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PREFACE

In recent years +there has been considerable interest in
developing models for environmental systems, much of it directed
toward progressively larger and more complex simulation models.
However, such a trend causes concern about several important is-
sues. In particular, relatively little attention has been paid
to the problems of errors and uncertainty in the field data, of
inadequate amounts of field data, and of uncertainty about esti-
mates of +the model's parameters and about relations among the
system's important variables.

The work of the International Institute for Applied Systems
Analysis (IIASA) on environmental quality control and management
is addressing problems such as these, and one of the principal

themes of the work is modeling poorly defined environmental sys-
tems.

This paper deals with the formalization of a procedure for
hypothesis testing when +the system under study is especially
complex and observations of its behavior are subject +to high
levels of uncertainty. The procedure, based on the use of Monte
Carlo simulation and extending previous work on model estimation
(IIASA WP-80-87, for example), has several parallels with pro-
cedures for model structure identification using recursive esti-
mation algorithms (see RR-80-4). The discussion of the paper
therefore adds breadth and variety (of approach and method to
the development of a framework for modeling poorly defined en-
vironmental systems (see also RR-81-2, RR-81-4§.
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ABSTRACT

The study of environmental systems as ecological, physico-
chemical as well as socio-economic entities requires a high de-
gree of simplifying formalism. However, a detailed understand-
ing of a systems function and response to various changes for
the explicit purpose of systems management and planning, still
requires complex hypotheses, or models, which can hardly be sub-
jected to rigorous tests without the aid of computers. Systems
simulation is a powerful tool when subjecting complex hypotheses
to rigorous tests of their logical structure, as well as a pos-
sible means for rejecting or corroborating the underlying hy-
potheses.

The complexity and variability of environmental systems, the
scarcity of appropriate observations and experiments, problems
in the interpretation of empirical data, and the lack of a well
established theoretical background make it difficult to test any
possible conceptualization, or hypothesis, describing a given
system. A formal approach to hypothesis testing, based on numer-
ical simulation, which &explicitly considers +the above con-
straints, is proposed.

Based on a data set from the North Sea, a series of hy-
potheses on the structural relations and the dynamic function of
the pelagic food web is formulated in terms of numerical models.
Hypotheses of various degrees of aggregation and abstraction are
tested by comparing singular statements (predictions) deduced
from the proposed hypotheses (the models) with the observations.
The basic processes of primary production, consumption, and rem-
ineralization, driven by light, temperature, and
advection/diffusion, are described in systems models ranging in
complexity from two compartments to many compartments and
species groups. With each of the proposed models, yearly cycles
of the systems behavior are simulated. A comparative analysis of
the response of each of the models allows conclusions to be
drawn on the adequacy of the alternative hypotheses. This
analysis also allows one to reject inadequate constructs, and
provides some guidance on how to improve a certain hypothesis,
even in the presence of a high degree of uncertainty.
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HYPOTHESIS TESTING BY SIMULATION:
AN ENVIRONMENTAL EXAMPLE

Kurt Fedra

INTRODUCTION:

Hypothesis Testing and Simulation Modeling

Environmental systems are generally large, diverse, and com-
plex. Variability in space and time and an extremely high number
of interacting components which themselves are subject to
changes in time, make their observation and understanding an ex-
tremely difficult, though challenging, scientific task of 1in-
creasing socio-economic importance. This is especially true for
marine systems, where in addition to all other problems the

logistics of the research pose major difficulties.

Trophical relationships, i.e. the interrelations of eater and
eaten, predator and prey, decomposers and substrate, play an
essential role in environmental systems dynamics. Inseparably
linked with the physical processes of, e.g., transport and mix-
ing, energy flows, material cycles, or foodwebs are all concep-
tualizations of Dbasic ©processes in environmental systems. 1In
the aquatic environment, food webs link energy flows and mineral
cycles in the most obvious way: primary production links the
physical (energy) environment with the biological, organic ele-
ments of the environment, whereas the last link of decomposers
connects the organic matter built and transformed, once again
with the mineral cycles. At the same time, food webs describing
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the production, transformation, distribution and finally, decom-
position of organic material, are major elements in most prob-
lems of immediate practical interest to man, such as fisheries
(c.f. Andersen and Ursin 1977), the bio-degradation and -accumu-
lation of toxic substances (e.g. Thomann 1978), -eutrophication,

or problems of water quality in general.

