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Abstract 8 

Electricity demand for room air-conditioners (ACs) is growing significantly in China in 9 

response to rapid economic development and mounting impacts of climate change. In this 10 

study, we use the bottom-up model approach to predict the penetration rate of room ACs in 11 

the residential building sector of China at the provincial level, with the consideration of the 12 

urban-rural heterogeneity. In addition, we assess co-benefits associated with enhanced energy 13 

efficiency improvement of AC systems and the adoption of low global warming potential 14 

(GWP) refrigerants in AC systems. The results indicate that the stock of room ACs in China 15 

grows from 568 million units in 2015 to 997 million units in 2030 and 1.1 billion units in 16 

2050. The annual electricity saving from switching to more efficient ACs using low-GWP 17 

refrigerants is estimated at almost 1000 TWh in 2050 when taking account of the full 18 

technical energy efficiency potential. This is equivalent to approximately 4% of the expected 19 

total energy consumption in the Chinese building sector in 2050 or the avoidance of 284 new 20 

coal-fired power plants of 500 MW each. The cumulative CO2eq mitigation associated with 21 

both the electricity savings and the substitution of high-GWP refrigerants makes up 2.6% of 22 

total business-as-usual CO2eq emissions in China over the period 2020 to 2050. The 23 

transition towards the uptake of low-GWP refrigerants is as vital as the energy efficiency 24 

improvement of new room ACs, which can help and accelerate the ultimate goal of building a 25 

low-carbon society in China.  26 
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1. INTRODUCTION 31 

The global energy consumption of space cooling in the building industry is growing faster 32 

than in many other industries1 (i.e. transportation industry and manufacturing industry) and 33 

has more than tripled between 1990 and 20162. The increase is expected to continue in the 34 

next few decades3-6. Space cooling is expected to account for an ever-increasing share of 35 

energy use with particularly strong growth in emerging economies. Until 2050, the three 36 

countries China, India, and Indonesia alone will account for half of the global growth in 37 

cooling energy demand 2,7. Over the last two decades, China noted the fastest growth 38 

worldwide in energy demand for space cooling in buildings, increasing at 13% per year since 39 

2000 and reaching nearly 400 terawatt-hours (TWh) of electricity consumption in 2017 8. The 40 

increase in energy consumption since 2000 is driven by increasing income and growing 41 

demand for thermal comfort. As a result, space cooling accounted for more than 10% of total 42 

electricity consumption in China since 2010 and around 16% of the peak electricity load in 43 

2017 8. Cooling-related carbon dioxide (CO2) emissions from electricity consumption 44 

consequently increased fivefold between 2000 and 2017 8, given the strong reliance on coal-45 

fired power generation in China. Already, China is the country worldwide with the largest 46 

production and use of air conditioners (ACs), as the country manufactured around 70% of 47 

total world output and consumed approximately 40% of global AC sales in 2017 8-10. The 48 

penetration rates of room ACs in China have increased from around 20% in 1997 to about 49 

130% in 2018 for urban residential buildings and from below 1% in 1997 to around 50% in 50 

2018 for rural residential buildings 11 (see: Figure S1 of the SI). To alleviate the pressures of 51 

energy consumption and associated greenhouse gas (GHG) and air pollutant emissions 52 

brought about by the increase in space cooling demand, China has released a series of 53 

household energy efficiency standards since 1989 12-16 (see: Table S1). However, the energy 54 

efficiency of the units sold in the market differs enormously 2, 8 (see: Figure S2). Currently, 55 
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the average energy efficiency of room ACs sold is 60% less than the efficiency level of the 56 

best available technology and 20% lower than the average technology level available in 57 

China 8. At the provincial level, penetration rates of room ACs for urban and rural areas are 58 

presented in Figure S3 of the SI. 59 

A review of the literature indicates that there is a large potential for the usage of more 60 

energy-efficient ACs in the building sector. The application of energy-efficient ACs has 61 

significant potential for electricity savings and associated reductions in GHG and air 62 

pollutant emissions 2, 8, 17-21. According to the recent Scientific Assessment of Ozone 63 

Depletion22, an energy efficiency improvement of 30% in mini-split ACs is estimated to be 64 

technically and economically feasible as well as cost-effective in many economies 22. At the 65 

global level, the International Energy Agency (IEA) estimated that under a baseline scenario 66 

the energy requirements of space cooling would triple by 2050, reaching 6200 TWh per year, 67 

whereas in an efficient cooling scenario only 3400 TWh per year would be required, which is 68 

45% lower than that in the baseline 2. This saving potential is equivalent to the total 69 

electricity consumption of the European Union in 2016. At the regional level, Grignon-Masse 70 

et al. (2011) assessed the environmental impacts of energy-efficient European ACs using a 71 

lifecycle analysis approach76. Borg and Kelly (2011) focused on the electricity consumption 72 

and peak load impacts of appliance efficiency improvements in European households77. At 73 

the national level, several studies evaluated the energy savings, emissions reductions, and 74 

economic benefits related to energy-efficiency standards and improvements for ACs and 75 

other appliances. Rosas-Flores et al. (2011) estimated the energy savings and CO2 emission 76 

reduction potentials of urban and rural household appliances, including ACs, in Mexico78. 77 

