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Abstract

In this paper, we study the topological properties of the global supply chain network in terms

of its degree distribution, clustering coefficient, degree-degree correlation, bow-tie structure,

and community structure to test the efficient supply chain propositions proposed by E. J.S.

Hearnshaw et al. The global supply chain data in the year 2017 are constructed by collecting

various company data from the web site of Standard & Poor’s Capital IQ platform. The in-

and out-degree distributions are characterized by a power law of the form of γin = 2.42 and

γout = 2.11. The clustering coefficient decays hCðkÞi � k� bk with an exponent βk = 0.46. The

nodal degree-degree correlations hknn(k)i indicates the absence of assortativity. The bow-

tie structure of giant weakly connected component (GWCC) reveals that the OUT compo-

nent is the largest and consists 41.1% of all firms. The giant strong connected component

(GSCC) is comprised of 16.4% of all firms. We observe that upstream or downstream firms

are located a few steps away from the GSCC. Furthermore, we uncover the community

structures of the network and characterize them according to their location and industry

classification. We observe that the largest community consists of the consumer discretion-

ary sector based mainly in the United States (US). These firms belong to the OUT compo-

nent in the bow-tie structure of the global supply chain network. Finally, we confirm the

validity of Hearnshaw et al.’s efficient supply chain propositions, namely Proposition S1

(short path length), Proposition S2 (power-law degree distribution), Proposition S3 (high

clustering coefficient), Proposition S4 (“fit-gets-richer” growth mechanism), Proposition S5

(truncation of power-law degree distribution), and Proposition S7 (community structure with

overlapping boundaries) regarding the global supply chain network. While the original prop-

ositions S1 just mentioned a short path length, we found the short path from the GSCC to IN

and OUT by analyzing the bow-tie structure. Therefore, the short path length in the bow-tie

structure is a conceptual addition to the original propositions of Hearnshaw.
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Introduction

National economies are linked through international trade so the globalized economy forms a

large economic complex network characterized by strong links, i.e., interactions due to

increasing level of trade between countries worldwide. If we view the globalized world econ-

omy with a high resolution or a microscopic view, we might notice that this large economic

network consist of a global supply chain comprised of a large number of firms. A variety of col-

lective motions exist in natural and social phenomena. Some examples of the collective

motions of the global economy include the synchronization of the business cycle, global eco-

nomic crises, and chain bankruptcies. These collective motions occur due to the strong inter-

actions between constituent elements. Thus, it is expected that various collective motions will

emerge in the globalized world economy under the condition of trade liberalization, i.e.

globalization.

Several review papers have been published that examine study of supply chain network, M.

A. Bellamy et al. [1] categorized the study of supply chain networks into three themes: network

structure (i.e., system architecture), network dynamics (i.e., system behavior), and network

strategy (system policy and controls). They listed important factors that characterize supply

chain networks. For example, factors that characterize network structures include node-level,

network-level, and link-level properties. The factors characterizing network dynamics are sti-

muli, phenomena, and sustainability. The factors characterizing network strategy are scope,

intent, and governance. S. Perera et al. [2] surveyed the methodologies for the purpose of

modeling topology and robustness. They pointed out the limitation of the preferential attach-

ment growth model for explaining the characteristics of the supply chain networks and

emphasized the importance of fitness-based growth models [3] for explaining the observed

topological characteristics. Notable phenomena regarding supply chain networks include not

only resilience against random failure and targeted attacks but also collective motion such as

cascading failure or chain bankruptcy. Y. Fujiwara studied chain bankruptcy by analyzing the

supply chain and bankruptcy data and Y. Ikeda developed an agent-based model and con-

structed realistic simulations of the chain bankruptcies caused by the failure of a single firm

[4]. K. J. Mizgier et al. [5] studied the dynamics of default processes in supply chain networks

using an agent-based model. Based on a simulation, they discussed the implications of such

dynamics on risk management and policy making. L. Tang et al. [6] developed a theoretical

cascading failure model considering the interdependence of firms in the supply chain network.

They observed a sudden collapse in the interdependence of supply chain networks. T. Mizuno

et al. [7] have analyzed a large set of global supply chain data. They investigated three different

types of networks: a customer-supplier network, a licensee-licensor network, and a strategic

alliance network. The degree distributions of all three networks showed scale-free properties

characterized by a power law tail. They also observed that all three networks showed average

path lengths of around six. They further studied the community structures of undirected ver-

sions of networks using modularity maximization techniques [8].

