitz1 simultaneously provides a
philosophical base that moves forecasting from the realm of crys-
tal balls to that of modern computers, and sets off a scientific
search for demographic patterns to improve our ability to fore-

cast the future.

Forecasters must consider two sorts of patterns; age patterns
and temporal patterns. The first involves relationships between
simultaneous demographic variables, such as mortality rates for
various ages. In applying population dynamics to forecasting,
demographefs have learned to disaggregate data. But disaggrega-
tion requires detailed data that is often either not reliable, or
not available. The development of model schedules helps to fill
this gap. Model schedules abstract the pattern of, say, age-

specific fertility rates that is common to all populations.
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The second type of pattern concerns how variables change
over time. Forecasting would be simple if all key variables
changed according to a simple pattern. Part of the reason for
disaggregation is to find simple -trends at low levels of aggre-

gation that do not appear at higher levels.

Trends, too, are of two types. Most basically, forecasters
try to identify demographic variables that grow linearly, or per-
haps exponentially, and extrapolate these into the future., O©On
another level, forecasters must also consider the time pattern
of variances and covariances of demographic variables in order
to construct confidence intervals for pépulation forecasts.
Modern methods of time series analysis help identify both trends

and the covariance structure of observations in time.

This paper begins with a discussion of the reasons for dis-
aggregate models, and how they affect data needs. The next sec-
tion discusses some new tools for specifying model patterns in
mortality data, especially the relational methods pioneered by
William Brass, and their extensions. As an example of these
techniques, the paper makes and evaluates forecasts of Swedish
life tables: The following section discusses similar methods
for fertility forecasts, and then the paper considers the role of
time series analysis, which, in conjunction with model parameters,

leads to forecasts with appropriate confidence intervals.

Although producers of population projections frequently dis-
tinguish their work from predictions of forecasts, users do not

always understand the distinction.2 Throughout this paper, the

terms "forecast," "prediction," and "projection" are used inter-

changeably, and refer to estimates of future population variables
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extrapolated from the past. In addition, the paper only considers
purely demographic projections that do not rely on exogenous fore-

casts of economic or other variables.

THE ROLE OF DISAGGREGATION

Disaggregating demographic data leads to better projections,
but causes data problems. Let us examine the reasons for disaggre-
gations, and then see how relational models relieve some of the

associated problems.

Component methods allow forecasters to isolate or more easily
inte:prettimetrends. Perhaps the simplest application of this
idea is to independently consider birth, death, immigration, and
emigration rates. The key idea is that trends in fhese variables
may be simpler to forecast than the overall growth rate. For
instance, ideas about economic conditions and contraceptive be-
havior help us to explain trends in the birth rate and predict
what will happen in the future. A slightly more complex component
method makes a separate analysis and projéction for each ethnic,
racial, or sqcioeconomic group. The idea here is that simple but
different deﬁographic trends apply to each group, and that the

simplicity is hidden in the aggregate data.

Disaggregation also permits forecasters to apply the mathe-
matics of population dynamics to predict the effect of a popula-
tion's age structure. For instance, given the same set of age-
specific fertility rates, populations with a large proportion of
young women will, in the short run, have moré births than other,
older populations. Thus age-disaggregation, together with the

mathematics of population dynamics, leads to a more realistic
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model of demographic growth. In addition, age-specific models
also lead to simplicity in time patterns. For instance, fluctu-
atijons in the birth rate reflect both age structure and age-
specific fertility. The total fertility rate, on the other hand,
reflects only fertility behavior, and thus may have simpler and

more easily interpretable trends.

Finally, disaggregation is often important if projections
are to respond to policy questions. For instance, if we are to
study the effect of annimmigration policy or a family planning
program on the overall growth rate and the future age distribu-
tion, all of the above variables must be explicitly modeled. As
another example, forecasts of the school-age population obviously

must depend on age-specific projections.

The difficulty with disaggregation is that as more and more
realism is gained by making more detailed models, the forecaster
must estimate more data points. These data include both a de-
tailed description of base-year population figures and rates as
well as a large set of future demographic rates. The practical
difficulties of gathering and analyzing these data, as well as
small sample‘ﬁroblems that arise, soon overcome the benefits of

disaggregation.

Mathematical models of demographic rates offer é compromise
position. Such models represent an entire set of fertility, mor-
tality, or migration rates with a small number of parameters. To
the extent that these models adequately represent the true rates,
they reduce and simplify the work involved in estimating future

rates.
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The next sections describe some recent progress in the de-
velopment of models for demographic rates. We begin with mortality
because this area is most developed, and because the models we

describe can be adapted to other sets of demographic rates.