Cardoso et al. (2012) employed a bottom-up model to evaluate the impacts of energy-78 

efficient ACs in Brazil on electricity savings and GHG mitigation 17. Based on the estimation 79 

of the quantity of equipment in use and the energy consumption per unit equipment, they 80 
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concluded that an annual electricity saving of 322 GWh per year could be obtained from a 81 

switch to energy-efficient ACs in Brazil. Phadke et al. (2014) estimated the electricity 82 

demand of room ACs in India by 2030 considering factors such as climate change and 83 

income growth using market data on the penetration of ACs in different income classes and 84 

climatic regions 23. The total electricity saving potential from efficient room ACs using the 85 

best available technology would reach over 118 TWh in 2030 in India with potential peak 86 

demand saving found to be 60 GW. This is equivalent to avoiding 120 new coal-fired power 87 

plants of 500 MW each. McNeil et al. (2019) analyzed the impact of energy-efficient 88 

appliances on Indonesia’s peak load, finding that ACs will be the main driver of peak growth 89 

by 202579. Similarly, IEA (2019) explored the major trends and challenges brought about by 90 

the rapid uptake of room ACs in China. The findings indicated that greater affordability, 91 

climate change, as well as changing occupant behavior would significantly increase cooling 92 

energy use 8. IEA (2019) concluded that the annual energy demand would be 200 TWh lower 93 

in 2030 under the efficient cooling scenario relative to the baseline scenario. Another recent 94 

study by Karali et al. (2020) modeled the costs and benefits of recently proposed new room 95 

AC minimum energy performance standards (MEPS) in China and observed that the new 96 

standards would bring cumulative CO2 reductions of 12.8% between 2019 and 205080. 97 

Furthermore, the benefits of switching to new energy-efficient ACs are not only coming from 98 

the efficiency improvement caused by the AC system (e.g. more efficient compressors, heat 99 

exchangers, etc.), but also from the replacement of high global warming potential (GWP) 100 

refrigerants used as coolants in ACs 24- 26. Normally, the refrigerants e.g., 101 

chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons 102 

(HFCs), are thousands of times more powerful GHGs than CO2 on a mass-equivalent basis27, 103 

28 (see details in Section S3 of SI). While the use of CFCs has been successfully phased-out, 104 

HCFCs are currently in the process of being phased-out under the Montreal Protocol 29. The 105 
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ban on the use of CFCs in developing countries following the Montreal Protocol was fully 106 

implemented in 201030, with China having implemented it ahead of schedule in 2006 31, 107 

however, full enforcement may yet to be completed 86. The Kigali Amendment (KA) to the 108 

Montreal Protocol adopted in October 2016 and has entered into force in January 2019, is a 109 

global agreement to phase-down the consumption of HFCs by 2050 32. The KA aims to limit 110 

and eventually significantly reduce emissions of HFCs through a differentiated phase-down 111 

of HFCs across countries over the next three decades. The associated conversion of 112 

equipment from appliances using HFC refrigerants with high GWPs to low GWP refrigerants 113 

provides an unprecedented opportunity to consider other possible technological 114 

improvements that can offer additional climate co-benefits. The use of low GWP refrigerants 115 

as a replacement for conventional HFCs offers an opportunity to redesign the equipment with 116 

improved energy efficiency. In the literature, few attempts have been made to assess the 117 

impact of enhanced energy efficiency improvement of AC systems and transitions to low-118 

GWP refrigerants. Höglund-Isaksson et al. (2017) analyzed the global abatement costs of 119 

achieving the substantial reductions in HFC consumption agreed in the KA and incorporated 120 

possible energy efficiency improvements when using alternative substances and technologies 121 

to switch away from HFCs33, however, without considering the impact from simultaneously 122 

improving the AC system (heat exchangers, compressors, valves, etc.). Similarly, Purohit et 123 

al. (2018) analyzed the impacts of the KA to phase-down HFCs in Asian countries 34. These 124 

studies find that full compliance with the KA could save about 3000 TWh of electricity in 125 

Asian countries over the period 2018 to 2050 due to a transition to appliances using low-126 

GWP refrigerants. This corresponds to an estimated 0.5% of expected cumulative electricity 127 

consumption in Asia over the same period. In contrast, IEA (2018) assessed the energy 128 

efficiency improvement due to enhanced AC systems2, however, without explicitly 129 

considering efficiency improvements from the transition to low-GWP refrigerants as such. In 130 
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a recent study, Purohit et al. (2020) account for both types of energy efficiency enhancements 131 

and find that if technical energy efficiency improvements are fully implemented together 132 

with the HFC phase-down under the KA, the resulting electricity savings could exceed a fifth 133 

of expected future global electricity consumption47.  134 

The distinction between top-down and bottom-up model approaches is interesting because 135 

they can sometimes produce opposite outcomes for the same problem. Grubb et. al. (1993) 136 

state that the top-down approach is associated with –but not exclusively restricted to - the 137 

“pessimistic” economic paradigm, while the bottom-up approach is associated with the 138 