In addition to these studies, E. J.S. Hearnshaw et al. [9] studied the supply chain networks

using a complex network approach and proposed the following nine propositions:

• S1: Efficient supply chain systems show a short characteristic path length

• S2: The nodal degree distribution of efficient supply chain systems follows a power law as indi-
cated by the presence of hub firms

• S3: Efficient supply chain systems demonstrate a high clustering coefficient

• S4: The growth of efficient supply chain systems follows the “fit-gets-richer” mechanism
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• S5: The power law degree distribution of efficient supply chain systems is truncated

• S6: The link weight distribution of efficient supply chain systems follows a power law

• S7: Efficient supply chain systems demonstrate a pronounced community structure with over-
lapping boundaries

• S8: The fitness of hub firms determines the resilience of supply chain systems against both ran-
dom disturbances and targeted attacks

• S9: Resilient supply chain systems demonstrate a power law distribution for link-weights

In E. J.S. Hearnshaw et al.’s study, the term “efficient supply chain” was used to characterize

the fact that a variety of resources such as financial, human, technological, and physical

resources were effectively used in supply chains. These nine propositions S1 through S9 are

related to path length, power law degree distribution, clustering coefficients, preferential

attachment growth mechanism, truncated power law connectivity distribution, power law dis-

tribution of node strength, community structure with overlapping boundaries, resilience

against random failure and targeted attack, and core-periphery structure, respectively. They

attempt to explain the various functions of a supply chain according to the structural charac-

teristics of supply chain networks. It is, however, noted that the nine propositions were pro-

posed by a theoretical study based on a survey of the existing literature using only small-scale

empirical data. Its empirical verification is rather weak and therefore a large-scale empirical

study using more comprehensive data would be highly desired and contribute significantly to

the extant literature on supply chain networks.

To understand the globalized world economy and make effective policy recommendations,

studying the global supply chain, international trade, business cycles, and economic growth by

analyzing global data using network scientific methodology is indispensable. In this paper, we

focus on the topological properties of the global supply chain network to empirically test the

efficient supply chain propositions put forth by E. J.S. Hearnshaw et al. We contribute to the

literature a verification of these propositions by conducting a large-scale empirical analysis of

global supply chain data. This study on the topological properties of the global supply chain

network is a first step in understanding the globalized world economy under a microscopic

view. We study degree distribution, clustering coefficient, and degree-degree correlation in the

global supply chain network. A bow-tie structure was uncovered based on the supply of goods

and services along directed links. Then, we uncovered the community structures of the net-

work using the map equation method and characterized them according to their locations and

industry classifications. Furthermore, the composition of the communities in terms of bow-tie

components is analyzed. Finally, we investigate the validity of E. J.S. Hearnshaw et al.’s nine

propositions regarding the efficiency of supply chain networks [9] based on the results

obtained regarding the topological properties of the global supply chain network.

Our paper is organized as follows. In the “Data” section we briefly describe the global sup-

ply chain network data used in this study. The data in the year 2017 were collected from Stan-

dard & Poor’s Capital IQ platform. In the “Methods” section, methodologies for the

identification of the bow-tie structure, community detection, and the over-expression of bow-

tie components are explained. In the “Results” section, the results obtained from the analysis

of global supply chain network data—basic structural properties, bow-tie structures, commu-

nity structures, and over-expression of bow-tie components—are explained using figures and

tables. Finally, we investigate the validity of the nine propositions based on the obtained results

on the topological properties of global supply chain networks. To close, this paper concludes

in the “Conclusions” section.
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Data

The global supply chain data in the year 2017 were constructed by collecting various firm

data from the web site of Standard & Poor’s (S&P) Capital IQ platform. The data include firm

identification (ID), name, country, and location, primary industry, and sector as node infor-

mation. Industrial classification is based on the Global Industry Classification Standard

(GICS), which was developed by Morgan Stanley Capital International and the S&P. Firms

from 11 sectors and 158 primary industries are located in 206 countries as listed in S1–S3

Tables in S1 Appendix.

The data also include types of business relationships between suppliers and customers as

link information. Although there are a variety of business relationships types including suppli-

ers, creditor, franchisor, licensor, landlord, lessor, auditor, transfer agent, investor relations

firm, and vendor, most of the relationships are of the supplier and creditor types. Here, the

supplier type indicates a firm that provides the products or services and the creditor type indi-

cates a private, public, or institutional entity that loans funds to others entities.

In Table 1, the types of business relationships of all firms are summarized. We note that the

links in the dataset are dominated by supply chain business relationships. In Table 2, the sup-

plier types of all firms are summarized. We note that suppliers are dominated by private and

public firms. Therefore, the characteristics of the dataset reflect the nature of the global supply

chain network.

We preprocessed the raw data in the following way. We removed all creditor relationships,

isolated nodes, parallel links, and self-loops from the dataset being used in our analysis. The

total number of firms and directed links used in our analysis are 437, 453 and 948, 247, respec-

tively. The number of firms and total revenue of firms in each country are listed in S1 Table in

S1 Appendix. Firm distributions for the different sectors are listed in S2 Table in S1 Appendix.

It is noted that S2 Table in S1 Appendix represents the data after preprocessing, while the

Table 2 represents the raw data. Hereafter, the preprocessed data is referred to as the global

supply chain data in the year 2017.

Aggregated revenue is compared to the gross domestic product (GDP) of each country, as

shown in Fig 1. These statistics provide evidence for the goodness of data coverage of our

Table 1. Types of business relationships for all firms.

Relationship #Links Ratio (%)

Supplier 849,223 59.0

Creditor 465,412 32.3

Landload 76,908 5.3

Licensor 47,558 3.3

Total links 1,439,101 100.0

https://doi.org/10.1371/journal.pone.0239669.t001

Table 2. Types of suppliers for all firms.