The very high number of interactions between the numerous
elements of ecological systems requires conceptual simplifica-
tions, aggregation, and abstraction of the systems under study,
5o as to make the theories one can formulate about the structur-
al properties and the function of a system traceable. At the
same time however, this introduces certain tradeoffs between
precision or detail, and generality. Scientific research tries
to establish theories, or general, universal statements, from
which, in turn, singular statements or specific events can be
deduced or predicted. A certain general applicability of a con-
ceptualization is therefore an essential element of the scien-
tific method itself. Only a purely descriptive approach requires
a maximum of precise detail. In contrast, for an explanatory ap-
proach the principal features of any system have to be filtered
from the site-specific ones as well as from random disturbance-
-thus by necessity detail has to be ignored in order to make the

general patterns visible.

Universal statements, describing those properties of a system
which are invariant in space and time, may be called models,
whether they are of an informal (e.g. verbal or mental), or a
formalized mathematical structure. Such models, viewed as
scientific theories, have to be testable, that is to say, when
one feeds or substitutes a set of specific singular statements
into the model (the initial conditions, which, in the case of a
mathematical model also include the model parameters in a gen-
eral sense, cf. Fedra et al.1980, Fedra, in press a) it must be
possible to deduce or predict testable singular statements (ob-
servations or experimental results). Disagreement between the
prediction deduced from the hypothesis or model and the avail-

able observations would then require rejectionof the given hy-




pothesis, modification and improvement, or the search for alter-
native hypotheses, which would then have to be subjected to the
same procedure. This method, which would basically represent the
strategy of scientific research proposed by Popper (e.g. 1959),
however, has a major drawback when applied to complex simulation
models or dynamic hypotheses describing ecological systems, in
that the so-called initial conditions to be used with the basic
structure of the theory to deduce the testable predictions, are
not exactly known. In one example given in Popper (1959), where
he refers to a mechanical experiment (the breaking of a certain
piece of thread), lthe initial conditions to be specified are
Ssimple enough: a weight and the characteristiecs of a thread
(e.g. material, diameter etc.), which are, in relation to the
expected outcome of the experiment, measurable without consider-
able error. This however, 1is no longer the case when we are
dealing with the complex aggregates conceptualized as "units" in
large scale systems thinking - and models. This can certainly be
seen as the results of two basic shortcomings, one in the meas-
urement techniques available, another one in the formulation of
the models themselves: if the models require unknowns as inputs,
they are not well formulated. The latter is certainly a generic

shortcoming of environmental models.

The same line of argument can be followed with regard to the
observation used for model-output comparison in hypothesis test-
ing. The breaking of a thread, the singular prediction, 1in
Popper's example 1is readily observable. It either happens, or
does not. In most examples however, we have to compare predic-
tions with measurements from the system, which always include
some measurement error, that is to say, they are ranges. Also,
in environmental systems the degree of abstraction and aggrega-
tion is quite different for the measurements and for the model
conceptualization. Therefore, the observations and measurements
can only serve as samples of the properties or the state of the
units conceptualized. As these units are generally heterogeneous
(in terms of their measurable properties), and are generally
characterized by a high degree of variability, further uncer-
tainty has to be dealt with in the hypothesis testing procedure.



Retaining the logical structure of testing a proposed hy-
pothesis, but 1including at the same time the appropriate (or
rather unavoidable) way of describing uncertain "initial condi-
tions"™ as well as the expected outcome of the experiment, in-
volves the following: it is possible, for the deterministic case
referred to above, to describe the initial conditions or inputs
as a set of numbers (forming a vector, determining a point in a
n-dimensional input-hyperspace), and to do the same for the ex-
pected result of the experiment (the observed behavior of the
system), resulting again in a point in a m-dimensional output-
or behavior-space. In the presence of uncertainty, i.e. consid-
erable measurement and sampling errors, in part due to lumping
and aggregation, the two points will have to be extended to re-
gions in their respective hyperspaces. Instead of the two vec-
tors we have to deal with classes of vectors with certain sta-

tistical properties and probability structures.

To test any specific hypothesis, we now examine 1if for a
class of admissible 1initial conditions predictions (which are
members of the set of allowable outcomes) can be made. The re-
jection of a hypothesis--whenever no allowable outcome can be
generated--is based on a statistical argument, as the number of
possible initial conditions forming the admissible class, is in-
finite, and only samples can be examined. Also, the class of ad-
missible 1initial conditions will rarely be well defined on the
basis of a-priori knowledge (a priori in relation to the specif-
ic experiment to be carried out). Generally, it will be possible
to specify allowable ranges for the individual initial
conditions--the class of admissible sets, however, 1is also
characterized by the correlation structure, which determines the

"shape" of the admissible input region in the hyperspace.