“optimistic” engineering paradigm84. The building stock energy models use both top-down 139 

and bottom-up approaches 85. The top-down methods start with the aggregated energy 140 

consumption for a given region and time, then disaggregate into sectors according to e.g., 141 

building function or spatial proximity, and typically factor in the interrelationships between 142 

the energy sector and other variables such as economic and technological factors. The 143 

bottom-up methods work at an individual level calculating the energy consumption of 144 

individual end-uses (e.g. cooking, heating/cooling, lighting) or buildings, then summing them 145 

up to represent the required region. It may be noted that the bottom-up approach is commonly 146 

used in co-benefits estimation as it e.g., allows for simulating a partial market equilibrium 147 

with fixed relative prices 82, identifying least-cost technology mixes for exogenous demand, 148 

and/or simulating specific sectoral policies by setting exogenous environmental constraints 83. 149 

In this study, we have used a bottom-up engineering approach to model the stock of room 150 

ACs and assess the co-benefits without considering the extended impacts e.g., on relative 151 

prices and equilibrium in the energy market. Climate and air pollution co-benefits of space 152 

cooling in the Chinese residential building sector are assessed by taking account of a) 153 

regional and urban/rural heterogeneities (including macroeconomic factors, geographic, 154 

demographic factors, household structure, etc.) and climatic zone differences among 155 
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provinces across China; and b) technical and economic energy efficiency improvements of 156 

AC system (i.e., heat exchangers and compressors) and the transition towards low-GWP 157 

refrigerants. 158 

  159 

2. MATERIALS AND METHODS 160 

In accordance with a bottom-up approach, co-benefits of the uptake of energy-efficient ACs 161 

in the Chinese residential building sector by 2050 are assessed in a four-step procedure. First, 162 

the ownership of room ACs by Chinese households is projected considering regional and 163 

urban/rural heterogeneities (including macroeconomic/demographic factors, and household 164 

structure, etc.) and changing climatic conditions (measured by cooling degree days, CDDs). 165 

In a second step, the unit energy consumption (UEC) of room ACs is estimated as a function 166 

of CDDs and household income levels to assess the energy consumption in the business-as-167 

usual (BAU) scenario. In a third step, two sets of alternative scenarios are developed: a) 168 

considering only the technical and economic UEC potentials due to enhanced energy 169 

efficiency of the room ACs, and b) taking into account both the transition towards low-GWP 170 

refrigerants and the technical and economic UEC potentials. Finally, co-benefits in terms of 171 

reduced GHG and air pollutant emissions are estimated using the electricity savings derived 172 

from the alternative scenarios. 173 

2.1 Modeling Ownership of ACs  174 

To estimate the number of room ACs in the Chinese residential building sector, we assume 175 

that both energy consumption per unit and the proportion of households owning air-176 

conditioners (penetration rate) depend on the climatic condition and income level35, both 177 

being higher in warmer and wealthier places (e.g. urban areas in warm regions). The 178 

penetration of ACs in a province is formulated as a function of the climate maximum 179 
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saturation (CMS) for that province and of the percentage of the CMS attained at that time in 180 

the region (availability) as shown in Eq. (1).  181 

𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡  = 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡  ×  𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡        (1) 182 

where 𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 represents the penetration rate of room ACs in the 𝑖𝑖𝑡𝑡ℎ province in 𝑡𝑡𝑡𝑡ℎ year, 183 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 the climate maximum saturation in the 𝑖𝑖𝑡𝑡ℎ province in 𝑡𝑡𝑡𝑡ℎ year, and 𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 the 184 

availability of the 𝑖𝑖𝑡𝑡ℎ province in the 𝑡𝑡𝑡𝑡ℎ year.  185 

CMS is derived from the assumption that the maximum penetration rate is the maximum 186 

saturation for a climate with a given amount of CDDs35. The relationship between maximum 187 

saturation and CDD is exponential, as developed by Sailor and Pavlova (2003) 36 for 39 cities 188 

in the United States and modified by McNeil and Letschert (2008) 35 for developing countries 189 

(including China) as shown in Eq. (2).  190 

 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 = 1 − 0.949 × exp (−0.00187 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡)          (2) 191 

The availability of ACs as a function of household income (HHI) is assumed to develop 192 

along a logistic function 35, 38, with a threshold point beyond which ownership increases 193 

rapidly 37- 40, as shown in Eq. (3):  194 

 𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡
1+𝛾𝛾𝑖𝑖,𝑡𝑡exp (−𝛽𝛽𝑖𝑖,𝑡𝑡×𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡)

                             (3) 195 

where 𝛼𝛼𝑖𝑖,𝑡𝑡 is the maximum value of 𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡, together with 𝛽𝛽𝑖𝑖,𝑡𝑡 and 𝛾𝛾𝑖𝑖,𝑡𝑡 being regression 196 

coefficients estimated for the 𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 of each province.  197 

Further details and data sources on CDDs, macro-economic parameters at the provincial 198 

level, and availability of room air-conditioners are provided in Section S2 of the SI. 199 

2.2 Unit Energy Consumption  200 
The energy consumption of ACs is not only related to the ownership and CDDs but also the 201 

income level of the household. Due to the high electricity consumption of ACs, wealthy 202 
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households are likely to use it more frequently and for longer periods, while low-income 203 

households, despite owning ACs, will use it occasionally when necessary 8, 35, 39. Hence, 204 

consistent with the method used in McNeil and Letschert (2008) 35 and Kitous and Després 205 

