Co-benefits of energy-efficient air conditioners in the residential building sector of China

- 3 Xu Wang^{§,†,‡,*}, Pallav Purohit^{‡,*}, Lena Höglund-Isaksson[‡], Shaohui Zhang^{†,‡}, Hong Fang[†]
- 4 [§] College of Economics and Management, Beijing University of Technology, China
- 5 [†] School of Economics and Management, Beihang University, China
- 6 [‡] International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- 7 *Corresponding authors: <u>wngxu@buaa.edu.cn</u>, <u>purohit@iiasa.ac.at</u>

8 Abstract

9 Electricity demand for room air-conditioners (ACs) is growing significantly in China in 10 response to rapid economic development and mounting impacts of climate change. In this 11 study, we use the bottom-up model approach to predict the penetration rate of room ACs in 12 the residential building sector of China at the provincial level, with the consideration of the 13 urban-rural heterogeneity. In addition, we assess co-benefits associated with enhanced energy 14 efficiency improvement of AC systems and the adoption of low global warming potential 15 (GWP) refrigerants in AC systems. The results indicate that the stock of room ACs in China 16 grows from 568 million units in 2015 to 997 million units in 2030 and 1.1 billion units in 17 2050. The annual electricity saving from switching to more efficient ACs using low-GWP 18 refrigerants is estimated at almost 1000 TWh in 2050 when taking account of the full 19 technical energy efficiency potential. This is equivalent to approximately 4% of the expected 20 total energy consumption in the Chinese building sector in 2050 or the avoidance of 284 new 21 coal-fired power plants of 500 MW each. The cumulative CO₂eq mitigation associated with 22 both the electricity savings and the substitution of high-GWP refrigerants makes up 2.6% of 23 total business-as-usual CO₂eq emissions in China over the period 2020 to 2050. The 24 transition towards the uptake of low-GWP refrigerants is as vital as the energy efficiency 25 improvement of new room ACs, which can help and accelerate the ultimate goal of building a 26 low-carbon society in China.

27 Table of Contents (TOC)/Abstract Art

31 **1. INTRODUCTION**

The global energy consumption of space cooling in the building industry is growing faster 32 than in many other industries¹ (i.e. transportation industry and manufacturing industry) and 33 has more than tripled between 1990 and 2016^2 . The increase is expected to continue in the 34 next few decades³⁻⁶. Space cooling is expected to account for an ever-increasing share of 35 36 energy use with particularly strong growth in emerging economies. Until 2050, the three 37 countries China, India, and Indonesia alone will account for half of the global growth in cooling energy demand ^{2,7}. Over the last two decades, China noted the fastest growth 38 39 worldwide in energy demand for space cooling in buildings, increasing at 13% per year since 2000 and reaching nearly 400 terawatt-hours (TWh) of electricity consumption in 2017⁸. The 40 41 increase in energy consumption since 2000 is driven by increasing income and growing 42 demand for thermal comfort. As a result, space cooling accounted for more than 10% of total 43 electricity consumption in China since 2010 and around 16% of the peak electricity load in 44 2017⁸. Cooling-related carbon dioxide (CO₂) emissions from electricity consumption consequently increased fivefold between 2000 and 2017⁸, given the strong reliance on coal-45 46 fired power generation in China. Already, China is the country worldwide with the largest 47 production and use of air conditioners (ACs), as the country manufactured around 70% of total world output and consumed approximately 40% of global AC sales in 2017⁸⁻¹⁰. The 48 49 penetration rates of room ACs in China have increased from around 20% in 1997 to about 130% in 2018 for urban residential buildings and from below 1% in 1997 to around 50% in 50 2018 for rural residential buildings ¹¹ (see: Figure S1 of the SI). To alleviate the pressures of 51 52 energy consumption and associated greenhouse gas (GHG) and air pollutant emissions 53 brought about by the increase in space cooling demand, China has released a series of household energy efficiency standards since 1989¹²⁻¹⁶ (see: Table S1). However, the energy 54 efficiency of the units sold in the market differs enormously ^{2, 8} (see: Figure S2). Currently, 55

the average energy efficiency of room ACs sold is 60% less than the efficiency level of the
best available technology and 20% lower than the average technology level available in
China ⁸. At the provincial level, penetration rates of room ACs for urban and rural areas are
presented in Figure S3 of the SI.

60 A review of the literature indicates that there is a large potential for the usage of more 61 energy-efficient ACs in the building sector. The application of energy-efficient ACs has 62 significant potential for electricity savings and associated reductions in GHG and air pollutant emissions ^{2, 8, 17-21}. According to the recent Scientific Assessment of Ozone 63 Depletion²², an energy efficiency improvement of 30% in mini-split ACs is estimated to be 64 technically and economically feasible as well as cost-effective in many economies ²². At the 65 global level, the International Energy Agency (IEA) estimated that under a baseline scenario 66 67 the energy requirements of space cooling would triple by 2050, reaching 6200 TWh per year, 68 whereas in an efficient cooling scenario only 3400 TWh per year would be required, which is 45% lower than that in the baseline ². This saving potential is equivalent to the total 69 70 electricity consumption of the European Union in 2016. At the regional level, Grignon-Masse 71 et al. (2011) assessed the environmental impacts of energy-efficient European ACs using a lifecycle analysis approach⁷⁶. Borg and Kelly (2011) focused on the electricity consumption 72 and peak load impacts of appliance efficiency improvements in European households⁷⁷. At 73 74 the national level, several studies evaluated the energy savings, emissions reductions, and 75 economic benefits related to energy-efficiency standards and improvements for ACs and 76 other appliances. Rosas-Flores et al. (2011) estimated the energy savings and CO₂ emission 77 reduction potentials of urban and rural household appliances, including ACs, in Mexico⁷⁸. 78 Cardoso et al. (2012) employed a bottom-up model to evaluate the impacts of energyefficient ACs in Brazil on electricity savings and GHG mitigation ¹⁷. Based on the estimation 79 80 of the quantity of equipment in use and the energy consumption per unit equipment, they

81	concluded that an annual electricity saving of 322 GWh per year could be obtained from a
82	switch to energy-efficient ACs in Brazil. Phadke et al. (2014) estimated the electricity
83	demand of room ACs in India by 2030 considering factors such as climate change and
84	income growth using market data on the penetration of ACs in different income classes and
85	climatic regions ²³ . The total electricity saving potential from efficient room ACs using the
86	best available technology would reach over 118 TWh in 2030 in India with potential peak
87	demand saving found to be 60 GW. This is equivalent to avoiding 120 new coal-fired power
88	plants of 500 MW each. McNeil et al. (2019) analyzed the impact of energy-efficient
89	appliances on Indonesia's peak load, finding that ACs will be the main driver of peak growth
90	by 2025 ⁷⁹ . Similarly, IEA (2019) explored the major trends and challenges brought about by
91	the rapid uptake of room ACs in China. The findings indicated that greater affordability,
92	climate change, as well as changing occupant behavior would significantly increase cooling
93	energy use ⁸ . IEA (2019) concluded that the annual energy demand would be 200 TWh lower
94	in 2030 under the efficient cooling scenario relative to the baseline scenario. Another recent
95	study by Karali et al. (2020) modeled the costs and benefits of recently proposed new room
96	AC minimum energy performance standards (MEPS) in China and observed that the new
97	standards would bring cumulative CO_2 reductions of 12.8% between 2019 and 2050 ⁸⁰ .
98	Furthermore, the benefits of switching to new energy-efficient ACs are not only coming from
99	the efficiency improvement caused by the AC system (e.g. more efficient compressors, heat
100	exchangers, etc.), but also from the replacement of high global warming potential (GWP)
101	refrigerants used as coolants in ACs ²⁴⁻²⁶ . Normally, the refrigerants e.g.,
102	chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons
103	(HFCs), are thousands of times more powerful GHGs than CO_2 on a mass-equivalent basis ^{27,}
104	28 (see details in Section S3 of SI). While the use of CFCs has been successfully phased-out,
105	HCFCs are currently in the process of being phased-out under the Montreal Protocol ²⁹ . The