Figure 1 summarizes the approach outlined above in a flow
chart, indicating the major steps in the procedure as well as
their recursive relationships, and Figure 2 shows an example of
a model response-space projection on a plane defined by two
output-constraint variables, also indicating the defined empiri-
cal range, forming a rectangle in that plane.




This method of testing a given hypothesis does not indicate
how to such a hypothesis can be arrived at in the first place--
by conjecture. Popper's rejection of inductive reasoning does
not provide much help, but in practice hypotheses (and simula-
tion models) are rarely generated randomly, but always based on
empirical knowledge. However, the process of testing and re-
Jecting a given hypothesis can also provide some diagnostic in-
formation about the causes of failure, and about possible ways

to improve the hypothesis.

One possibility is to start with the simplest possible con-
ceptualization, or the least complex model one can formulate. If
this simple version fails to give an acceptable behavior over
the allowable parameter ranges, complexity is increased by ad-
ding elements and more complex process descriptions to the
model, wuntil a satisfactory behavior can be achieved. However,
there is in any case more than one way to increase a models com-
plexity. A general formalization of this "adding of complexity"
seems to be most difficult if not impossible. Some guidance for
this process can be expected from the analysis of a series of
errors, as will be shown below. Also, since I am considering
conceptual models only (as opposed to statistical models, they
are based on physical processes and include only terms directly
interpretable in the real world system), additional observations
can be exploited in many cases. Knowledge accumulated from the
study of similar systems may also be helpful in increasing a

given model's complexity.,

Building up complexity and subjecting each version or level
of the model to extensive tests, should allow one to learn about
the way structural changes influence a models response. At the
same time, the intricate connection of structure and inputs (the
parameters) has to be emphasized, since the model's behavior is
certainly responsive to both. Since changes in the model struc-
ture will in almost every case also necessitate changes in the
parameters (their numbers, admissible ranges, and interpreta-
tion), comparisons of different versions are quite difficult.

Although the approach described below is clearly far from being



ideal, any attempt at a formalization of the modeling process

seems preferable to a purely arbitrary and subjective procedure.
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Figure 1: Flow chart of the approach
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Figure 2: Model response-space projection on a plane of two con-
straint variables, 1indicating the defined empirical range of
systems behavior (top) and projection from the 22-dimensional
input-space region corresponding to the empirical behavior range

(from Fedra, 1980).



THE EMPIRICAL BACKGROUND:

Describing the Environmental System

Considering the above constraints, the direct use of the raw
data available on any ecosystem seems to be rather difficult for
the testing of complex and highly aggregated dynamic hypotheses.
Consequently, we have to derive from the available data a
description of the system and the processes we want to study at
an appropriate 1level of abstraction and aggregation. This
description, which already has to be formulated in the terms of
the hypothesis to be tested, should take advantage of all the
available information, and at the same time provide an estimate
of the reliability of this information at the required level of

abstraction.

As an example to illustrate the approach, a data set from the
Southern North Sea was used. Most of the information utilized
stems from the yearly reports of the Biological Station Helgo-
land, and describes physico-chemical as well as biological vari-
ables at the sampling station "Helgoland-Reede"™ for the period
1964 - 1979 (Hagmeier 1978, Lucht and Gillbricht 1978, Biolo-
gische Anstalt Helgoland, yearly reports 1964 - 1979, including
unpublished data of Hagmeier, Hickel, Mangelsdorf, Treutner,
Gassmann, Gillbricht). However, various other sources have been
used for additional information (e.g. Steele, 1974, Nihoul,1975)
to compile a data set typical for an arbitrary location
representative of the German Bight, Southern North Sea. For the
sake of comparison, and to demonstrate how general some of the
observed features are, data from several other parts of the
North Sea are included in Figure 9.
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Figure 3: Phosphorus dynamics (P-P0O,) for selected years from
1964 to 1979; thick 1line 1indicates monthly averages for the
years 1965 to 1975; after unpublished data from Weigel und
Mangelsdorf; Harms; Harms und Hagmeier; Harms, Mangelsdorf und
Hagmeier; Mangelsdorf.
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Figure 4: Chlorophyll dynamics for selected years from 1964 to
1979; thick 1line indicates monthly averages for the years 1965
to 1975; broken line shows micro-zooplankton carbon for the year
1975; after unpublished data from Weigel, Hagmeier and Treutner;
Hagmeier, Kanje and Treutner.
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Figure 5a: Relationship between (monthly averages for 11 years)
phytoplankton carbon and chlorophyll, approximated by an ex-
ponential curve; numbered dots indicate data points of individu-
al months.