(2018) 39, we set the model of unit energy consumption (UEC) of AC as a function of the 206 

climatic conditions (i.e. CDDs) and the household income (HHI) level, as shown in Eq. (4).  207 

 𝑈𝑈𝑈𝑈𝑈𝑈 = 410 ∙ ln(𝐶𝐶𝐶𝐶𝐶𝐶) + 0.033 ∙ ln(𝐶𝐶𝐶𝐶𝐶𝐶) ∙ 𝐻𝐻𝐻𝐻𝐻𝐻 − 2577         (4) 208 

To assess UEC we have used historical data obtained from Mendes et al. (2014) 41 and Guo et 209 

al. (2017) 42 for 11 provinces in different climatic zones of China (see Figure S4 of the SI).  210 

2.3 Scenarios Design  211 
Apart from the BAU scenario, we have developed four alternative scenarios (see Figure S5) 212 

to assess the electricity savings and co-benefits associated with enhanced energy efficiency 213 

improvements of AC systems and a transition towards low-GWP refrigerants. The first two 214 

alternative scenarios only consider the technical and economic efficiency improvement due to 215 

the AC system optimization (e.g. using efficient compressors, heat exchangers, valves, etc.), 216 

while the last two alternative scenarios consider both the technical/economic energy 217 

efficiency improvement of ACs and the energy efficiency improvement from transitioning to 218 

a low-GWP refrigerant (i.e. HC-290, GWP100 = 1)22 from high-GWP HFCs (i.e. HFC-410A, 219 

GWP100 = 1924 or HFC-32, GWP100 = 677) 45, as required to comply with the KA (see 220 

Section S3 of the SI). In the economic energy-efficient AC scenario “EAC(E)”, the UEC 221 

improvement is set to 30%, and in the technical energy-efficient AC scenario “EAC(T)” the 222 

energy efficiency improvement is set to 60% 43, 47. The energy efficiency improvement is 223 

36% in the economic energy-efficient AC plus transition towards low-GWP refrigerants 224 

named as “EAC(E)+KA” scenario, whereas the energy efficiency improvement is assumed to 225 

72% in the technical energy-efficient AC plus transitioning towards low-GWP refrigerants 23, 226 

44, 47 named as “EAC(T)+KA” scenario (See details in Table 1).   227 
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In consistency with assumptions in Purohit et al. (2020), the estimated electricity saving 228 

potential in 2025 and 2030 is constrained by inertia in technology uptake resulting in a 229 

gradual phase-in of new technology and with maximum applicability only assumed possible 230 

from 2035 onwards47.  231 

2.4 Co-benefits analysis 232 
The methodology for estimating co-benefits in terms of electricity savings and the associated 233 

reduction in GHGs and air pollutants is described in Section S4 of the SI. In the BAU 234 

scenario, total energy consumption in room ACs is estimated using the number of 235 

households, the penetration rate of room ACs (Eq. (1)), and UEC (Eq. (4). The electricity 236 

savings in the alternative scenarios are estimated using different energy efficiency 237 

assumptions (technical and economic energy efficiency potential) due to systems 238 

improvement and transition towards low-GWP refrigerants under the KA. The technical and 239 

economic efficiency gains calculated are from improvements in the equipment (heat 240 

exchangers, compressors, valves etc.) and using low-GWP (e.g. HC-290) refrigerants. The 241 

Greenhouse gas - Air pollution Interactions and Synergies (GAINS) model developed by 242 

IIASA 46 contains a database on emission factors for a range of air pollutants and GHGs from 243 

global energy consumption. From this database, we take the implied emission factors for 244 

CO2,CH4, air pollutants (sulfur dioxide, SO2; nitrogen oxides, NOx; and fine particulate 245 

matter, PM2.5), and short-lived climate pollutants (SLCPs) (e.g. black carbon, BC; and 246 

organic carbon, OC) that reflect the expected region/province- and year- specific fuel mixes 247 

used in power plants in the IEA’s World Energy Outlook (WEO) 2018 Current Policies 248 

Scenario (CPS), New Policies Scenario (NPS) and Sustainable Development Scenario (SDS), 249 

respectively, in the timeframe to 2050 (see Figure S6 for details). The CPS scenario only 250 

considers the impact of those policies and measures that are firmly enshrined in legislation as 251 

of mid-2017. It provides a cautious assessment of where momentum from existing policies 252 



 13 

might lead the energy sector in the absence of any other impetus from the government. The 253 

NPS scenario provides a sense of where today's policy ambitions seem likely to take the 254 

energy sector. It incorporates not just the policies and measures that governments around the 255 

world have already put in place, but also the likely effects of announced policies, including 256 

the Nationally Determined Contributions (NDCs) made for the Paris Agreement (PA). The 257 

SDS scenario outlines an integrated approach to achieving internationally agreed objectives 258 

on climate change, air quality and universal access to modern energy. It represents a low 259 

carbon scenario consistent with a 2oC (i.e., 450 ppm) global warming target for this century, 260 

with considerably lower air pollution. 261 

Table 1. Overview of energy efficiency scenarios for room ACs  262 

S. No. Scenario Description 

1 Business as 
usual -- BAU 

Unit energy consumption (UEC) will remain at the 2015 
level. 