DEMOGRAPHIC MODELS FOR MORTALITY

Demographers have generally taken one of three approaches to
developing mortality models. The first—mathematical—approach
attempts to find a mathematical formula to adequately describe
some life table function, usually the force of mortality, Wy -

The relatively simple Makeham and Gompertz curves often work well
over age 30, but not at earlier ages. Recently, Pollard3 has
developed a six-parameter model for the complete age span, but

no simpler version seems adequate.

The second—empirical—approach attempts to statistically
develop a set of numerical life tables that cover the range of
observed tables.a For many populations these models are quite
successful, but the numerical form constrains the flexibility and

ease of application of these systems.

The third approach, Brass's "relational" model and its ex-
tensions, offers a compromise between the flexibility of the
mathematical approach and the empirical nature of the second ap-
proach. Because it is based on comparisons of similar life tables

it is especially appropriate for a forecasting model.

The relational system assumes the existence of a common
"standard" life table, ls(x). In forecasting problems, we have
a séries of previous tables, li(t), for time periods (or cohorts)

denoted by i. The system relates each of the li(t) to the
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standard by a simple function, hence it is called a "relational
system."5 Specifically, let

. 1
logit (p) = % log (Tgﬁ) .

The relationship of a given life table to the standard is
logit [li(t)] = a; + Bi logit [ls(t)] . (1)
Let us first con;ider under what conditions a group of simi-
lar life tables can be described by equation (1). We begin with
an unrealistic assumption that we will soon drop. Let T be a
random variable, the length of life. The life table values, li(x)

are
1; (£) = Prob (T > t)

the probability that a life exceeds t years. The unrealistic as-
sumption is that T has a logistic distribution with parameters
oy and Bi, that is, that li(t) has the form

2(a, + B.t)

e i i

1, (t) = .
i 2(a. + B.t)
1 + e 1 1

The logit function is the inverse of the logistic life table

function;

2(a, + B.t)
log e 1 1

N =

logit [li(t)]
= a, + Bit .

If all life tables represented logistic distributions, logits of
all life tables would be linear functions of t. Thus, if we de-

fine
2t

e
S 1 + e2t



then
logit [1s(tﬂ== £ .
Hence for all 1. (t),
logit [1i(t)] = a; + Bi gloglt [ls(t)]g .
Under the restrictive assumptions, a relational system represents

all life tables.

But we can substantially relax the assumptions and still
maintain the linear relationship. For any specific 1i(t) we can

find a transformation of the time axis, g(t), such that

z[ai + Big(t)]
e

1.(t) = .
i 2[a. + B.g(t)]
1+ e 1 lg

The transformation g(t) may be simple, for instance, taking
logarithms of the time scale, or it may be complex. If the same
g(t) transforms each of a set of distributions to a logistic shape,

we can represent each table as

logit [1i(t)] = a, + B, g(t) . (2)

If we set the standard as
g(t) = logit [ls(t)] .
equation (1) still holds.

The search for a transformation of the age axis to make each
~of the observed life tables logistic is equivalent to the search
for a standard life table for equation (1). If a series of empiri-
cal life tables exactly meet the above conditions, any one table
may serve as a standard distribution. Forecasting in this case

simply implies estimating the historical series of oy and Bi and
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projecting them into the future. A multidimensional problem has

been reduced to a much simpler two-dimensional problem.

The form of the relational model is especially convenient
for forecasting. First, if an apéropriate standard can be found,
all of the temporal variation is described by the trajectory of |
a. and Bi. Often these trajectories are close to straight lines
over reasonable periods of time, and can simply be extrapolated.
Second, a, and Bi have convenient interpretations: o is directly,
but not linearly, related to the life expectancy; B is inversely
related to the spread of the distribution around the life expec-
tancy. These interpretations allow forecasters to bring subjec-
tive knowledge of likely changes in mortality into the projection.
Or forecasters can set target values of a and B from similar, but
more advanced,’countries, and interpolate to these values. Third,
with a sufficiently long series of tables, the choice of a standard
life table, as we will see below, allows the forecaster to tune
the forecast to a specific country, rather than relying on mathe-
matical or "universal" patterns. Finally, the relational model
describes a closed system; any value of oy together with a posi-
tive value of Bi represents a permissible life table. Life table
values of li(t) must be, by definition, between one and zero.
But logit [li(t)] varies from plus to minus infinity. The form
of the relational system, where logit [li(t)] is a linear function
of logit [ls(t)], means that as long as 1s(t) is monotone and be-
tween one and zero, logit [ls(t)] and thus logit [li(t)] range
from plus to minus infinity, hence li(t) has the mathematical
form of a life table as well. This means tﬁat forecasters can
extrapolate a and B far from the bounds of historical experience,

and still have a projected li(t) of the proper form.




