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Abstract 27 

Humanity will soon define a new era for nature – one that seeks to transform decades of 28 

underwhelming responses to the global biodiversity crisis. Area-based conservation efforts, 29 

which include both protected areas and other effective area-based conservation measures 30 

(OECMs), are likely to extend and diversify. But persistent shortfalls in ecological 31 

representation and management effectiveness diminish the potential role of area-based 32 

conservation in stemming biodiversity loss. Here we show how protected area expansion by 33 

national governments since 2010 has had limited success in increasing the coverage across 34 

different biodiversity elements (ecoregions; 12,056 threatened species; Key Biodiversity 35 

Areas; wilderness areas) and ecosystem services (productive fisheries; carbon services on 36 

land and sea). To be more successful post-2020, area-based conservation must contribute 37 

more effectively to meeting global biodiversity goals – ranging from preventing extinctions 38 

to retaining the most intact ecosystems – and better collaborate with the many Indigenous, 39 

community groups and private initiatives that are central to successful biodiversity 40 

conservation. The long-term success of area-based conservation requires Parties to the 41 

Convention on Biological Diversity to secure adequate financing, plan for climate change and 42 

make biodiversity conservation a far stronger part of land, water and sea management 43 

policies.  44 
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Introduction  45 

Governments, policy makers and much of the conservation community have long heralded 46 

protected areas as a fundamental cornerstone of biodiversity conservation1,2. The importance 47 

of other effective area-based conservation measures (OECMs) is also beginning to be 48 

recognised3,4. OECMs were defined by the Convention on Biological Diversity (CBD) in 49 

2018 as places outside the protected area estate that deliver effective biodiversity 50 

conservation, such as government-run water catchment areas, territories conserved by 51 

Indigenous peoples and local communities some private conservation initiatives (Box 1). 52 

Both protected areas and OECMs (collectively referred to herein as area-based conservation 53 

measures) are acknowledged in the CBD and the 2030 Agenda for Sustainable 54 

Development5. In particular, the CBD’s current ten-year Strategic Plan for Biodiversity6 – 55 

agreed by 168 countries in 2010 – had an explicit target (Aichi Target 11) that stipulated “at 56 

least 17 per cent of terrestrial and inland water areas and 10 per cent of coastal and marine 57 

areas, especially areas of particular importance for biodiversity and ecosystem services, are 58 

conserved through effectively and equitably managed, ecologically representative and well-59 

connected systems of protected areas and OECMs, and integrated into the wider landscape 60 

and seascape” by 2020. This target has dominated the area-based conservation agenda for the 61 

past decade.  62 

Between 2010 and 2019, protected areas expanded from covering 14.1% to 15.3% of global 63 

land and freshwater environments (excluding Antarctica) and from 2.9% to 7.5% of the 64 

marine realm7 (Fig 1). While it is not yet possible to track their global extent systematically, 65 

OECMs have emerged as a category of area-based conservation since 20108. However, 66 

despite these encouraging efforts, some disconcerting spatial dynamics in the global protected 67 
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area estate are becoming more apparent. One recent analysis showed that on average 1.1 68 

million km2 of land and sea were recorded as removed from the global protected area estate 69 

annually between 2006 and 20189. There is also concern that nations are paying less attention 70 

to the qualitative elements of Aichi Target 11, including the need for representative and 71 

connected protected areas that are equitably governed and managed10-16. Moreover, some 72 

long-standing issues, including poor resourcing and low management effectiveness, continue 73 

to compromise the ability of protected areas to conserve biodiversity and ecosystems17-23.  As 74 

a consequence, there is a risk that humanity could fail to deliver on the overall strategic goal 75 

for which the target was established – to “improve the status of biodiversity by safeguarding 76 

ecosystems, species, and genetic diversity”6. 77 

A post-2020 Global Biodiversity Framework will be agreed upon at the fifteenth Conference 78 

of the Parties to the CBD. This new strategic plan could be humanity’s last chance to prevent 79 

catastrophic global biodiversity loss24. The urgency to act has emboldened calls for a 80 

substantial expansion of area-based conservation globally25-28 and fundamental changes in 81 

how environmental targets are framed and implemented17,22,29,30. It is therefore timely to 82 

assess the achievements and failures of area-based conservation efforts over the past decade 83 

and place these findings within the wider context of the global biodiversity crisis.  84 

 85 

The performance of protected areas since 2010  86 

In this section, we provide an up to date temporal analysis (between 2010 to 2019) of how the 87 

recent expansion of protected areas globally has affected the net coverage of the qualitative 88 

components of Target 11 (see Supplementary Methods for details of methodology and 89 
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calculations). We omit reference to OECMs in this section as a database showing the global 90 

extent of these sites is not yet available. 91 

Protected areas being ecologically representative   92 

The concept of being ecologically representative has been interpreted as the coverage of 93 

species or ecoregions (areas containing geographically distinct assemblages of species31,32), 94 

especially those that are threatened with extinction10,13,33,34. We analysed how expansion of 95 

the global protected area estate between 2010 and 2019 affected coverage of 12,056 species 96 

listed as Vulnerable, Endangered or Critically Endangered (herein ‘threatened’ species) on 97 

the IUCN Red List35 (Fig. 2). Between 2010 and 2019, the percentage of species with some 98 

portion of their geographic range protected increased from 86% to 87.6% (n=10,563). 99 