Firm Type #firms Ratio (%)

Private firm 830,915 58.6

Private fund 32,180 2.3

Private investment firm 20,164 1.4

Public firm 533,910 37.7

Total firms 1,417,169 100.0

https://doi.org/10.1371/journal.pone.0239669.t002
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global supply chain data. GDP data were collected from https://data.worldbank.org/ and are

therefore in the public domain.

Methods of topological characterization

In order to test Hearnshaw et al.’s efficient supply chain propositions, the topological proper-

ties of the global supply chain network are empirically studied from three different angles:

their node-level characteristics, mesoscopic structural characteristics, and flow characteristics.

The analysis from these three different angles is required to test the efficient supply chain prop-

ositions and obtain a coarse-grained description of the global supply chain network in terms

of bow-tie and community structures.

Node-level characteristics

As the supply chain network is directed by nature, one can define in and out degrees for the

nodes. The nodal in-degree is defined as the number of incoming links to a node and the out-

degree is the total number of outgoing links from that node. The most basic node-level charac-

teristic is the degree distribution for the nodal in-degrees kin and nodal out-degrees kout. The

second node-level characteristic is the clustering coefficient. The clustering coefficient, a mea-

sure of three-point correlation, reflects the cliquishness among the neighbors of a node. The

clustering coefficient Ci of i-th node is defined as [10],

Ci ¼ 2Ei=kiðki � 1Þ; ð1Þ

where Ei is the number of links between all the ki neighbors of i. We have measured the cluster-

ing coefficient<C(k)> averaged over the subset of nodes of degree k. Further one can measure

more complex clustering coefficient considering the directed nature of links [11, 12]. However,

we only calculate the simple undirected clustering coefficient to show the basic structural

property of the network. The third node-level characteristic is the degree-degree correlation.

The average nearest neighbor degree hknn(k)i increases as a function of degree k for an assora-

tative network and decreases for a disassortative network. We have used an undirected version

of the network for measuring the clustering coefficient and average nearest neighbor degree to

Fig 1. Total revenue generated by the firms in a country plotted against the country’s GDP in current US $ for the

year 2017. The vertical axis is aggregated for firms of each country in the global supply chain data. The red line

represents the best power law fit to the data of the form revenue = 2.81 × 10−5GDP1.369.

https://doi.org/10.1371/journal.pone.0239669.g001
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show the presence of hierarchical structure and degree mixing property of the network as the

basic structural properties.

Mesoscopic structural characteristics

The bow-tie structure [13] is uncovered from the giant weakly connected component

(GWCC) based on the supply of goods and services (i.e., money moves in the opposite direc-

tion) along the directed links. The definitions of the different regions of the bow-tie structure

are as follows:

• The giant strongly connected component (GSCC): The largest region in which any two

nodes are reachable through the directed path.

• IN components: The nodes from which the GSCC are reachable through directed paths.

• OUT components: The nodes that are reachable from the GSCC through directed paths.

• Tendrils (TE): The rest of the nodes in the GWCC.

We apply a breadth-first search algorithm to detect the different components of the bow-tie

structure.

Flow characteristics

Empirical networks are generally non-homogeneous with a high local link density. Commu-

nity detection captures highly connected groups of nodes as modules. Modularity maximiza-

tion [14] is one of the popular methods for detecting communities. With this method, one

maximizes the modularity index. Modularity is defined as the fraction of intra-community

links, subtracting the expected fraction, given a random distribution. However, this method

suffers from a resolution limit problem [15] when applied to large networks. Despite this prob-

lem, the modularity maximization is still an effective method for detecting communities in

moderate sized undirected and directed networks. We use the modularity maximization to

detect communities of over-expression networks in our study.

The map equation method [16] detects communities using the flow dynamics of random

walkers on the network. We use the map equation method for our analysis of the global supply

chain network since it is a directed network of suppliers and customers in which link repre-

sents the flow of goods. This method is one of the most suitable community detection tech-

niques for detecting communities in a network [17] based on the flow of random walkers that

does not suffer from the resolution limit because our main interest in community detection is

in extracting flow characteristics. This minimizes the per step the average description length

L(C) of a random walker on the network as defined below:

LðCÞ ¼ q↷HðCÞ þ
Xm

i¼1

pi⥁HðP
i
Þ : ð2Þ

where q↷ andH(C) represent the probability and Shannon entropy, respectively for the inter-

community movement of the random walker. pi⥁ is the probability that a random walker leaves

node i andHðPi
Þ is the entropy of intra-community movement.

Coarse-grained description

Communities are ubiquitous in empirical networks. Communities are formed according to

similarities in node attributes. For examples locations and sectors are key attributes for the for-

mation of communities in the Japanese supply chain network [18, 19], in protein-protein
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interaction networks, biological functions form the basis of the community structure [20]. The

node attribute within communities is the key to obtaining a coarse-grained description of the

community structure of the global supply chain network.

