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FOREWORD

Interest in human settlement systems and policies has been
a central part of urban-related work at IIASA since its incep-
tion. From 1975 through 1978 this interest was manifested in
the work of the Migration and Settlement Task, which was formally
concluded in November 1978. Since then, attention has turned
to dissemination of the Task's results and to the conclusion of
its comparative study, which is carrying out a comparative
guantitative assessment of recent migration patterns and spatial
population dynamics in all of IIASA's 17 NMO countries.

This paper sets out the mathematics of multiregional stable
growth theory. It presents an analytical solution that describes
a multiregional population's growth path in terms of eigenvalues

and eigenvectors.

Reports summarizing previous work on migration and settle-
ment at IIASA are listed at the back of this paper.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

The multiregional population projection models can be
rewritten in terms of eigenvalues and eigenvectors and an ana-
lytical solution can be obtained using coefficients that are
determined by two different methods. The growth path can then
be decomposed showing that it may be divided into five stages.
These procedures are discussed in this paper and are illustrated
with data for three regions in Belgium: Brussels, Flanders,

and Wallonia.
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DYNAMICS OF MULTIREGIONAL POPULATION SYSTEMS:
A MATHEMATICAL ANALYSIS OF THE GROWTH PATH

INTRCDUCTION

The process of multiregional demographic change may be
represented as a matrix multiplication, or equivalently, as a
system of simultaneous first-order linear difference equations
(Rogers 1968, 1975). The advantages of this model are not only
that it is compact, but also that it enables the separation of
the fundamental components of population changes from the popu-
lation to which these changes apply, thus allowing for a clearer
view of the intrinsic characteristics of a particular growth

structure.

The purpose of this paper is to investigate the growth
path of a multiregional population. The growth model projects
the population into the future, taking into account all inter-
dependencies between the regions. But some of the complexities
of multiregional population growth are hidden in the model and
can only be revealed by looking at the growth path from a dif-
ferent perspective. As an ordinary light ray may be decomposed
into the individual colors by using a prism, the demographic
growth path may be decomposed into individual independent sub-
trajectories by using some mathematical manipulation. The
observed growth path is then simply a sum of these individual
trajectories.
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The decomposition involves the rewriting of the conventional
model of multiregional population change in terms of the eigen-
vectors and eigenvalues of the growth matrix. It implies a
change of the coordinate system in which the population distri-
bution vector is expressed. The result is a set of independent

equations that replace the simultaneous equation system.

The discussion begins with the conventional growth models
rewritten in terms of eigenvectors and eigenvalues; it yields
the analytical solution to the growth model. The coefficients
of this analytical solution are then determined with the aid
of the z-transform and the left-eigenvector methods. These
mathematical concepts and techniques are applied to decompose
the growth paths of a population disaggregated by region and
of a population disaggregated by age and region. The procedure
is illustrated with data from three regions in Belgium:

Brussels, Flanders, and Wallonia.

1. ANALYTICAL SOLUTION OF THE DEMOGRAPHIC GROWTH PATH

Multiregional demographic change may be represented by the

following matrix model (Rogers 1968, 1975):

(k(t+1)} = G{k(t)} (1)

where

{k(t)} 1is an n-dimensional vector denoting the pop-
ulation distribution by region (and age) at
time t

G 1is the growth matrix

Since the growth matrix is constant, the system described by (1)
is said to be time-invariant. The general solution, which

expresses the state vector {k(t)} at time t in terms of the

initial condition is



(k(t)} = 6% (k,} = ¢(t,0) {k} (2)

where

{ko} is the population distribution in the year

¢{(t,0) 1is the state-transition matrix¥*

The purpose of this section is to characterize the solution
(2). This can be done by decomposing (2) in n independent
equations or by describing gt in terms of some fundamental and
demographically meaningful parameters. To do this, we rewrite
(2) in terms of the eigenv=ctors and eigenvalues of G; in other

words, we derive a different type of solution to (1).

To obtain an analytical solution to (1), we first assume
a solution vector and then derive the conditions that must be
satisfied for the solution vector to solve the system. This is
the usual practice in differential and difference caliculus

(see e.g. McFarlane, 1970).

Assume that (1) has the following solution:
k() = A%{} (3)

where X and {£} are independent of time. Introducing (3) into

(1) gives
{k(t + 1)} = GIAS{E}

Also, (3) gives:
(k(t + 1)1 = A[A

* In the early literature, it was referred to as the matricant
(Gantmacher, 1959).



For (3) to solve (1), we must have
clg} = A{e}
or (4)

[G - AI}{&g} = {0}

-~

Equation (4) is the characteristic equation. It has a nonzero

solution vector {&}, if the determinant |§ - XI| = 0. This

holds if A is an eigenvector of g. Hence, the soclution of (1)
takes the form of (3) if and only if X is an eigenvalue of G and
{¢} is the associated right eigenvector. The scalar proportion-
ality factor ) denotes that a solution to (1) exists if {k(t + 1)}
and {k(t)} have the same direction in the state space but only

differ in magnitude.

Note that there are as many solutions as there are differ-
ent values of A for which the determinant |G - AI| is zero (and
hence {£} is not zero). Denote the various~valués of ) by the
subscript i. With each value Ki’ there is associated a vector
{éi}. The matrix G has now the important property that if all
the eigenvalues Ai are distinct, the eigenvectors {gi} are lin-
early independent. They describe therefore the solution
(vector) space of dimension n. In other words, the eigenvector
set [{51},{52},{53}-°'°°-{En}] may be taken as the basis of a
new coordinate system. Hence, we call the set of vectors {Ei}
the basis or basic solutions. In cur numerical illustraticn,
the observed population vector {ko} has three elements, each of
which may be thought of as referring to a dimension. The observed
population vector denotes, therefore, a point in the three-

dimensional space, spanned by the basic vectors.



Any solution to (1) can be expressed in terms of the
basis or coordinate system.* For instance, the state vector
{k(t)}, i.e., the population distribution at time t, may be
expressed as a linear combination of the eigenvector set of G

as

n
k(t)} = 121 c, (t) {g;} (5)

The coefficients Ei(t) are functions of time and have to be
determined. They consist of two components. One is a time-
independent parameter Cyv the other is function of time AE.
The coefficients of the linear transformation also have partic-
ular demographic interpretations. Before determining these
coefficients in Section 2, we define a particular matrix to be

used later.

Define the n x n matrix © such that {Ei} is the i-th column:

= ({6 1{E 1 {E ) e mnnlE ]

¢ (1)

or

201
]
aa]
—~
o)
~

nl gn2 gn3

*The property that any solution vector may be expressed as a
linear combination of a set of n linearly independent solution
vectors is known as the Principle of Superposition.

(McFarlane, 1970, p. 396). If {51} and {Eé} are independent

solutions, then 51{51} + 52{52} is also a solution.




The matrix = is called the fundamental matrix. It has the basic

~

solution vectors as its columns. Since these vectors are lin-

early independent, the fundamental matrix is nonsingular. 1In

this particular case where the columns of = are eigenvectors,

the fundamental matrix is a modal matrix. The modal matrix will

be used in the next section to describe the solution to (1) as

n independent equations.

Combining (4) and (6) gives the expression

Q)
LA
]
Y]
1>

(6')

where A is the diagonal matrix of the eigenvalues of G; also

known as the spectral matrix, since it contains the spectrum of

G. These eigenvalues or roots of the characteristics equation
are distinct in demographic applications. By (6'), we have that

t t -1 (6'")

9]
i
1
=
i

This is a first expression of G in terms of its eigenvalues and
eigenvectors*. Other expressions will be derived in the next

section.

2. DETERMINATION OF THE COEFFICIENTS OF THE ANALYTICAL
SOLUTION

It has been shown that each population distribution at
time t may be expressed as a linear combination of the right

eigenvectors of G:

* A similar expression may be derived using the left eigenvectors
{vj}' . If the eigenvectors are normalized such that the

product {Vj}'{gﬂ =1 1if 1 = j and zero if i # j, then the
modal matrix obtained by grouping the left eigenvectors is

simply 5-1. In other words, the rows of = are normalized left

eigenvectors.



e t
{k(t)} = iZ1 c; Ag{gy} (5")

where xi is the i-th eigenvalue of G. The problem is to deter-

mine the coefficients of ci.

An equivalent problem to determining the coefficients of
(5') is to derive expressions for Gt in terms of the eigen-

vectors. Both problems will be dealt with in this section.

The first approach to determining the coefficients of the
analytical solution uses the z-transform. The second approach

introduces the left eigenvectors.

a. Z-Transform

The determination of the coefficients of the linear combin-
ation (5') using the z-transform in population analysis is
due to Liaw (1975).

The z-transform of (1) is
z{K(z)} - z{k(0)} = G{K(2)} (7

where {K(z)} is an n x 1 vector representing the z-transform

of {k(t)}. Solving for {K(z)} gives;

(K(2)} = [zI-61"" 2{k(0)} (8)

The expression [zE - g] Z 1s the z-transform of the state

transition matrix ¢(t) = G. It may also be written as

] adjlzI - GI

z = —12; - §]~ vA (9)

[zI - GI”

where |+| denotes the determinant and adjl-] denotes the
adjoint matrix. Note that |zI - G| = 0 if z takes the
value Ai, i.e., an eigenvalue of G. If the eigenvalues of

G are distinct, by partial fraction expansion we have:



adylel - ¢l 2 2 B . P
|zI - Gj T oz-hy z-X, = z-lj z=X
where
adjlzI ~ G]
A, = (z - X;) — s 10
4 S T B Y o)
1

for i=1, 2, ... n, and

|2I - G| = I(z = Ay) (11)

i

Hence,

(Z =2 n oz -y

TzI = 6 T 5 :

Taking the inverse z-transform, (92) becomes

{k(t)} =

t
. éiki{k(O)} (1

™~
~

he~13

1

which is the spectral form of the solution of (1).