However, only 21.7% (n = 2,618) of species assessed had adequate representation inside 100 

protected areas in 2019 (up from 18.9% in 2010), where adequacy targets for individual 101 

species were set according to their geographic range34.  102 

The proportion of threatened reef-forming corals with adequate representation grew rapidly 103 

over the last decade from 9.1% to 44.0%. The proportion of species with adequate coverage 104 

also increased for threatened mangroves (to 50.0%), seagrasses (to 50.0%), marine mammals 105 

(to 43.2%), marine bony fishes (to 42.1%) and cartilaginous fishes (to 32.4%) in this time. 106 

However, no threatened marine reptiles had adequate levels of protection in 2019. On land, 107 

the proportion of species with adequate coverage grew by <3% for birds (to 33.6%) and <2% 108 

for amphibians (to 10.9%), reptiles (to 13.6%), mammals (to 37.0%) and freshwater species 109 

(to 19.0%) in the last decade (Table S1; Table S2). It remains that 78.3% (n = 9,438) of all 110 
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threatened species assessed had inadequate protection as of 2019, with at least 1,493 (12.4%) 111 

remaining without any coverage at all.  112 

We further assessed progress toward adequacy targets of 17% protection for terrestrial 113 

ecoregions and 10% for marine ecoregions or pelagic regions. We found that 42.6% (n = 361) 114 

of terrestrial ecoregions were adequately protected in 2019 (up from 38.8% in 2010) (Fig. 2; 115 

Table S3). We also found that one-fifth (20.6%) of land protected since 2010 covered tropical 116 

and subtropical grassland ecoregions – a critically endangered biome31 (Table S4). However, 117 

32.9% of land protected since 2010 covered dry or desert ecoregions, which are relatively 118 

species poor and well represented in the global protected area estate31. The percentage of 119 

marine ecoregions with adequate coverage increased to 45.7% (n = 106) last decade (from 120 

31.8% in 2010) (Table S5), with much of this growth occurring over in the Southern Ocean 121 

around Antarctica (0.7 million km2; 4.2% of all new marine protected area). Despite 122 

attracting 81.3% (14.7 million km2) of all new protected since 2010, coverage in pelagic 123 

regions remains low, with only 10.8% (n = 4) adequately protected in 2019 (up from 2.7% in 124 

2010) (Fig 2; Table S6). Protected area expansion in pelagic regions was particularly 125 

concentrated in waters between Australia and South America, which enjoyed 36.6% of all 126 

new marine protected area (6.0 million km2) in the past decade. 127 

Coverage of areas of particular importance for biodiversity  128 

The Key Biodiversity Area  (KBA) approach36 offers a global standard for identifying 129 

marine, terrestrial and freshwater sites that contribute significantly to the global persistence 130 

of biodiversity. Over 15,000 KBAs have been identified so far (83.1% of which are Important 131 

Bird Areas - the avian subset of KBAs)37. Host nations are encouraged to ensure that these 132 
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sites are managed in ways that ensure the persistence of biodiversity, although this does not 133 

necessarily mean inclusion within a protected area36. Our analysis showed average coverage 134 

of terrestrial KBAs was 45.9% in 2019 (up from 43.6% in 2010) and 43.3% for marine KBAs 135 

(up from 37.9% in 2010) (Fig 2). Overall, some 4,900 KBAs (33.0%) remained without 136 

protected area coverage in 2019.  137 

Wilderness areas are ecologically intact land and seascapes that are predominantly free of 138 

human-driven biophysical disturbance38,39. They underpin planetary life-support systems40 139 

and are critical for the long-term persistence of imperilled species41, especially in a time of 140 

climate change42. Over half (55.6%) of all wilderness overlaps with the geographic range of 141 

at least one threatened species, yet wilderness areas are also quite spatially discordant from 142 

KBAs – only 1.2% of all land and sea on Earth is simultaneously recognised as both a KBA 143 

and wilderness area (Fig S1). Our analysis shows coverage increased for both terrestrial 144 

(from 19.7% to 22.1%) and marine wilderness (2.0% to 8.5%) areas during the past decade 145 

(Fig. 2).  146 

Coverage of ecosystem services 147 

The carbon sequestered and stored in terrestrial ecosystems plays a pivotal role in mitigating 148 

anthropogenic climate change43. We therefore assessed coverage of global above-ground 149 

biomass and soil carbon stocks44. Coverage of above-ground biomass increased from 22.6% 150 

in 2010 to 23.7% (99.0 petagrams of carbon (Pg C)) in 2019. Coverage of global soil carbon 151 

stocks was lower on average and increased less in the past decade, from 13.9% in 2010 to 152 

14.6% (400.5 Pg C) in 2019. Large unprotected repositories of soil carbon are prevalent 153 

across north-east North America, Russia and south-east Asia (Fig S2). However, maps of 154 
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terrestrial organic carbon, particularly in peatlands and tropical rainforests, are continually 155 

being refined45, which may influence our future understanding of carbon storage in particular 156 

areas.  157 

The ‘biological pump’ – carbon fixed by phytoplankton in the world’s oceans being exported 158 

to the deep ocean46,47 – also plays a key role in mitigating climate change because it removes 159 

carbon from the ocean and atmosphere systems for decades to millennia48. We estimate that 160 

0.21 Pg of particulate organic carbon (POC)49 and 0.17 Pg of dissolved organic carbon 161 

(DOC)50 is exported inside marine protected areas each year (Table S7; Table S8). We note, 162 

however, that the factors that drive carbon export in the world’s oceans vary seasonally51 and 163 

the relative value of marine protected areas in carbon export may vary through time.  164 