5b: estimates of monthly sums of primary production for the
years 1966 - 1968, after Hagmeier; smooth curve shows the light-
and temperature dependent relative productivity wused 1in the
models; envelope of thin lines for daily values after Mommaerts,
1975 (inner left scale).




Figures 3,4 and 5 summarize the data used. The driving en-
vironmental variables water temperature and radiation were found
smooth enough and well behaved for a direct utilization of the
longterm averages, approximated by simple sine waves. Data for
nutrients (P-POy) and algae (measured as chlorophyll as well as
in terms of carbon, recalculated from counts) showed consistent
yearly patterns. However, when including the year to year varia-
tions (as well as the implicit sampling errors), the high varia-
bility of the observations as well as the difficulty in averag-
ing over time (several years) becomes obvious. Although the
average phytoplankton dynamics show a single, but extended peak
around July/August, the 1individual years exhibit at least two
peaks in the summer, which, due to their wvariable timing are
averaged out when 1looking at the longterm mean (Fig.4). Also,
the longterm mean is about one order of magnitude below the
spiky peaks of the individual year's data. Little information
was available on zooplankton biomass values. However, some ad-
ditional information from independent experimentation, mainly on
primary production, was also found. For example, estimates of
monthly primary production for three years are shown in Figure
5b. Also, the (time-variable) ratio of phytoplankton carbon to
chlorophyll was used for the models described below, approximat-
ed by a simple exponential curve (Figure 5a).

Among the invariable generalizable features derived from the

observations are the following:

( 1) Primary producers are below a level of 4. mg m-3
chlorophyll during the first three months of the year;
( 2) between Julian day 120 and day 270 there 1is at
least a twofold increase in biomass;

( 3) there have to be at least two peaks within that
period, with a more than 25% reduction of the first
peak value in between the two peaks;

( 4) after day 270, biomass must be below 4. mg m=3
chlorophyll again;

( 5) the higher of the two peak values must not exceed
25 mg m-3 chlorophyll;



( 6) yearly primary production must be above 300 and
below 700 g C m—2;

( 7) herbivorous consumers (zooplankton) reach their
first biomass peak value (defined at least as a two-
fold increase of their initial biomass before a con-
secutive decline) after the phytoplankton;

( 8)the maximum density of herbivorous consumers must
not exceed 1000 mg C m-3;

( 9) POy_P has to be above 20 mg m~3 between day 1 and
90;

(10) the average between day 120 and 240 has to Dbe
below 20 mg m=3; (11) P-POy has to be above 20 mg m=3
after day 270;

(12) it must never exceed 50 mg m'3; and it must never
be below 2 mg m~3;

(13-17) all state variables must be cyclically stable
(+/- 25% tolerance level).

This description of the observed systems features, defining a
region 1in the behavior hyperspace of the system, has to be un-
derstood as a semi-quantitative description of persistent pat-
terns rather than a quantitative description of the system for
any specific period in time. Of course, more resourceful
analysis of the available data and the incorporation of addi-

tional information would allow this description to be refined.

The description so far is little more than a summary of the
more persistent patterns in the data. To make that a description
of the system we want to study, we have to define what that sys-
tem should include, 1its elements and its boundary conditions.
This, however, 1is already part of the hypothesis generation, as
the assumptions wused here are no longer directly deduced from
the data. Also, to make this potentially misleading point more
explicit, the kind of data collected and the way they are col-
lected is of course already part or rather consequence of a
(generally implicit) conceptualization or model of the system,

Measuring the few selected variables out of the very large



number of potentially measurable items already requires an im-~
plicit definition of the system under study and the assumption
that whatever is measured, is an important and meaningful attri-
bute of the system, in light of the objective of the respective
study. Also, measurement strategies, i.e. the distribution of
samples in time and space, imply numerous assumptions (as a rule
untested assumptions) on the spatio-temporal behavior of the
system.