. . t
From (12) we derive an expression for G :

b. Introducing the left eigenvector

Another way to arrive at expressions for c, is to premulti-
ply (5') by the left eigenvector {vj}’ (see, for instance,
McFarlane, 1970, p. 402). In demography this procedure has
been used by Keyfitz (1968, pp. 55-62). Aalthough appéaling



because of its demographic interpretation, this procedure is
not always applicable. It requires the eigenvalues to be

distinct and nonzero. Premultiplying (5') by {vj}' gives:
{v,} rf t
v.} ' {k(t)} = c.A{v,}"{g.} (14)
] i=1 + 1t 3 *i
and for the base period

{Vj}'{ko} =

e~

. ci{vj}’{ii} (15)

Since {vj}'and {Ei} are orthoconal if j#i, their inner prod-

uct is zero. Hence,{vj}’{gi} =0 , for j#i.

Therefore, for j = 1 = 1, (15) reduces to
{vgd kgl = c v, {g )
and

{v1}’{ko}

{v1}’{€1}

In general, we may write

= 1 '
c; = ai{vi} {ko} (16)
where di = {vi}'{gi} is a normalizing factor. If the left

and right eigenvectors are normalized, their inner product
. . . ’ = = 4
is unity, i.e., {v;}’{g;} =1, and c; = {v;} ko t-

Substituting (16) into (5') yvields
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ko) = ] vkt (17)
BN PR AR L AL
and
n XE
{k(t)} = 121 n (€ Hv 1 (k) (18)
Hence,
t 2 AE
¢t = ] = g v} (19)
~ =21 9

The coefficients of (18) depend on two basic components:
the initial population distribution {ko} and the left
eligenvectors {vi}. Note that eigenvectors and eigenvalues
are independent of the initial population distribution and
only depend on the elements of the growth matrix, G. The
expression (18) contains considerable potential fo; demrmo-

graphic interpretations. For instance, it can be shown that

the left eigenvector {v1} associated with the dominant
eigenvalue denotes the regional distribution of the
reproductive potential of the population. Hence, the
product {v1}’{ko} is the total reproductive value of the
initial population [for a further discussion of the
reproductive value, see Willekens (1977) and Rogers and
Willekens (1978)].

A comparison of (18) with (12) shows that

_ 1 , = ]
By =g vy = g0 2y (20)
i i
The matrix Zi = {gi}{vi}’ is the constituent matrix or
spectral component. (Lancaster, 1969, p. 63). It has the

same features as A, to which it is proportional.
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We have now three expressions for Gt which are
equivalent:

The constituent matrix may be expressed in terms of differ-
ent matrix expressions:

(1) gi = di%i

(ii) (Morgan, 1966),

~

z; = [tr 13(z)]"1 R(z)

where tr denotes the trace of a matrix* and
R(z) = adj (zI - G)

~

(1ii) (Lancaster, 1969, p. 174),

n
= I [A.I - G] II (A.=X.)

If G is simple, then (Lancaster, 1969, p. 175),

. - C(Ai)

~i (1)
¥ (A)

where C(xi) is the reduced adjoint of G and y(.) its
minimal polynomial.

*Note that the inner product {Vi}'{ii} is equal to the trace of

the constituent matrix. t is equal to unity if the eigenvectors

are normalized.
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The constituent matrix has the following properties:

(i) The nonzero rows are left eigenvectors of G; the
nonzero columns are right eigenvectors of G.

Postmultiplying [G - A;Il{g;} with {v;}’ gives
[G - X IT{g; v} = {g vy}’

Premultiplying {vi}'[§ - Aizl with {gi} gives
{g v 316 = AI7 = {g; v, V!

Therefore,

[G - 431125 = 2,1G - \I]

(ii) The rank is one. This is due to the fact that all
eigenvectors associated with a given eigenvalue are
linearly dependent. Hence, the columns of gi are
linearly dependent.

2

(iii) The constituent matrix is idempotent, i.e., Zi = Zi
(1 = 1,2...n). This implies (Lancaster, 1969, pp.

82-83):
the eigenvalues are all equal to one or zero (if
eigenvectors are initially normalized). If the
eigenvectors are not normalized, the nonzero
eigenvalue is equal to d; = tr({g;}{v }"].

. Zi is simple, i.e., it is similar to a diagonal

~

matrix of its eigenvalues.

(iv) The sum of the constituent matrices is the identity

matrix
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2 Z, =1
R | -
1

This can be seen by partitioning = V (where V =

L1l
~

the model matrix of left eigenvectors) into
vectors and by multiplying the vectors as if they
were scalar elements (see also Keyfitz, 1968, p. 62).

3. GROWTH TRAJECTORY OF POPULATION DISAGGREGATED BY REGION:
NUMERICAL ILLUSTRATION

Consider the components-of-change model for the three-region
system Brussels, Flanders, and Wallonia (Willekens, 1979):

.969497 0.002615 0.004221
{k(t + 1)} = [0.017749 1.000175 0.002383] {k(t)}
0.012907 0.001435 0.99358

(271)

The growth matrix describes the pattern of change during one year
(projection interval), hence, t + 1 = 1971, The initial population

distribution (in 1970) is:

1 079 520 0.112197
{k,} = [5 386 158| = 9621666 0.559795 (21")
3 155 98 0.328008

We derive the analytical solution to this equation system using
the z-transform and the left eigenvector.

a. Analytical solution using z-transform

To find the analytical solution of (21) in the form of
equation (12), we must first compute the constituent
matrices A;. Recall that
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adjlzI - G]

= (z2 - Ai) zT - G ’ for i1 =1,2,...n

~ ~ z = X,

i

The determinant [2zI - G| is equal to

z-0.9695 -0.0026 -0.0042
|zI - G| = | -0.0177  2z-1.0002 -0.0024
-0.0129 -0.0014 z-0.9936

(z=1.00301) (z-0.99393) (2~0.96632)

The eigenvalues of G are solutions to the equation |zI - G

= 0, hence
Ay = 1.00301
Ay = 0.99393
A3 = 0.96632

All eigenvalues are real. Note that the sum of the eigen-
values is equal to the trace of G (sum of diagonal ele-

ments) .

The adjoint matrix adj[zI - G] is equal to the transpose
of the cofactor matrix cof[zI - G], which is derived by
replacing each element hij of the matrix H = [z2I - G] by its

cofactor Hij (Rogers, 1971, p. 82).

The coefficient matrices are egual to

adj[z} - §] (22)

.
i t.
i

where £, = n (z - Kj)’ or t. = trladj(zI - G)]
. z = A i ~ ~ -
i i
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In the numerical illustration, the values of t.l are:

t, = (1.00301-0.99393) (1.00301-0.96632)
= 0.000333

ty, = (0.99393-1.00301) (0.99393-0.96632)
= =-0.000251

t3 = (0.96632-1.00301) (0.96632-0.99393)

0.001013

The adjoint matrices adj(kiz - G) are computed using the
improved Leverrier algorithm (Faddeev and Faddeeva, 1963,
pp. 260-265). The algorithm which yields simultaneously
the coefficients of the characteristic polynomial and the
adjoint matrices, is described in the Appendix 1 (see also
Willekens, 1975).

The adjoint matrices are eqgual to

[ 0.000023 0.000031 0.000018
adj(x,;I - G) = [ 0.000198 0.000262 0.000155
[ 0.000062 0.000082 0.000049
[-0.000006 0.000007  -0.00002]
adj(A,I - G) = | 0.000037  -0.000046 0.000133
-0.000055 0.000069  -0.000199
[ 0.000920  -0.000065  -0.000137]
adj (A3 - G) = [-0.000453 0.000032 0.000067
0. 000411 0.000029 0.00006 1

Note that the values of t, are equal to the traces (sum of

diagonal elements) of the adjoint matrices.

Substituting (22) into (12) yields the analytical solution



to

{k(t)}

(21) :

(1.00301) "

(0.99393)

+

(0.96632)t

+

Note that Ai

b.

the different eigenvalues, are given in Table 1.

Analytical solution using left eigenvector

[~ 0.07014
0.59456

| 0.18628

[ 0.02235
-0.14724

| 0.21993

[ 0.90783

-0.44721

-0.40621

AE is equal to Gt.
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0.09218

0.78507

0.24567

-0.02778

0.18307

-0.27448

-0.06440C

0.03183

0.02882

0.05463]
0.46460

0.14599]

0.08029
-0.53108

0.79362

-0.13492

0.06648

0.06043)

1 079 520

5 386 158

3 155 988

The left and right eigenvectors of G, associated with

The eigen-

vectors are normalized such that their inner product eguals

unity.

(Hence the modal matrix of left eigenvectors is the

inverse of the modal matrix of right eigenvectors.)

Table 1. Eigenvalues and Eigenvectors of the Multiregional
Population Growth Matrix, G.
Eigenvalues
A = - = . = !
1 1.00301 AZ 0.99393 3 0.96632
Region Eigenvectors
Left Right Left Right Left Right
Brussels 0.85068 0.08212 0.38950 0.05715 1.76154 0.51539
Flanders 1.12250 0.69897 -0.4859¢° -0.37792 -0.124937 ~0.25398
Wallonia 0.66486 0.21891 1.40562 0.56493 -0.26180 -0.23063




The coefficients <y

€1

0
]

2 {vz}’{ko}

0
I\

3 = vy} ik}

{v1}’{ko}
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of the analytical solution (17) are:

9.0

2,2

402

1

62,579

38,974

, 272

1,901,618 - 673,108 - 826,238

918,326 + 6,045,962 + 2,098,290

420,473 - 2,617,619 + 4,436,120

The demographic growth model {k(t)} = Gt{ko} may be replaced

by the analytical expression (

illustration becomes:

{k(t)} =

+

Equation (23) may

5'), which for the numerical

9,062,579 x (1.00301)% x

2,238,974 x

402,272 x

be written

(0.99393) ©

(0.96632) F

as follows:

X

X

T 0.08212

0.69897
|

_0.2189ﬂ

0.05715]
-0.37792

| 0.56493]

0.51539]

-0.25398

|-0.23063]

(23)
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744,219
fkit)} = (1.00301)% l6,334,u71] + (0.99393)°¢

1,983,889

(23")
127,957 207,327

-846,153| + (0.96632)F [-102,169

1,264,864 -92,776

The above expression decomposes the multiregional population
projection into a set of three univariate equations. The
growth of Brussels is described by the single equation

ko (t) = 744,219 x (1.00301) % + 127,957 (0.99393)°%
+ 207,327 x (0.96632)°F

For t = 0 (1970), the formula yields:

k1(0) = 744,219 + 127,957 + 207,327 = 1,079,503

which compares with the observed number of 1,079,520.