The composition of communities in terms of their bow-tie components is analyzed using

the over-expression of node attributes. To measure the over-expression of attributes in a com-

munity, we follow the method used by Tumminello et al. [21]. In this method, the probability

that X randomly selected nodes in a community C of size NC has the attribute A is calculated

using the following hyper-geometric distribution

HðXjN;NC;NAÞ ¼
ð
NC
X
Þð
N � NC
NA � X

Þ

ð
N
NA
Þ

;

where NA is the total number of nodes in the network with attribute A. The p-value p(NC,A) for

the NC,A nodes with attribute A in the community C can be obtained from the following

expression:

pðNC;AÞ ¼ 1 �
XNC;A � 1

X¼0

HðXjN;NC;NAÞ:

Attribute A is over-expressed when p(NC,A) is lower than the threshold value pc. Since this

is a multiple hypotheses test, one must choose pc appropriately to exclude generating false posi-

tives. We set pc = 0.01/NA0 in line with [21], which accomodate the Bonferroni correction [22].

Here, NA0 indicates the total number of distinct attributes of all nodes of the network.

Results

Node-level characteristics

We observe that the probability density distributions for both nodal in and out degrees feature

a heavy-tail in which the tail of the distributions is characterized by a power law of the form

Pðkin=outÞ � k
� gin=out with γin = 2.42 and γout = 2.11, respectively, as shown in Fig 2(a) and 2(b). It

is, however, noted that we are not claiming that the entire distribution follows a power law dis-

tribution. We measured the exponent from the slope of the straight portion of the intermediate

range of degrees. The tail region of both distributions seem to be truncated due to the finite

system size. The power law degree distribution has also been observed in past investigations of

empirical supply chain network data [7, 23–25]. Degree distribution plays a pivotal role in

shock propagation between nodes. High asymmetry in degree distribution can result in system

wide aggregate fluctuations due to idiosyncratic shocks to large firms [26]. It has been argued

in the literature that such heavy-tail distributions of nodal degrees arises due to the so-called

“rich-get-richer” mechanism [27, 28]. Like with the rich-get-richer principle, here, large firms

have more customers and suppliers than do small firms.

In most real-world networks, the average clustering coefficient is a decaying function of

degrees having the form hCðkÞi � k� bk with βk� 1.0. We observe that the clustering coefficient

of the supply chain network decays with an exponent βk = 0.46 as shown in Fig 2(c), which

indicates the presence of a hierarchical structure.

The average degree of the neighbors of node i that capture the nodal degree-degree correla-

tion is defined as knn,i = ∑j kj/ki, where the j runs over all ki neighbors of i. For nodes with

degree k, hknnðkÞi ¼
P

ki¼k
knn;i=Nk ¼

P
k1
k1Pðk1jkÞ, where Nk is the number of nodes having

degree k. hknn(k)i increases with k for an assortative network and decreases for a disassortative
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network. In the absence of nodal degree-degree correlation hknn(k)i remains constant. As can

be seen in Fig 2(d), hknn(k)i does not depend on k and remains more or less constant with k,
indicating the absence of nodal degree-degree correlation.

Further, the statistical significance of these results is tested by comparing them with the

results of randomized degree-preserving networks [29]. The standard deviations are shown as

blue vertical lines in Fig 2(c) and 2(d). The difference between the results obtained from the

data and results from the randomized degree-preserving network is evident and, therefore, the

obtained results are statistically significant. The clustering coefficients of randomized networks

show C(k)* constant, as expected. The variation of hknn(k)i with kmatches nicely with the

case of degree-preserving randomized networks, which further supports the absence of nodal

degree-degree correlations in the empirical network.

We examine the connected components when the network is viewed as an undirected net-

work. The largest connected component of the network is known as the GWCC. As can be

seen in Fig 3, the network consists of a very large GWCC with N = 407, 527 nodes, and

L = 927, 316 links. Using a breadth-first search, we calculate the average path length in the

GWCC by calculating the shortest paths between all pairs of nodes. The average path length is

found to be 5.370, reflecting the small-world nature of the global supply chain network. While

the GWCC contains 93.16% of nodes of the network, the rest of the components are very

small. In the following subsequent sections, we investigate only the GWCC of the network.

Mesoscopic structural characteristics: Bow-tie structure

We detect the bow-tie components in the GWCC of the global supply chain network. The

number of firms in each component is shown in Table 3. Here, “Ratio” refers to the ratio of

Fig 2. Structural properties of the global supply chain network. Probability density distributions P of: (a) nodal in-

degrees kin and (b) nodal out-degrees kout. Variations of (c) the clustering coefficient C(k) as a function of degree k and

(d) the average nearest-neighbor degree hknn(k)i as a function of degree k. Logarithmic binning of the horizontal axis is

used in (a) and (b). Red lines represent the best power-law fit to the data. Blue lines in (c) and (d) represent the results

for degree-preserved random networks in which the average is taken over 100 such uncorrelated networks. The

standard deviations are shown as blue vertical lines in (c) and (d).

