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27 ABSTRACT

28 Light commercial vehicles account for about 10-15% of road 

29 traffic in Europe. There have only been few investigations in 

30 their on-road emissions performance. Here, on-road remote 

31 sensing vehicle emission measurements from eighteen locations 

32 across four European countries are combined for a comprehensive 

33 analysis of NOx and smoke emission rates from diesel light 

34 commercial vehicle (LCVs) across the past two decades. This 

35 allows differentiating the performance by emission standard, 

36 model year, curb weight, engine load, manufacturer, vehicle age 

37 and temperature, as well as by measurement device. We find in 

38 general consistency between devices and countries. On-road NOx 

39 emission rates have been much higher than type approval limit 

40 values for all manufacturers, but some perform systematically 

41 better than others. Emission rates went down only with the 

42 introduction of Euro 6a,b emission standards since the year 

43 2015. Smoke emission rates are considered as a proxy for 

44 particulate emissions. Their emissions decrease substantially 

45 from the year 2010 onwards for all countries measured and size 

46 classes. This is consistent with the substantial tightening of 

47 the PM emission limit value that typically forced the 

48 introduction of a diesel particulate filter. The average NOx 

49 emission rate increases with engine load and decreasing ambient 

50 temperatures, particularly for Euro 4 and 5 emission classes. 

51 This explains to a large extent the differences in absolute 

52 level between the measurement sites, together with differences 
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53 in fleet composition. These dependencies have already been 

54 observed earlier with diesel passenger cars; they are considered 

55 part of an abnormal emission control strategy. Some limited 

56 increase of the NOx emission rate is observed for Euro 3 vehicles 

57 older than ten years. The strong increase for the youngest Euro 

58 6 LCVs might rather reflect technology advances with 

59 successively younger models than genuine deterioration. However, 

60 the durability of emission controls for Euro 6 vehicles should 

61 better be monitored closely. Smoke emission rates continuously 

62 increase with vehicle age suggesting a deterioration of the 

63 after-treatment system with use. 
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64 INTRODUCTION
65 Monitoring the real-world emissions of road vehicles is 

66 important for evaluating the effectiveness of control measures 

67 and for planning potential future actions. In Europe, light 

68 commercial vehicles (LCVs) comprise approximately 10% of total 

69 annual sales of light-duty vehicle market1. With the growing 

70 demand for movement of goods in cities, particularly for 

71 first/last mile deliveries, it is expected that the share of 

72 LCVs will continue increasing in the future2. LCVs have been 

73 recognized as a significant contributor to mobile source air 

74 pollution1,3,4,5. One central emission control measure has been 

75 legislation on vehicle emission standards that are defined over 

76 a synthetic laboratory driving cycle. However, it has been shown 

77 extensively that real-world driving varies substantially from 

78 the official driving cycles in terms of accelerations and speeds 

79 and thus engine loads6-9,45. 

80 There is a noticeable lack of measurements and uncertainty about 

81 the actual emissions levels for diesel light commercial 

82 vehicles, making it difficult to evaluate the success of 

83 different emission control stages. Due to lack of data on LCVs, 

84 it is often assumed that their on-road emissions perform similar 

85 (proportional) to diesel car emissions9. Researchers studied on-

86 road emissions of LCVs using portable emissions measurements 
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87 system (PEMS), including CO2 by Stewart et al.10 and criteria 

88 pollutants by Vojtíšek-Lom et al. 11. It was found that on-road 

89 NOx emissions are much higher than the Euro 6a,b standard limits. 

90 PEMS can acquire detailed driving and emission data from one 

91 particular vehicle, but the measurement process is expensive and 

92 time-consuming and therefore could only test a limited number of 

93 vehicles. Another option is remote optical sensing at 

94 roadsides13. Remote sensing technologies have been used in 

95 various studies to assess on-road emission from passenger 

96 cars3,14,15. Studies that investigate LCV emissions using remote 

97 sensing only have measurements in a single year or snapshot15, or 

98 do not contain LCVs with the most recent emission control 

99 technologies4. The International Council on Clean Transportation 

100 reported preliminary results for light commercial vehicles 

101 measured by remote sensing equipment in Zurich and several 

102 locations in Europe, but their analysis did not report emission 

103 trends over years and did not investigate the impacts of vehicle 

104 power, temperature, aging, etc.16, which made it hard to evaluate 

105 the effectiveness of emission control policies over time. 