For t = 1 (1971), the population of Brussels is equal to

k(1) = 746,459 + 127,180 + 200,344 = 1,073,984

which is comparable with the 1,073,998 obtained by multiply-
ing the population vector of the base year with the demo-
graphic growth matrix (Willekens, 1979). Deviation is due to
rounding errors introduced predominantly in the computation

of the eigenvalues and eigenvectors.
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Note that as t becomes large, the contribution of the second
and third term of the right-hand side to the population vector
{k(t)} diminishes, since the associated eigenvalues are less
than unity. The third term will become zero after 400 steps
(years) and the second term after 1500 steps. Values of the
three terms for different values of t are given in Appendix 2.
The observation that gradually higher terms disappear leads to

the stable population concept and will be discussed in the next
section.

Once the effect of the last two components disappears,
the growth process will completely be described by the
first term c, A§{£1} only. At this stage, the population
is said to have reached stability. The first term contains
information on the most important features of the stable
or steady-state population. Stable-population analysis
for the three-region system will be carried out in Section
5. Here it suffices to state that k1 denotes the stable
growth ratio and is easily converted into an annual growth
rate r = % 1n A1, where h is the projection interval; in
this case h = 1. The vector {51} denotes each region's

share of the national population.

Comparison of the observed (1970) and of the stable
regional shares shows that the region of Flanders will be
gaining population relative to the other two regions.

Such comparisons can be useful in a study of the demographic
consequences of migration. More interesting than this
comparative static analysis is, however, a dynamic analysis,
which focuses on the growth path from the observed to

the stable population. For this reason, a short section
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will now be devoted to the investigation of the way the multi-

regional population converges towards stability.

4. CONVERGENCE PATH TOWARDS STABILITY

The multiregional demographic growth path was described by
equations (5'). For a three-region system, the growth trajectory
is represented by the following three independent equations:

_ t t t
kj(0) =y A7{g 4} + oy AjlE 51 + ey A3{E;5) (24)

For large values of t, the three functions are monotonically

increasing and convex. In this section, the shape of the growth
path will be investigated for small t as well.

The condition for a monotonic increasing population is
that the first derivative of (24) 1is positive:

dki(t)

- t 3
—d—t— = C1K1{§l1f In >\1 + C

t 9
If this condition holds for t = 0, it will hold for any t > 0,

and hence, population growth of region i1 will be monotonic.
Not t, but the relative differences between A1 and Az and A3

determine whether the condition is met. For t = (0, the values
dk. (0)
i
of T are as follows:
dk1(0)

T = -7,882 < 0
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dk, (0)
ST = 27,690 < 0
dk 5 (0)
T = 1,440 > 0

Therefore, the populations of the last two regions will begin
to increase right from the beginning, while the population of
the first region (Brussels) will decrease over some period

of time and only later will begin to increase. (The increase
of the other two regions will resemble the graph in Figure 1la).
The period of increase will begin when the effect of the last
two members on the right-hand side of (23) is smaller than that

of the first one.

The function k1(t) is decreasing at first, hence one may
ask if it is convex or has a different.shape. The second
derivative can be used to investigate the problem, keeping in
mind that when it is positive, the function is convex, and

when negative, the function is concave..

d2k1(t)

a2

i

t 2 t 2 t 2
c1k1£11(lnx1) + c2k2£21(lnx2) + c3k3£31(lnk3)

For t 0, it was estimated that

d2k1(0)

dt2

= 255 > 0

hence,k1(t) is convex at the point t = 0. In such a case, the
region 1's population growth will have the shape as in Figure

1b. The point of minimum population can be easily found:
dk1(t)
3t = 0 holds.

This t is between 39 and 40 time periods and k1(u0) = 992252.

simply compute this value of t, for which

Figure 1c shows a third kind of projecticn path which

is not observed in the case of the Belgium regions. It takes

a%k (t)
place when —5 < 0. The demographic meaning of this case is
dt

that the population will decrease slowly at first, more rapidly
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later, but finally will increase. It is virtually the same

2
process as when Q—EL%L > 0. Therefore, it is enough usually to
dt
know if ggégl > 0, because then the projection path can be
identified.

On the basis of this analysis, the projection paths were
identified for three regions of Belgium, without carrying out
the population projection itself. It was shown that the popu-
lations of Flanders and Wallonia will increase from the very
beginning, while that of Brussels will decrease from 1,079,520
down to 992,252 during the first 40 years but will continuously
increase afterwards. Note that the populations were studied
without taking into account the age composition and assuming
a closed system (no external migration) and constant demographic

parameters.

Figure 1. Three different shapes of regional growth in a three-
regional population projection.

A
K(t) wie) 4
— >
X dk (0) t dk (0) t
ia) 3t > 0 1b) : =T < 0
a2k (0) -
k(t) 4 at?
. dk(0) t
1c) = —3t < 0
2
d%k (3) > 0

dt
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5. STABLE POPULATION ANALYSIS

Stable population analysis investigates the long-term im-
pact of current (base year) demographic behavior. The basic
question is: what will {k(t)} be if t becomes very large? In
other words, stable population theory studies the asymptotic
behavior of population growth and distribution.

Let {°k(t)} be the stable population at time t, i.e.,

{5k (t)} = lim {k(t)} (25)
troo
or
{°k(t)} = lim G%{x_}
t>oo ~ o
or
Grie)) = 3 L vorr e ) [uim 28] g2,
BEFETIE- PR S: Ljﬁf} 1] >i

Because {ko} is fixed, the study of the asymptotic properties of
t

the projection is equivalent to the investigation of lim G- .

tro ~
Therefore, most properties of the stable population depend on the
growth matrix, and stable population analysis is largely an anal-
ysis of the growth matrix G. The application of fundamental

theorems of matrix algebra underlies stable population theory.

In this section we first describe the properties of the
growth matrix, then formulate the Perron-Frobenius theorem,
which is the main theorem behind stable theory, and finally

characterize the stable equivalent population.
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a. Properties of the growth matrix G

Recall the growth matrix for the three-region system

Brussels~-Flanders-Wallonia.

0.969497 0.002615 0.004221
G = (0.017749 1.000175 0.002383

0.012907 0.001435 0.993583

It is a square matrix of dimension 3 x 3 (or in general,
n X n, where n is the number of regions). The growth ma-
trix G and all realistic growth matrices that may be de-

signed have the following properties:

(i) Nonnegative: a matrix G is said to be nonnegative

if each of its elements is nonnegative, i.e., gij
> o for all i and j.
(ii) Indecomposable or irreducible: a matrix G is irre-

ducible if no permutation matrix P exists such

that
S19 S12
P’ GP =
° 22
where Gyq+ G,, are square matrices of an order less

than n (Lancaster, 1969, p. 280).

(1ii) Primitive: a square, indecomposable, nonnegative
matrix is primitive if there exists a positive inte-
ger T such that gT > 0 (Lancaster, 1969, pp. 289-
291). Every positive matrix is necessarily primi-
tive. A primitive matrix has a dominant eigenvalue
which is unique in absolute value. (The absolute
value of the dominant eigenvalue is known as the

spectral radius.)
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Distinct eigenvalues Ai: this is less a property of
G than an assumption in demographic research. Empir-
ically, no cases of multiple roots have turned up
(Liaw, 1975, p. 231). This property has, however,
important implications. Recall that if the eigen-
values are distinct, the eigenvectors are linearly
independent and the modal matrix is nonsingular
(i.e., has an inverse). As a conseguence, there
exists a similarity transformation between 9 and a
diagonal matrix é, the diagonal elements of which are

the distinct eigenvalues:

-1

G-z (26)
where
D.] O [o)
A=o Ay ©
o

is known as the spectral matrix. A matrix, for

which a similarity transformation (26) exists, is
said to be diagonalizable. Such a matrix is simple

(Lancaster, 1969, p. 63). "Note that = converts the
population vector {k(t)} in terms of the new basis,
made up of the right eigenvectors of G. Formally,

the vector

k() = = Tx(e)} (27)
represents the population distribution in terms of
the coordinate system made up of the right eigen-

vectors of G. Similarly,

(e + 1} = k(e + 1}
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Pherefore,

=16 k()

-~

{ﬂ(t + 1)}

(k(t + 1)}

ALk (£) ) (28)

Since A is diagonal, the set of n simultaneous equa-
tions 21) describing the multiregional population
growth, is replaced by n independent univariate
?quations. The value of ﬁi(t + 1) only depends on
ki(t), i.e., the population of the same region in

the previous time period.

In our three-region case, the similarity trans-

formation G¥ = = A 7! is:
0.08212 0.05715 0.51539| |(1.00301)° o o
Gt = |0.69897 -0.37792 -0.25398 o (0.99393) © o
0.21891 0.56493 -0.23063 o e} (0.96632)t

0.850678 1.122505 0.664862
0.389505 =-0.485986 1.405618

1.761544 -0.124966 -0.261801

and the base year population distribution {k(o)} is

5_1{k(o)}:
9,062,611
{k(o)} = |2,238,993
402,297

These properties of the population growth matrices
obev a most important theorem of matrix algebra, a theorem
which is basic to discrete stable analysis: the Perron-
Frobenius theorem.
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b. Perron-Frobenius theorem

Let G be a scuare, nonnegative, indecomposable, primi-

tive matrix. Then there exists an eigenvalue A1 of G such

that
(i)

(i1)

(i1i)

(iv)

x1 is real and positive.