106 ban on the use of CFCs in developing countries following the Montreal Protocol was fully implemented in 2010³⁰, with China having implemented it ahead of schedule in 2006³¹. 107 however, full enforcement may yet to be completed ⁸⁶. The Kigali Amendment (KA) to the 108 109 Montreal Protocol adopted in October 2016 and has entered into force in January 2019, is a global agreement to phase-down the consumption of HFCs by 2050³². The KA aims to limit 110 111 and eventually significantly reduce emissions of HFCs through a differentiated phase-down 112 of HFCs across countries over the next three decades. The associated conversion of 113 equipment from appliances using HFC refrigerants with high GWPs to low GWP refrigerants 114 provides an unprecedented opportunity to consider other possible technological 115 improvements that can offer additional climate co-benefits. The use of low GWP refrigerants 116 as a replacement for conventional HFCs offers an opportunity to redesign the equipment with 117 improved energy efficiency. In the literature, few attempts have been made to assess the 118 impact of enhanced energy efficiency improvement of AC systems and transitions to low-119 GWP refrigerants. Höglund-Isaksson et al. (2017) analyzed the global abatement costs of 120 achieving the substantial reductions in HFC consumption agreed in the KA and incorporated 121 possible energy efficiency improvements when using alternative substances and technologies to switch away from HFCs³³, however, without considering the impact from simultaneously 122 123 improving the AC system (heat exchangers, compressors, valves, etc.). Similarly, Purohit et al. (2018) analyzed the impacts of the KA to phase-down HFCs in Asian countries ³⁴. These 124 125 studies find that full compliance with the KA could save about 3000 TWh of electricity in 126 Asian countries over the period 2018 to 2050 due to a transition to appliances using low-127 GWP refrigerants. This corresponds to an estimated 0.5% of expected cumulative electricity 128 consumption in Asia over the same period. In contrast, IEA (2018) assessed the energy 129 efficiency improvement due to enhanced AC systems², however, without explicitly considering efficiency improvements from the transition to low-GWP refrigerants as such. In 130

a recent study, Purohit et al. (2020) account for both types of energy efficiency enhancements
and find that if technical energy efficiency improvements are fully implemented together
with the HFC phase-down under the KA, the resulting electricity savings could exceed a fifth
of expected future global electricity consumption⁴⁷.

135 The distinction between top-down and bottom-up model approaches is interesting because 136 they can sometimes produce opposite outcomes for the same problem. Grubb et. al. (1993) 137 state that the top-down approach is associated with -but not exclusively restricted to - the 138 "pessimistic" economic paradigm, while the bottom-up approach is associated with the "optimistic" engineering paradigm⁸⁴. The building stock energy models use both top-down 139 140 and bottom-up approaches ⁸⁵. The top-down methods start with the aggregated energy 141 consumption for a given region and time, then disaggregate into sectors according to e.g., 142 building function or spatial proximity, and typically factor in the interrelationships between 143 the energy sector and other variables such as economic and technological factors. The 144 bottom-up methods work at an individual level calculating the energy consumption of 145 individual end-uses (e.g. cooking, heating/cooling, lighting) or buildings, then summing them 146 up to represent the required region. It may be noted that the bottom-up approach is commonly 147 used in co-benefits estimation as it e.g., allows for simulating a partial market equilibrium 148 with fixed relative prices ⁸², identifying least-cost technology mixes for exogenous demand, 149 and/or simulating specific sectoral policies by setting exogenous environmental constraints⁸³. 150 In this study, we have used a bottom-up engineering approach to model the stock of room 151 ACs and assess the co-benefits without considering the extended impacts e.g., on relative 152 prices and equilibrium in the energy market. Climate and air pollution co-benefits of space 153 cooling in the Chinese residential building sector are assessed by taking account of a) 154 regional and urban/rural heterogeneities (including macroeconomic factors, geographic, 155 demographic factors, household structure, etc.) and climatic zone differences among

provinces across China; and b) technical and economic energy efficiency improvements of
AC system (i.e., heat exchangers and compressors) and the transition towards low-GWP
refrigerants.

159

160 2. MATERIALS AND METHODS

161 In accordance with a bottom-up approach, co-benefits of the uptake of energy-efficient ACs in the Chinese residential building sector by 2050 are assessed in a four-step procedure. First, 162 163 the ownership of room ACs by Chinese households is projected considering regional and 164 urban/rural heterogeneities (including macroeconomic/demographic factors, and household 165 structure, etc.) and changing climatic conditions (measured by cooling degree days, CDDs). 166 In a second step, the unit energy consumption (UEC) of room ACs is estimated as a function 167 of CDDs and household income levels to assess the energy consumption in the business-as-168 usual (BAU) scenario. In a third step, two sets of alternative scenarios are developed: a) 169 considering only the technical and economic UEC potentials due to enhanced energy 170 efficiency of the room ACs, and b) taking into account both the transition towards low-GWP 171 refrigerants and the technical and economic UEC potentials. Finally, co-benefits in terms of 172 reduced GHG and air pollutant emissions are estimated using the electricity savings derived 173 from the alternative scenarios.

174 2.1 Modeling Ownership of ACs

To estimate the number of room ACs in the Chinese residential building sector, we assume that both energy consumption per unit and the proportion of households owning airconditioners (penetration rate) depend on the climatic condition and income level³⁵, both being higher in warmer and wealthier places (e.g. urban areas in warm regions). The penetration of ACs in a province is formulated as a function of the climate maximum

180 saturation (CMS) for that province and of the percentage of the CMS attained at that time in181 the region (availability) as shown in Eq. (1).

182
$$PR_{i,t} = CMS_{i,t} \times AF_{i,t}$$
(1)

183 where $PR_{i,t}$ represents the penetration rate of room ACs in the i^{th} province in t^{th} year,

184 $CMS_{i,t}$ the climate maximum saturation in the i^{th} province in t^{th} year, and $AF_{i,t}$ the

185 availability of the i^{th} province in the t^{th} year.

CMS is derived from the assumption that the maximum penetration rate is the maximum saturation for a climate with a given amount of CDDs³⁵. The relationship between maximum saturation and CDD is exponential, as developed by Sailor and Pavlova (2003) ³⁶ for 39 cities in the United States and modified by McNeil and Letschert (2008) ³⁵ for developing countries (including China) as shown in Eq. (2).

191
$$CMS_{i,t} = 1 - 0.949 \times \exp(-0.00187 \times CDD_{i,t})$$
 (2)

192 The availability of ACs as a function of household income (HHI) is assumed to develop 193 along a logistic function $^{35, 38}$, with a threshold point beyond which ownership increases 194 rapidly $^{37-40}$, as shown in Eq. (3):

195
$$AF_{i,t} = \frac{\alpha_{i,t}}{1 + \gamma_{i,t} \exp\left(-\beta_{i,t} \times HHI_{i,t}\right)}$$
(3)

196 where $\alpha_{i,t}$ is the maximum value of $AF_{i,t}$, together with $\beta_{i,t}$ and $\gamma_{i,t}$ being regression 197 coefficients estimated for the $AF_{i,t}$ of each province.

Further details and data sources on CDDs, macro-economic parameters at the provincial
level, and availability of room air-conditioners are provided in Section S2 of the SI.

200 2.2 Unit Energy Consumption

201 The energy consumption of ACs is not only related to the ownership and CDDs but also the

202 income level of the household. Due to the high electricity consumption of ACs, wealthy

households are likely to use it more frequently and for longer periods, while low-income
households, despite owning ACs, will use it occasionally when necessary ^{8, 35, 39}. Hence,
consistent with the method used in McNeil and Letschert (2008) ³⁵ and Kitous and Després
(2018) ³⁹, we set the model of unit energy consumption (UEC) of AC as a function of the

climatic conditions (i.e. CDDs) and the household income (HHI) level, as shown in Eq. (4).

208
$$UEC = 410 \cdot \ln(CDD) + 0.033 \cdot \ln(CDD) \cdot HHI - 2577$$
 (4)

To assess UEC we have used historical data obtained from Mendes et al. (2014) ⁴¹ and Guo et al. (2017) ⁴² for 11 provinces in different climatic zones of China (see Figure S4 of the SI).