https://doi.org/10.1371/journal.pone.0239669.g002
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the total number of firms to the total number of the firms in the GWCC. The OUT component

consists of the nodes from which the GSCC is reachable through directed paths downstream

and is the largest, consisting of 41.1% of all firms. The GSCC (i.e., where any two nodes are

reachable through directed paths), IN (i.e., nodes from which the GSCC is reachable through

directed paths upstream), and TE (i.e., the rest of the nodes in the GWCC) are similar in size

and comprise 16.4%, 22.3%, and 20.2% of all firms, respectively. For the Japanese supply chain

network, the fraction of each component of the OUT, GSCC, IN, and TE is 26.2%, 49.7%,

20.6%, and 3.5%, respectively [18]. The GSCC in the Japanese supply chain network occupies

half of the system, meaning that most firms are interconnected by small geodesic distances or

the shortest-path lengths in the economy. This is a good contrast to the results for the global

supply chain network that were observed in our study. However, by examining the shortest-

path lengths from the GSCC to IN and OUT as shown in Table 4, one can observe that the

upstream or downstream firms are located only a few steps away from the GSCC. This feature

of the economic network is different from the bow-tie structure of many other complex net-

works [30]. In Japan, there is a large SCC in the ownership network [31]. This is well known as

cross-shareholding, or “keiretsu” (a set of companies with interlocking business relationships

and shareholdings) in Japanese. Correspondingly, there is a large SCC in the Japanese supply

chain. On the other hand, the cross-shareholdings are not as pronounced in the world’s firms

as in Japan. As a result, the SCC is small in the global supply chain network.

Flow characteristics: Community structure

Communities are detected in the largest weakly connected components of the network. We

employ the map equation method [16] to discover the communities in the GWCC of the global

Table 3. Bow-tie structure: The sizes of different components.

Component #firms Ratio (%)

GSCC 66,798 16.4

IN 90,992 22.3

OUT 167,509 41.1

TE 82,228 20.2

Total 407,527 100

https://doi.org/10.1371/journal.pone.0239669.t003

Fig 3. Distribution nx of the component size x in the network. The largest weakly connected component contains

*99% of the nodes in the entire network.

https://doi.org/10.1371/journal.pone.0239669.g003
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supply chain network using the directed nature of the links. The directed links represent flow

of goods from suppliers to customers. The detected communities are found in various sizes.

The probability density distributions D(s), of community sizes s for an empirical network and

its degree-preserving randomized network is shown in Fig 4(a). The distribution of the empiri-

cal network is more wider than it is for a randomized network. The maximum community

size for the empirical distribution is smax = 1687 and in the randomized case it is smax = 551.

The bias in the direction of the flow between a pair of communities is measured by the

polarization ratio, which is defined by Pij = |wij − wji|/(wij+ wji), where wij is the total number

of links from the i-th community to the j-th community. Pij = 1 if the flow is totally biased

from one community to the other and Pij = 0 if the flow is evenly balanced between the com-

munities. The total flow between a pair of communities is Lij = (wij+ wji). If we assume that

there is no bias in the flow direction between any pair of communities, according to the null

hypothesis, the values of Pij will fluctuates around zero with a standard deviation s ¼ 1=
ffiffiffiffiffi
Lij

p
.

As can be seen in Fig 4(b), most of the values of the polarizability ratio Pij are significantly

higher than the 2σ level, which is indicated by the dashed curve.

Coarse-grained description: Bow-tie components and communities

We obtain a coarse-grained description of the global supply chain network in terms of its bow-

tie and community structures. We examine the significant over-expression of different

Table 4. Shortest distances from the GSCC to IN/OUT.

IN to GSCC OUT to GSCC

Distance #firms Ratio (%) Distance #firms Ratio (%)

1 82,761 90.954 1 153,755 91.789

2 7,430 8.165 2 11,885 7.095

3 665 0.731 3 1,582 0.944

4 104 0.114 4 250 0.149

5 17 0.019 5 26 0.015

6 10 0.011 6 10 0.006

7 5 0.005 7 1 0.001

Total 90, 992 100 Total 167, 509 100

https://doi.org/10.1371/journal.pone.0239669.t004

Fig 4. Community sizes and polarizability. (a) DistributionsD(s) of community sizes s for the actual network with directed links (filled circles) and

for its randomized counterpart (open circles). The distribution for the empirical network is wider than it is for the randomized network. (b)

Polarizability of the direction of the links interconnecting communities.

https://doi.org/10.1371/journal.pone.0239669.g004
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attributes such as primary industry, sectors, firm location, and bow-tie components within

communities. We demonstrated the detailed over-expression results in the 10 largest commu-

nities in Table 5. “Fraction” represents the percentage of firms in that community having a

particular attribute. For example, in the first row and third column of the table, it represents

26.7% of firms in the largest community belong to the consumer discretionary sector. A variety

of interesting features can be observed from the results of attribute over-expression. The larg-

est community is comprised of the consumer discretionary sector based in the United State

(US). Further analysis shows that these are private firms mainly from the automotive retail sec-

tor, which belong to the OUT component in the bow-tie structure of the global supply chain

network. In the second largest community, we observe that the consumer discretionary sector

is based in China, the United Kingdom (UK), France, Germany, Japan, Malaysia, and New

Zealand. These firms belong to the IN component of the bow-tie structure. The firms of the

third largest communities are from the consumer discretionary, industrials, and materials sec-

tors, which are mainly based in Japan, China, and Thailand. These firms mostly belong to the

TE component of the bow-tie structure.