2 
Efficient room 
AC (Economic) 
-- EAC(E) 

Economic potential of UEC - efficiency of room AC unit will 
improve by 30% 43. 

3 
Efficient room 
AC (Technical) 
-- EAC (T) 

Technical potential of UEC - efficiency of room AC unit will 
improve by 60% 47.   

4 

Efficient room 
AC (Economic) 
+ Kigali 
Amendment -- 
EAC(E)+KA 

Economic potential of UEC along with additional energy 
efficiency improvement of 6% due to low-GWP refrigerants 
(i. e. HFC-32, HC-290). 

5 

Efficient room 
AC (Technical) 
+ Kigali 
Amendment -- 
EAC (T)+KA 

Technical potential of UEC along with additional energy 
efficiency improvement of 12% due to low-GWP refrigerants 
(i. e. HFC-32, HC-290). 

 263 

3. RESULTS AND DISCUSSION 264 

We assess the energy sector and environmental co-benefits of the phase-down of HFCs used 265 

in room ACs in the Chinese residential building sector under different scenarios using the 266 

methodology presented in Section 2. In the following sub-sections, we present the modeling 267 
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results of the projection of room ACs in China at the national and provincial levels. In 268 

comparison to the BAU scenario, the electricity saving potentials under different scenarios 269 

have been estimated along with abatement potentials of GHGs, air pollutions and SLCPs 270 

until 2050.  271 

3.1 BAU projections of room ACs in China  272 
The total production volume, export volume, domestic retail volume of the Chinese room AC 273 

market from 2003 to 2017 is shown in Figure S1. The annual domestic sales volume of ACs 274 

has grown steadily, from 20 million units in 2003 to 88 million units in 2017, an increase by 275 

more than seven times 11. The historical penetration of room ACs in Chinese provinces is 276 

taken from the National Bureau of Statistics of China 11 as shown in Figure S3. The macro-277 

economic parameters (including GDP, population, etc.) are taken from NBSC (2019) 11 278 

whereas the urbanization rate at the national level is taken from UN DESA (2018) 48. The 279 

historical data on average household sizes across the Chinese provinces is taken from the 280 

Institute of Population and Labor Economics of China 49-51, whereas the future projections are 281 

taken from Zeng et al. (2008) 52 due to the unavailability of recent household size projections 282 

at the provincial level. The CDD is the most common climatic index used to assess impacts 283 

on demand for space cooling services and reflects the deviation between the average 284 

temperature and a specified base temperature. The definition of CDDs involves determining a 285 

temperature threshold for AC employment, which varies due to differences in human 286 

physiological needs, energy supply, economic level, temperature characteristics and so on. 287 

For example, the threshold temperatures for CDD employment are 23 °C in Spain 53, 22 °C in 288 

Europe 54, and 18.33 °C for the United States 55. The base temperature used for China differs 289 

across studies 56- 60 and is for this study taken to be 18 oC. The BizEE Degree Days Weather 290 

Data for Energy Professionals is used to calculate the average CDDs during the last five years 291 

of each province. This data is taken to be the historical CDD for the year 2015 (see Table 292 
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S2). The trend projection of CDDs for China at the national level until 2050 is obtained from 293 

IEA (2018) 2. Due to the lack of availability of provincial level projections of CDDs, we 294 

assume the same trend applies to provinces as the national level of China.  295 

Using the modeling framework discussed in the methodology section (Section 2), the results 296 

indicate that the stock of room ACs in the residential building sector of China grows from 297 

568 million units in 2015 to 997 million units in 2030 and 1.1 billion units in 2050. In urban 298 

China, room AC ownership per 100 households increases from 114 units in 2015 to 219 units 299 

in 2030 and 225 units in 2050. The overall growth in the number of installed room ACs 300 

remains relatively slow from 2040 onwards due to saturation amongst urban households. In 301 

rural areas, room AC ownership per 100 households increases from 48 units in 2015 to 147 302 

units in 2030 and 208 units in 2050 due to the increasing wealth of rural households. The 303 

number of room ACs in urban China increases from 486 million units in 2015 to 793 million 304 

units in 2030 and 919 million units by 2050. For rural China, the corresponding numbers are 305 

82 million units in 2015, 218 million units in 2040 and 208 million units in 2050 with a slight 306 

decline in the last years due to rapid urbanization and a decreasing rural population in China. 307 

Figure 1 presents the penetration of room ACs in China in the BAU scenario at the national, 308 

urban and rural levels along with a comparison between the results based on this study our 309 

estimates and those of other studies. The projections based on this study are very close to 310 

O'Gresady and Narsipur (2018) 60, Kalanki (2019) 61 and IEA (2018) 2 in 2030, whereas in 311 

2050 the deviation with IEA (2018) 2 is larger primarily due to the difference in the macro-312 

economic assumptions. Detailed results on the penetration of residential ACs at the provincial 313 

level for China are presented in Table S5 of the SI.  314 
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 315 
Figure 1. Comparison of room ACs stock under reference scenario with other studies 316 
*IEA (2018) 2 data extracted from Geman (2018) 64.   317 