211 **2.3 Scenarios Design**

212 Apart from the BAU scenario, we have developed four alternative scenarios (see Figure S5) 213 to assess the electricity savings and co-benefits associated with enhanced energy efficiency 214 improvements of AC systems and a transition towards low-GWP refrigerants. The first two 215 alternative scenarios only consider the technical and economic efficiency improvement due to 216 the AC system optimization (e.g. using efficient compressors, heat exchangers, valves, etc.), 217 while the last two alternative scenarios consider both the technical/economic energy efficiency improvement of ACs and the energy efficiency improvement from transitioning to 218 a low-GWP refrigerant (i.e. HC-290, $GWP_{100} = 1$)²² from high-GWP HFCs (i.e. HFC-410A, 219 $GWP_{100} = 1924$ or HFC-32, $GWP_{100} = 677$)⁴⁵, as required to comply with the KA (see 220 221 Section S3 of the SI). In the economic energy-efficient AC scenario "EAC(E)", the UEC improvement is set to 30%, and in the technical energy-efficient AC scenario "EAC(T)" the 222 energy efficiency improvement is set to 60% ^{43, 47}. The energy efficiency improvement is 223 224 36% in the economic energy-efficient AC plus transition towards low-GWP refrigerants 225 named as "EAC(E)+KA" scenario, whereas the energy efficiency improvement is assumed to 72% in the technical energy-efficient AC plus transitioning towards low-GWP refrigerants²³, 226 ^{44,47} named as "EAC(T)+KA" scenario (See details in Table 1). 227

In consistency with assumptions in Purohit et al. (2020), the estimated electricity saving potential in 2025 and 2030 is constrained by inertia in technology uptake resulting in a gradual phase-in of new technology and with maximum applicability only assumed possible from 2035 onwards⁴⁷.

232 **2.4 Co-benefits analysis**

233 The methodology for estimating co-benefits in terms of electricity savings and the associated 234 reduction in GHGs and air pollutants is described in Section S4 of the SI. In the BAU 235 scenario, total energy consumption in room ACs is estimated using the number of 236 households, the penetration rate of room ACs (Eq. (1)), and UEC (Eq. (4). The electricity 237 savings in the alternative scenarios are estimated using different energy efficiency 238 assumptions (technical and economic energy efficiency potential) due to systems 239 improvement and transition towards low-GWP refrigerants under the KA. The technical and 240 economic efficiency gains calculated are from improvements in the equipment (heat 241 exchangers, compressors, valves etc.) and using low-GWP (e.g. HC-290) refrigerants. The 242 Greenhouse gas - Air pollution Interactions and Synergies (GAINS) model developed by IIASA ⁴⁶ contains a database on emission factors for a range of air pollutants and GHGs from 243 244 global energy consumption. From this database, we take the implied emission factors for 245 CO₂, CH₄, air pollutants (sulfur dioxide, SO₂; nitrogen oxides, NO_x; and fine particulate 246 matter, PM_{2.5}), and short-lived climate pollutants (SLCPs) (e.g. black carbon, BC; and 247 organic carbon, OC) that reflect the expected region/province- and year- specific fuel mixes 248 used in power plants in the IEA's World Energy Outlook (WEO) 2018 Current Policies 249 Scenario (CPS), New Policies Scenario (NPS) and Sustainable Development Scenario (SDS), 250 respectively, in the timeframe to 2050 (see Figure S6 for details). The CPS scenario only 251 considers the impact of those policies and measures that are firmly enshrined in legislation as 252 of mid-2017. It provides a cautious assessment of where momentum from existing policies

253	might lead the energy sector in the absence of any other impetus from the government. The
254	NPS scenario provides a sense of where today's policy ambitions seem likely to take the
255	energy sector. It incorporates not just the policies and measures that governments around the
256	world have already put in place, but also the likely effects of announced policies, including
257	the Nationally Determined Contributions (NDCs) made for the Paris Agreement (PA). The
258	SDS scenario outlines an integrated approach to achieving internationally agreed objectives
259	on climate change, air quality and universal access to modern energy. It represents a low
260	carbon scenario consistent with a 2°C (i.e., 450 ppm) global warming target for this century,
261	with considerably lower air pollution.

S. No.	Scenario	Description
1	Business as usual BAU	Unit energy consumption (UEC) will remain at the 2015 level.
2	Efficient room AC (Economic) EAC(E)	Economic potential of UEC - efficiency of room AC unit will improve by 30% 43 .
3	Efficient room AC (Technical) EAC (T)	Technical potential of UEC - efficiency of room AC unit will improve by 60% ⁴⁷ .
4	Efficient room AC (Economic) + Kigali Amendment EAC(E)+KA	Economic potential of UEC along with additional energy efficiency improvement of 6% due to low-GWP refrigerants (i. e. HFC-32, HC-290).
5	Efficient room AC (Technical) + Kigali Amendment EAC (T)+KA	Technical potential of UEC along with additional energy efficiency improvement of 12% due to low-GWP refrigerants (i. e. HFC-32, HC-290).

262 **Table 1.** Overview of energy efficiency scenarios for room ACs

264 3. RESULTS AND DISCUSSION

265 We assess the energy sector and environmental co-benefits of the phase-down of HFCs used

266 in room ACs in the Chinese residential building sector under different scenarios using the

267 methodology presented in Section 2. In the following sub-sections, we present the modeling

results of the projection of room ACs in China at the national and provincial levels. In
comparison to the BAU scenario, the electricity saving potentials under different scenarios
have been estimated along with abatement potentials of GHGs, air pollutions and SLCPs
until 2050.

272 **3.1 BAU projections of room ACs in China**

273 The total production volume, export volume, domestic retail volume of the Chinese room AC 274 market from 2003 to 2017 is shown in Figure S1. The annual domestic sales volume of ACs 275 has grown steadily, from 20 million units in 2003 to 88 million units in 2017, an increase by more than seven times ¹¹. The historical penetration of room ACs in Chinese provinces is 276 taken from the National Bureau of Statistics of China¹¹ as shown in Figure S3. The macro-277 economic parameters (including GDP, population, etc.) are taken from NBSC (2019)¹¹ 278 whereas the urbanization rate at the national level is taken from UN DESA (2018)⁴⁸. The 279 280 historical data on average household sizes across the Chinese provinces is taken from the Institute of Population and Labor Economics of China⁴⁹⁻⁵¹, whereas the future projections are 281 282 taken from Zeng et al. (2008) ⁵² due to the unavailability of recent household size projections 283 at the provincial level. The CDD is the most common climatic index used to assess impacts 284 on demand for space cooling services and reflects the deviation between the average 285 temperature and a specified base temperature. The definition of CDDs involves determining a 286 temperature threshold for AC employment, which varies due to differences in human 287 physiological needs, energy supply, economic level, temperature characteristics and so on. For example, the threshold temperatures for CDD employment are 23 °C in Spain ⁵³, 22 °C in 288 Europe ⁵⁴, and 18.33 °C for the United States ⁵⁵. The base temperature used for China differs 289 across studies ⁵⁶⁻⁶⁰ and is for this study taken to be 18 °C. The BizEE Degree Days Weather 290 291 Data for Energy Professionals is used to calculate the average CDDs during the last five years 292 of each province. This data is taken to be the historical CDD for the year 2015 (see Table

S2). The trend projection of CDDs for China at the national level until 2050 is obtained from IEA $(2018)^2$. Due to the lack of availability of provincial level projections of CDDs, we assume the same trend applies to provinces as the national level of China.

Using the modeling framework discussed in the methodology section (Section 2), the results 296 297 indicate that the stock of room ACs in the residential building sector of China grows from 298 568 million units in 2015 to 997 million units in 2030 and 1.1 billion units in 2050. In urban 299 China, room AC ownership per 100 households increases from 114 units in 2015 to 219 units 300 in 2030 and 225 units in 2050. The overall growth in the number of installed room ACs 301 remains relatively slow from 2040 onwards due to saturation amongst urban households. In 302 rural areas, room AC ownership per 100 households increases from 48 units in 2015 to 147 303 units in 2030 and 208 units in 2050 due to the increasing wealth of rural households. The 304 number of room ACs in urban China increases from 486 million units in 2015 to 793 million 305 units in 2030 and 919 million units by 2050. For rural China, the corresponding numbers are 306 82 million units in 2015, 218 million units in 2040 and 208 million units in 2050 with a slight 307 decline in the last years due to rapid urbanization and a decreasing rural population in China. 308 Figure 1 presents the penetration of room ACs in China in the BAU scenario at the national, 309 urban and rural levels along with a comparison between the results based on this study our 310 estimates and those of other studies. The projections based on this study are very close to O'Gresady and Narsipur (2018)⁶⁰, Kalanki (2019)⁶¹ and IEA (2018)² in 2030, whereas in 311 2050 the deviation with IEA (2018)² is larger primarily due to the difference in the macro-312 313 economic assumptions. Detailed results on the penetration of residential ACs at the provincial 314 level for China are presented in Table S5 of the SI.