Around three billion people rely on wild-caught or farmed seafood as their primary source of 165 

protein, making the sustained provision of seafood a globally-important goal5. We compared 166 

protected area coverage of the most and least productive marine regions for fisheries catch in 167 

the world’s oceans, finding that coverage of the least productive exclusive economic zones 168 

(EEZs) (i.e. those within the bottom 20% for annual fisheries catch per unit area; Table S9) 169 

was on average three times greater than coverage of the most productive EEZs (i.e. those 170 

within the top 20% for annual fisheries catch per unit area; Table S10) (31.2% versus 9.8%). 171 

Moreover, average coverage of the most productive EEZs has not changed notably since 172 

2010 (Fig 2). We also found that the seven most productive pelagic regions for fisheries catch 173 

have no formal protected area coverage (Table S11).   174 

Protected areas being well connected 175 
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Well-connected ecosystems are critical for maintaining important ecological and evolutionary 176 

processes, including species migration and gene flow, especially when species face rapid 177 

climatic and environmental changes52,53. Connectivity among marine protected areas further 178 

helps to replenish and maintain fish populations, including on fished reefs54,55. A previous 179 

study showed that, in 2016, only 30% of terrestrial ecoregions were at least 17% covered by 180 

protected areas that were within the potential dispersal distance of terrestrial vertebrates56.  A 181 

subsequent study showed that the percentage of connected terrestrial protected areas 182 

increased from 6.5% to 7.7% between 2010 and 201857. However, these assessments did not 183 

account for the permeability of unprotected land between protected areas. There have been no 184 

global-scale assessments of connectivity among marine or freshwater protected areas, but 185 

regional-scale studies show them to have limited connectivity, especially for species with a 186 

dispersive larval stage58. 187 

Protected area management effectiveness  188 

Over the past few decades, four broad approaches have been used to evaluate area-based 189 

conservation efforts (Table 1). Three of these approaches pertain to management 190 

effectiveness, the first of which – herein termed input evaluation – evaluates the adequacy of 191 

management resources for area-based conservation. A recent study corresponding to ~23% of 192 

terrestrial protected area found 47% of protected areas suffer from inadequate staff and 193 

budget resources, with poor resourcing especially noticeable in the Neotropics21. Similarly, a 194 

study of 433 marine protected areas showed 65% to have insufficient budget for basic 195 

management needs and 91% to have on-site staff capacity that is inadequate or below 196 

optimum20. Related inputs, including weak enforcement of protected area regulations59, have 197 

also been implicated in poor management effectiveness. 198 
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A second evaluation approach – herein termed threat reduction evaluation – asks if area-199 

based conservation effectively reduces threats to biodiversity persistence. The majority of 200 

these evaluations show that protected areas slow but fail to completely halt human pressures 201 

within their borders. For example, human pressures increased inside 55% of protected areas 202 

on land between 1993 and 200960, while in the marine realm, 94% of protected areas created 203 

before 2014 permit fishing activities61,62. However, terrestrial protected areas have been 204 

found to reduce rates of deforestation and forest degradation below those observed in nearby 205 

unprotected areas63, including in the Amazon64,65, and marine protected areas can reduce 206 

fishing vessel traffic66 and the negative effects of some non-native species67.  207 

The third evaluation approach – herein termed outcome evaluation – asks if the goals of area-208 

based conservation are being achieved relative to no intervention taking place. A recent 209 

controlled study showed some 12,000 protected areas were ineffective at reducing human 210 

pressures inside their borders between 1995 and 201068. However, several studies have 211 

reported beneficial impacts of protected areas on biodiversity. For example, a controlled 212 

study of 359 terrestrial protected areas showed species richness to be 10.6% higher and 213 

abundance 14.5% higher inside protected areas than outside, with the effects of protection 214 

most prominent in human-dominated land uses in the tropics (e.g. cropland, plantations)69. 215 

Similarly, a controlled study of 218 marine protected areas found that, on average, fish 216 

biomass is nearly double inside protected areas than in non-protected sites20. Marine 217 

protected areas can also promote the recovery of commercial fish species70,71. No-take marine 218 

reserves, in particular, can effectively increase species richness, density and biomass in both 219 

tropical and temperate systems20,72-74, as well as being effective at restoring trophic 220 

function75,76 and lowering levels of coral disease77. Finally, several studies have reported on 221 
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the social impacts of protected areas. For example, a controlled study corresponding to 603 222 

protected areas found households near protected areas with tourism opportunities had higher 223 

wealth levels (by 17%) and a lower likelihood of poverty (by 16%) than similar households 224 

living far from protected areas78. 225 

Equitable governance and management in protected areas  226 

Social equity in the context of protected areas has multiple dimensions, including 227 

distributional equity (e.g. people agree on a scheme for sharing benefits and burdens), 228 

procedural equity (e.g. decision-making that is transparent, accountable and participatory) 229 

and recognition (e.g. respect for cultural identities, customary rights and traditional 230 

management practices)79. A recent survey corresponding to 225 protected areas showed the 231 

majority of conservation managers, staff and community representatives believe protected 232 

area benefits are shared equally15. Yet the study also showed decision-making was not 233 

equitable in many cases and that local stakeholders perceived a general loss of rights over 234 

natural resources after protected area establishment15.  235 

Despite limited evidence of progress toward social equity, protected areas that do integrate 236 

local communities as stakeholders often result in better socioeconomic and conservation 237 