3.2 Electricity consumption under BAU and alternative scenarios 318 
Figure 2 presents the technical and economic electricity savings potential when moving from 319 

the BAU to alternative scenarios. As mentioned above, in the alternative scenarios we have 320 

taken into account a) the technical/economic energy efficiency potential of room ACs, and b) 321 

technical/economic efficiency improvement due to transition towards low-GWP alternatives 322 

(i.e. HC-290) instead of high-GWP HFCs (i.e. HFC-410A/HFC-32). The technical losses in 323 

the transmission and distribution (T&D) of electricity have been taken into account 65, 324 

whereas non-technical losses (NTL) have not been included in estimating the electricity 325 

saving potential. With reference to Lin et al. (2018) 66, we set the technical losses at 5%, 326 

which means there is a 5% difference between the generated capacity in power plants and 327 

distributed capacity. The electricity consumption in the BAU scenario for space cooling in 328 

the Chinese residential building sector is expected to reach 1314 TWh in 2050 as compared 329 

to 503 TWh in 2015 and 961 TWh in 2030. The energy consumption trends reflect the huge 330 

growth potential for space cooling in the Chinese residential building sector and are similar to 331 
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the projected energy consumption growth for China in IEA (2010) 68. In addition, the results 332 

of the four alternative scenarios analyzed in this study indicate a significant electricity saving 333 

potential through the adoption of energy-efficient ACs and transition towards low-GWP 334 

refrigerants (see Table S9). The electricity consumption in 2050 is estimated at 368 TWh in 335 

the EAC(T)+KA scenario (efficient AC along with low-GWP refrigerants (i.e. HC-290) using 336 

technical energy efficiency potential), indicating an electricity saving potential of 996 TWh, 337 

equivalent to about 4% of total Chinese building energy consumption in 2050 69. 338 

 339 
Figure 2. Electricity savings in the alternative scenarios as compared to the BAU scenario 340 
 341 
The results presented in Table S9 exhibit the annual technical electricity saving potential in 342 

the alternative scenarios relative to the BAU by the province in China. The technical 343 

electricity saving potential under the KA is estimated at 364 TWh in 2030 and is limited by 344 

assumptions about inertia in technology uptake. By 2050, no inertia in technology uptake 345 

apply and the technical electricity saving potential is 996 TWh when also considering a 346 
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transition to low-GWP refrigerants under the KA. This is equivalent to avoiding 284 new 347 

coal-fired power plants of 500 MW each assuming a capacity factor of 80%. 348 

3.3 GHG mitigation due to HFC phase-down with enhanced energy efficiency 349 
The electricity-savings presented in Figure 2 and Table S9 can be converted to approximate 350 

reductions in CO2 emissions from electricity generation if we combine them with implied 351 

emission factors for CO2 that reflect the expected specific fuel mixes used in the power plant 352 

sector of China in the IEA’s World Energy Outlook 2018 current policies, new policies and 353 

sustainable development scenarios, respectively. Such implied emission factors are available 354 

from IIASA’s GAINS model in the timeframe to 2050 70. In addition, apart from direct 355 

savings in CO2 emissions from fuel combustion in power plants, there will also be savings in 356 

methane (CH4) emissions in the upstream fossil fuel production sector. Noted that CH4 357 

emissions from coal mining in China have risen despite stricter government regulations that 358 

aimed to curb the greenhouse gas emissions87. The implied emission factor in kt CH4 per Mt 359 

coal produced from Chinese coal mines and the corresponding implied emission factors per 360 

PJ oil and gas produced, were taken from IIASA’s GAINS model. Estimated CH4 emissions 361 

per TWh electricity saved take account of expected changes over time in the fuel mix of 362 

electricity production as represented in the different IEA-WEO 2018 scenarios. Except for 363 

special illustration, the emission factors used in emissions analysis in this article are taken 364 

from the new policies scenario (NPS) of the IEA’s World Energy Outlook 2018. 365 

In the BAU scenario, HFC emissions associated with room ACs increased from 115 Mt 366 

CO2eq in 2015 to 125 Mt CO2eq in 2030 and 133 Mt CO2eq in 2050 (see Section S4), 367 

whereas CO2 emissions due to electricity consumption reach 359 Mt in 2050 as compared to 368 

164 Mt in 2015 and 292 Mt in 2030. In addition, the upstream CH4 emissions associated with 369 

the electricity consumption are estimated at 32 Mt CO2eq in 2050 as compared to 27 Mt 370 

CO2eq in 2015 and 37 Mt CO2eq in 2030. Hence, total CO2eq emissions associated with 371 
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energy consumption and refrigerant use increase from 306 Mt CO2eq in 2015 to 454 Mt 372 

CO2eq in 2030 and 524 Mt CO2eq in 2050 using the implied emission factor from the IEA-373 

WEO 2018 NPS scenario. Figure 3 presents the results of GHG mitigation from the Chinese 374 

residential building sector under the alternative scenarios in 2030 and 2050, respectively, as 375 

compared to the BAU scenario.  376 

In 2050, under EAC(T)+KA scenario, CO2 mitigation from electricity savings is estimated at 377 