CHOOSING A STANDARD LIFE TABLE

An appropriate standard life table is essential for good
mortality forecasts, and recent work has focused on this choice.
Originally Brass developed two standards, one that reflects African
mortality patterns, and another based on European patterns. Re-
cently Clarin et al. have developed a set of five standard curves
for geographical regions.6 But in many forecasting situations,
the availability of a reasonably long series of historical life
tables can lead to a more appropriate choice of standard. The
simplest method is to pick one of the series as a standard. 1If
equation (1) were exact, the choice would not matter. But in re-
ality the model never holds exactly, and a better choicé can be
developed as a sort of average of the observed tables. In this
way, peculiarities of the individual tables can be eliminated.

To develop such a standard, consider the data as a rectangular

th h

array of values, li(tj), the i life table evaluated at the jt
age. The age points, tj’ are the same for each table. Let us

define

logit [1i(tj)]

s
n

ij

and

bxj

logit [ls(tj)] .
We calculate the yij from the original data, but at the start the
xj are unknown. The implication of the Brass model, equation (1),

is the linear model

yij = ai + Bi xj .

Since the xj as well as the a; and Bi are unknown, the model is

actually a simple case of factor analysis.
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An estimation algorithm for the standard and parameters can
consist of the interation of two steps.7 If the xj were known,
we would regress the values in the ith column of yij on the xj
values to estimate ay and Bi. If oy and Bi were known, we could

construct yij - oy for the jth row of yij’ and regress (through

the origin) these values on Bi for an estimate of xj.

Another approach to developing a standard is to increase the
number of parameters in the system. Zaba8 has extended Brass's
relational system by developiag, through a G:am—Chariier expan-
sion, two standard éatterns of deviations from the basic standard,

k(t) and s(t). She then defines a new standard

ln(t) = ls(t) + wi k(t) + Xi s(t)
Then the model is

logit [li(t)] =a, + Bi logit [1n(t)] .
This four-parameter model fits a wide range of life tables, but

the additional parameters are difficult to interpret and to esti-

mate without a computerized minimization procedure.

Ewbank et aZ.9 have developed another four-parameter system

that has more easily interpreted and estimated parameters. De-

fine
K
(1 p) - !
P p > 0.5
T(pix,A) =
A
- ()
p
2)\ P < 0.5 .

Then, instead of equation (1), model

logit [li(t)] = ay + Bi T[ls(t); Ko Ai] . (3)
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In the limit, as k and A gc to zero, T(p;x,A) goes to logit (p).
Thus, T(p;k,A) is a generalization of the logit function. Heu-
ristically, o and B represent differences in location and scale
between li(t) and the standard, and x and A repfesent changes in

the shape of the distribution in each tail.

Using this sytem, strong, linear, temporal patterns often
appear in the parameters, suggesting the regular progression
necessary for extrapolation. In addition, regularities in the
age pattern also appear. For instance, in Swedish life tables,
both « and A have been consistently linearly related to 8 for
over two hundred years. This suggests that a two-parameter
model (given the linear relationships) is sufficient to describe

changes in Swedish mortality.

EXAMPLE: MORTALITY FORECASTS FOR SWEDEN

Let us consider an example that illustrates many of the
difficulties of demographic forecasting, and the advantages of
relational methods. Suppose a demographer in 1965 wanted to
- forecast changes in the life table for Swedish males. I choose
this date sc; that we can compare the forecasts to the eventual life
tables which are now known. We have at our disposal a long his-
torical series of five-year life tables, but for the moment con-
centrate our attention on the seven tables from 1931 on. Figure
1a shows the time trend of five values: li(1), li(20), li(SO),
li(65), and li(80). Simple linear extrapolation of these trends
would soon lead to impossible values cf 1i(t) greater than one.