outcomes14,80. A review of 27 marine protected areas found stakeholder engagement, 238 

surveillance, leadership, political will and the existence of sanctioning and conflict resolution 239 

mechanisms were key factors related to achieving ecological objectives81. No-take, well-240 

enforced, and longer established marine protected areas not only show conservation 241 

success82, but also positive economic and governance outcomes for dependant human 242 

communities83. Furthermore, community-managed terrestrial protected areas are often more 243 
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effective than nationally-designated protected areas at reducing deforestation pressures, 244 

including in Peru, Brazil, Australia and Namibia84,85. 245 

Lessons learned and priority actions for area-based conservation 246 

National governments collectively made some progress toward Aichi Target 11 in the past 247 

decade, particularly in the marine realm. However, it is clear that nations have as yet failed to 248 

meet this target. The rate of terrestrial protected area expansion needed to be double what was 249 

observed in the past decade in order to achieve 17% coverage for land and freshwater 250 

environments. Moreover, 78.3% of known threatened species and more than half of all 251 

ecosystems on land and sea remained without adequate protection in 2019. A clear lesson 252 

from this assessment is that nations must expand area-based conservation efforts and better 253 

ensure they contribute meaningfully to global goals for species and ecosystem conservation, 254 

which range from stopping extinction86 to keeping ecosystems intact87. The past decade has 255 

also shown that many protected areas are poorly managed, due predominantly to chronic 256 

resource shortages, and that many Indigenous and community groups are inadequately or 257 

inequitably represented in land, water and sea conservation plans. In light of these lessons, 258 

we identify three urgent challenges that must be acted upon by governments, scientists, 259 

policy makers and other stakeholders as they embark on the next decade of area-based 260 

conservation (Table 2).  261 

Making other effective area-based conservation measures count 262 

There are now expanding opportunities to formally recognise places outside state-run 263 

protected areas that can conserve biodiversity. In addition to protected areas governed 264 

privately88 and by Indigenous peoples84, other effective area-based conservation measures 265 
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(OECMs) are being increasingly recognised. The importance of OECMs was formally 266 

recognised in Aichi Target 11 in 2010, but their guiding principles and criteria for 267 

identification were not agreed until November 2018 (Box 1). This delay likely contributed to 268 

OECMs being overlooked in most national biodiversity policies and strategies over the last 269 

decade. With a formal definition now agreed89, nations and managing bodies look set to 270 

operationalise OECMs more rapidly. The challenge now for the conservation community is 271 

to ensure OECMs contribute meaningfully to biodiversity conservation.  272 

Other effective area-based conservation measures could help address representation shortfalls 273 

in the global protected area estate. One recent study shows that 566 unprotected Key 274 

Biodiversity Areas are at least partly covered by one or more potential OECMs4, and 275 

compared with nationally-designated protected areas, OECMs may prove to be more socially 276 

acceptable in productive land and seascapes (which are hotspots for poorly protected 277 

threatened species10,11). Recognising OECMs in inshore marine habitats, farmlands and 278 

managed forests could also enhance the connectivity of area-based conservation efforts, 279 

provided natural ecological functions can be restored and maintained in such areas90,91. Wider 280 

recognition of OECMs should also help make area-based conservation management more 281 

equitable given they are managed by and for the benefit of a diverse set of actors. A recent 282 

study showed Indigenous-managed lands in Australia, Brazil and Canada support similar 283 

concentrations of vertebrate species to nationally-designated protected areas92, which 284 

exemplifies the importance of working with Indigenous Peoples to recognise OECMs in their 285 

territories. 286 

 To deliver on their potential, however, governments, private industry and the conservation 287 

community must immediately mobilise support for OECMs to overcome issues faced by 288 
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many protected areas, including inadequate reporting and resourcing. A reporting platform 289 

for OECMs8= was released in December 2019 and has potential to make assessments of 290 

progress toward the successor of Aichi Target 11 more accurate if countries make use of it. 291 

The success of OECMs will also depend on governments and conservation actors upholding 292 

human rights and social safeguards, particularly in Indigenous and community areas. In cases 293 

where meeting OECM criteria will require some adaptation to livelihoods, great care must be 294 

taken to develop alternative livelihood opportunities that deliver tangible benefits to resource 295 

users93. Alternative livelihood schemes must also be mindful to retain the biodiversity 296 

benefits of OECMs94.  297 

Tracking the increasing dynamism of area-based conservation 298 

Recent studies show protected areas are more dynamic in space and time than previously 299 

thought9. Decisions to remove, shrink or relax protected areas are poorly documented, 300 

making it difficult to assess which ecosystems are most susceptible to such dynamics or how 301 

they affect the overall quality of area-based conservation networks. The challenge for the 302 

conservation community is to have protected area dynamics reported more transparently – 303 

especially when they compromise biodiversity outcomes.   304 

Many removals from the protected area estate can be attributed to protected area 305 

downgrading, downsizing, and degazettement (PADDD) events. Over 1,500 PADDD events 306 

affected over one-third of Australia’s protected area network (416,740 km2) between 1997 307 

and 201495. Moreover, 23 PADDD events have affected natural World Heritage Sites – 308 

protected areas with “outstanding universal value” (e.g. Virunga, Serengeti and Yosemite 309 