We show the frequency of over-expression of the different components within the commu-

nities in the bow-tie structure in Fig 5. Here, we selected communities whose community size

equals at least 10 firms. G-I indicates that both the GSCC and IN components were over-

expressed in the communities. Similarly, G-O, G-T, I-O, I-T, and O-T represent over-expres-

sions of GSCC-OUT, GSCC-TE, IN-OUT, IN-TE, and OUT-TE, respectively. This reflects the

fact that most of the communities are solely composed of a particular component of the bow-

tie structure. We also observe that there is a reasonable number of communities comprised of

the combination of the GSCC and IN (i.e., the G-I component), which is also observed in the

Japanese supply chain network [18]. This indicates that the flow of goods in the supply chain

network is often confined within the GSCC and IN components as compared to any other

combination of components of the bow-tie structure. Surprisingly, a large fraction of commu-

nities is in the TE component, not only supply but also procure any products and services

from GSCC components.

Table 5. Brief summary of the over-expression of sectors, countries, and bow-tie components in the 10 largest communities.

Rank Size Sector Country Bow-Tie

Components

1 1,

687

Consumer Discretionary (26.7%) US (77.8%) OUT (99.7%)

2 1,

632

Consumer Discretionary (40.4%) China (9.1%), UK (4.0%), France (3.7%), Germany (6.2%), Japan (9.1%), Malaysia

(3.6%), New Zealand (1.3%)

IN (32.2%)

3 1,

179

Consumer Discretionary (20.0%),

Industrials (23.1%), Materials (15.8%)

China (12.4%), Japan (53.1%), Thailand (9.3%) TE (99.6%)

4 1,

027

Communication Services (9.4%) Cambodia (0.6%), Indonesia (66.7%), Singapore (3.9%) GSCC (20.3%), IN

(55.1%)

5 968 Financials (62.1%) Bahrain(0.7%), Bangladesh (1.8%), Hong Kong (5.0%), Hungary (1.0%), Italy (4.0%),

Nepal (1.0%), Pakistan (14.0%), Singapore (3.8%), UAE (2.4%), Yemen (0.4%)

GSCC (22.7%), IN

(63.1%)

6 933 Industrials (59.1%) US (93.3%) IN (82.3%)

7 867 Information Technology (50.2%) Korea South (3.1%), Singapore (4.4%), Taiwan (10.4%) GSCC (23.9%), IN

(29.6%)

8 824 Consumer Discretionary (20.0%),

Industrials (38.4%)

US (52.4%) GSCC (29.5%), IN

(28.9%)

9 723 Energy (12.3%), Industrials (17.6%),

Materials (8.4%), Utilities (7.5%)

India(62.8%) GSCC (28.5%)

10 711 - Botswana (1%), South Africa (69.5%) OUT (98.5%)

https://doi.org/10.1371/journal.pone.0239669.t005
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To visualize the co-occurrences of node attributes such as firms location and primary

industry within the communities, we construct a network of over-expressions as described

below. We construct a weighted and undirected network of countries from their over-expres-

sion in communities with sizes larger than 100 to show the interrelationships between coun-

tries. A link of weight one is placed between two countries if they over-express simultaneously

within a community. Furthermore, we visualize the community structure of this network, as

shown in Fig 6. Here, communities are detected using the modularity maximization technique.

This demonstrates that each community is formed by geographically closely located countries.

The first community consists mainly of South America, the second of Eastern and Southeast-

ern Asia and Oceania, the third of Western and Northern Europe, the fourth of Western Asia,

the fifth of Eastern Europe, the sixth of North America, and the seventh of Northern Africa.

This result reflects the trade relations among the countries. The countries that belong to the

same community have significantly stronger ties of trade relations between them.

Similarly, we also constructed a weighted undirected network of over-expressed primary

industries, where a link of weight w is present between two primary industries if they are over-

expressed simultaneously in w communities. As can be seen in Fig 7 below and S1 Fig in S1

Appendix, the clusters among the primary industries are formed based on their sector classifi-

cations. Here, communities are detected using the modularity maximization technique. The

first community consists mainly of the industrial sector, the second of the consumer discre-

tionary sector, the third of the health care sector, the fourth of the financials sector, the fifth of

the energy and utility sectors, the sixth of the materials and industrials sector, the seventh of

the information technology sector, and the eighth of the communication services. The result

indicates the interactions of the flow of goods between the primary industries. Primary indus-

tries that belong to the same community depend heavily on each other.

Verification of the efficient supply chain propositions

E. J.S. Hearnshaw et al. [9] studied the supply chain networks using complex network

approach and proposed the following nine propositions. In this section, we investigate the

Fig 5. Frequency of over-expression of bow-tie component within communities with a size of at least 10. G-I

indicates that both the GSCC and IN components are over-expressed in the communities. Similarly, G-O, G-T, I-O,

I-T, and O-T represent over-expressions of GSCC-OUT, GSCC-TE, IN-OUT, IN-TE, and OUT-TE, respectively.

https://doi.org/10.1371/journal.pone.0239669.g005
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validity of thees nine propositions according to the obtained results regarding the topological

properties of the global supply chain network.