315

Figure 1. Comparison of room ACs stock under reference scenario with other studies
 *IEA (2018)² data extracted from Geman (2018)⁶⁴.

318 **3.2 Electricity consumption under BAU and alternative scenarios**

319 Figure 2 presents the technical and economic electricity savings potential when moving from 320 the BAU to alternative scenarios. As mentioned above, in the alternative scenarios we have 321 taken into account a) the technical/economic energy efficiency potential of room ACs, and b) 322 technical/economic efficiency improvement due to transition towards low-GWP alternatives (i.e. HC-290) instead of high-GWP HFCs (i.e. HFC-410A/HFC-32). The technical losses in 323 324 the transmission and distribution (T&D) of electricity have been taken into account ⁶⁵, 325 whereas non-technical losses (NTL) have not been included in estimating the electricity saving potential. With reference to Lin et al. (2018)⁶⁶, we set the technical losses at 5%, 326 327 which means there is a 5% difference between the generated capacity in power plants and 328 distributed capacity. The electricity consumption in the BAU scenario for space cooling in 329 the Chinese residential building sector is expected to reach 1314 TWh in 2050 as compared 330 to 503 TWh in 2015 and 961 TWh in 2030. The energy consumption trends reflect the huge 331 growth potential for space cooling in the Chinese residential building sector and are similar to the projected energy consumption growth for China in IEA (2010) ⁶⁸. In addition, the results of the four alternative scenarios analyzed in this study indicate a significant electricity saving potential through the adoption of energy-efficient ACs and transition towards low-GWP refrigerants (see Table S9). The electricity consumption in 2050 is estimated at 368 TWh in the EAC(T)+KA scenario (efficient AC along with low-GWP refrigerants (i.e. HC-290) using technical energy efficiency potential), indicating an electricity saving potential of 996 TWh, equivalent to about 4% of total Chinese building energy consumption in 2050 ⁶⁹.

339

Figure 2. Electricity savings in the alternative scenarios as compared to the BAU scenario

The results presented in Table S9 exhibit the annual technical electricity saving potential in the alternative scenarios relative to the BAU by the province in China. The technical electricity saving potential under the KA is estimated at 364 TWh in 2030 and is limited by assumptions about inertia in technology uptake. By 2050, no inertia in technology uptake apply and the technical electricity saving potential is 996 TWh when also considering a transition to low-GWP refrigerants under the KA. This is equivalent to avoiding 284 new
coal-fired power plants of 500 MW each assuming a capacity factor of 80%.

349 **3.3 GHG mitigation due to HFC phase-down with enhanced energy efficiency**

350 The electricity-savings presented in Figure 2 and Table S9 can be converted to approximate 351 reductions in CO₂ emissions from electricity generation if we combine them with implied 352 emission factors for CO₂ that reflect the expected specific fuel mixes used in the power plant 353 sector of China in the IEA's World Energy Outlook 2018 current policies, new policies and 354 sustainable development scenarios, respectively. Such implied emission factors are available from IIASA's GAINS model in the timeframe to 2050 ⁷⁰. In addition, apart from direct 355 356 savings in CO₂ emissions from fuel combustion in power plants, there will also be savings in 357 methane (CH₄) emissions in the upstream fossil fuel production sector. Noted that CH₄ 358 emissions from coal mining in China have risen despite stricter government regulations that aimed to curb the greenhouse gas emissions⁸⁷. The implied emission factor in kt CH₄ per Mt 359 360 coal produced from Chinese coal mines and the corresponding implied emission factors per PJ oil and gas produced, were taken from IIASA's GAINS model. Estimated CH₄ emissions 361 362 per TWh electricity saved take account of expected changes over time in the fuel mix of 363 electricity production as represented in the different IEA-WEO 2018 scenarios. Except for 364 special illustration, the emission factors used in emissions analysis in this article are taken 365 from the new policies scenario (NPS) of the IEA's World Energy Outlook 2018. 366 In the BAU scenario, HFC emissions associated with room ACs increased from 115 Mt 367 CO₂eq in 2015 to 125 Mt CO₂eq in 2030 and 133 Mt CO₂eq in 2050 (see Section S4), whereas CO₂ emissions due to electricity consumption reach 359 Mt in 2050 as compared to 368 369 164 Mt in 2015 and 292 Mt in 2030. In addition, the upstream CH₄ emissions associated with 370 the electricity consumption are estimated at 32 Mt CO₂eq in 2050 as compared to 27 Mt

371 CO₂eq in 2015 and 37 Mt CO₂eq in 2030. Hence, total CO₂eq emissions associated with

372 energy consumption and refrigerant use increase from 306 Mt CO₂eq in 2015 to 454 Mt 373 CO₂eq in 2030 and 524 Mt CO₂eq in 2050 using the implied emission factor from the IEA-374 WEO 2018 NPS scenario. Figure 3 presents the results of GHG mitigation from the Chinese 375 residential building sector under the alternative scenarios in 2030 and 2050, respectively, as 376 compared to the BAU scenario. 377 In 2050, under EAC(T)+KA scenario, CO₂ mitigation from electricity savings is estimated at 378 272 Mt using NPS variants, whereas GHG mitigation due to transitioning towards low-GWP 379 refrigerants reaches 122 Mt CO₂eq, and the GHG reduction from the upstream CH₄ 380 emissions due to electricity savings is estimated at 25 Mt CO₂eq. Therefore, the total GHG

381 mitigation potential for the Chinese residential building sector when accounting for both the 382 electricity savings and the transition to low-GWP refrigerants is estimated at 420 Mt CO₂eq 383 in 2050. This is equivalent to approximately 10% of the total building sector CO₂ emissions and nearly 3% of the total CO₂ emissions in China in 2050 $^{69, 71, 72}$. 384

387

388 Figure 4 presents CO₂ mitigation in the alternative scenarios due to electricity savings 389 induced by the HFC phase-down and under assumptions of technical and economic energy efficiency improvements, respectively, as well as implied emission factors from the CPS, 390 391 NPS and SDS variants, respectively. Relative to the BAU scenario, the CO₂ mitigation 392 potentials under the KA scenario and assuming a technical energy efficiency improvement 393 potential are estimated at 117 Mt CO₂eq in 2030 and 402 Mt CO₂eq in 2050 using implied 394 emission factors from the IEA-WEO 2018 CPS scenario. The CO₂ mitigation potentials due 395 to transitioning towards low-GWP HFC alternatives for meeting the KA targets under the 396 assumption of economic energy efficiency improvements are more limited at 58 Mt CO₂ and 397 201 Mt CO₂, respectively, in 2030 and 2050, using CPS variants. As expected, reductions in 398 CO₂ emissions using the NPS and SDS variants are lower as compared to the CPS in all 399 scenarios presented in Figure 4, primarily due to higher penetration of clean fuels (gas, 400 renewables etc.) and energy efficiency measures in the power sector. The range is a reflection 401 of the different degrees of decarbonization of the energy system inherent in the CPS, NPS, 402 and SDS as specified in the IEA-WEO 2018. In the CPS, the future electricity supply relies 403 more heavily on fossil fuels and less on renewables than in the SDS, promoting CO₂ 404 mitigation from electricity saving to be larger in the current policies scenario. The electricity-405 savings can be reaped when the air-conditioning equipment that uses alternative technologies 406 to HFCs are properly installed and maintained, as the CO₂ reductions of these electricity-407 savings correspond to a significant fraction of total GHG emission reductions from high-408 GWP HFC (e.g. HFC-410A) phase-down. GHG mitigation at the provincial level due to the 409 enhanced energy efficiency of room ACs using low-GWP refrigerants and substitution of 410 high-GWP refrigerants is presented in Figure S7 of the SI. It is observed that GHG mitigation 411 from refrigerant emissions together with the CO₂ mitigation from electricity-savings varies 412 significantly across provinces. Most provinces with large GHG mitigation potential are

413 concentrated in Hot Summer and Warm Winter or Hot Summer and Cold Winter climate
414 zones, such as Guangdong, Jiangsu, Zhejiang, and Hubei provinces due to the higher
415 temperature and longer duration of summer than other provinces (Table S9). This kind of
416 climate zone division is consistent with the Chinese architectural climate zone planning map
417 in the Code for Design of Civil Buildings (GB50352-2005)⁷⁵.