National Parks)96. PADDD events can accelerate forest loss and fragmentation97 and most 310 
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(62%) are associated with activities that are in stark conflict with biodiversity conservation, 311 

including industrial-scale resource extraction and infrastructure development98. Potentially of 312 

greatest concern, however, are the many PADDD events that are going undocumented, 313 

particularly in marine systems99 and on private lands100.  314 

To improve the transparency of area-based conservation decisions, we encourage 315 

governments and the conservation community to engage more with global PADDD tracking 316 

platforms (e.g. padddtracker.org). We also believe that integrating PADDD tracking data 317 

with existing area-based conservation databases (e.g. World Database on Protected Areas7) 318 

would vastly improve their utility and aid global reporting. Dynamism in area-based 319 

conservation could signal attempts to expand or enhance protected areas, either through 320 

improved resourcing and management101,102, or by enacting more restrictive regulations103. As 321 

such, there is also a clear need to better incentivise and track the continuum of changes to 322 

protected areas that can improve their ability to conserve biodiversity. We suggest that such 323 

changes be characterised collectively as Protected Area Gazettement, Expansion and 324 

Enhancement (PAGEE). Clear, transparent tracking around both PADDD and PAGEE events 325 

will ensure we address, and not exacerbate, current shortfalls in area-based conservation.  326 

Outcome-orientated evaluation of area-based conservation 327 

The numerous approaches developed to evaluate area-based conservation efforts all have 328 

merit, but the conservation community remains too reliant on types of evaluation that focus 329 

on management inputs or threat reduction104 (Table 1). Adopting evaluation techniques that 330 

more effectively capture the biodiversity and socio-economic outcomes of area-based 331 

conservation is currently a substantial challenge.  332 
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The Global Database on Protected Area Management Effectiveness (GD-PAME) provides 333 

information on many protected area processes, including the existence of a management plan 334 

or the adequacy of law enforcement activities105. Yet the majority of GD-PAME 335 

methodologies were not developed to quantify the effects of protected area management 336 

activities on species and ecosystems105 and therefore cannot be used to evaluate progress 337 

toward the effective conservation of biodiversity. High resolution maps of ecological change 338 

across land and seascapes, including forest cover change106 and changes in cumulative human 339 

pressure107,108, enable more outcome-orientated conservation evaluations. But ecological 340 

changes across land and seascapes do not always explain local biodiversity patterns109. The 341 

temporal resolution of cumulative human pressure mapping also lags behind that of forest 342 

cover mapping efforts and some maps of human pressure are at spatial resolutions (e.g. 343 

77sqkm108) that preclude assessments of many small (i.e. <1 km2), but crucially important110, 344 

protected areas.  345 

To make area-based conservation evaluations more outcome-orientated, we suggest making 346 

robust outcome evaluation techniques – both ex-ante to help site areas111 and ex-post to report 347 

on outcomes112 –  a standard reporting requirement for all organisations involved in area-348 

based conservation. Conservation agencies must then better fund long-term and well-349 

designed biodiversity monitoring programs. It will be especially important for such programs 350 

to monitor control sites that match protected areas in terms of ecological and anthropogenic 351 

conditions, so as to isolate any confounding effects113,114. We also encourage governments 352 

and communities to engage more with citizen science initiatives that use techniques such as 353 

camera traps, drones and acoustic monitors to increase the coverage and frequency of 354 

biodiversity data115. Combining advances in remote sensing and field campaigns (e.g. the 355 
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European Space Agency’s Biomass Earth Explorer) with in situ reporting of protected area 356 

management capacity and biodiversity trends could also make outcome evaluations much 357 

more accurate and reliable.  358 

 359 

Future-proofing area-based conservation 360 

While the three challenges discussed above are immediate priorities, broader policy changes 361 

can ensure area-based conservation can contribute meaningfully to longer-term goals held by 362 

the CBD, namely that “by 2050 humanity live in harmony with nature”116 (Table 2). In this 363 

final section, we outline a set of necessary pre-conditions – adequate financing, being 364 

climate-smart and mainstreaming biodiversity across national policy frameworks – that 365 

require action by governments now to ensure the long-term success of area-based 366 

conservation strategies.  367 

Secure adequate financing 368 

The global funding available for species protection has more than halved in the past two 369 

decades, from approximately $200 million USD per year in the 2000s to <$100 million USD 370 

per year in the 2010s117. Compounding resource shortfalls at existing sites are the costs 371 

associated with expanding area-based conservation efforts. One estimate suggests protecting 372 

and effectively managing a more taxonomically comprehensive terrestrial protected area 373 

network would cost US$76.1 billion annually118. As such, a conservative estimate of the 374 

current financial shortfall for area-based conservation likely exceeds the multi-billion dollar 375 

mark. This shortfall is unlikely to be fully addressed in the coming decade, but reducing it 376 

must become an immediate priority for governments and private industry.  377 
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Current and future resourcing needs could be met if the contribution of area-based 378 

conservation to national economies was fairly recognised. The direct value generated by 379 

visits to protected areas is valued at $600 billion USD per year119. Governments must 380 

therefore better account for the contribution of area-based conservation efforts to national 381 

economies. When budgeting for area-based conservation, we suggest governments use 382 

predictive measures of funding requirements and impacts120 and that they consider under-383 

appreciated cost-saving benefits of effective biodiversity conservation. For example, it would 384 

be useful to compare the costs arising from the socio-economic devastation caused by 385 

zoonotic diseases such as SARS or COVID-19 with those needed to effectively manage area-386 

based conservation networks in a way that reduces supply to illegal wildlife markets121. There 387 

is also an urgent need to better harness industry and philanthropic contributions to area-based 388 

conservation through, for example, improved funding guidelines that ensure involvement 389 

from private interests do not compromise the siting or management of area-based 390 

conservation122-124.  391 

Being climate-smart 392 

Anthropogenic climate change will become an increasingly strong mediator of the success of 393 

area-based conservation this decade125, with many predicted biological responses to climate 394 

change already underway126. A recent study showed that under a business-as-usual scenario 395 

for greenhouse gas emissions (RCP8.5), mean sea-surface temperatures within marine 396 

protected areas are projected to increase by 2.8°C by 2100127. We overlaid climate change 397 

projections under a more moderate emissions scenario (RCP4.5) on the terrestrial protected 398 

area network and found that temperatures in the warmest quarter will increase on average by 399 