Similar problems would arise with g(t) values going below zero.
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One alternative is to calculate the values

li(t)

r,(t) = [1 : li(t)]

plotted in Figure 1b. The r(t) values have no upper bound, so
extrapolation does not lead to impossible values. But both the
slope and the degree of variability for ri(1) is much larger
than for ri(80), and this heterogeneity could lead to confusion
and inefficiences in forecasting. The third panel of Figure 1
plots

y; (£) = logit [li(t)} = 3 log r, (t) X

This transformation leads to similar slopes and variances. Since
forecasts rely on consistency, extrapolating trends in yi(t) may
lead to better projections. There is some curvature in the trends
in Figure 1, but the last four observations (those after the
Second World War) appear reasonably linear. Extrapolation of
these trends by least squares regression leads to Projections 1,

2, and 3 of li(t) for '66-'70 and '71-'75 in Table 1.

Alternative projections rely on relational models. Figure

2a shows the time trend of the four parameters, ao., B., k., and

i i i’
Ai’ from the model of equation (3). Here again, trends in the
fitted parameters are reasonably linear from '46-'50 on. One
projection comes from simply extrapolating each series, then
calculating the implied values of li(t). The result appears in
Table 1 as Projection 4. On the other hand, Figure 2b indicates
that oy Ki, and Ai are each nearly linearly related to Bi,

10

consistent with the results of Ewbank et al. Projection 5 in

Table 1 is based on the linear extrapolation of the last four
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observations of Bi and an estimate of Ai and Ki as linear func-

tions of Bi' the line based on all seven periods.

Some values of li(t) are easier to predict than others.
The changes in li(1) and li(20) are so small that each projec-
tion method gives good results, except that the extrapolation of
the li(1) values leads to values greater than one by '71-'75.
The values of 1i(50), 1i(65), and li(80) are in general harder
to predict; the actual change in these values was generally

smaller than the previous changes.

But given these differences, the relational methods perform
reasonably well. Projection 4, individual extrapolation of the
parameters, gives the best results, with an average absolute
error in li(t) of 0.0103. The second best results are from Pro-
jection 2, extrapolation of the ri(t) values (0.0134), and the
third best are from Projection 5, extrapolation of air Koy and
Ai as functions of Bi (0.0164) . Extrapolation of the 1i(t)

values and the yi(t) values lead to substantially worse errors

(0.0241 and 0.0218).

The point of this exercise is to illustrate the use of re-
lational methods in population projections, and demonstrate that
they lead to competitive results. More comprehensive prospective
tests would help to determine the sorts of models that are likely
to lead ‘to decent mortality forecasts. But: demographic fore-
casters will always remain in the position of extrapolating
trends, and no matter how consistent patterns have been in the
past, -there is never a guarantee that they will continue into

the future.
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DEMOGRAPHIC MODELS FOR FERTILITY

Demographic studies of the age pattern of fertility differ
from mortality studies in two important aspects. First, fertil-
ity models must take into accoun£ that fertility, unlike mortal-
ity, is a repeatable event. Second, a description of fertility
often involves more socioeconomic or biological predictors and

intermediate steps.

In mortality work models frequently represent 1(t), a cumu-
lative variable, rather than Mer an age-specific variablé. The
reasons for this are that (1) 1(t), and especially logit [1(t)],
are convenient to model mathematically, and (2) 1(t) hides some
small irregularities in Ui that are hard to model and not impor-
tant for projectibn or estimation. The cost is that changes in
cumulative variables, like 1(t), are harder to understand than
changes in age-specific functions such és My Since fertility
is repeatable, its fundamental measure is the intensity of fer-
tility at age t, f£(t), which is analogous to Me rather than to
1(t). To gain the advantages of a cumulated function, demogra-
phers often study

t
F(t) = f f(s) ds .
0
But, unlike 1(t), F(t) is not constrained between zero and one.
To achieve the form of a cumuiative probability distribution,
demographers calculate F'(t) = F(t)/F(50), and model F'(t) by
methods similar to those developed for 1(t). The cecst is an

additional parameter, F(50), external to the model.

Because of the many theories about the determinants of fer-

tility, and data availability by age, marital status, parity,
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marital duration, and other descriptors, there is a wide variety
of functions to model. 1In addition, there is frequently a choice
between period and cohort measures. All of these choices can be
expressed by a furnction of the form F(t), so the models described
below are potentially applicable tc any of these functions.

Three criteria should decide the choice of fertility function:

(1) data availability, (2) theoretical considerations, and (3)

an examination of historical values to determine if the model

fits well and yields sensible parametric trends.

As for mortality, there are a number of mathematical and
empirical models for fertility. Hoem ei al. discuss and test a
number of these models, including mathematical curves such as
the Hadwigen function, gamma and beta densities, polynomials,
splines, Gompertz curves, and the empirical Coale-Trussell model.11

The number of parameters in these models ranges from three to

ten.