106 In this study, we report on long-term (2011–2018) on-road 

107 vehicle emission measurements of diesel LCVs at multiple 

108 locations in Europe. This unique dataset covers a total of 

109 86,000 valid emission measurements from diesel LCV between 2011 
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110 and 2018. One measurement refers to one record of the exhaust 

111 emissions of a certain pollutant for one vehicle when it passed 

112 the measurement site. These records represent a wide range of 

113 real-world driving and environmental conditions and a broad 

114 spectrum of Europe’s diesel LCV fleet. Each single campaign has 

115 only a limited data size for LCVs, therefore we combine the 

116 different campaigns and investigate how much more differentiated 

117 the emissions can be analysed.  

118 MATERIALS AND METHODS

119 Remote sensing set-up
120 In this study, the NOx and black smoke emission rates are 

121 analysed for diesel LCVs from model years 2000 to 2018. The data 

122 are a combined set of in total 86,000 records of hot on-road 

123 emissions measured between 2011 and 2018 at 18 locations in 

124 Switzerland, Spain, Sweden and the United Kingdom. This dataset 

125 stems from the so-called CONOX database17 that has been used 

126 previously in analyses of passenger car emissions16-18,22. 

127 A light commercial vehicle (LCV) is a vehicle used for the 

128 transport of goods or passengers with a maximum mass not 

129 exceeding 3,500 kg (category N1 according to the UN-ECE vehicle 

130 classification). LCVs are classified into three classes 

131 according to their curb weight: N1-I, II, and III for N1 

132 vehicles with curb weight less than 1,350 kg, between 1,350 and 
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133 1,760 kg, and between 1,760 and 3,500 kg, respectively. Almost 

134 60% of valid records refer to the biggest class III, 30% to 

135 class II and only 15% to class I. This reflects the preferences 

136 of LCV users in Europe. We focus on diesel powered LCVs here 

137 that represent more than 90% of all LCVs. 

138

139 The majority of records was collected using the Opus AccuScan 

140 RSD 4600 and RSD 5000 remote sensing devices. UK data has 

141 additional entries from two measurement campaigns using the FEAT 

142 instrument from the University of Denver. This offers ample 

143 opportunity to cross-compare results within a country but with 

144 different instruments, or across countries with the same 

145 equipment. All instruments have been discussed extensively in 

146 previous studies3,8,19-21. In summary, each remote sensing device 

147 projects light of specific bandwidths through a vehicle’s 

148 exhaust plume. Its attenuation is proportional to the 

149 concentration of certain pollutants; the increment of the 

150 concentration over the concentration measured immediately before 

151 the passage of the vehicle (the background) is attributed to the 

152 vehicle exhaust. The vehicle-related pollutant concentrations 

153 are then divided by the incremental concentration of CO2, as a 

154 proxy for fuel consumption by the engine, to determine the 

155 instantaneous fuel specific emission rate of a passing vehicle. 
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156 The measurement devices were regularly calibrated against a gas 

157 of known concentrations. Speed and acceleration of each passing 

158 vehicles are recorded simultaneously; they provide a measure for 

159 the instantaneous engine power and are associated with the 

160 emission rate measured. Positive acceleration is important to 

161 obtain valid instantaneous emission records. Therefore, most 

162 measurement sites have some uphill grade. Vehicle license plates 

163 were recorded, and the vehicles’ essential technical data (fuel 

164 type, emission classification, model year, manufacturer, and 

165 weight) were retrieved from national registration records. . 

166 The measurement locations include one site in Spain (3.8% 

167 grade), one site in Sweden (3% grade), two sites in Switzerland 

168 (9.4% and 4.4% grade), and fourteen sites in United Kingdom with 

169 grades ranging from -1.7% to 5.2%. These sites cover a wide 

170 range of driving conditions ranging up to 28 kW power per ton 

171 vehicle mass (95th percentile). Highest average engine loads were 

172 typically recorded at Gockhauser Strasse, a site close to 

173 Zurich, Switzerland with 9% uphill road grade. The vehicles 

174 measured were new (certified to Euro 6 with model year 2018) up 

175 to 20 years old beginning with model year 2000 (certified to 

176 Euro 3 emission standard). The measurements comprise all 

177 relevant LCV manufacturers in Europe. While the UK, Sweden, 

178 Switzerland, and Spain may not be representative for Europe as a 
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179 whole, their vehicles have the same emission control 

180 technologies as elsewhere in the European Union, and in fact 

181 outside as well, and vehicles have to comply to the same 

182 emission control regulations43. In addition, ambient temperatures 

183 during measurements ranged from close to 0°C in the UK up to 

184 30°C and more in Spain. This large spectrum will be seen quite 

185 relevant for an understanding of emission rates across sites. 