2.9°C on protected land by 2050, with higher increases occurring in European nations (Fig 400 
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S2; Table S12). We also found that by 2050 some biodiverse nations, including Suriname and 401 

Guyana, can expect 30-40% less rainfall on protected land during dry months (Fig S3; Table 402 

S13). Such changes in bioclimatic conditions are likely to dramatically alter ecological 403 

networks128 and imperil some species and ecosystems129. Even the relatively moderate 404 

RCP4.5 greenhouse gas emission scenarios are likely drive the elimination of most warm-405 

water coral reefs by 2040–2050130.  406 

There are now well-established ways to incorporate climate change into area-based 407 

conservation plans131, including safeguarding, or where possible, restoring the integrity of 408 

ecosystems around protected areas so as to ensure ecological connectivity132,133. Ensuring that 409 

managers have the knowledge and capacity to implement realistic climate adaptation policies 410 

is also paramount134. Greater enforcement of conservation regulations135 and accounting for 411 

human responses to climate change136 are also likely to enhance the climate resilience of 412 

area-based conservation efforts. However, targeting protected areas in sites where bioclimatic 413 

changes may be small (i.e. refugia) must be done with caution because predicted changes can 414 

be spatially discordant127 as can the biotic response. For example, only 3.5% of marine 415 

protected areas co-occur with refugia for both sea-surface temperature and oxygen 416 

concentration127. In such cases, decision-support tools (e.g. value of information analysis137; 417 

systems modelling138) can evaluate the benefits of resolving uncertainty about ecological 418 

responses to climate change before implementing conservation action, and hence lead to 419 

more robust management decisions.  420 

Make biodiversity conservation mainstream 421 
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No matter how well-sited, resourced or managed, area-based conservation can only act on a 422 

subset of threats to biodiversity persistence. The amelioration of large-scale distal threats 423 

requires other interventions that are triggered by broader land, water and sea management 424 

policies139,140. China is the first major economy to formulate a national policy – known as the 425 

Ecological Redline Policy – that mandates municipality and provincial governments to 426 

establish biodiversity and ecosystem service assessments in land use planning141. It is hoped 427 

that the Ecological Redline Policy extends to China’s planned activities beyond their national 428 

boundaries, including the Belt and Road Initiative, which could impact on may areas of 429 

critical conservation concern142. However, most national land, water and sea management 430 

policies are subservient to economic development143 or contain loopholes that lead to 431 

perverse environmental outcomes144. Governments must recognise that getting these policies 432 

right is essential and will ease the strain on area-based conservation strategies in the long 433 

term. 434 

Two cross-cutting changes could improve the efficacy of national land, water and sea 435 

management policies. First, we suggest nations adopt an overarching goal for biodiversity 436 

that is bold – to have a net positive impact on biodiversity, for example29 – and then agree a 437 

set of socio-economic and environmental targets that can contribute proportionally to this 438 

overarching goal. Targets should then be made mutually conditional whereby environmental 439 

targets (e.g. protect 30% of land) cannot be considered met if progress toward socio-440 

economic targets (e.g. eliminate incentives harmful to biodiversity) is found wanting. 441 

Improving biodiversity accounting protocols could also enhance the efficacy of land, water 442 

and sea management policies. One example of this is switching from biodiversity impact 443 

offsetting protocols that simply displace conservation funding or entrench rates of 444 



21 

 

biodiversity loss (e.g. ‘averted loss offsetting’) to emerging protocols that align compensation 445 

with desired trajectories for imperilled species or ecosystems (e.g. ‘target-based 446 

compensation’)145.  447 

 448 

Conclusions 449 

Area-based conservation will remain the cornerstone of biodiversity conservation long into 450 

the 21st century. But governments have dramatically underinvested in protected areas and 451 

OECMs and been weak in legally protecting them. In addition to addressing existing 452 

shortfalls, conservation organisations need to adopt more impact-orientated evaluation 453 

measures and promote governance and management equity. Organisations must also improve 454 

the transparency of decisions that result in spatial and resource dynamics and ensure that 455 