Proposition S1. S1: Efficient supply chain systems demonstrate a short characteristic path
length.

The average path length of the global supply chain in the GWCC was found to be 5.370.

The average path length in the small-world network Ls is similar to the average path length in

the random graph Ls* Lr. The average path length in the random graph Lr is calculated by

Lr = logN/log < k> = 6.77. Here, the number of nodes in the GWCC is N = 407527 and

the average degree is<k> = (<kin> +< kout>)/2 = 6.74. This assumes that the degree

distributions to be power-law distributions in the entire range of the degree with γin = 2.42

and γout = 2.11. The average in-degree and average out-degree are calculated

by< kin >¼ kminin ðgin � 1Þ=ðgin � 2Þ ¼ 3:38, and< kout >¼ kminout ðgout � 1Þ=ðgout � 2Þ ¼ 10:0,

where kminin ¼ 1 and kminout ¼ 1. The estimated value of Lr = 6.77 is close to the observed value

5.370. This reflects the small-world nature of the global supply chain network. Therefore, the

estimation of the average path length validates Proposition S1 Original propositions of Hearn-

shaw S1 just mentioned a short characteristics path length. As described in the discussion of

Table 4, the upstream or downstream firms are located only a few steps away from the GSCC.

Fig 6. Over-expression network of countries. Different node colors indicate different communities of the network.

Here, communities are detected using the modularity maximization technique.

https://doi.org/10.1371/journal.pone.0239669.g006
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The short path from the GSCC to IN and OUT was only discovered by analyzing the bow-tie

structure. Therefore, the short path length in the bow-tie structure is a conceptual addition to

the original propositions of Hearnshaw.

Propositions S2. S2: The nodal degree distribution of efficient supply chain systems follows
a power law, as indicated by the presence of hub firms.

We observe that the probability density distributions for both nodal in and out degree have

a heavy-tail nature in which the tail of the distribution is characterized by a power law of the

form Pðkin=outÞ � k
� gin=out with γin = 2.42 and γout = 2.11, respectively, as shown in Fig 2(a) and

2(b). The network in which the degree distribution is characterized by a power law includes

hub firms. These hub firms are channel leader firms that control performance and provide sys-

tem-wide coordination of the supply chain [32, 33]. The channel leader firms can exert their

influence and provide opportunities and motivation for other firms to align themselves with

their specific objectives [34]. The power law distributions are characterized by γin = 2.42 and

γout = 2.11, which validates Proposition S2.

Propositions S3. S3: Efficient supply chain systems demonstrate a high clustering
coefficient.

The clustering coefficient, a measure of three-point correlation, reveals cliquishness among

the neighbors of a node. For most of the real-world network, the average clustering coefficient

is a decaying function of degree having a form hCðkÞi � k� bk with βk� 1.0. We observe that

the clustering coefficient in the supply chain network decays with an exponent βk = 0.46 as

Fig 7. Over-expression network of primary industries. Different node colors indicate different communities of the

network. Here, communities are detected using the modularity maximization technique. The IDs of the nodes are

given in S3 Table in S1 Appendix.

https://doi.org/10.1371/journal.pone.0239669.g007
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shown in Fig 2(c), which indicates the presence of a hierarchical structure. The clustering

coefficient is clearly higher than the one observed in the randomized network, as shown in Fig

2(c). However, the value of the clustering coefficient is equivalent to many other networks,

such as the power grid, mobile phone calls, science collaboration, etc. The observed moderate

clustering coefficient indicates that Proposition S3:It has a high clustering coefficient. is valid.

Propositions S4. S4: The growth of efficient supply chain systems follows “fit-gets-richer”
mechanism.

It has been argued in the literature that such heavy-tail distributions of nodal degrees arise

due to the “rich-get-richer” mechanism [27, 28]. The “rich-get-richer” principle means that

large firms have more customers and suppliers than small firms. Preferential attachment in the

“rich-get-richer” mechanism assumes that the acquisition of new links by a firm is determined

solely by the number of its existing links. This assumption leads to the number of links being

proportional to their duration in the supply chain. However, one can often observe that older

firms are outstripped by new entrant firms. There is a need, therefore, to include the “fitness”

of the firms to account for new entrants that can quickly dominate supply chains. By introduc-

ing the “fit-gets-richer” mechanism [35], the fitter nodes have a greater acquisition rate for

links and, therefore, the resulting network possess a scale-free property. The heavy-tail distri-

bution of nodal degrees and the overtaking of older firms by new entrant firms validates Prop-

osition S4.

Propositions S5. S5: The power law degree distribution of efficient supply chain system is
truncated.