Ay > |A;l,1i =2 ... n. X, exceeds the absolute

value of any other eigenvalue of G. Therefore, X1
is generally known as the dominant eigenvalue, or

Perron-root, of the matrix.

A1 can be associated with strictly positive left

and right eigenvectors.

Aq is a simple root of the characteristic equation,

i.e., A1 is unigue.

There are many proofs of this theorem. The interested

reader is referred to Seneta (1973, pp. 2-6) or Gantmacher

(1959, vol. 2, pp. 53~62) among others.

The Perron-Frobenius theorem tells us something very

important about the asymptotic behavior of the growth

process. Recall (5), in which Ei (t) = c, AE

Since the eigenvalue )

1

t
Ai{Ei} (3)

n
kt)} =} cy
i=1

1 exceeds all the others, the linear

combination in (5) is dominated by the first element if

t becomes large. Hence, we may write

Pk(£)} = lim {k(£)} = c; Aj{g,) (29)

toro

The asymptotic behavior of the population growth process

is determined by the dominant eigenvalue XA; of the growth

matrix G and by the associated right eigenvector. What
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this means is that, regardless of the initial population, the
ultimate population will grow exponentially and its relative
distribution by region will remain constant. The ultimate pop-

ulation is called the stable (or steady state) population. The

stable growth rate and the relative stable distribution are
independent of the initial population but depend only on the
entries of the population growth matrix G, i.e., on the observed
rates of fertility, mortality, and migration. This is the
ergodic property in demography: the tendency of a population

to forget its pagt (initial distribution).

The relation between the relative distribution, expressed
by {51} and the distribution in absolute terms, {°k(t)}, is
given by (29):

s =1 t ’

Chie)) 2 g aTley vy ) (30)
with

1 .t , ..t

: >\1{€1}{V1} = iiil 9 (31)

The value of gt for large values of t only depends on the dominant
root A1 and on the constituent matrix, which is completely
determined by the left and right eigenvectors of G associated
with A1. )

Equation (30) leads directly to a particularly useful
concept: the stable equivalent population.

c. The stable equivalent (SE) population {°k (o)}

The SE population is that population which, if distributed
as the stable population and growing at the stable growth
ratio A1, would lead to the same stable population as the

observed population. This can easily be seen by:
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—~—
0]
=
t
f—
]

lim 6% {k

t>c0

(5k(t)} = lim xf{sk(o)}

to>x

where {°k(0)} is the vector of regional stable equivalent
populations. It is equal to {sk(t)}/x? or, by (31):

S - 1 ’
{"k(o)} = ; {51}{V1} {kO} (32)
Hence, the matrix
T o= o (£} {v.} = = 3
< d, 1 1 d, ~1 (33)

transforms the observed population into the stable equiva-
lent population. If the eigenvectors are normalized

(d1
the constituent matrix. In other words, the stable equiva-

= 1), then the transformation matrik is identical to

lent population by region may be written as a linear trans-
formation of the observed population by region, the trans-
formation matrix being proportional to the constituent '
matrix. Therefore, the SE population does not depend
directly on the stable growth ratio; however, an indirect

relationship exists.

Egquation (32) converts the observed population into the
stable equivalent population. Another relationship that
is of particular interest is between the relative stable
distribution {51} and the SE population. Whereas {51}
expresses the stable population distribution in relative
terms, the SE expresses the stable distribution in absolute
terms. The relation between both is given by the propor-

tionality factor (€¢4) introduced earlier. Rewriting (32)
gives:
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1 :
g vy} Uk} ey

{®°k (o)}

= c1{€1}

If the eigenvectors are normalized, c, is simply {v1}’{ko}.

If {51} is scaled such that the elements sum up to unity,

then c, is equal to the total SE population of the multi-

1
regional system. The total stable equivalent population
is proportional to the total reproductive value V = {vq}’

{ko}, the proportionality factor being

1 1

_ _ 1
d, {v1}'fEIT - tr (g, Jlv, 171

(see also Willekens, 1977, p. 24).

Hence, we have found an interesting demographic interpreta-

tion for the proportionality factor d1: the proportionality

factor d, is ecual to the ratio of the total reproductive

1
value of the system to the total SE population. It only

depends on the scaling of the eigenvectors associated with

A1.

6. GROWTH TRAJECTORY OF POPULATION DISAGGREGATED BY AGE AND
REGION
Now the investigations will be repeated for age-disaggregated
populations. The same three-region population system will be
considered, but the population will now be disaggregated into
5-year age groups. As a consequence, the projection interval
will be 5 years (h = 5). It was noted earlier that the solution
using the left eigenvectors is demographically more meaningful

and mathematically easier to follow. Therefore, the
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disaggregated-by-age case of this section only considers this
solution. The matrix G and the observed population vectors

will not be exhibited here, because they are very large.

We shall consider only the age-groups until the end of
the reproduction period, i.e., 0 to 50 years--ten age groups.
Since there are three regions, G will be a 30 x 30 matrix.
Then g will have 30 eigenvalues Ai; and associated with each
Ai' a right and a left eigenvector. The eigenvalues are
presented in Table 2, and the first three right eigenvectors in
Table 3. The eigenvalues refer to a 5-year period since the

projection interval is 5 years. They may be classified into

four types: the dominant eigenvalue A1; the other real positive
eigenvalues (n1 in number, here n, = 2): the real negative
eigenvalues (n2 in number, here n, = 3); and the complex eigen-
values (n3 in number, here ny = 24). Since complex eigenvalues

are a particular feature of age-disaggregated growth operators;

they will receive particular attention in this section.

As in the previous sections, the growth path of the multi-
regional population system may be expressed in terms of the

eigenvalues and eigenvectors of the growth matrix G. Analogously

~

to (5'), the analytical solution of the disaggregate growth
path is
30 £
{k(t)} = } c.r {g.} (34)

where {gi} is a right eigenvector of G with 30 elements, 10

for each region.

Given theclassification of the eigenvalues, the terms of
(34) may be grouped accordingly (Liaw 1980:593). The term
associated with the dominant eigenvalue is the dominant component.

It determines the system's stable (long-run or steady-state)
growth rate and stable age-by-region population distribution.
The terms associated with the remaining positive eigenvalues
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Table 2. Eigenvalues A;, i = 1,...,30, of the multiregional
growth matrix (age-disaggregated).

5-yvear period l-year period

Real parta Imaginarya Real part Imaginary
i (u) part (v) (x) part (y)
1 1.01158 0.00000 0.00230 0.00000
2 0.79916 0.00000 -0.04484 0.00000
3 0.96325 0.00000 -0.00749 0.00000
4 0.34536 0.74634 -0.03911 0.22748
5 0.34536 -0.74634 -0.03911 -0.22748
6 0.32316 0.70640 -0.05051 0.22835
7 0.32316 -0.70640 -0.05051 -0.22835
8 0.25483 0.58843 -0.08887 0.23242
9 0.25483 -0.58843 ~-0.08887 -0.23242
10 -0.00883 0.48218 -0.14585 -0.31050
11 -0.00883 -0.48218 -0.14585 0.31050
12 0.00261 0.46130 -0.15474 0.31303
13 0.00261 -0.46130 -0.15474 -0.31303
14 0.00541 0.36713 -0.20039 0.31121
15 0.00541 -0.36713 -0.20039 -0.31121
16 -0.38827 0.39%62 -0.11800 -0.15895
17 -0.38827 -0.39562 -0.11800 0.15895
18 -0.37499 0.37075 -0.12799 -0.15594
19 -0.37499 -0.37075 -0.12799 0.15594
20 -0.3116e8 0.29513 -0.16915 -0.15163
21 -0.31168 -0.29513 -0.16915 0.15163
22 -0.40276 0.09450 -0.17652 -0.04609
23 -0.40276 -0.09450 -0.17652 0.04609
24 -0.39305 0.10387 -0.18001 -0.05167
25 -0.39305 -0.10387 -0.18001 0.05167
26 -0.30057 0.09228 ~-0.23141 ~0.05958
27 -0.30057 -0.09228 -0.23141 0.05958
28 -0.08220 0.00000 -0.49972 0.00000
29 -0.09923 0.00000 -0.46206 0.00000
30 -0.09501 0.00000 -0.47075 0.00000

a . e .
An explanation of the decomposition of complex numbers into real and
lmaginary parts is given in Appendix 4.
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Table 3. The right eigenvectors of the age-disaggregated growth
matrix, corresponding to the three positive eigen-

values.
Eigenvalues
Xl = 1.01158 kz = 0.79916 k3 = 0.96325
Right eigenvectors
Age
Region Group
Brussels 0-4 0.00837 0.05324 -0.00284
5-9 0.00805 0.05139 -0.00284
10-14 0.00790 0.05511 -0.00305
15-1° 0.00781 0.06030 -0.00321
20-24 0.00813 0.05939 ~0.00305
25-29 0.00866 0.05143 -0.00273
20-24 0.00881 0.04733 -0.00270
35-39 0.00874 0.04772 -0.00284
40-44 0.00857 0.05036 -0.00297
45-49 0.00833 0.05538 -0.00302
Flanders Cc-4 0.06785 -0.02899 0.05302
5-3 0.06624 -0.02784 0.05174
10-14 0.06540 -0.03012 0.05210
15-19 0.06444 -0.03322 0.05251
20-24 0.06308 -0.03192 0.05080
25-29 0.06162 -0.02552 0.04774
30-34 0.06046 -0.02170 0.04612
35-39 0.05934 -0.02084 0.04568
40-44 0.05802 -0.02120 0.04564
45-49 0.05632 -0.02276 0.04565
Wallonia 0-4 0.03210 -0.02229 -0.05191
5-9 0.03136 -0.02114 ~0.05061
10-14 0.03091 -0.02198 -0.05082
15-19 0.03047 -0.02331 -0.04112
20-24 0.02990 -0.02278 -0.04961
25-29 0.02920 ~0.02006 -0.04690
30-34 0.02851 -0.01835 -0.04534
35-39 0.02785 -0.01781 -0.04470
40-44 0.02717 -0.01789 -0.04447
45-49 0.02640 -0.01865 -0.04429
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are denoted by Liaw as spatial components, since they seem to

determine the spatial redistribution of the population. The

complex and negative eigenvalues are cyclical components, as they

determine the transmission of population waves. Each of these
categories has a particular contribution to the path of popula-
tion growth. The study of the contributions is the subject

of the remainder of this section.