418

421 3.4 Air pollutant and SLCP emissions due to HFC phase-down with enhanced energy 422 efficiency

423 Another major environmental benefit of reduced electricity demand for cooling technologies

- 424 is improved air quality and fewer related adverse health and ecosystem effects ^{73, 74}. The
- 425 electricity generation units that respond to this increased demand are major contributors to
- 426 SO_2 and NO_x , both of which have direct impacts on public health, and contribute to the
- 427 formation of secondary pollutants including ozone and PM_{2.5}. In 2015, residential space
- 428 cooling was responsible for 9% of global SO₂ emissions from the power sector and 8% of
- 429 NO_x and PM_{2.5} emissions from the power sector 2 .

Figure 4. Annual CO₂ mitigation in alternative scenarios relative to the BAU scenario due to
 electricity savings

430	Figure 5 presents the reductions in air pollutants and SLCPs emissions in alternative
431	scenarios due to the HFC phase-down with associated improvements in the technical and
432	economic energy efficiency potential of room ACs relative to the BAU scenario. According
433	to the projection of this study, in 2050, the air pollutants reduction potential in EAC(T)+KA
434	scenario is estimated at 133 kt SO ₂ , 227 kt NO _x , 39 kt $PM_{2.5}$ using the implied emission
435	factors obtained from IEA-WEO 2018 CPS scenario as shown in Figure 5 (a-c). Figure 5 (d-
436	e) indicates the annual reductions of SLCPs, including BC, and OC, in the alternative
437	scenarios due to electricity-savings associated with HFC phase-down when assuming
438	technical and economic energy efficiency improvements in cooling technologies. In 2050, the
439	SLCPs reduction potential in EAC(T)+KA scenario is 0.6 kt BC, 2.8 kt OC with CPS
440	variants.

443 Figure 5. Annual air pollutants and SLCPs emission reductions in the alternative scenarios relative to the BAU scenario

444 **3.5 Policy implications and future directions of research**

445 In the last two decades, China had the fastest growth in space cooling energy consumption 446 worldwide, driven by increasing income and growing demand for thermal comfort. In this 447 study, we model future penetration of room air-conditioners (ACs) in the residential building 448 sector of China at the provincial level, with consideration of urban-rural heterogeneities. 449 Using market data and considering factors such as expected changes in climatic conditions 450 and income, we first develop a business-as-usual (BAU) scenario for the future penetration of 451 room ACs by 2050 in China. We then estimate the associated impacts on electricity demand 452 considering the scopes for technical and economic energy efficiency improvements in room 453 ACs and the energy efficiency benefits associated with the transition to low-GWP

454 refrigerants.

455 The results indicate that increasing income, growing demand for thermal comfort and warmer 456 climate conditions, are expected to drive an increase in the stock of room ACs in China from 457 568 million units in 2015 to 997 million units in 2030 and 1.1 billion units in 2050. In urban 458 China, room AC ownership per 100 households is expected to increase from 114 units in 459 2015 to 219 units in 2030 and 225 units in 2050, with slow growth after 2040 due to the 460 saturation of room ACs in the urban households of China. Ownership of room ACs per 100 461 households in rural China increases from 48 units in 2015 to 147 units in 2030 and 208 units 462 in 2050. The total number of room ACs in rural China increases from 82 to 218 million units 463 between 2015 and 2040 and then decreases slightly to 208 million units by 2050 primarily 464 due to rapid urbanization and decreasing rural population.

465 There exists a large energy efficiency improvement potential in the room AC sector in China.

466 Therefore, strong efficiency improvement policies can make a significant dent in the energy

- 467 consumption of space cooling in the Chinese residential building sector. Currently, the AC
- 468 efficiency improvement does not keep up with the growth rate of AC penetration. The

469 average energy efficiency of ACs sold in the market is only 40% of the best available efficiency level and 80% of the market average available efficiency⁸. Without strong policy 470 471 incentives to improve the energy efficiency of ACs, the energy consumption will expand to 472 1314 TWh in 2050 as compared to 961 TWh in 2030 and 503 TWh in 2015. The alternative 473 scenarios analyzed in this study indicate a remarkable electricity saving potential through the 474 enhanced energy efficiency of room ACs using low-GWP refrigerants (i.e. HFC-290). The 475 electricity consumption in 2050 is estimated at 368 TWh using a technical energy efficiency 476 potential, indicating an annual electricity saving potential of 996 TWh, which is equivalent to about 4% of expected total building energy consumption in 2050⁶⁹. 477 478 Phasing down the use of high-GWP refrigerants provides a great opportunity for 479 policymakers to move to a low-carbon society in China. Our results indicate that the BAU 480 emissions of HFCs from the room AC sector are expected to increase from 115 to 125 Mt 481 CO₂eq between 2015 and 2030 and reaching 133 Mt CO₂eq in 2050, prior to the 482 commitments made by China under the Kigali Amendment (KA) to the Montreal Protocol. 483 The growth is mainly driven by increasing penetration of room ACs in urban and rural 484 households, which in turn is driven by an expected increase in per capita wealth in China, a 485 warmer future climate, combined with the effect of replacing HCFCs with HFCs in 486 accordance with the 2007 revision of the Montreal Protocol. Transitioning to low-GWP 487 refrigerants in room ACs in compliance with the KA, the residential building sector of China 488 is expected to reduce HFC emissions by 20% in 2030 and 92% in 2050 as compared to the 489 BAU scenario. 490 The potential for improved energy efficiency due to the adoption of low-GWP refrigerants

491 (HC-290) and energy efficiency improvements of the AC systems (i.e. efficient compressors,

492 heat exchangers, etc.) can significantly reduce electricity consumption from room ACs in the

493 residential building sector. The cumulative CO₂ mitigation due to these energy efficiency

494 improvements makes up 2.6% of total CO₂ emissions expected to be emitted in China over
495 the period 2020 to 2050.

496 China can deliver significant energy savings and associated reductions in GHG and air 497 pollution emissions in the building sector by developing and implementing a comprehensive 498 national policy framework, including legislation and regulation, information programs and 499 incentives for industry. Energy efficiency and refrigerant standards for room AC installations 500 should be an integral part of such a framework. Training and awareness raising can also 501 ensure proper installation, operation and maintenance of air conditioning equipment and 502 systems, and mandatory good practice with leakage control of the refrigerant during the use 503 and end-of-life recovery. Improved data collection, research and co-operation with 504 manufacturers can equally help to identify emerging trends, technology needs and energy 505 efficiency opportunities that enable sustainable cooling. Although this article systematically 506 analyzes the co-benefits of space cooling in the Chinese residential building sector, the model 507 can be extended in the future to also consider consumer behavior influence and future trends 508 in the air-conditioning industry.

509 Acknowledgments

510 This work was developed during the time of Young Scientists Summer Program (YSSP) at 511 the International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria) with 512 the financial support from the National Natural Science Foundation of China. This study is 513 funded by the Natural Science Foundation of China (71904007; 71773006).

514 Supporting Information

Additional information for methods; Additional data and results at the provincial level with
rural and urban disparity, Additional description of different refrigerants used in ACs along
with baseline and HFC phase-down schedule of Article 5 countries of the Montreal Protocol;

518	Ad	ditional results on air pollutants, SLCPs, as well as GHG mitigation at the provincial level
519	du	e to enhanced ACs system efficiency and the substitution of high-GWP refrigerants.
520	Re	ferences
521	1.	EIA (Energy Information Administration, U.S.). International Energy Outlook. 2016,
522		DOE/EIA-0484(2016). https://www.eia.gov/outlooks/ieo/pdf/buildings.pdf (accessed
523		October 5 th , 2019).
524	2.	IEA (International Energy Agency). The Future of Cooling: Opportunities for energy-
525		efficient air conditioning, 2018 .
526		https://webstore.iea.org/download/direct/1036?fileName=The_Future_of_Cooling.pdf
527		(accessed September 27 th , 2019).
528	3.	IEA (International Energy Agency). Transition to Sustainable Buildings: Strategies and
529		Opportunities to 2050, 2013 .
530		https://www.iea.org/media/training/presentations/etw2014/publications/Sustainable_Build
531		ings_2013.pdf (accessed October 5th, 2019).
532	4.	Goetzler, W.; Guernsey, M.; Young, J.; Fuhrman, J.; Abdelaziz, O. The Future of Air
533		Conditioning for Buildings. 2016.
534		https://www.energy.gov/sites/prod/files/2016/07/f33/The%20Future%20of%20AC%20Re
535		port%20-%20Full%20Report_0.pdf (accessed October 5 th , 2019).
536	5.	Urge-Vorsatz, D.; Petrichenko, K.; Staniec, M.; Eom, J. Energy use in buildings in a
537		long-term perspective. Current Opinion in Environmental Sustainability 2013, 5(2), 141-
538		151.
539	6.	Velders, G.J.M.; Fahey, D.W.; Daniel J.S.; Andersen, S.O.; McFarland, M. Future
540		atmospheric abundances and climate forcings from scenarios of global and regional
541		hydrofluorocarbon (HFC) emissions. Atmospheric Environment 2015, 123, 200-209.