186 Thus, this dataset provides an unprecedented opportunity to 

187 comprehensively evaluate the on-road emission behavior of diesel 

188 light commercial vehicles in Europe. Table 1 summarizes the 

189 different measurement conditions in terms of when and where were 

190 the campaigns were conducted, average vehicle age, vehicle 

191 specific power and ambient temperature distribution for diesel 

192 LCV N1-III of Euro 3 to Euro 6a,b. Information for LCVs N1-I and 

193 N1-II are presented in Supporting Information Tables S1-S2. 

194

195 Table 1. Summary of remote sensing testing conditions and diesel 
196 LCV N1-III fleet characteristics in the UK, Sweden, Spain, and 
197 Switzerland.

Euro 3 N1-III Euro 4 N1-III Euro 5 N1-III Euro 6a,b N1-III
# of records UK

SE
ES
CH

329
257

2955
2613

2567
625

4192
6224

11248
2245
4575
6842

2680
182
719
105

Measureme
nt year and 
instrument 

UK
SE
ES
CH

FEAT: 2012, 2013, 2017, 2018; RSD 4600: 2013, 2015; RSD 5000: 2017, 2018
RSD 5000: 2016
RSD 5000: 2017
RSD 4600: 2011, 2012, 2013, 2014, 2015; RSD 5000: 2016, 2017
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Average age 
(years)

UK
SE
ES
CH

9.4
11.8
13.5
14.4

6.5
6.6
9.3
9.5

3.1
2.7
3.0
4.5

0.9
0.5
0.6
0.9

VSP 
(kW/ton) UK

SE
ES
CH

Ambient 
Temperatur
e (C)

UK
SE
ES

 CH

198

199 Driving conditions and data treatment
200 The measurement device returned incremental concentrations of 

201 pollutants (%NO, %NO2, %HC, %CO and %CO2) in the exhaust plume. 

202 These were converted into emission factors in grams per kg of 

203 fuel burned assuming complete combustion and using the formula 

204 detailed in Pokharel et al. 23 Specifically, emission factors for 

205 NO and NO2 were  and , 𝑟𝑁𝑂 =
30 ∗ 𝑄𝑁𝑂 ∗ 86

(1 + 𝑄𝐶𝑂 + 6𝑄𝐻𝐶) ∗ 12 𝑟𝑁𝑂2 =
46 ∗ 𝑄𝑁𝑂2 ∗ 86

(1 + 𝑄𝐶𝑂 + 6𝑄𝐻𝐶) ∗ 12

206 respectively23, , , . Thus, NOx rate is 𝑄𝐶𝑂 =
%𝐶𝑂
%𝐶𝑂2

𝑄𝐻𝐶 =
%𝐻𝐶
%𝐶𝑂2

𝑄𝑁𝑂 =
%𝑁𝑂
%𝐶𝑂2

207 calculated by summing rates of NO and NO2 in terms of NO2-

208 equivalents. The RSD 4600 instrument cannot measure NO2 but only 

209 NO emissions. We estimated total NOx emissions in that case from 

210 the measured NO divided by the ratio of NO over NOx derived from 

211 the other instrument (RSD 5000) for each country and emission 

212 control class. The black smoke emission factors in unit of gram 
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213 smoke per kilogram fuel are also measured by Opus AccuScan RSD 

214 4600 and RSD 5000. These devices can distinguish black from blue 

215 or white smoke normally generated by oil or coolant. 40 The 

216 calculations are based on measurement of opacity, smoke 

217 particles fraction per cross-sectional area, amount of plume CO2, 

218 CO and HC percentages according to the manufacturer. 39  

219 Chen et al. 18 investigated the minimum sample size of on-road 

220 measurements for a statistically robust emission estimation. 