To study the growth path, we will decompose the right-hand

side of (34) into the four types of terms. We also rewrite
At t . eSrt
z?

where 5 represents the width of the projection interval. If A

as a function of r, the annual growth rate: A

is complex* (A = u + iv), then r is complex (r = x + 1iy); we

have

5(x + 1iy)

u+ iv = e {(39)

The magnitude (modulus) and amplitude (argument) of X\ are,

respectively (Table 4),

v * %
arg(A) = arctg o Sy

Note that by these equations, x and y may also be expressed
in terms of u and v. The values of x and y are given in

Table 2. The magnitudes and amplitudes are shown in Table 4.

By the theorem of De Moivre, \* for complex A may be

written as follows:

*Appendix 4 reviews some relevant features of complex numbers.
**Arctg z denotes the angle whose tangent is z. )
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AE = (v +iv)® = o%(cos ty + i sin ty)
where o = |A| and U = arg(A).
Equivalently,

Srt _ e5t(x+1y) - eSxt

e (cos t5y + 1 sin tS5y) (36)

Table 4. Magnitude and amplitude of eigenvalues of the multi-
regional growth matrix.%

Amplitude

i Magnitude In radials In degrees
1 1.012 0.000 0.0
2 0.799 0.000 0.0
3 0.963 0.000 0.0
4 0.822 1.137 65.2
6 0.777 1.142 65.4
8 0.641 1.162 66.6
10 0.482 -1.552 91.1
12 0.461 1.565 89.68
14 0.367 1.556 89.16
16 0.554 -0.795 134.4
18 0.527 -0.780 135.3
20 0.429 -0.758 136.6
22 0.414 -0.230 166.8
24 0.407 -0.258 165.2
26 0.374 -0.298 162.9
28 0.082 0.000 180.0
29 0.099 0.000 180.0
30 0.095 0.000 180.0

20f the complex eigenvalues, only the ones with a positive
imaginary part are considered. Extracted from Table 3.

Distinguishing the various elements of (34) associated
with different eigenvalue sets, the analytical solution of the

population growth path may be written as follows:
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ny n,
(k(8)} = cppfleg + T epfleg) + [ enlies)
i=1 =1 J
n
3 \
+ 1 ¢ \}uf,_ + v?_ [cos(t arctg %) (37)
£=1 2
v
+ i sin(t arctg —£>]{€ }
u £
£
or, in terms of r,
B
()} = oy e®T1%g, 1 + T o, eTifig))
i=1
n, N,
+ 5 e, %ty + 7 [CZ e5x£t . (38)
j=1 I A

(cos Syzt + i sin Syet){ie}}

The coefficients c; are shown in Table 5. The population growth
or the pattern of population change with increasing t may be
studied using (38). The first component of (38) determines

the long-run implications of population growth (stable popula-
tion characteristics); the second component provides information
on how the population is redistributed over space as it converges
towards stability; the third and fourth component tells about

the fluctuations in the convergence path. The overall popula-
tion wave is the sum of the individual waves. According to the
theory of vibrations, if the individual waves are periodic,

the sum of the waves is also periodic, but its length will be
much longer. Moreover the sum of periodic waves is itself a com-
posite wave, since each of its periodic rnovements consists of
shorter, aperiodic ones. The waves are damped since all values

of x  are negative; hence, their effects will eventually vanish.
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Constants of the age-disaggregated linear decomposi-
tion.

81030. 23933s.

81030. -239335.
-1581426. 3599S53S.
-1581426. -3599535.
-1021143. -409766.
-1021143. 409766 .
-1203104, 758682.
-1203104. -758682.

R e R R )
NN
CUONONLWIWN—~O

con- real imaginary
sgants part part
c 1l = 6957574, 0.
c 2 = 225087, 0.
c 3 = -420679. 9.
c 4 = -39956. -458018.
e 5 = -39956. 458018.
¢ 6 = 62037. -57990.
c 7 = 62037. 57990.
c 8 = 33913. 57719.
¢ 9 = 33913. -57719.
elQ = 1388794. =~365713.
cll = 1388794 . 365713.
cl2 = 366631. -247822.
c13 = 366631. 247822.
clg4 = -110008. 135749.
clS = -110008. -135749.
cl6 = 1490303. 620626 .
cl7 = 1490303. -620626.
el8 = 410895, 12298.
el9 = 41089S. -12298.

=  —14707S8. 0.

= -1324177. 0.
30 = -2214633. 0.

The projection paths for the three regions of Belgium are

shown in Figure 2. For each region, three trajectories are

given.

a)

b)

the trajectory corresponding to the three positive
eigenvalues (—#——). The growth path is generated
by taking into account only the effect of the dominant
and spatial components. The trajectory has no cyclical
parts. The term associated with a positive eigenvalue

grows or vanishes monotonically.

the trajectory corresponding to the first nine eigen-
values: three positive and six complex eigenvalues
(—e—e—) . From Appendix 3, it can be seen that only

the first three pairs of complex conjugate eigenvalues
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FLANDERS
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could be significant for population growth. The

others are very small in absolute value.

c) the trajectory corresponding to all the 30 eigenvalues
(—$—$—). The effect of the terms associated with the
small eigenvalues is significant only in the short run.
After 25-30 years, the effect will vanish. Hence, one
may conclude that the first three pairs of complex
eigenvalues adequately determine the population wave.
The effect of the small complex eigenvalues is compatible
with the effect of the negative eigenvalues. To demon-
strate the declining contribution to population change
of the small eigenvalues, consider the term associated
with A

of (34). The largest element of this term was estimated

297 i.e., the 29th member of the right-hand side

to be the one corresponding to the tenth age group of
the second region, i.e., the twentieth element of {529},
g%g = 0.74674. The element is

t
C9%59

£29 = -13,663,787(-0.09923) % 0.74674

At time t = 0, this gives -10,203,296. This amount is mainly
compensated for by other similar elements. After 25 years (t =
5), the amount drops by an absolute value to only 98. It is
evident that the element has lost its significance in less than
twenty-five years. Since the elements of {529} were found to
be very close to zero for the other age groups, the future
population will be unaffected by the 29-th member of (34).

This example clearly shows that the effect of the element
corresponding to the negative eigenvalues disappears in a very
short period of time.

We now turn to a more elaborate investigation of the complex
eigenvalues. The contribution of complex eigenvalues and their
associated terms to the population growth path may be studied
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by decomposing each eigenvalue into two factors: magnitude

and amplitude.* Recall that the magnitude (modulus) is ¢ =

Vuz + v2 = e5x and that the amplitude (argument) is u = arctg
% = 5y. For each eigenvalue, the amplitude (measured in degrees
per 5 years) is plotted in Figure 3 against the magnitude. Each
complex conjugate pair is represented by the eigenvalue with the
positive imaginary part. Particular periods (wavelengths) and
half-lives are also shown. Recall that the period is measured
by 360%/n. Hence, an amplitude of 60° is associated with a
period of 30 years.** Half-lives (or doubling times) measure
the time, T, necessary to decrease by half (or double) the
population size. The half-life of a particular eigenvalue is

given by

ln 2
ln ©

where ¢ is the magnitude of the eigenvalue considered. The

formula shows that a o-value of % implies a half-life of 5 years.

The eigenvalues are clustered in six groups, each with
three members, around a particular amplitude. The first group
(or cluster) is located on the vertical axis (amplitude 0°?),
the second group at around 60°, and the last one at 180°.

From the numerical values given in Table 4, the periods of the
second set of eigenvalues may be estimated as'27.6, 27.5, and
27.0 years. Analogously, the third group clusters around a
period of 20 years: the fourth, 13; the fifth, 11; and the
sixth (the negative real eigenvalues), 10 years.

*The authors acknowledge the recommendation of K.L. Liaw to
follow this analytic approach. For an illustration of Liaw's
analysis of the Canadian multiregional population system, see
Liaw (1978a, 1978b, 1980) and Liaw, Aresta, and George (1979).

**The ratio 360/u gives the period in unit time intervals of
5 years. To obtain the period in single years, we simply
multiply by five.
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The population wave is determined by the joint effect of
all complex eigenvalues. As was demonstrated in Figure 3, some
eigenvalues contribute more to the wave than others. The
contribution of an eigenvalue depends on its magnitude or on its
half-life (or doubling time). Only one eigenvalue has a magni-
tude greater than one and could therefore double the popula-
tion. The half-life of most eigenvalues is very short. The
effect of the eigenvalues in clusters 3 to 6 vanishes in not
more than 20-25 years.

The half-lives of the eigenvalues from the second cluster
are 17.7, 13.7, and 8.0 years, respectively. Thus the first
half-life causes a wave that will dominate over the others by
lasting a longer period of time. 1In order to evaluate how strong
it is, the magnitudes of the constants = and of the elements

of eigenvectors [see equation (34)] must be considered.

The half-lives of the positive eigenvalues (from the first
cluster) are not connected with the effect of a wave. The
doubling time of the dominant eigenvalue is around 300 years,
and the half-lives of the other two are 93 and 15.5 years. Their
effect, jointly with the constants and the eigenvectors, is
numerically illustrated in Appendix 3.

In Section 4 of this paper, we studied the pattern of
change of a population by making use of the first and second
derivates of the growth equation. It was shown that the
regional shares tend toward stability, and the path to stable

growth depends on factors associated with the second and third
eigenvalues.

These results will now be used again; for t > 100, the
first derivative should be positive, hence {k(t)} will be an
increasing function (A1 > 1). It is known how the regional
shares will change in the future, but we would like to know if
the age distribution will continue to change, in spite of the

fact that the effect of the complex eigenvalues has extinguished.