272 Mt using NPS variants, whereas GHG mitigation due to transitioning towards low-GWP 378 

refrigerants reaches 122 Mt CO2eq, and the GHG reduction from the upstream CH4 379 

emissions due to electricity savings is estimated at 25 Mt CO2eq. Therefore, the total GHG 380 

mitigation potential for the Chinese residential building sector when accounting for both the 381 

electricity savings and the transition to low-GWP refrigerants is estimated at 420 Mt CO2eq 382 

in 2050. This is equivalent to approximately 10% of the total building sector CO2 emissions 383 

and nearly 3% of the total CO2 emissions in China in 2050 69, 71, 72.  384 

 385 
Figure 3. GHG mitigation in the alternative scenarios 386 
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Figure 4 presents CO2 mitigation in the alternative scenarios due to electricity savings 388 

induced by the HFC phase-down and under assumptions of technical and economic energy 389 

efficiency improvements, respectively, as well as implied emission factors from the CPS, 390 

NPS and SDS variants, respectively. Relative to the BAU scenario, the CO2 mitigation 391 

potentials under the KA scenario and assuming a technical energy efficiency improvement 392 

potential are estimated at 117 Mt CO2eq in 2030 and 402 Mt CO2eq in 2050 using implied 393 

emission factors from the IEA-WEO 2018 CPS scenario. The CO2 mitigation potentials due 394 

to transitioning towards low-GWP HFC alternatives for meeting the KA targets under the 395 

assumption of economic energy efficiency improvements are more limited at 58 Mt CO2 and 396 

201 Mt CO2, respectively, in 2030 and 2050, using CPS variants. As expected, reductions in 397 

CO2 emissions using the NPS and SDS variants are lower as compared to the CPS in all 398 

scenarios presented in Figure 4, primarily due to higher penetration of clean fuels (gas, 399 

renewables etc.) and energy efficiency measures in the power sector. The range is a reflection 400 

of the different degrees of decarbonization of the energy system inherent in the CPS, NPS, 401 

and SDS as specified in the IEA-WEO 2018. In the CPS, the future electricity supply relies 402 

more heavily on fossil fuels and less on renewables than in the SDS, promoting CO2 403 

mitigation from electricity saving to be larger in the current policies scenario. The electricity-404 

savings can be reaped when the air-conditioning equipment that uses alternative technologies 405 

to HFCs are properly installed and maintained, as the CO2 reductions of these electricity-406 

savings correspond to a significant fraction of total GHG emission reductions from high-407 

GWP HFC (e.g. HFC-410A) phase-down. GHG mitigation at the provincial level due to the 408 

enhanced energy efficiency of room ACs using low-GWP refrigerants and substitution of 409 

high-GWP refrigerants is presented in Figure S7 of the SI. It is observed that GHG mitigation 410 

from refrigerant emissions together with the CO2 mitigation from electricity-savings varies 411 

significantly across provinces. Most provinces with large GHG mitigation potential are 412 
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concentrated in Hot Summer and Warm Winter or Hot Summer and Cold Winter climate 413 

zones, such as Guangdong, Jiangsu, Zhejiang, and Hubei provinces due to the higher 414 

temperature and longer duration of summer than other provinces (Table S9). This kind of 415 

climate zone division is consistent with the Chinese architectural climate zone planning map 416 

in the Code for Design of Civil Buildings (GB50352-2005)75.  417 

 418 

Figure 4. Annual CO2 mitigation in alternative scenarios relative to the BAU scenario due to 419 
electricity savings 420 

3.4 Air pollutant and SLCP emissions due to HFC phase-down with enhanced energy 421 
efficiency  422 
Another major environmental benefit of reduced electricity demand for cooling technologies 423 

is improved air quality and fewer related adverse health and ecosystem effects 73, 74. The 424 

electricity generation units that respond to this increased demand are major contributors to 425 

SO2 and NOx, both of which have direct impacts on public health, and contribute to the 426 

formation of secondary pollutants including ozone and PM2.5. In 2015, residential space 427 

cooling was responsible for 9% of global SO2 emissions from the power sector and 8% of 428 

NOx and PM2.5 emissions from the power sector 2.  429 
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Figure 5 presents the reductions in air pollutants and SLCPs emissions in alternative 430 

scenarios due to the HFC phase-down with associated improvements in the technical and 431 

economic energy efficiency potential of room ACs relative to the BAU scenario. According 432 

to the projection of this study, in 2050, the air pollutants reduction potential in EAC(T)+KA 433 

scenario is estimated at 133 kt SO2, 227 kt NOx, 39 kt PM2.5 using the implied emission 434 

factors obtained from IEA-WEO 2018 CPS scenario as shown in Figure 5 (a-c). Figure 5 (d-435 

e) indicates the annual reductions of SLCPs, including BC, and OC, in the alternative 436 

scenarios due to electricity-savings associated with HFC phase-down when assuming 437 

technical and economic energy efficiency improvements in cooling technologies. In 2050, the 438 