221 They concluded that a sample size of 200 could guarantee 80% 

222 accuracy for mean estimation of emission for Euro 3 to Euro 6 

223 vehicles. Therefore, for all results discussed in this paper, we 

224 try to follow that guidance as much as possible.

225 First, the on-road emission rates are analyzed by model year for 

226 each LCV class, country and measurement device separately. This 

227 is the basis for pooling the data from the single campaigns in 

228 order to have a sufficient sample for more differentiated 

229 analyses: The influence of vehicle power (using VSP as a proxy 

230 variable), manufacturer, age and temperature on the average 

231 emissions is reviewed. All this has been found important for 

232 diesel passenger cars 8, 16, 6, 34. 
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233 RESULTS AND DISCUSSION

234 Development of real-driving emissions over model years
235 Vehicle emissions can be affected by instantaneous driving 

236 conditions and vehicle weight. To filter out these possible 

237 impacts, we evaluated the variation in vehicle specific power 

238 and curb weight across different model years in the data. 

239 Vehicle specific power (VSP) is a proxy for engine power and was 

240 calculated based on vehicle speed, acceleration and road grade33. 

241 Figure 2 shows that the VSP, although showing variations, was 

242 mainly approximately 9 kW/ton for diesel LCVs N1-I to N1-III. 

243 The only exception is that the average VSP for LCV N1-III drops 

244 from around 10.5 kW/ton to 8.5 kW/ton after model year 2015. 

245 This is mainly due to a significant drop of data from 

246 Switzerland (from around 25% to 3% after 2015) which contains 

247 vehicles with high VSP because of a high slope. In addition, the 

248 average curb weights per model year remained constant at about 

249 1,200, 1,550, and 2,200 kg for classes N1-I, II, and III, 

250 respectively. Therefore, pooling of the data from different 

251 countries and campaigns appears reasonable given this 

252 consistency across time and fleets. 

253 It is worth noting that LCVs service a wide range of transport 

254 requirements, thus, there is a greater variability in vehicle 

255 operating characteristics (e.g. urban delivery with routinely 
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256 short and slow speed trips, v.s. intracity highway delivery with 

257 high speed driving) and loading situations. The impacts of these 

258 factors are not analysed in this paper but can be directions of 

259 future research. 

  
260 Figure 1. Mean and 95% confidence interval for Vehicle Specific 
261 Power, VSP (left) and curb weight (right) for diesel light 
262 commercial vehicles (LCVs) N1-I to III as a function of model 
263 year.

264 Figures 2 and 3 report mean and 95% confidence intervals for NOx 

265 and black smoke emission rates by vehicle model year for diesel 

266 LCVs by country and instrument (values of emissions rates are 

267 reported in Supporting Information Table S4). Countries (as a proxy 

268 for fleets and site specific ambient and driving conditions) and 

269 instruments are presented separately to allow for an examination 

270 of their respective consistency before any further aggregation. 

271 For reference the average on-road emission rate is compared to 

272 emission factors from the most recent HBEFA 4.124, with converted 

273 legislative limit values over the type approval test cycle and 

274 with RS on-road emissions from diesel passenger cars from the 

275 respective campaigns. 
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276

Diesel PC

277 Figure 2. Mean hot NOx emission factors (g per kg fuel) and 95% 
278 confidence interval (shaded area) for diesel light commercial 
279 vehicles (LCVs) N1-I, II, and III as a function of model year by 
280 measurement locations and instrument. Added are the emission 
281 factors used by HBEFA 4.1 and type approval limit values over 
282 the homologation test cycle in force in the respective year. The 
283 emissions rates of diesel LCVs in g per km are converted to g 
284 per kg fuel using measured fuel consumption rates in g per km 
285 from Hausberger in HBEFA 4.124. NOx emissions factors of diesel 
286 passenger cars measured by remote sensing in these countries are 
287 added for reference. 

288 On-road NOx emission rates have been persistently above the type 

289 approval limits for all Euro stages, LCV size classes, fleets 

290 (or countries respectively) and observed driving conditions. 

291 This pattern is already familiar from diesel passenger cars in 

292 Europe1,3 and is one marker of the diesel emission scandal. With 

293 model year 2015, or the introduction of the Euro 6 emission 

294 standard respectively, there is a marked decrease in the average 

295 on-road emission rate for LCVs of all sizes and fleets (or 
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296 countries), though the level is still above the limit value. 