Consider, for example, the j-th element of the vector
{k(t)}:
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gg ., 3 =1,...,30
5 # 10,20,30

If the age composition were already constant, the ratio

kj(t)/kj+1(t), say, must not depend on t, 1l.e., kj(t) = A kj+1(t)
for large values of t. Then,

N 3+ t,.J _ j+1 t, 3 _ j+1) _

Cyrqley = A g7 ) + crp(Ey — A gy ) + c3hglE3 - A £y
which holds if and only if the following three equalities hold:
J _ j+1 J_ 3+1 ) _ a4 I

Table 3 shows that these equalities do not hold. For instance,
for j = 3, the corresponding elements of the first and the second

vector are not proportional. Hence, the above egquations do not
hold and the age composition is still not constant. It will
stabilize only when the second and the third eigenvalues extin-
guish, i.e., together with the stabilization of the regional
shares.

To summarize, the projection process of the multiregional

population may be divided into the following stages:

Stage 1. 0-5 years after the initial year. All the
eigenvalues are of interest.

Stage 2. Next 20-25 years. The negative eigenvalues are
of no interest. Strong waves are to be observed
due to all complex eigenvalues.

Stage 3. 25-100 years from the start. The waves that
are due to the largest complex eigenvalues
gradually damp out.

Stage 4. 100-300, 400 years from the start. The waves
have disappeared, but regional shares and age
compositions continue to change, approaching
their stable values. The change 1s slow, and

0
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is represented as a sum of exponentials. The
effect of the positive eigenvalues only counts.
Stage 5. 300-500 years from the start. Stable growth with

constant age and regional distributions.

7. CONCLUSION

This paper investigates the growth path of a multiregional
population, its constituents, and stages of development. The
growth trajectory is a result of various forces. It is made
up of a number of relatively independent growth paths, which
are not observed in practice. The individual growth paths
become visible if one changes the coordinate system in which

the population distribution vector is expressed.

Decomposition of the growth path into individual trajectories
poses the problem of the relative weight of each trajectory.
In this paper, two techniques were considered: the z-transform
and the introduction of the left eigenvector. It is the latter
procedure that is demographically more attractive since some
of the weights obtained have interesting demographic inter-
pretations. Also, this procedure is easier to follow and requires

less mathematical technigues.

The decomposition of the growth path into individual
trajectories is a useful way to investigate how the multiregional
population system converges towards stability. By adopting an
analytic procedure, originally proposed by Liaw in his study
of a multiregional population system in Canada, we were able
to express the complex eigenvalues of the demographic growth
matrix in meaningful indicators and to show that only a few of
the many complex eigenvalues are responsible for most of the
fluctuations or waves in the path towards convergence. As
time progresses, the growth path becomes simpler since the
effect of many of the eigenvalues vanishes. As a consequence,
the path a multiregional population will follow, if projected
with constant demographic parameters, may be divided into five

stages.
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APPENDIX 1: IMPROVED LEVERRIER ALGORITHM

This appendix reviews the improved Leverrier-algorithm
to determine simultaneously the coefficients of the characteris-
tic polynomial and the elements of the adjoint matrix. The
appendix is adapted from Willekens (1975, Appendix).

Let B(Ai) be the adjoint matrix of the characteristic

matrix (§ - Aig). The definition of R(Ai) implies that

(6 = 4D RO = |6 - nIf 1
R(A;)(G - MI) = [G - I T
. _ _ _ 0 _ n-1 n-2
Since |G AIf = g() =2 cyA - cyA ceem o
we may write
(G - Xig) R(A;) = g(r;) I
1 (A1)
R(A.) = (G - A1) ga;)
B(ki) 1s a polynomial matrix. It can be represented in
the form of a polynomial arranged with respect to the
powers of Ai.
R(A,) = R_A,071 4 r .02 +
~ 1 ~0 "1 ~1 i Feoo ~n-1 (A2)
_ n , n-=1
gir;) = Ao cy Ay e - < (A3)
Equating the coefficients gives (Gantmacher, 1959, p.85):
Bo = 1
Rp=G-c
Ry =GRy = c, I = C2 - G -
Rp =GR - I=6G -c;pG-c,1I (A4)
R, = G R -c 1=06F- ck-1 ck=2.. .-
B T8 Ry-a k 2 =6 €1 ¢ €2 & Cx I
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If G is nonsingular

e, = (1" g| # 0

This leads to an alternative method to compute the inverse

of G. Since

we have G = éL R . (A5)

n n-1

If ki is a characteristic root of G,

H
0
o

and (AG)

Il
(o]

(G = A, I) R(x))

Assume R(Ai) # 0 and denote bv {r} an arbitrary nonzero

column of R(A;). Then by (A6):

or (A7)

Each nonzero column of R(ki) is a characteristic vector

corresponding to the characteristic root Ai.
The set of formulas (A5) to (A7) gives a method to
determine R(Ai), G-l and the characteristic vector asso-

ciated with Xi' if the coefficients of the characteristic

polynomial are known. Faddeev proposes a method to
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determine simultaneously the coefficients of the characteristic
polynomial and the adjoint matrix B(Ai) (improved Leverrier
algorithm) (Gantmacher, 1959, pp. 87-89; Faddeev and Faddeeva,
1963, pp. 260-265). Instead of computing G, 92’§k required by
the system (Ad4), a sequence 91, §2”"’~k is computed in the

following way:

Gy =G € = tr ¢ Ry =Gy - ¢ I
G, = G R C, = 1 tr G R, =G, - c, I
=2 ~ <1 2 2 =2 ~2 ~2 2 <
. (A8)

G, = é R C, = é ér G R, = é -c, I
<k < <k-1 k 7k ~k -~k Zk k <

= é R c. = i é =G_-c¢c. . I =20
Zn 2 In-1 n n °f Zn ~n -n n -
It has been proved that
a) c, is a coefficient of the characteristic

. _ n n-1 _ n-2 -
polynomial g(Ai) = Ai - <y ki c, Ai <eeT C

b) R is a null matrix. This may be used to check

-~

the computations.

c) 1if G is nonsingular, then
G-l - éL Rn—l
2 h -

If G is singular, then (-l)n-l P will be the

matrix adjoint to G.



-50-

Numerical Illustration

Recall the growth matrix of the multiregional population

system consisting of Brussels, Flanders, and Wallonia.

0.969497 0.002615 0.004221
G =(0.017749 1.000175 0.002383

0.012907 0.001435 0.993583

Application of the improved Leverrier algorithm yields the

following results:

-
0.969497 0.002615 0.00u221 -1.99375§ 0.702615 0.00s221

G, = 0.017749 1.000175 0.c02383 c, = R A R, = 0.017749  =-1,963082 0.2c2382
0.012907 0.001435 0.99358% 0.012907 0.C01425 =-1.9f3&727
~1.932842 -9.002392 -O.GOﬂ21J 0.993754 -0.202592 -2.30421¢

92 = -0.017604 -1.963374 -0.002235 c, = -2.926:95 R2 = -0.017604 0.963222 -H.0022:3%
-0.012884 -0.001357 -1.956975 -9.512884 -0.001357 0.969+21
[0.9633U1 0.000000 0.000000 0.000000 0.000000 0.200000

= 0.000000 0.963341 0.0C0000 c, = 0.963341 R, = 0.00C000 0.3000Q0 0.C00000

-3
L0.000000 0.000000 0.963341 n.000000 0.000000 0.000000
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The characteristic equation (A3) is equal to

g(Ai) = Ai - 2.963255>\2 + 2.926595) - 0.963341

The roots of this equation are the eigenvalues

A1 = 1.00301
Ay = 0.99393
A3 = 0.96632

The adjoint matrices R(Ai) are, by (A2)

.3

R(Aj) = A7 + RyAy + Ry
0.000023  0.000031  0.000018
R(A;) = | 0.000198 0.000262  0.000155
| 0.000062  0.000082  0.000049
-0.000006 0.000007 =0.000020
R(),) = | 0.000037 -0.000046 0.000133
~0.000055 0.000069 -0.000199
[ 0.000920 -0.000065 =-0.000137
R(A;) = [-0.000453  0.000032  0.000067
-0.000411  0.000029  0.000061)




APPENDIX 2:

init.
year
1970

af ter

1
year
after
years
after
years
after
years
af ter

5
years
after

6
years
after
years
after
years
after

9
years
after

10
years
after

15
years
after

20
years
after

25

years

after

40
years

after

50
years

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flandegs
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

744219.
6334471.
1983889.

746459,
6353539.
1989861 .

748706 .
6372662.
1995850.

750960 .
639184S.
2001858.

753220.
6411086.
2007884 .

755488,
6430384 .
2013928.

757762.
6449740.
2019990.

760043,
6469154.
2026071 .

762330.
6488627,
2032169.

764625.
6508158,
2038286.

766927.
6527748,
2044422,

778539.
6626586 .
2075376.

790327.
6726922.
2106801 .

802293.
6828776,
2138700,

839291.
7143687,
2237327,

864900 .
7361652.
2305591 .

+

+
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127957.
-846153.
1264864 .

127181.
-841017.
1257186.

126409 .
-835912.
12495S5S.

125641 .
~830838.
1241970.

124879.
~82579S.
1234431 .

124121.
-820782.
1226938.

123367.
-815800.
1219490.

122618.
-810848.
1212088.

121874.
-805926 .
1204731.

121134.
-801034.
1197418.

120399.
-796172.
1190150.

116789.
=772299.
1154464,

113287.
-749143.
1119849.

109890 .
-726681 .
1086272.

100299.
663255.
991460.

94374.
-624077.
932896.

+ +

*The components on the left-hand side are

(23").

207327.
-102169.
~-92776.

200344 .
-98728.
-89651.

193597,
-95403.
-86632.

187076.
-92190.
-83714.

180776 .
-89085.
-80895.

174687.
-86084.
-78170.

168804 .
~8318S.
-75537.