- 542 7. Galka, M.D.; Lownsbury, J.M.; Blowers, P. Greenhouse Gas Emissions for Refrigerant
- 543 Choices in Room Air Conditioner Units. *Environmental Science and Technology* 2012,
 544 46, 12977-12985.
- 545 8. IEA (International Energy Agency). The Future of Cooling in China, **2019**.
- 546 <u>https://webstore.iea.org/download/direct/2808?fileName=The_Future_of_Cooling_in_Chi</u>
 547 na.pdf (accessed September 27th, 2019).
- 548 9. Zhou, N.; Fridley, D.; McNeil, M.; Zheng, N.; Letschert, V.; Ke, J. Analysis of potential
- 549 energy saving and CO₂ emission reduction of home appliances and commercial
- equipments in China. *Energy Policy* **2011**, 39, 4541-4550.
- 551 10. Fridley, D.G.; Rosenquist, G.; Lin, J.; Li, A.; Xin, D.; Cheng, J. Technical and Economic
- 552 Analysis of Energy Efficiency of Chinese Room Air Conditioners. *Lawrence Berkeley*

553 *National Laboratory Series Report* **2001**, LBNL-45550.

- 554 <u>https://escholarship.org/uc/item/9cw020f8</u> (accessed October 5th, 2019).
- 555 11. NBSC (National Bureau of Statistics of China). Annual national data by province, **2019**.
- 556 <u>http://data.stats.gov.cn/english/easyquery.htm?cn=E0103</u> (assessed 26th Sep., 2019).
- 557 12. Zhao, C.; Graham, J.M. The PRC's Evolving Standards System: Institution and Strategy.
- 558 *Asia Policy* **2006**, 2(1), 63–88.
- 559 13. CNIS (China National Institute of Standardization). The minimum allowable values of the
- 560 energy efficiency and energy efficiency grades for room air conditioners. GB12021.3-
- 561 2004, **2004**. <u>http://www.doc88.com/p-6292340608677.html</u> (accessed September 27th,
- 562 2019).
- 563 14. CNIS (China National Institute of Standardization). The minimum allowable values of the
- energy efficiency and energy efficiency grades for room air conditioners. GB 21455-
- 565 2008, **2008**. <u>http://www.doc88.com/p-349518814350.html</u> (accessed September 27th,
- 566 2019).

568	energy efficiency and energy efficiency grades for variable speed room air conditioners.
569	GB12021.3-2010, 2010 . <u>http://www.doc88.com/p-99414654642.html</u> (accessed
570	September 27 th , 2019).
571	16. CNIS (China National Institute of Standardization). The minimum allowable values of the
572	energy efficiency and energy efficiency grades for variable speed room air conditioners.
573	GB21455-2013, 2013 . <u>http://www.doc88.com/p-9965080278941.html</u> (accessed
574	September 27 th , 2019).
575	17. Cardoso, R.B.; Nogueira, H.L.A.; de Souza, E.P.; Haddad, J. An assessment of energy
576	benefits of efficient household air-conditioners in Brazil. Energy Efficiency 2012, 5(3),
577	433-446.
578	18. Waite, M.; Cohen, E.; Torbey, H.; Piccirilli, M.; Tian, Y.; Modi V. Global trends in urban
579	electricity demands for cooling and heating. Energy 2017, 127, 786-802.
580	19. Serrano, S.; Urge-Vorsatz, D.; Barreneche, C.; Palacios, A.; Cabeza, L.F. Heating and
581	cooling energy trends and drivers in Europe. Energy 2017, 119, 425-434.
582	20. Jakubcionis, M.; Carlsson J. Estimation of European Union residential sector space
583	cooling potential. Energy Policy 2017, 101, 225-235.
584	21. Urge-Vorsatz, D.; Cabeza, L.F.; Serrano, S.; Barreneche, C.; Petrichenko, K. Heating and
585	cooling energy trends and drivers in buildings. Renewable and Sustainable Energy
586	<i>Reviews</i> 2015 , 41, 85-98.
587	22. WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion
588	2018: Executive Summary.
589	https://www.esrl.noaa.gov/csd/assessments/ozone/2018/executivesummary.pdf (accessed
590	October 30 th , 2019)

15. CNIS (China National Institute of Standardization). The minimum allowable values of the

567

- 591 23. Phadke, A.; Abhyankar, N.; Shah, N. Avoiding 100 new power plants by increasing
- 592 efficiency of room air conditioners in India: Opportunities and challenges, Environmental
- 593 Energy Technologies Division. Lawrence Berkeley National Laboratory Series Report
- 594 **2014**, LBNL-6674E. <u>http://eta-publications.lbl.gov/sites/default/files/lbnl-6674e.pdf</u>
- 595 (accessed October 8^{th} , 2019).
- 596 24. Li, Z.; Bie P.; Wang, Z.; Zhang, Z.; Jiang, H.; Xu W.; Zhang, J.; Hu, J. Estimated HCFC-
- 597 22 emissions for 1990–2050 in China and the increasing contribution to global emissions.
 598 *Atmospheric Environment* 2016, 132, 77-84.
- 599 25. Liu, L.; Dou, Y.; Yao, B.; Bie, P.; Wang, L.; Peng, M.; Hu, J. Historical and projected
- 600 HFC-410A emission from room air conditioning sector in China. *Atmospheric*
- 601 *Environment* **2019**, 212, 194-200.
- 26. Wang, Z.; Fang, X.; Li, L.; Bie, P.; Li, Z.; Hu, J.; Zhang, B.; Zhang, J. Historical and
 projected emissions of HCFC-22 and HFC-410a from China's room air conditioning

604 sector. *Atmospheric Environment* **2016**, 132, 30-35.

- 605 27. Fang, X.; Velders, G.J.M.; Ravishankara, A.R.; Molina, M.J.; Hu, J.; Prinn, R.G.
- 606 Hydrofluorocarbon (HFC) Emissions in China: An Inventory for 2005-2013 and
- 607 Projections to 2050. *Environmental Science and Technology* **2016**, 50 (4), 2027-2034.
- 608 28. Purohit, P.; Höglund-Isaksson, L. Global emissions of fluorinated greenhouse gases
- 609 2005–2050 with abatement potentials and costs. *Atmospheric Chemistry and Physics*
- **2017**, 17, 2795-2816.
- 611 29. UNEP (United Nations Environment Programme). Report of the task force on HCFC
- 612 *issues and emissions re-duction benefits arising from earlier HCFC phase-out and other*
- 613 *practical measures*, Nairobi, **2007**.
- 614 30. Montzka, A.D.; Dutton, G.S.; Yu, P.; Ray, E.; Portmann, R.W.; Daniel, J.S.; Kuijpers,
- 615 L.,; Hall, B.D.; Mondeel, B.; Siso, C.; Nance, J.D.; Rigby, M.; Manning, A.J.; Hu, L.;