297 Results from different instruments in Switzerland and the UK are 

298 consistent within their respective confidence intervals with 

299 only five exceptions: Model year 2012 and 2013 for N1-III and II 

300 in Switzerland, respectively, and model year 2006 for N1-III, 

301 and model years 2011 and 2013 for N1-I in the UK. This good 

302 consistency is a prerequisite for pooling data from different 

303 campaigns together. The smaller discrepancies cannot be 

304 explained at the moment. However, it is important to note that 

305 they do not refer to an identical situation or vehicle; these 

306 measurements were taken during different campaigns and refer to 

307 different vehicles, driving and ambient conditions. 

308 On-road emissions are at the higher end in the UK; that will be 

309 explained in the following as a consequence of the rather low 

310 ambient temperatures during the measurements, particularly 

311 relevant for Euro 4 and 5 vehicles. High emission rates in 

312 Switzerland are associated with the very high road gradient of 

313 9% at the main measurement site (Gockhauser Strasse). 

314 The most recent HBEFA 4.1 updated emission factors for LCVs. 

315 They clearly reflect the stagnation of the emission rate at high 

316 levels for all LCV size classes and emission classes including 

317 Euro 5, that is observed in the on-road data. Differences in 
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318 level might suggest further refinement of the modeled emission 

319 factors. 

320 Note that there are several, progressively more stringent sub-

321 tiers for Euro 6, termed Euro 6a/b, Euro 6d-temp, and Euro 6d. 

322 The Euro 6d-temp and 6d correspond to vehicle registered after 

323 2018 and after 2019. It is expected that cars first registered 

324 in 2017 are certified to no more than Euro 6b emission standard. 

325

326 Figure 3. Mean hot black smoke (smoke) emission factors (g per 
327 kg fuel) and 95% confidence interval (shaded area) for diesel 
328 light commercial vehicles (LCVs) N1-I, II, and III as a function 
329 of model year by measurement location. Added are the PM emission 
330 factors used by HBEFA 4.1 and type approval limit values over 
331 the homologation test cycle in force for the respective year. 
332 The emissions rates of diesel LCVs in g per km were converted to 
333 g per kg fuel using measured fuel consumption rates in g per km 
334 from Hausberger in HBEFA 4.124.

335
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336 Only the RSD 5000 equipment provide enough records to report 

337 black smoke emissions (Figure 3). Smoke as measured in 

338 absorption spectroscopy is a collection of airborne solid and 

339 liquid particulates and gases (CO, NOx, SOx, etc.) generated 

340 during combustion. Particulate matter (PM) as regulated in 

341 vehicle emission standards is all material collected on a 

342 specified filter and still not evaporated after heating up to 

343 52°C. Clearly, particulate matter (PM) and black smoke are not 

344 the same entities, but have been shown to correspond under 

345 normal circumstances for diesel engine vehicles41. With this in 

346 mind results for smoke measurements are presented here as best 

347 available proxy for primary particulate exhaust emissions. 

348

349 Contrary to the NOx emissions, the changes in real-world black 

350 smoke emissions have been following changes in PM legislation 

351 limits. In particular, a steady reduction between 2005 and 2015 

352 is observed, demonstrating efforts to control particular matter 

353 emissions with the introduction of particle filters in Euro 4 

354 and Euro 5 vehicles. In addition, smoke emissions (particularly 

355 for N1-III) in Sweden dropped long before 2010 (the year Euro 5 

356 was introduced). This can be explained by the fact that Sweden 

357 was offering incentives for early adoption of the diesel 

358 particle filter. Trends suggest that the automobile industry 
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359 focused efforts on reducing particulate matter (PM) emissions. 

360 On-road emission rates, legislative PM limit values as well as 

361 HBEFA emission factors consistently follow the same trends 

362 suggesting after model year 2005. 