163118.
-80383.
-72993.

157624,
~77676.
-70535.

152316.
~-75060.
-68159.

147186.
-72532.
-65864.

124014.
-61113.
~55495.

104490.
-51492.
-46758.

88040,
~-4338S.
-39397.

52662.

-25951

-23565.

37386.
-18423.
-16730.

1} o nanu nun muwan H U W un waunn nuu Hnn 0w nuwun wnaw wnan nnwn

1979503.
5386149.
3155977.

1073984 .
5413794.
3157396.

1068711.
5441347.
3158773.

1063677.
5468817.
3160114.

1058875 .
5496207 .
3161421.

1054295
5§523517.
3162696.

1049932.
55507SS.
3163943.

1045779.
5577923.
3165166.

1041829,
5605025.
316636S5.

1038075.
5632064 .
316754S.

1034511.
5659045
3168708.

1019342,
5793173.
3174346.

1008104 .
5926287.
3179892.

1000224 .
6058710.
318557S.

992252
6454481
3205222

996660 .
6719152,
32217S8.

60.
30.

9.
61.
29.

THE REGION-DISAGGREGATED POPULATION GROWTH PATH*
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the terms of the growth equation




af ter

100
years

after

150
years

after

200
years

after

250
years

after
300
years

after

400
years

after

500
years

after

1000

years

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

brussels
flanders
wallonia

1005150.
8555401.
2679461.

1168143.
9942725.
3113956,

1357565.
11555007 .
3618906 .

1577705.
13428743.
4205740.

1833541.
15606312.
4887732.

2476401 .
21078054 .
6601423.

3344651 .
28468222,
8915945,

15031445,
127941176.
40069816 .

+

+ + +

+ +

+ + +

-53-

69606 .
~460286 .
688054.

51337.
-339482.

S07472.

37864.
-250384.
374284.

27926.
-184670.
2760S2.

205897.
-136203.
203601.

11204,
74091 .
119754.

609S.
-40303.
60247.

290,
-1920.
2870.

+ + +

6741.
-3322.
-3017.

1216.
-599.
=-544.

219.
-108.
-98.

40.
-19.
- 18,

-4,
-3.

-9,
-9.

-9.
-9.

-9.
-9.

1081497.
8091793.
3364498.

1220696 .
9602644 .
3620884.

1395648.
11304S51S.
3993091.

1605671 .
13244054 .
4481775.

185414S.
15470105.
5091330.

2487605.
21003964 .
6712177.

335074S.
28427918.
8376192.

15031735.
127939256.
40072684 .

.63
.83
.45
.97
.36
.92
.31
.18
.27
.01
71
.24
.22
.22
.62
.21
.89
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APPENDIX 3: THE REGION- AND AGE-~-DISAGGREGATED
POPULATION GROWTH PATH

Key

The gquantities in the first three columns are due to each
of the positive eigenvalues. The guantity in the fourth column
i1s due to the first complex eigenvalue. The quantity due to
its conjugate is not presented. Analogously, the quantities
in the fifth and sixth columns are due to the second and third

complex eigenvalue. (Their conjugates are also disregarded.)

The first column after the equality sign gives the sum
of the quantities due to the first nine eigenvalues (including
the conjugates); the second column is associated with the three
positive eigenvalues; and the third column with all the eigen-
values.

For each year, the first row gives numbers for the popula-

tion of Brussels; the second, for Flanders; and the third, for
Wallonia.
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initial
580053. +
4332969. +
2044622 . +

after
586779. +
4383144 .+
2068299, +

af ter
593565. +
4433901 .+
2092250, +

after
600438.+
4485246 ., +
2116478.+

after
607391.+
4537185.+
2140987.+

after
614425+
4589726 . +
2165780. +

after
621540.+
4642875 . +
2190859. +

after
628737 .+
4696640 . +
2216230.+

after
636018.+
4751027 .+
2241894, +

after
643383.+
4806043 . +
2267855.+

after
650834 . +
4861697. +
2294116.+

after
658370. +
4917996, +
2320682.+

after
665994 . +
4974946 . +
2347556 .+

year = 1970

119667.+ 1230S.
-59448.+ ~206553.
-45976.+ 201829.

S years

95633. + 118S53.
-47508.+ -198963.
-36742.+ 194412.

10 years

76426 . + 11417.
-37967.+ -191651.
-29363.+ 187267.

15 years

61077.+ 10997.
-30341.+ -184608.
-23466.+ 18038S.

20 years

48810. + 10593.
-24248.+ -177823.
-18753.+ 173756.

25 years

39007. + 10204 .
-19378.+ -171288.
-14987.+ 167371.

30 years

31173.+ 9829.
~15486.+ -164993.
-11977.+ 1612209,

35 years

24912.+ 9468.
~12376.+ -158930.
-9571.+ 18829S.

40 years

19909. + 9120.
-9890.+ -153089.
-7649.+ 149588,

45 years

15910.+ 878S.
-7904 .+ -147463.
-6113.+ 144090.

59 years

12715.+ 8462.
-6316.+ -142044.
-4885.+ 13879S.

55 years

190161 .+ 8151.
-5048.+ -136824.
-3904.+ 133694.

60 years

8120.+ 7851.
-4034.+ -131796.
-3120.+ 128781.

9118.
68142,
26807 .

8202.
61426 .
24154.

-499.
-3657.
-1446,

-5892.
-44068.
=17334.

-3732.
-2796S.
-10995.

1407.
10486
4128.

3496.
26156.
10288,

1463.
10975.
4314.

-1353.
-10109.
-3978.

-1924.
=1440S.
-5665.

-414.
-3113.
-1223.

1016.
7592.
2987.

981.
7349.
2890.

-55-

+ 1286.
+ =-10206.
+ 13448,
+ 270.
+ -2177.
+ 2564,
+ -602.
+ 4752.
+ -6458.
+ -552.
+ 438S.
+ -5721.
+ 7.
+ -34.
+ 199.
+ 337.
+ -2668.
+ 3581.
+ 214.
+ -1704.
+ 2194.
+ -65.
+ 508.
+ -743.
+ -171.
+ 1357.
+ -1804.
+ -71.
+ 570.
+ -718.
+ 57.
+ -459.
+ 625.
+ 80.
+ ~-63S.
+ 837.
+ 17.
+ -139.
+ 164.

+

+

+

+

+

226.
-61.
-63.

102.
-52.
-19.

-41.
-1.
16.

-63.

16.

0w i o a wann o n [T (1] "un ft nou oo [ ] nnn

[T

727273.
4180432.
2283937.

694882,
4259945.
2283801.

673174.
4209898.
2235374.

663261 .
4190713.
2226003.

663677.
4277598.
2273321.

667838.
4414014.
2333562.

668543 .
4511575.
2365498.

664897,
4548722,
2369324,

662063.
4570646 .
2372208.

664538.
462288S.
2392942.

671500.
4706106 .
2426792,

678792.
4790034
2458152.

683838.
4853579.
2479356.

71202S.
4066968 .
2200475,

694256 .
4136674.
2225969.

681408.
4204284
2250154.

672513.
4270297.
2273398.

666795.
4335115.
2295990.

663636 .
43990609 .
2318164.

662542,
4462395.
2340102,

663117.
4525334.
2361953.

665047.
4588048
2383832,

668078 .
4650676 .
2405832.

672010.
4713337.
2428026 .

676682 .
4776124.
2450473.

681966.
4839117.
2473217.

71229S.
3925425.
2176969.

682949.
3992841.
2163247,

667940.
4080401 .
217670S.

664020.
418578S.
2221059.

667005 .
4311879.
2284051.

671069,
4435318.
2349592.

664946 .
4490691 .
2353428.

664600.
4543928.
2367075.

663721.
4581940.
2377657.

663685,
4617665,
2390607

671653.
4706923.
242710S.

678818.
4790297,
2458237.

683789.
4853177.
2479207,



af ter
673706 . +
5032556.+
2374740, +

after
681508.+
5090834, +
2402240 .+

af ter
689400. +
5149785.+
2430058 +

after
697383. +
5209420. +
2458198. +

after
705459 +
5269745.+
2486664, +

after
713628. +
5330769. +
2515460. +

after
721892.+
5392499, +
2544589, +

after
730251 .+
5454944 .+
2574955, +

after
738708 . +
5518112.+
2603862. +

after
747262.+
5582012. +
2634015.+

after
755915.+
5646651 . +
2664517.+

af ter
764669. +
5712040. +
2695372. +

after
773524, +
5778185.+
2726585. +

af ter
782481 .+
5845097.+
2758159.+

65 years

6490. + 7563.
-3224.+ -126952.
-2493.+ 124048,

70 years

5186.+ 728S.
-2576.+ -122287.
-1993.+ 119499,

75 years

414S5.+ 7017.
-2059.+ -117793.
-1592.+ 115098,

80 years

3312.+ 6759.
-164S.+ -113464.
-1273.+ 110869.

85 years

2647.+ 6511.
-1315.+ -109294,
-1017.+ 106794,

90 years

211S.+ 6272.
-1051.+ -105277.
-813.+ 102869.

95 years

1691 .+ 6041.
-840.+ -101408.
-649. + 99089.

100 years

1351.+ 5819.
-671.+ -97682.
=519.+ 95447,

105 years

1080. + 560S.
-536.+ =94092.
-~415.+ 91940,

110 years

863. + 5399.
-429.+ -90634.
=331.+ 88561 .

115 years

690. + S5201.
-343.+ -87303.
-265.+  85306.

120 years

SS51.+ 5010.
-274.+ -84095.
=212.+ 82171.

125 years

440. + 4826.
-219.+ -81004.
-169.+  791S52.

130 years

352.+ 4648.
-175.+ -78027.
-135.+ 76243.

-9.
-S58.
-24.

-670.
-5010.
-1971.

-457,
-1345.

-76.
-568.
-223.

~56.
~-416.
-164.

-56-

-37.
294.
=399.

-34.
273.
-357.

-0.
10.

21.
-16S5.
222.