The power law distributions Pðkin=outÞ � k
� gin=out with γin = 2.42 and γout = 2.11 respectively

are observed in the middle region of the distributions as shown in Fig 2(a) and 2(b). The tail

region of both distributions seem like truncated due to a finite system size. Especially this ten-

dency is evident for P(kout). This phenomenon is said to be caused by four reasons [9]. First,

the finite size of marketplaces generates a truncated power law degree distribution. Second,

there are practical reasons in the operation of firms that limit the ability of firms to indefinitely

form and maintain exchange relationships. Third, when new links are to be formed with a hub

firms, incomplete information generates uncertainty which might costs higher than transac-

tion costs. If these costs are unacceptable, the firms will scrap the deal with the hub firms.

Finally, the aging and depreciation of firms limits their growth. The observed truncation or

cutoff in the tail region of the degree distribution validates Proposition S5.

Propositions S7. S7: Efficient supply chain systems demonstrate a pronounced community
structure with overlapping boundaries.

We employ the map equation method [16] to uncover the communities in the GWCC of

the global supply chain network. The detected communities were found in various sizes. The

probability density distributions D(s) of community size s for the empirical network and its

degree-preserving randomized network are shown in Fig 4(a). The distribution of the empiri-

cal network is wider than that of the randomized network. In Table 5, the over-expression of

sectors and countries in the 10 largest communities is shown. Communities in a supply chain

are bound together in clusters predominantly connected by horizontal relationships between

firms with similar interests and functions. However, we empirically observed that all firms

within a community are not entirely cooperative, as shown in Table 5. The over-expression of

countries and sectors in the large communities shown in Table 5 allows us to characterize

community formation by two factors. One is the over-expression of countries in the large com-

munities shown in Fig 6. The other is the over-expression network of sectors shown in Fig 7.

In these figures, a country tends to form communities in neighboring countries, and a sector

tends to form communities in the same industry. This result suggests that community
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formation is due to multiple factors, and the over-expression networks in Figs 6 and 7 provide

support for the appropriateness of the overlapping boundary of community formation in

Proposition S7. Therefore, community formation in the supply chain possesses overlapping

boundaries. These results validates Proposition S7.

Remaining propositions. The supply chain data have no weight on links. Therefore, the

two propositions: Proposition S6: The link weight distribution of efficient supply chain systems
follows a power law and Proposition S9: Resilient supply chain systems demonstrate a power law
distribution for link-weights are not applicable to the analysis in this paper. In addition, we con-

centrated on the topological properties of the supply chain network and, therefore, the resil-

ience of the system, so Proposition S8: The fitness of hub firms determines the resilience of
supply chain systems against both random disturbances and targeted attacks is also out of the

scope of the current study.

Conclusions

In this paper, we studied the topological properties of the global supply chain network to

empirically test the efficient supply chain propositions proposed by E. J.S. Hearnshaw et al.
We verified the propositions by conducting a large-scale empirical analysis of global supply

chain data. The topological properties of the global supply chain network are empirically stud-

ied from three different angles: node-level characteristics, mesoscopic structural characteris-

tics, and flow characteristics. An analysis from these three different angles was required to test

the efficient supply chain propositions and obtain a coarse-grained description of the global

supply chain network in terms of its bow-tie and community structures.

The global supply chain data in the year 2017 were constructed by collecting various com-

pany data from Standard & Poor’s Capital IQ platform. The total number of firms and directed

links in our data were 437, 453 and 948, 247, respectively.

Degree distribution is characterized by a power law of the form with γin = 2.42 and γout =

2.11. The clustering coefficient decays hCðkÞi � k� bk with an exponent βk = 0.46. This indicates

the presence of a hierarchical structure to the supply chain network. We observed that hknn(k)i
does not depend on k and remains more or less constant with k, indicating the absence of

nodal degree-degree correlation.

The bow-tie structure of the GWCC revealed that the OUT component was the largest and

consisted of 41.1% of all firms. The GSCC component comprised 16.4% of all firms. We

observed that upstream or downstream firms were located a few steps away from the GSCC.

Then, we discovered the community structure of the network using the map equation method

and characterized them according to their locations and industry classifications. We observed

that the largest community was comprised of private firms mainly from the automotive retail

sector based in the US. These firms are belong to the OUT component in the bow-tie structure

of the global supply chain network. This indicates that the retail firms generally belong to the

OUT component of the bow-ties structure.

Finally, we tested the validity of the nine propositions on the supply chain network based

on the results obtained from the topological properties. We confirmed the validity of Proposi-

tions S1 (i.e., short path length), Proposition S2 (i.e., power-law degree distribution), Proposi-

tion S3 (i.e., high clustering coefficient), Proposition S4 (i.e., “fit-gets-richer” growth

mechanism), Proposition S5 (i.e., truncation of power-law degree distribution), and Proposi-

tion S7 (i.e., community structure with overlapping boundaries) regarding the global supply

chain network. While the original propositions S1 just mentioned a short path length, we

found the short path from the GSCC to IN and OUT by analyzing the bow-tie structure.

Therefore, the short path length in the bow-tie structure is a conceptual addition to the original
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propositions of Hearnshaw. However, the propositions related to link weight and the resilient

nature of the network were not confirmed due to the limitations of our data and the narrow

scope of the current study. Such analysis will be left for a future study.
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