363 Next, detailed emission rates are aggregated to averages per 

364 Euro standard and size class Figure 4 (values of emission 

365 factors are reported in Supplement Information Table S5). The 

366 plot for smoke emissions of diesel LCVs grouped by each Euro 

367 emission standard is provided in Supporting Information Figure 

368 S3. These are compared to the emissions factors used in HBEFA 

369 4.1 and the corresponding legislative limits during type 

370 approval. The results showed that the emission levels for Euro 3 

371 to 6 diesel LCVs N1-1 to III exceeded 3 to 7 times the 

372 corresponding legislative limits. These findings were consistent 

373 with previous studies with more limited study scopes6,15. The 

374 trends for NOx emissions of diesel LCVs were also aligned with 

375 the observations of NOx emissions from diesel passenger cars 

376 found in other studies16 where NOx emissions of diesel cars were 

377 stable for Euro 3 to Euro 5 (model years 2000–2014) and 

378 significantly decreased in the Euro 6a,b fleet, although they 

379 were still higher than the legislative limits. The biggest 

380 variability in emission rate between countries is for Euro 6 

381 vehicles. We speculate that this reflects uncertainty (in the 
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382 registration data) as to whether the vehicle was actually 

383 certified to the higher Euro 6b or the lower Euro 6d-temp 

384 standard. NOx emission factors for Euro 3 to 5 used in HBEFA 4.1 

385 agree with on-road emission rates notably for the heavy class 

386 III. However, it seems that emission rates for N1-I and II 

387 vehicles are underestimated by sometimes 30%. 

388

HBEFA
Limit

52 g/kg fuel

389 Figure 4. Mean and 95% confidence interval hot NOx emissions 
390 factors for diesel light commercial vehicles (LCVs) as a 
391 function of Euro emission standards by measurement locations and 
392 instrument. Added are the emission factors used by HBEFA 4.1 and 
393 type approval limit values over the homologation test cycle in 
394 force in the respective year. The emissions rates of diesel LCVs 
395 in g per km were converted to g per kg fuel using measured fuel 
396 consumption rates in kg per km from Hausberger in HBEAF 4.124.

397
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398 Influence of engine power on emissions
399 Figure 5 shows the NOx emissions of diesel LCVs Euro 3 to 6 as a 

400 function of instantaneous vehicle specific power (values of 

401 emission factors are reported in Supplement Information Table 

402 S6). Supporting Information Tables S7 to S9 show the number of 

403 vehicles measured for each category, which indicated that the 

404 majority of those categories have large enough sample sizes for 

405 robust statistical analysis. Higher VSP leads to higher NOx 

406 emissions levels for N1-II and III of Euro 3 to 5, particularly 

407 at VSPs greater than 12 kW/ton. There was no dependency of NOx 

408 emissions on VSP for the Euro 6a,b fleet. This might be 

409 attributed to the changed test procedure reflecting better the 

410 range of engine loads observed in on-road driving, thus forcing 

411 more comprehensive emission control strategies. Similar 

412 dependency effects were found by a previous study in the United 

413 Kingdom8 and one in Switzerland42 on diesel passenger cars, which 

414 found higher NOx emissions with higher VSP for Euro 4 and Euro 5 

415 fleets and less dependence of NOx emissions on VSP for the Euro 

416 6a,b fleet16. 
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417
418 Figure 5. Mean hot NOx emission factors (g per kg fuel) and 95% 
419 confidence interval (shaded area) for diesel light commercial 
420 vehicles (LCVs) N1-I, II, and III as a function of VSP derived 
421 from RSD across all countries and campaigns. 

422 LCVs’ smoke emission by VSP bins are shown in Supporting 

423 Information Figure S1. We found no clear dependency of smoke 

424 emissions on VSP for Euro 5 and Euro 6a,b diesel LCVs. For Euro 

425 3 and Euro 4 diesel LCVs, there was an increasing trend in smoke 

426 emissions when the VSP increased from 6 to 12 kW/ton; smoke 

427 emission levels plateaued with higher VSP values. These smoke 

428 emissions results were promising and showed the effort by 

429 manufacturers to reduce PM emissions by introducing various 

430 technologies, such as diesel particle filters. 
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431 Influence of Manufacturer on Emissions
432 Figure 6 presents NOx emissions by Euro emission standard for 