13.
-107.
137.
-4,

-45.
-11.

-112.

-4,
36.
-45.

=28,
38.

-40.
S52.
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687636 .
4902873.
2495454.

692607 .
4956492.
2515071.

699680.
S5023078.
2540887.

707772.
5096026 .
2569047 .

715439.
5164970.
2595096 .

722372.
5227293.
2618523.

729314.
5288256,
2641953.

73696S5.
5353283.
2667563.

74528S.
54225S55.
2695122,

753758.
54925S53.
2723011.

762041 .
5560740.
2750269,

770234.
5627780.
2777310,

778634.
5695861 .
2805076.

787370.
5766061 .
2833940.

687759.
4902389.
2496296 .

693979.
4965971 .
2519737.

700562.
5029934.
2543564 .

7074S5S.
5094311.
2567794.

714617.
S515913s.
2592441 .

72201S.
5224440
2617516.

729623.
5290250.
2643028.

737421.
5356591 .
2668983.

745392.
5423483.
2695387.

753524.
5490949.
272224S.

76 1806.
5559006 .
2749S859.

770229.
5627672.
2777332,

778790.
5696962,
2805567.

787481.
5766894 .
2834266.

687684 .
4903226 .
2495617.

692583.
4956341 .
2514989.

699678.
50230S2.
2540882.

707781.
509609S.
2569076 .

715433.
5164931.
2595080.

722373.
S5227301.
2618527.

729318S.
5288259.
2641954.

736964 .
5353277.
2667561 .

74528S.
5422559.
2695123.

7537S8.
5492552.
2723011.

762041.
5560740 .
2750269.

770234.
5627781.
2777310.

778634.
S695861 .
2805076.

787370.
5766061 .
2833940.



after
791542, +
5912783, +
2790098 . +

af ter
800708 +
5981283.+
2822408 . +

after
809980 +
6050516. +
2855091 .+

af ter
819360.+
6120581 .+
2888153.+

af ter
828848. +
6191457.+
2921598.+

after
838446. +
6263154. +
2955430. +

after
848155.+
6335681.+
2989654 . +

after
857977.+
6409049, +
3024274 ., +

af ter
867912.+
6483266 . +
305929S. +

after
877963. +
6558342.+
3094722.+

af ter
888130.+
6634287.+
3130558. +

after
898414.+
6711113.+
3166811.+

after
9088 18. +
6788828 . +
3203482 . +

after
919342.+
6867442 . +
3240579. +

135 years
281.+ 4477.
-140.+ -75160.
-108.+ 73441.
140 years
225.+ 4313.
-112.+ =72398.
-86.+ 70742.
145 years
180.+ 4154.
-89.+ -69737.
-69.+ 68142.
1560 years
144 .+ 4002.
-71.+ =67174.
-55.+ 65638.
185 years
115.+ 3855.
=57.+ -64706.
-44 .+ 63226.
160 years
92.+ 3713.
-46.+ -62328.
-35.+ 60902.
165 years
73.+ 3577.
-36.+ -60037.
-28.+ 58664.
176 years
59.+ 3445.
-29.+ -57831.
-22.+ 56508.
175 years
47.+ 3319.
-23.+ =5570S.
-18.+ 54431.
180 years
37.+ 3197.
-19.+ -53658.
-14.+ 52431.

185 years

30.+ 3079.
-15.+ -51686.
-11.+ 50504 .

190 years

24.+ 2966.
-12.+ -49787.

-9.+ 48648 .

195 years

19.+ 2857.

-9.+ =-47957.

-7.+ 46860 .

200 years

15.+ 2752.

-8.+ =-46195.

-6.+ 45138.

13.
38.

47,
137.

23.
175.
69.

-15.
=114,
-45.

-26.
~198.
-78.

=8,
-59.
=23.

-9.
-64.
-2S.

-7.
-50.
-20.
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-0.
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+ + +
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+

+ + +

+ +
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-0.
-9.

-0.
-9,

-9,
-9.

796329.
5837656 .
2863534.

805340.
5909427.
2893354.

814361.
5981045,
2923296.

823473.
6053116.
2953631.

832764,
612630S.
2984618.

842235.
6200660 .
30162SS.

851831.
6275788.
3048369.

861509.
6351396.
3080843,

871280.
64275S57.
3113713,

881179,
6504539.
314708S.

89122S.
6582485,
3181012,

901406,
6661330.
32154S8.

911705S.
6740940.
3250368.

922118,
6821284.
3285728.

796301 .
5837484.
2863431.

805246 .
5908744,
2893063,

814314.
5980690,
2923164,

823505.
605333S.
295373S.

832817.
612669S.
2984779.

8422S1.
6200781.
3016297,

85180S.
6275608.
3048289.

861481 .
6351189.
3080759.

871278.
64273537.
3113709.

881197,
6504665 .
3147138.

891239.
658258S.
31810S1.

901404 .
6661314,
3215450,

911694,
6740861 .
325033S.

922109,
6821240.
3285711.

796329.
5837656 .
2863534.

805340.
5909427,
2893354.

814361.
598104S.
2923296 .

823473.
6053116,
2953631.

832764 .
612630S.
2984618.

842235.
6200660 .
301625S.

851831,
6275788.
3048369.

861509.
6351396.
3080843,

871280.
6427557.
3113713.

881179.
6504539.
3147085.

891225.
658248S.
3181012.

901406.
666 1330.
32154S8,

91170S.
6740940.
3250368.

922115.
6821284,
3285728,
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APPENDIX 4: REVIEW OF COMPLEX NUMBER THEORY*¥*

Definitions and Operations

A complex number z is a pair of real numbers a and b,

written as (a, b), which obeys the following rules:

- equality: z =2’ or (a, b) = (a’, b’) only if a = a’
and b = b’
- addition: =z + 2’ or {(a, b) + (a’, b’) = (a + a’', b + b'")

14

- multiplication: 2z + 2z’ or (a, b) « (a', b") =
(aa’ - bb’, ab'" + a'b)

Real numbers are a subset of complex numbers. The real number
may be written as the complex number (a, 0). Because of this

identification of real numbers, we may write

(a, 0) + (0, b)
(a, 0) + (b, 0) = (0, 1) =a + b + (0, 1)

N
1

3

L
!

*This review is based on Kuipers and Timman (1969:28-32).



-59-

The complex number z is decomposed into a real part a and an
imaginary part b ¢ (0, 1); the complex number (0, 1) is always

denoted by i.* Hence,

z = a + 1ib (A9)

Note that a real number may be represented by a complex number
with the imaginary part 0. The complex number z = a - bi is

the conjugate complex number of z.

The Complex Plane

A complex number may be understood more easily if given
a geometric interpretation. A complex number can be associated
with a point, P, on a plane (complex plane). The coordinates of
P with respect to the orthogonal axes are (a, b). The location

of P is fully determined by the knowledge of a and b (Figure
Al).

The location of P in the plane may be expressed not only
with reference to a cartesian coordinate system, but also in
terms of polar coordinates (g, u) , where ¢ is the distance
from the origin to P and u is the angle of z with the horizontal
axis. The polar coordinates may easily be derived from the
rectangular coordinates a and b. The distance ¢ is the absolute

value, magnitude or modulus of z and is given by the Pythagorian

theorem as

*i is the imaginary number.., It is the number which, multiplied
by itself gives -1, i.e., i“ = (0, 1) « (0,1) = -1. Hence, i =

V-1. This is a highly exceptional number in mathematics, since

a square of either a positive or a negative number is positive.

Because of this, Italian mathematicians in the early renaissance
have called i such things as an absurd, fictitious or imaginary
number.
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Figure A71. Orthogonal (a, b) and polar (o,

a point in a complex plane.

To determine the angle p, we write

from which follows that

and hence,

cos p =

alm
a|lo

’ sin

=
0

u) coordinates of

(A10)

(A11)
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The value of u is, therefore, given by p = arctg g . The angle
u is also called the amplitude or the argument of z and is

written as arg(z). It measures the difference between the peak
of the oscillation and its average level. 1If, apart from (A11),

U also satisfies the condition

-T < u s

then this value of u is known as the principal value of the

argument of z and

z = g(lcos p + 1 sin y) (a12)

The argument is the factor determining the wavelength or period
of the time path. The period is the length of a complete
oscillation in units of time (years, say) and is calculated as
271/u or 360%/u. The reciprocal of the period is the frequency
of oscillation (u/27), i.e., the number of complete oscilla-

tions per unit of time.

The complex number z may either be expressed in terms of
rectangular coordinates (A9) or in terms of polar coordinates
(A12). In démographic applications, the second approach is

generally more useful.

Arguments of Products and Quotients

Consider two complex numbers z and z':

z = a+ ib = g(cos y + 1 sin yp)

+ ib’ = 6'(cos u' + i sin u’")

Since the product z z’ is

14

z z' =0 0'[cos(u + u’') + 1 sin(u + u")]
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we may conclude that the argument of the product of two

complex numbers is equal to the sum of the arguments of the

factors
arg(z z’) = arg(z) + arg(z’) (A13)

Similarly, the argument of the quotient of two complex numbers

is equal to the difference of the arguments of the factors

arg(2) = arg(z) = arg(z’) (A14)
zl

By (A13), the argument of zn, with n being a natural number,
is

arg(z™) =n arg (z) (A15)

In demographic analysis, n is generally a time interval. Since
the modulus of z" is simply on, the following expression for z"

may be derived (Theorem of De Moivre):

zn = on(cos nuy+1sinn u) (A16)

From the theorem of De Moivre follows that

z % = 67 cos(-n u) + i sin (-n u)]

The theorem may also be applied to derive arg(zn) in terms of

arg(z) (in other words to relate nuy to u). For n = 4, we have
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. . 4 . .
(cos u + 1 sin u) = cos 4y + 1 sin 4y

and therefore

4 2 . 2 .4
Cos U = 6 cOosS U sinu + sin yu = cos ULy

-4 cos3u sinuy + 4 cosyu sin3u = sin 4y
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