OECMs can contribute meaningfully to biodiversity conservation. Finally, governments must 456 

future-proof area-based conservation by securing adequate financing, being climate-smart 457 

and mainstreaming biodiversity across environmental and socio-economic policies.   458 
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 482 
 483 
Fig. 1. Growth in the global protected area estate between 2010 and 2019. Global map shows 484 
annual expansion of protected areas across marine (blue to pink colours) and terrestrial (green 485 
to red colours) realms on Earth. Circular plot shows increases in areal coverage (%) per year 486 
for marine and terrestrial protected area estates for countries >25,000 km2 in size. Landlocked 487 
countries are marked with an asterisk (*). Progress toward the globally agreed target - to have 488 
17% of land and inland waters and 10% of coastal and marine areas protected by 2020 - is 489 
promising but incomplete. Data for figure sourced from7. 490 
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Fig. 2. Temporal trends in biodiversity and ecosystem service representation within the 492 
global marine (A) and terrestrial (B) protected area estates. Left-hand plots show increases in 493 
representation of values (coloured dots) compared with percent growth in protected area 494 
estates between 2010 and 2019 (dotted vertical lines). Coloured dots to the right of dotted 495 
vertical lines show when an increase in representation was greater than the growth in the 496 
protected area estate, suggesting these values benefited most from recent expansion of area-497 
based conservation efforts. Right-hand plots show change in biodiversity and ecosystem 498 
service representation (coloured lines; left axis) as the terrestrial and marine protected area 499 
estates expanded between 2010 and 2019 (grey shading; right axis). For taxonomic groups, 500 
trend lines show the proportion of threatened species with adequate representation. Trend 501 
lines for ecoregions and pelagic regions show the proportion of these features that are at least 502 
17% protected (for terrestrial ecoregions) or at least 10% protected (for marine ecoregions or 503 
pelagic regions). Trend lines for all other values, including Key Biodiversity Areas (KBAs), 504 
wilderness areas, biomass carbon, soil carbon and exclusive economic zones (EEZs) within 505 
the top 20% for annual fisheries catch per km2, represent global averages. See Supplementary 506 
Information for data sources and methods.   507 
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Nationally designated protected areas Other effective area-based conservation 
measures (OECMs) 

“A clearly defined geographical space, 
recognised, dedicated and managed, 

through legal or other effective means, to 
achieve the long term conservation of 

nature with associated ecosystem services 
and cultural values”2 

 

“A geographically defined area other than a 
Protected Area, which is governed and 

managed in ways that achieve positive and 
sustained long-term outcomes for the in 

situ conservation of biodiversity, with 
associated ecosystem functions and 

services and, where applicable, cultural, 
spiritual, socioeconomic, and other locally 

relevant values”89 

 508 
 509 
Box 1. Protected areas and other area-based conservation measures (OECMs) are 510 
complementary area-based conservation measures. Their distinguishing feature is that a 511 
protected area has a primary conservation objective whereas an OECM delivers the effective 512 
in-situ conservation of biodiversity, regardless of its objectives. Protected areas are playing a 513 
central role in conserving (A) wilderness areas in Tasmania, Australia (Credit: Nik 514 
Lopoukhine), the Patagonian Huemul (Hippocamelus bisulcus) in Chile and (C) the Shoebill 515 
stork (Balaeniceps rex) in Uganda (Credit: Daniel Field). OECMs have been recognised at 516 
(D) a locally managed marine area on Totoya Island, Fiji (Credit: Stacy Jupiter) and (E) a 517 
conservation concession in Loreto Region, Peru (Credit: Bruno Monteferri).  518 
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Table 1 Approaches for evaluating area-based conservation. The different approaches imply 519 
different measurements and are subject to strengths and weakness. Design, input and threat 520 
reduction evaluations all measure means to an end, whereas outcome evaluation measures 521 
progress toward the ultimate goals of area-based conservation. Globally we have limited 522 
capacity to perform outcome evaluation for area-based conservation. 523 
 524 

 525 
 526 
  527 

Type What is Measured Strengths (+) and Weaknesses (-) Examples 

Design 
evaluation  

1. Coverage of species 
2. Coverage of ecoregions  
3. Coverage of important 

areas for biodiversity 
and ecosystem services 

4. Protected area 
connectivity 
 

 

+ Broad spatial data on environmental variables readily 
available 

+ Robust methods to identify if siting decisions for area-
based conservation are influenced by competing 
interests (e.g. agricultural suitability) 

+ Can include Traditional Ecological Knowledge where 
available 

- Coarse scale assessments might not be adequate of 
local planning 

- Subject to inaccuracies in global data sets 

10,11 

Input evaluation 1. Budget shortfalls  
2. Capacity shortfalls  
3. Social equity shortfalls 

 

+ Global database established 
+ Assessment frameworks that can be conducted rapidly 
- Taxonomic or geographic biases in datasets 

18,21 

Threat 
reduction 
evaluation  

1. Change in human 
pressures 

2. Change in 
environmental state 
(e.g. pollution, forest 
cover) 

 

+ Human pressures are often useful proxies for broad-
scale biodiversity impacts 

+ Cheap and non-invasive (e.g. derived from satellites) 
- Often miss important drivers of biodiversity loss (e.g. 

disease, pollution, poaching) 
- Do not always explain local or regional biodiversity 

patterns 

20,60,105 

Outcome  
evaluation  

1. Species abundance and 
richness  

2. Extinction risk 
3. Socio-economic 

outcomes 

 

+ Account for what would have happened in the absence 
of conservation intervention 

+ Provides the most robust foundation for decision-
making 

- Counterfactual studies can exclude from impact 
evaluation sites that are small, surrounded by other 
conservation interventions or do not have an 
biophysically similar site that is unprotected 

- Data to quantify progress toward goals of area-based 
conservation (e.g. avoiding extinctions) in the absence 
of conservation action often unavailable 