433 diesel LCVs grouped by major vehicle manufacturers (sample size 

434 information is provided in Supporting Information Tables S10 and 

435 S11 and numbers of emission factors are reported in Supplement 

436 Information Table S12). The plot for smoke emissions of diesel 

437 LCVs grouped by major vehicle manufacturers is provided in 

438 Supporting Information Figure S4. The majority of manufacturers 

439 show similar NOx and smoke emissions across Euro 3 to 6a,b, but 

440 some perform better or worse than others. For example, Nissan-

441 Renault reported higher NOx emission for Euro 5 and 6a,b in N1-I 

442 category. Mercedes reported higher NOx emission for Euro 5 and 

443 6a,b in N1-II category. Volkswagen have lowest absolute 

444 emissions for Euro 6a,b in class N1-II. Toyota had a much lower 

445 NOx emission for Euro 5 and 6a,b in the N1-III category. For all 

446 these cases the VSP values were comparable; this shows that 

447 manufacturers employ different in-use emission control 

448 strategies with some being more stringent (or lenient) than 

449 others. This analysis indicates that differences between 

450 countries in on-road NOx emissions of LCVs can be partially 

451 explained by different fleet mix (in terms of manufacturers) in 

452 those countries. This is particularly true when one or several 

453 manufacturers dominate a country’s LCV market and those 
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454 manufacturers report higher emissions levels compared with other 

455 manufacturers. 

456
HBEFA Limit

52

457 Figure 6. Mean hot NOx emission factors (g per kg fuel) and 95% 
458 confidence interval of diesel light commercial vehicles N1-I to 
459 III as a function of vehicle manufacturer, derived from RSD.

460 Emission performance of diesel LCVs over time
461 Chen and Borken-Kleefeld3 did not find a relevant decrease in NOx 

462 emissions for Euro 4 diesel passenger cars. More recently, 

463 Carslaw et al. did not find a decrease for diesel Euro 5 and 

464 Euro 6a or b passenger cars22. We investigated whether the aging 

465 effect exists in LCVs. For each measurement, the data showed the 

466 model year, measurement year (thus the difference in vehicle 

467 age) and Euro standard for each vehicle. Figure 7 presents NOx 

468 and smoke emission rates and 95% confidence intervals by vehicle 

469 age for each Euro emission standard group (numbers of emission 

470 factors are reported in Supplement Information Table S13). We 

471 could not determine aging effects for the majority of vehicle 
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472 categories. However, Euro 3 of N1-II showed an increase in NOx 

473 emission from 6 to 10 years old and then plateaued from 10 to 15 

474 years. Euro 5 of N1-III showed an increasing trend between years 

475 5 and 7, but there was not enough data to prove the trend will 

476 continue. Euro 6a,b of N1-II showed an increasing NOx emission 

477 trend in the first two years of driving. Whether this continues 

478 and is also present in other vehicle generations should be 

479 closely monitored. 

480 There was an increase in smoke emissions as vehicles aged in 

481 Euro 4 and Euro 5 across N1-I, II, and III. For Euro 3 vehicles, 

482 N1-I and II showed mainly consistent smoke emissions with aging, 

483 though they both experienced a big drop from age 11 to 12. N1-

484 III smoke emissions increased as vehicle age increased from 11 

485 to 15 years old, but there was a significant drop after that. 

486 The smoke emissions for Euro 6a,b (both 2016 and 2017 model 

487 year) were stable and low with the limited 2 years on the 

488 market. These were promising observations that suggested 

489 successful emission control. Similar observations of successful 

490 particular matter emission control have been demonstrated for 

491 diesel passenger cars and heavy-duty trucks, which could be 

492 explained by better PM emission control technologies31. As 

493 explained previously, we acknowledge the risk of proxying PM 

494 emission with smoke, but the results can still shed lights on PM 
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495 real-world emissions trends of diesel LCVs given that this is 

496 one of the few relevant on-road emissions datasets. 

497

498 Figure 7. Mean hot NOx and smoke emission factors (g per kg fuel) 
499 and 95% confidence interval (shaded area) for diesel light 
500 commercial vehicles (LCVs) N1-I, II, and III under Euro 3 to 
501 Euro 6a,b emission standards as a function of age, derived from 
502 RSD.

503 Influence of Ambient Temperature on NOx Emissions
504 For diesel passenger car NOx emissions increase with decreasing 

505 temperature34. Similarly lower temperatures are associated with 

506 higher NOx emissions for Euro 3 to 5 diesel LCVs (Figure 8). 