For the same reasons as in mortality studies, relational
methods show promise for forecasting. The raw material for re-
lational fertility projections is a set of historical cumulative
fertility cﬁrves, Fi(t), where t can be age, duration of marriage,
or some other vafiable, and i indexes time. The first step is
to divide Fi(t) by Fi(SO), and project Fi(SO) as a separate param-
eter. Then apply relational methods to the normalized cumulative,

F.' ().

There is no mathematical reason why the logit-based methods
of the previous sections could not be applied to fertility
studies. There is, of course, the question of choosing an ap-

propriate standard.
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For empirical reasons, a slightly different form is often
used. Brass has introduced the relational Gompertz form in
which the function log [~ log (p)] replaced logit (p).12 The
reasoning is similar to that developed earlier for the logit
model. If all fertility curves had a Gompertz shape
Bi(t-to)

1 .

then for all i

log %- log [Fi'(t)]i

]

log [— log (Ai)] +' (t -~ t,) log (Bi)

ai + Bi_(t - to) .
Hence for some standard distribution FS'(t)

. ()

log %- log [Fi'(tﬂ

= a; + Bi log z— log [Fs'(t)]

As long as there is some transformation of the time sczle to make
all of the curves into the Gompertz form, equation (4) holds.

The key idea is that for a historical séries of related fertility
curves such a:transformation is likely to exist. The mechanics

of fitting Q. Bi’ and the standard Fs'(t) are just as in mortality

analysis.

Breckenridge has introduced a similar, but more general,

model in the study of changes in the age pattern of Swedish fer-

tility between 1775 and 1959. 3

vy = [Ft'(tj)]1/2 - [ - Fi'(tj)]1/2 .

Defining yij as

she fits the model

Yij = @3By * By By

to the time series of fertility curves, estimating both the time

parameters a, and Bi and age functions Aj and Bj’ The flexibility
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of this model, in that "“standards" Aj and Bj are estimated from
the data series rather than taken as given, leads to closer fits.
Breckenridge's analysis of cohort and period marital and total

fertility leads to stable and predictable trends in oy and Bi.

TIME SERIES ANALYSIS

Modern methods of time series analysis and forecasting,1u

15 Two conditions

are becoming increasingly used in demography.
must apply for these methods to be used. First, the covariance
structure of the time series variable must be stable, and second,
the number of data points must be large enough, usually at least
50, to identify the structure. Checking for stability and iden-
tifying the structure of the series requires a good deal of ex-
ploration and thought. Relational methods reduce the dimension-
ality of the problem. If the models adequately represent the
changes in age-specific rates, forecasters can concentrate their

effects on analyzing and projecting a much smaller number of

parameters.

There are three sorts of errors in population projections.
First, there are errors in the starting values and estimates of
current vital rates. Second, there is stochastic variation in
the actual number of births and deaths, given the projected fer-
tility and mortality rates. Third, and perhaps most important,
there are errors in the predicted fertility and mortality rates
themselves. If the time series analysis of the relational
parameters is successul in capturing the variation in vital rates,
confidence intervals for the parameter forecasts from the time
series anlaysis could lead to realistic intervals for the pro-

jected population.
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DEMOGRAPHIC PATTERNS

In the introduction we considered two types of demographic
patterns: age and time. Linearity is the key to detecting and
extrapolating patterns, and relational methods provide this

linearity.

For effective projection, models must meet two criteria.
First, the models should adequately fit the historical series of
age-specific rates. Only if this is true do we have any confi-
dence»in the extrapolation technique. All of the relational
methods have the property that some function—1logit [li(t)],
log{-1log [Fi'(t)]} or [Fi'(t)]1/2 - [1 - Fi'(t)]1/2——is linearly
related to a "standard." Linearity means that graphical analy-
sis provides an effective test of model validity, or suggests
more appropriate alternatives. The ability to choose a standard
based on the series being projected increases the likelihood of

a good fit.

Second, the models should involve a small number of inter-
pretable parameters that vary systematically in time. Interpret-
ability means that external, subjective information can be brought
into the forecasting process. The simplest systematic temporal
pattern to detect and project is a line, and the time pattern of
relational parameters often is linear. Furthermore, the mathe-
matical form of relational models ensures that, for a wide range
of observed and extrapolated parameter values, the models repre-

sent realistic age patterns of mortality and fertility.

In conclusion, the combination of flexibility, interpret-
ability, and linearity in relational models makes them a good
choice for the study and projection of fertility and mortality

rates.
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