SLCPs reduction potential in EAC(T)+KA scenario is 0.6 kt BC, 2.8 kt OC with CPS 439 

variants. 440 

  441 
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 442 
Figure 5. Annual air pollutants and SLCPs emission reductions in the alternative scenarios relative to the BAU scenario   443 
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3.5 Policy implications and future directions of research   444 
In the last two decades, China had the fastest growth in space cooling energy consumption 445 

worldwide, driven by increasing income and growing demand for thermal comfort. In this 446 

study, we model future penetration of room air-conditioners (ACs) in the residential building 447 

sector of China at the provincial level, with consideration of urban-rural heterogeneities. 448 

Using market data and considering factors such as expected changes in climatic conditions 449 

and income, we first develop a business-as-usual (BAU) scenario for the future penetration of 450 

room ACs by 2050 in China. We then estimate the associated impacts on electricity demand 451 

considering the scopes for technical and economic energy efficiency improvements in room 452 

ACs and the energy efficiency benefits associated with the transition to low-GWP 453 

refrigerants.  454 

The results indicate that increasing income, growing demand for thermal comfort and warmer 455 

climate conditions, are expected to drive an increase in the stock of room ACs in China from 456 

568 million units in 2015 to 997 million units in 2030 and 1.1 billion units in 2050. In urban 457 

China, room AC ownership per 100 households is expected to increase from 114 units in 458 

2015 to 219 units in 2030 and 225 units in 2050, with slow growth after 2040 due to the 459 

saturation of room ACs in the urban households of China. Ownership of room ACs per 100 460 

households in rural China increases from 48 units in 2015 to 147 units in 2030 and 208 units 461 

in 2050. The total number of room ACs in rural China increases from 82 to 218 million units 462 

between 2015 and 2040 and then decreases slightly to 208 million units by 2050 primarily 463 

due to rapid urbanization and decreasing rural population. 464 

There exists a large energy efficiency improvement potential in the room AC sector in China. 465 

Therefore, strong efficiency improvement policies can make a significant dent in the energy 466 

consumption of space cooling in the Chinese residential building sector. Currently, the AC 467 

efficiency improvement does not keep up with the growth rate of AC penetration. The 468 
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average energy efficiency of ACs sold in the market is only 40% of the best available 469 

efficiency level and 80% of the market average available efficiency 8. Without strong policy 470 

incentives to improve the energy efficiency of ACs, the energy consumption will expand to 471 

1314 TWh in 2050 as compared to 961 TWh in 2030 and 503 TWh in 2015. The alternative 472 

scenarios analyzed in this study indicate a remarkable electricity saving potential through the 473 

enhanced energy efficiency of room ACs using low-GWP refrigerants (i.e. HFC-290). The 474 

electricity consumption in 2050 is estimated at 368 TWh using a technical energy efficiency 475 

potential, indicating an annual electricity saving potential of 996 TWh, which is equivalent to 476 

about 4% of expected total building energy consumption in 2050 69.  477 

Phasing down the use of high-GWP refrigerants provides a great opportunity for 478 

policymakers to move to a low-carbon society in China. Our results indicate that the BAU 479 

emissions of HFCs from the room AC sector are expected to increase from 115 to 125 Mt 480 

CO2eq between 2015 and 2030 and reaching 133 Mt CO2eq in 2050, prior to the 481 

commitments made by China under the Kigali Amendment (KA) to the Montreal Protocol. 482 

The growth is mainly driven by increasing penetration of room ACs in urban and rural 483 

households, which in turn is driven by an expected increase in per capita wealth in China, a 484 

warmer future climate, combined with the effect of replacing HCFCs with HFCs in 485 

accordance with the 2007 revision of the Montreal Protocol. Transitioning to low-GWP 486 

refrigerants in room ACs in compliance with the KA, the residential building sector of China 487 

is expected to reduce HFC emissions by 20% in 2030 and 92% in 2050 as compared to the 488 

BAU scenario.  489 

The potential for improved energy efficiency due to the adoption of low-GWP refrigerants 490 

(HC-290) and energy efficiency improvements of the AC systems (i.e. efficient compressors, 491 

heat exchangers, etc.) can significantly reduce electricity consumption from room ACs in the 492 

residential building sector. The cumulative CO2 mitigation due to these energy efficiency 493 
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improvements makes up 2.6% of total CO2 emissions expected to be emitted in China over 494 

the period 2020 to 2050.  495 

China can deliver significant energy savings and associated reductions in GHG and air 496 

pollution emissions in the building sector by developing and implementing a comprehensive 497 

national policy framework, including legislation and regulation, information programs and 498 

incentives for industry. Energy efficiency and refrigerant standards for room AC installations 499 

should be an integral part of such a framework. Training and awareness raising can also 500 

ensure proper installation, operation and maintenance of air conditioning equipment and 501 

systems, and mandatory good practice with leakage control of the refrigerant during the use 502 

and end-of-life recovery. Improved data collection, research and co‑operation with 503 

manufacturers can equally help to identify emerging trends, technology needs and energy 504 

efficiency opportunities that enable sustainable cooling. Although this article systematically 505 

analyzes the co-benefits of space cooling in the Chinese residential building sector, the model 506 

can be extended in the future to also consider consumer behavior influence and future trends 507 

in the air-conditioning industry. 508 
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