20,86,150 
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Table 2. Synthesis of current progress toward targets for area-based conservation and how 528 
acting on key challenges could improve its performance in the 21st century. Progress toward 529 
targets assessed as “Good” (substantial positive trends at a global scale relating to most 530 
aspects of the element), “Moderate” (the overall global trend is positive but insubstantial or 531 
insufficient, or there may be substantial positive trends for some aspects of the element but 532 
little or no progress for others, or the trends are positive in some geographic regions but not 533 
in others), “Poor” (little or no progress toward the element or movement away from it; 534 
although there may be local, national, or case-specific successes and positive trends for some 535 
aspects, the overall global trend shows little or negative progress) or “Unknown” (insufficient 536 
information to score progress). Challenges and suggested actions shaded orange represent 537 
immediate discrete priorities, while those shaded green are overarching pre-conditions that 538 
require action by governments to ensure the long-term success of area-based conservation 539 
strategies. Figure partially adapted from ref. (24) and (151). 540 

 541 

 542 

  543 
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  544 

 
Global targets 
for area-based 
conservation 

Progress 

Challenges to 
improve progress 

Potential actions to address 
challenges 

Go
od

 

M
od

er
at

e 

Po
or

 

U
nk

no
w

n 

 
Conserve: 
• 17% terrestrial 

and inland water 
• 10% coastal and 

marine areas 
 
Capture important 
places for 
biodiversity and 
ecosystem 
services, such as:  
• KBAs 
• Wilderness areas 
 
Be effectively 
managed by:  
• Having adequate 

resources  
• Abating human 

pressures 
• Having positive 

biodiversity 
impacts 

 
Be equitably 
managed 
 
Be ecologically 
representative 
• Cover 17% of all 

terrestrial 
ecoregions  

• Cover 10% of all 
marine 
ecoregions  

• Cover 10% of all 
pelagic regions 

 
Be well-connected 
and integrated 

   
• Dynamism of area-

based conservation 
are made more 
transparent 

 
 
• Other effective area-

based conservation 
measures (OECMs) 
contribute 
substantively to 
biodiversity 
conservation 

 
• More impact-

orientated evaluation 
of area-based 
conservation 
 
 
 
 
 
 

• Secure adequate 
resourcing  

 
 
 
 
• Be climate smart  
 
 
 
• Make biodiversity 

conservation 
mainstream 

• Utilise PADDD tracking 
platforms and integrate with 
WDPA 

• Better track Protected Area 
Gazettement, Expansion and 
Enhancement (PAGEE) events 
 

• Engage with OECMs reporting 
platforms  

• Mobilise support for OECMs to 
overcome reporting and 
resourcing issues 

• Ensure that OECMs be managed 
by a diverse set of actors 
 

• Collect better temporal 
biodiversity data, including 
through citizen science 
initiatives 

• Make robust impact evaluation 
a standard reporting 
requirement  

 
• Fund the contribution of area-

based conservation to national 
economies 

• Better harness industry and 
philanthropic contributions 
 

• Safeguard ecological integrity  
• Utilise decision support tools to 

make robust decisions 
 

• Adopt an overarching goal for 
biodiversity that is bold  

• Adopt biodiversity accounting 
protocols that align 
compensation with desired 
trajectories for imperilled 
species or ecosystems 

 545 

  546 
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Supplementary figures and tables 547 

Figure S1. Global spatial overlap in key biodiversity variables and the protected area estate.  548 

Figure S2. The terrestrial protected area network overlaid on a global map of biomass and 549 
soil carbon.  550 

Figure S3. Mean and interquartile rage of change in temperature (�) during the warmest 551 
quarter within national terrestrial protected area networks under a moderate emissions 552 
scenario (RCP4.5). 553 

Figure S4. Mean and interquartile rage of change in precipitation (millimeters) during the 554 
driest quarter within national terrestrial protected area networks under a moderate emissions 555 
scenario (RCP4.5). 556 

Table S1. Proportion of threatened species from different taxonomic groups with adequate 557 
representation in the global protected area estate 2010 and 2019.  558 

Table S2. Proportion of threatened freshwater species from different classes with adequate 559 
representation in the global protected area estate 2010 and 2019.  560 

Table S3. Protected area coverage (%) of terrestrial ecoregions in 2010 and 2019. 561 

Table S4. Location of terrestrial protected areas established between 2010 and 2019 by 562 
biome. 563 

Table S5. Protected area coverage (%) of marine ecoregions in 2010 and 2019.  564 

Table S6. Protected area coverage (%) of off-shelf pelagic regions in 2010 and 2019.  565 

Table S7. Export of particulate organic carbon (POC) at approximately 100m in protected 566 
and unprotected waters in global marine regions. 567 

Table S8. Export of dissolved organic carbon (DOC) at approximately 100m in protected and 568 
unprotected waters in global marine regions. 569 

Table S9. Protected area coverage (%) between 2010 and 2019 of exclusive economic zones 570 
(EEZs) within the bottom 20% for annual fisheries catch (in tonnes) per unit area.  571 

Table S10. Protected area coverage (%) between 2010 and 2019 of exclusive economic zones 572 
(EEZs) within the top 20% for annual fisheries catch (in tonnes) per unit area.  573 

Table S11. Annual fisheries catch (tonnes per km2) and protected area coverage between 574 
2010 and 2019 (%) of pelagic regions. 575 
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Table S12. Current (average for 1950–2000) and future (average for 2041–2060) mean 576 
temperatures (�) during the warmest quarter within national terrestrial protected area 577 
networks.  578 

Table S13. Current (average for 1950–2000) and future (average for 2041–2060) 579 
precipitation rates (millimetres) during the driest quarter within national terrestrial protected 580 
area networks.  581 

  582 
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