507 (sample size information is provided in Supporting Information 

508 Tables S14 and S15 and numbers of emission factors are reported 

509 in Supplement Information Table S16). Previous literature showed 

510 Euro 6 diesel cars demonstrated a weaker temperature dependence 
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511 compared to Euro 3 to 5 cars. A higher stability of NOx emissions 

512 was also observed for Euro 6a,b diesel LCVs. Grange et al.34 

513 attributed the weaker temperature dependence of NOx emissions for 

514 diesel cars to advanced technologies, e.g., lean NOx traps and 

515 selective catalytic reduction, which manufacturers needed to 

516 achieve the more stringent Euro 6 compliance. This explanation 

517 likely also applied to our findings on LCVs. 

518
519 Figure 8. Mean hot NOx emission factors (g per kg fuel) and 95% 
520 confidence interval (shaded area) for diesel light commercial 
521 vehicles (LCVs) N1-I, II, and III as a function of temperature, 
522 derived from RSD.

523

524 Our results and trends of NOx and smoke emissions for diesel LCVs 

525 are consistent with remote sensing studies of diesel cars 

526 conducted in Europe related to temperature dependence of NOx 
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527 emission34, aging effect on NOx emission22, impacts of engine load 

528 on NOx emission8,16,42. The unique dataset of LCVs provides 

529 insights on on-road emission behavior of LCVs for the first time 

530 in literature. It is also worth to compare on-road emissions 

531 measured in Europe with those measured in United States (US). 

532 There are recent studies in US that used remote sensing 

533 technologies to measure on-road vehicle emissions46-49, though 

534 most of studies are conducted in targeted locations. The trend 

535 and magnitude of NOx emissions of gasoline light duty vehicles in 

536 US as reported in literature46-49 are consistent with those 

537 reported in European studies3,6. Thus gasoline light duty 

538 vehicles in US and Europe follow changes in Euro emission 

539 standards over time, which is a clear evidence of manufacturers 

540 adopting similar emission control technologies on vehicles sold 

541 in the two continents. Diesel light-duty vehicle (car and light 

542 duty truck) accounts a very small ratio (less than 2%) in light 

543 duty vehicle fleet in US.50 For the limited US data on diesel 

544 light-duty vehicle, for example, mean NOx emission in Fresno, 

545 California, is about 20 g NOx / kg fuel for diesel vans (similar 

546 to light commercial vehicle in Europe) with model year 200749, 

547 which is comparable to NOx emission of diesel LCVs showed in this 

548 study.  Bishop et al. 46 found a clear pattern of higher NOx 

549 emission for high mileage gasoline Taxi operated in Los Angeles, 

550 California. We could not verify the impacts of mileage on diesel 
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551 LCVs due to the lack of data. But this will be an interesting 

552 future research direction. Overall, there exists consistency in 

553 on-road NOx emission for light duty vehicle across US and Europe 

554 based on remote sensing measurements, though data on diesel 

555 light duty vehicles for US are limited due to its small share in 

556 US market. But the results show promising of using remote 

557 sensing technologies to investigate on-road emission behavior of 

558 vehicles in different geographic regions.

559 The results of this paper on diesel LCVs have implications. 

560 Although progress is observed on reducing on-road NOx emission 

561 from diesel LCVs, their values are still significantly above 

562 legislative values across N-I to N-III types. The PM emission of 

563 diesel LCVs successfully follow changes in legislative values. 

564 This demands continuing regulation and monitoring on NOx emission 

565 of diesel LCVs. The inclusion of real driving emission test 

566 procedure in type approval certification in Europe results in 

567 reduction in NOx emission of Euro 6a,b of diesel LCVs. And the 

568 continuous monitoring of on-road emissions using remote sensing 

569 technologies in countries across Europe generates helpful 

570 information for emission control authorities to understand on-

571 road vehicle emissions and enhance efficiency of vehicle 

572 emission monitoring. The consistency of NOx and smoke emission 

573 rates between emission inventory model (i.e. HBEFA) and remote 
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574 sensing measurement implies the model has successfully represent 

575 emissions of diesel LCVs. The development of emission rates in 

576 inventory model normally is based on dynamometer test or 

577 portable emissions measurements system test, which are capable 

578 of capturing vehicle emissions under real-world driving. 24 Thus, 

579 our results also suggest it is possible for emission inventory 

580 model developers to develop rates using emission tests and then 

581 adjust rates based on measurements of remote sensing campaign. 

582
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