- 616 Moore, F.; Miller, B.R.; Elkins, J.W. An unexpected and persistent increase in global
- 617 emissions of ozone-depleting CFC-11. *Nature* **2018**, 557, 413–417.
- 618 31. UNEP (United Nations Environment Programme). *Handbook for the Montreal Protocol*619 *on Substances that Deplete the Ozone Layer*, 9th Edition, **2012**.
- 620 32. UNEP (United Nations Environment Programme). Further Amendment of the Montreal
- 621 *Protocol: Submitted by the Contact group on HFCs.* Twenty-Eighth Meeting of the
- 622 Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, **2016**.
- 623 33. Höglund-Isaksson, L.; Purohit, P.; Amann, M.; Bertok, I.; Rafaj, P.; Schöpp, W.; Borken-
- 624 Kleefeld, J. Cost estimates of the Kigali Amendment to phase-down hydrofluorocarbons.
- 625 *Environmental Science and Policy* **2017**, 75, 138-147.
- 626 https://www.sciencedirect.com/science/article/pii/S146290111730120X
- 627 (accessed September 27th, 2019).
- 628 34. Purohit P.; Höglund-Isaksson L.; Wagner, F. Impacts of the Kigali Amendment to phase-
- down hydrofluorocarbons (HFCs) in Asia. IIASA Report, **2018**,
- 630 http://pure.iiasa.ac.at/id/eprint/15274/1/Impacts%2520of%2520the%2520Kigali%2520A
- 631 <u>mendment.pdf</u> (accessed October 8th, 2019).
- 632 35. Mcneil, M. A.; Letschert, V. E. Future Air-Conditioning Energy Consumption in
- 633 Developing Countries and what can be done about it: The Potential of Efficiency in the
- 634 Residential Sector. *Lawrence Berkeley National Laboratory Series Report*, 2008.
- 635 <u>https://escholarship.org/uc/item/64f9r6wr</u> (accessed September 27th, 2019).
- 636 36. Sailor, D. J., Pavlova, A. A. Air conditioning market saturation and long-term response of
- residential cooling energy demand to climate change. *Energy* **2003**, 28(9), 941-951.
- 638 37. Akpinar-Ferrand, E.; Singh, A. Modeling increased demand of energy for air conditioners
- and consequent CO_2 emissions to minimize health risks due to climate change in India.
- 640 *Environmental Science & Policy* **2010**, 13(8), 702-712.

641	38. Isaac, M.; Vuuren, D. P. V. Modeling global residential sector energy demand for heating
642	and air conditioning in the context of climate change. Energy Policy 2009, 37(2), 507-
643	521.

- 644 39. Kitous, A.; Després, J. Assessment of the impact of climate change on residential energy
- 645 demand for heating and cooling. *Joint Research Center Science for Policy Report* 2018,
- 646 JRC 108692.
- http://publications.jrc.ec.europa.eu/repository/bitstream/JRC110191/jrc_technical_report_
 peseta3_energy_20180117.pdf (accessed October 2nd, 2019).
- 649 40. Li, Y.; Fei, Y.; Zhang, X.B.; Qin, P. Household appliance ownership and income
- 650 inequality: Evidence from micro data in China. *China Economic Review* **2019**, 56,
- 651 101309.
- 41. Mendes, G.; Feng, W.; Stadler, M.; Steinbach, J.; Lai, J.; Zhou, N.; Marnay, C.; Ding, Y.;
- ⁶⁵³ Zhao, J.; Tian, Z.; Zhu, N. Regional analysis of building distributed energy costs and CO₂

abatement: A U.S.–China comparison. *Energy and Buildings* **2014**, 77, 112-129.

- 42. Guo F.; Pachauri, S.; Cofala, J. Cost-effective subsidy incentives for room air
- 656 conditioners in China: An analysis based on a McFadden-type discrete choice model.
- 657 *Energy policy* **2017**, 110, 375-385.
- 43. Shah, N.; Wei, M.; Letschert, M.; Phadke A. Benefits of Leapfrogging to Superefficiency
- and Low Global Warming Potential Refrigerants in Room Air Conditioning. *Lawrence*
- 660 Berkeley National Laboratory Series Report 2015.
- 661 <u>https://ies.lbl.gov/sites/default/files/lbnl-1003671.pdf</u>. (accessed September 27th, 2019).
- 44. Shah, N.; Waide, P.; Phadke, A. Cooling the planet: opportunities for deployment of
- 663 superefficient room air conditioners. *Lawrence Berkeley National Laboratory Series*
- 664 *Report* **2013.**
- 665 <u>http://hydrocarbons21.com/files/1349_Final%20SEAD%20Room%20AC%20Report.pdf</u>

666 (accessed 2nd October, 2019)

- 45. IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Synthesis
- 668 Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of
- the Intergovernmental Panel on Climate Change, **2014**.
- 670 <u>https://archive.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf</u>
- 671 (accessed September 27th, 2019).
- 46. Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Höglund-Isaksson, L.;
- 673 Klimont, Z.; Nguyen, B.; Posch, M.; Rafaj, P.; Sandler, R.; Schöpp, W.; Wagner, F.;
- 674 Winiwarter, W. Cost-effective control of air quality and greenhouse gases in Europe:
- 675 Modeling and policy applications. *Environmental Modelling & Software* **2011**, 26(12),
- 676 1489-1501.
- 47. Purohit, P.; Höglund-Isaksson, L.; Dulac, J.; Shah, N.; Wei, M.; Rafaj, P.; and Schöpp,
- 678 W. Electricity savings and greenhouse gas emission reductions from global phase-down
- 679 of hydrofluorocarbons, *Atmospheric Chemistry and Physics Discussions* 2020,
- 680 https://doi.org/10.5194/acp-2020-193 (accessed March 13th, 2020).
- 48. UN DESA (United Nations, Department of Economic and Social Affairs). World
- 682 Urbanization Prospects: The 2018 Revision, Online Edition, **2018**.
- 683 <u>https://population.un.org/wpp/</u> (accessed September 27th, 2019).
- 684 49. CASS IPLE (Chinese Academy of Social Sciences, Institute of Population and Labor
- Economics). Almanac of China's Population, **2001**.
- 686 50. CASS IPLE (Chinese Academy of Social Sciences, Institute of Population and Labor
- 687 Economics). Almanac of China's Population, **2006**.
- 688 51. CASS IPLE (Chinese Academy of Social Sciences, Institute of Population and Labor
- Economics). Almanac of China's Population, **2011**.

- 690 52. Zeng, Y.; Wang, Z.; Jiang, L.; Gu, D. Future trend of family households and elderly
- 691 living arrangement in China. *Genus* **2008**, 64(1-2), 9-36.
- 692 <u>http://opensky.ucar.edu/islandora/object/articles%3A10265/datastream/PDF/download/cit</u>
- 693 <u>ation.pdf</u> (accessed September 27th, 2019).
- 694 53. Labandeira, X.; Labeaga, J.M.; López-Otero, X. Estimation of elasticity price of
- 695 electricity with incomplete information. *Energy Economics* **2012**, 34, 627–633.
- 54. Eskeland, S.G.; Mideksa, K.T. Electricity demand in a changing climate. *Mitigation and Adaptation Strategies for Global Change* 2010, 15, 877–897.
- 55. Alberini, A.; Filippini, M. Response of residential electricity demand to price: the effect
 of measurement error. *Energy Economics* 2011, 33, 889–895.
- 56. Cao, J.; Qiu, C.; Liu, H.B.; Shi, Z.J.; Dong, X.G. Spatiotemporal distribution of heating
- and cooling degree days in Shandong Province. *Meteorological Monthly* 2013, 39, 94–
 100.
- 57. Shi, Y.; Gao, X.J.; Xu, Y.; Giorgi, F.; Chen, D.L. Effects of climate change on heating
- and cooling degree days and potential energy demand in the household sector of China.
- 705 *Climate Research* **2016**, 67, 135–149.
- 58. Xie, Z.; Su, D.; Yu, H.; Li, D.; Yu, L.; Hu, T. Characteristics of heating degree days and
- 707 cooling degree days in Beijing. *Journal of Applied Meteorological Science* **2007**, 18,
- 708 232–236. (in Chinese)
- 59. You, Q.; Fraedrich, K.; Sielmann, F.; Min, J.; Kang, S.; Ji, Z.; Zhu, X.; Ren, G. Present
- and projected degree days in china from observation, reanalysis and simulations. *Climate*
- 711 *Dynamics* **2014**, 43(5-6), 1449-1462.
- 712 60. Shi, Y.; Wang, G.; Gao, X.; Xu, Y. Effects of climate and potential policy changes on
- heating degree days in current heating areas of China. *Scientific Reports* **2018**, 8, 10211.

- 714 61. O'Gresady, E.; Narsipur, S. Cooling is warming the planet, but market failures are
- 715 freezing the AC industry's innovation. Rocky Mountain Institute, **2018**.
- 716 <u>https://www.greenbiz.com/article/cooling-warming-planet-market-failures-are-freezing-</u>
- 717 <u>ac-industrys-innovation</u> (accessed September 27th, 2019).
- 718 62. Kalanki, A. Transforming the global comfort cooling market: China's opportunity for
- 719 economic and climate leadership. Rocky Mountain Institute, **2019**.
- 720 https://www.greenbiz.com/article/transforming-global-comfort-cooling-market-chinas-
- 721 <u>opportunity-economic-and-climate</u> (accessed September 27th, 2019).
- 63. Campbell, I.; Kalani, A.; Sachar, S. Solving he global cooling challenge: How to counter
- the climate threat from room air conditioners. Global cooling Prize, **2018**.
- 724 <u>https://rmi.org/wp-content/uploads/2018/11/Global_Cooling_Challenge_Report_2018.pdf</u>
- 725 (accessed September 27th, 2019).
- 726 64. Geman, B. Next climate challenge: A/C demand expected to triple. Axios, **2018**.
- 727 <u>https://www.axios.com/cooling-the-earth-without-cooking-it-3a9b3cd1-b6fb-4efa-aa70-</u>
- 728 <u>cacf0389c530.html (accessed September 27th, 2019)</u>.
- 729 65. Brander, M.; Sood, A.; Wylie, C.; Haughton, A.; Lovell, J. Electricity-specific Emission
- 730 Factors for Grid Electricity. *Ecometrica technical paper* **2011**.
- 731 <u>https://pdfs.semanticscholar.org/c293/469f8103b99f85c8d22794f8fbca04d86365.pdf?_ga</u>
- 732 =2.13115319.1636110668.1569601386-2055153238.1569601386 (accessed September
 733 27th, 2019).
- 66. Lin, J.; Karhl, F.; Liu, X. A regional analysis of excess capacity in China's power
- r35 systems. *Resources, Conservation and Recycling* **2018**, 129, 93-101.
- 736 67. Depuru, S.S.S.R.; Wang, L.; Devabhaktuni, V. Electricity theft: Overview, issues,
- prevention and a smart meter-based approach to control theft. *Energy Policy* **2011**, 39,
- 738 1007-1015.

- 68. IEA (International Energy Agency). Energy Technology Perspectives 2010: Scenarios
 and Strategies to 2050, 2010.
- 741 <u>https://www.iea.org/publications/freepublications/publication/etp2010.pdf</u> (accessed
- 742 September 27th, 2019).
- 743 69. CABEE (China Association of Building Energy Efficiency). Energy Research Report of
- 744 Chinese Building Sector, **2016**. (in Chinese).
- 745 <u>http://www.efchina.org/Attachments/Report/report-20170710-1/report-20170710-1</u>
- 746 (accessed September 27th, 2019).
- 747 70. IIASA-GAINS. Greenhouse Gas Air Pollution Interactions and Synergies (GAINS).
- 748 International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, **2019**.
- 749 <u>http://gains.iiasa.ac.at/models/gains_models3.html</u> (accessed July 21st, 2019).
- 750 71. PBL NEAA (PBL Netherlands Environmental Assessment Agency). Trends in global
- 751 CO₂ emissions 2016 Report, **2016**. <u>https://edgar.jrc.ec.europa.eu/news_docs/jrc-2016-</u>
- 752 <u>trends-in-global-co2-emissions-2016-report-103425.pdf</u> (accessed September 27th, 2019).
- 753 72. Li, H.; Qi, Y. Comparison on China's Carbon Emission Scenarios in 2050. *Climate*
- 754 *Change Research* **2011**, 7(4), 271-280. (*in Chinese*)
- 755 73. Schaeffer, R.; Szklo, A. S.; Pereira de Lucena, A. F.; Moreira Cesar Borba, B. S.; Pupo
- 756 Nogueira, L. P.; Fleming, F. P.; Troccoli, A.; Harrison, M.; Boulahya, M. S. Energy
- sector vulnerability to climate change: A review. *Energy* **2012**, 38: 1–12.
- 758 74. Valor, E.; Meneu, V.; Caselles, V. Daily Air Temperature and Electricity Load in Spain.
- *Journal of Applied Meteorology* **2001**, 40: 1413–1421.
- 760 75. MUHORD (Ministry of Housing and Urban-Rural Development of the People's Republic
- 761 of China). Code for design of civil buildings, **2005.**
- 762 <u>https://www.sohu.com/a/218327776_188910</u> (accessed June 16th, 2020).

763	76. Grignon-Masse, L.; Riviere, P.; Adnot, J. Strategies for reducing the environmental
764	impacts of room air conditioners in Europe. Energy Policy 2011, 39 (4): 2152-2164.

- 765 77. Borg, S.P.; Kelly, N.J. 2011. The effect of appliance energy efficiency improvements on
 766 domestic electric loads in European households. *Energy and Buildings* 2011, 43 (9):
 767 2240-2250.
- 768 78. Rosas-Flores, J.A.; Rosas-Flores, D.; Gálvez, D.M. Saturation, energy consumption, CO2
- 769 emission and energy efficiency from urban and rural households appliances in Mexico.
 770 *Energy and Buildings* 2011, 43 (1): 10-18.
- 771 79. McNeil, M.A.; Karali, N.; Letschert, V. Forecasting Indonesia's electricity load through
- 2030 and peak demand reductions from appliance and lighting efficiency. *Energy for*
- 773 *Sustainable Development* **2019**, 49: 65-77.
- 80. Karali, N.; Shah, N.; Park, W.Y.; Khanna, N.; Ding, C.; Lin, J.; Zhou, N. Improving the
 energy efficiency of room air conditioners in China: Costs and benefits. *Applied Energy*2020, 258: 114023.
- 81. Cao, J.; Ho, M. S.; Jorgenson, D.W. Co-benefits of Greenhouse Gas Mitigation Policies
- in China: An Integrated Top-Down and Bottom-Up Modeling Analysis. *Environment for*

779 *Development Discussion Paper Series* **2008**. (Available at:

- 780 https://media.rff.org/documents/EfD-DP-08-10.pdf accessed on 18/06/2020).
- 781 82. Burtraw, D.; Krupnick, A.; Palmer, K.; Paul, A.; Toman, M.; Bloyd, C. Ancillary
- 782 Benefits of Reduced Air Pollution in the United States from Moderate Greenhouse Gas
- 783 Mitigation Policies in the Electricity Sector Journal of Environmental Economics and
- 784 *Management* **2003**, 45: 650–73.
- 83. McFarland, J.R.; Reilly, J.; Herzog, H.J. Representing Energy Technologies in Top-down
- 786 Economic Models Using Bottom-Up Information. *MIT Joint Program on the Science and*
- 787 *Policy of Global Change* **2002**, Report No. 89. Cambridge, MA.

- 788 84. Grubb, M.; Edmonds, J.; Brink, P.; Morrison, M. The Cost of Limiting Fossil-Fuel CO₂
- Emissions: A Survey and Analysis. *Annual Review of Energy and the Environment* 1993,
 18, 397-478.
- 791 85. Lim, H.; Zhai, Z.J. Review on stochastic modeling methods for building stock energy
- prediction. *Building Simulation* **2017**, 10, 607-624.
- 793 86. Rigby, M.; Park, S.; Saito, T.; Western, L.M.; Redington, A.L.; Fang, X.; Henne, S.;
- Manning, A.J.; Prinn, R.G.; Dutton, G.S.; Fraser, P.J.; Ganesan, A.L.; Hall, B.D.; Harth,
- 795 C.M.; Kim, J.; Kim, K.-R.; Krummel, P.B.; Lee, T.; Li, S.; Liang, Q.; Lunt, M.F.;
- 796 Montzka, S.A.; Mühle, J.; O'Doherty, S.; Park, M.-K.; Reimann, S.; Salameh, P.K.;
- 797 Simmonds, P.; Tunnicliffe, R.L.; Weiss, R.F.; Yokouchi, Y.; Young, D. Increase in CFC-
- 11 emissions from eastern China based on atmospheric observations. *Nature* 2019, 569,
 546–550.
- 800 87. Miller, S.M.; Michalak, A.M.; Detmers, R.G.; Hasekamp, O.P.; Bruhwiler, L.M.P.;
- 801 Schwietzke, S. China's coal mine methane regulations have not curbed growing
- 802 emissions. *Nature Communication* **2019**, 10, 303.