In the example described, tidal patterns have been ignored
for the timing of the sampling. From some measurements series,
covering full tidal cycles with numerous measurements however,
it is obvious that e.g. algae biomass (measured as cell numbers)
can vary for more than an order of magnitude with the tides. Ig-
noring this short-term dynamic feature of the system in the sam-
pling strategy considerably adds to the scatter of the observa-
tions.

HYPOTHESES GENERATION AND TESTING:
Designing Alternative Models

These relations might well lead to a circular argument: given
a certain (implicit) hypothesis about the systems structure or
function, information is collected according to this hypothesis,
which is then in turn used to prove or--horribile dictu--
"verify" the initial hypothesis, now made explicit. It there-
fore seems to be very important to make all these implicit as-
sumptions based on a priori information explicit, to make all of
them subject to critical, independent tests and to explore the
consequences in terms of future testability of any complex hy-
pothesis. Also, there are several implicit assumptions hidden
in the way the data are interpreted and the description 1is
derived. Ignoring the short-term spatio-temporal variations
(e.g. caused by the tides) and looking at average features in-
stead, 1implies that we are considering a hypothetical body of
water, not absolutely fixed in space. The horizontal extension
of this waterbody is rather arbitrarily limited by the require-



ment of homogeneity within this spatial element. In the verti-
cal, the waterbody <considered is defined by the extent of the

measurements used, but again homogeneity has to be assumed.

Another crucial step to be made is the specification of boun-
dary conditions: we assume the system as it will be described in
the subsequent models to have no material exchange at its upper
boundary, that 1is to say, with the atmosphere; we also assume
that there are no lateral flows, which implies that for any ele-
ment wunder study the environment is big enough and homogeneous
to make flows due to advection/diffusion negligible; and finally
we have to specify the conditions at the lower boundary, where
Wwe Wwill assume an "endless sink" of constant chemical proper-
ties, which is very large when compared to the productive upper
layer we are studying; the exchange between the upper layer and
this sink will be controlled by eddy diffusivity.

Al]l these assumptions are more or less unrealistic, whenever
we think in terms of specific physical units in time and space;
however, this is not what we attempt to model, and the basic
idea behind all these assumptions is that the simplified process
largely dominates the behavior of the conceptual system as com-

pared to the processes ignored.

In the literature, one can find numerous conceptualizations
or models of aquatic ecosystems, and the pelagic, productive
upper part of lakes or the oceans in particular. Several books
have dealt with such conceptualizations for marine systems (e.g.
Steele, 1974; Nihoul, 1975; Cushing and Walsh, 1976; Goldberg et
al.,1977; Parsons and Takahashi, 1977; Kremer and Nixon, 1978;
Barnes and Mann, 1980). Numerous contributions to the literature
appeared, some of them dealing with the North Sea specifically
(e.g. Pichot and Runfola, 1974, 1975; Radach and Maier-Reimer,
1975; Radach, 1980). A wide range in detail and complexity was
covered Wwith respect to biological and physiological factors
(e.g. Steele and Frost 1977; Steele and Mullin, 1977; Morris,
1980), or with the emphasis on the physical and spatial aspects
(e.g. Walsh, 1974; Steele, 1976, 1978; Dubois, 1976; Dubois and




Closset 1976). Against this background, the models presented
and discussed below are not to be understood as further contri-
butions to the study of the Southern North Sea; rather, they are
extremely simplified examples, primarily designed to illustrate

the approach.
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Figure 6: Flow diagrams for the models compared; P: phosphate;
A: phytoplankton; D: detritus; Z: zooplankton; Z1: herbivores;
Z2: carnivores.




Hypothesis No.1:

two compartments in a simple physical framework.

Let me now try to formulate one very simple hypothesis about
the pelagic food web described in the data set above. Again it
should be stressed that the model described below 1s not pro-
posed as a useful representation of the Southern North Sea, but
only as an illustrative example to demonstrate the approach.
The system is conceptualized as consisting of only two compart-
ments, namely particulate, photosynthesizing organic matter, and
mineral nutrients, which are coupled by the processes of primary
production and nutrient uptake, mortality, and
respiration/mineralization; the system 1is driven by light and
temperature, and by turbulent mixing (eddy diffusivity). Can-
trolling mechanisms are light and nutrient limitation of primary
production, self-shading of algae, and temperature dependency of
all the biological processes. Fig. 6 gives a diagrammatic

representation of this system.

The model description uses Monod-kinetics to describe nu-
trient 1limitation of primary production, using a constant half-
saturation concentration; maximum growth rate is described as an
exponential function of temperature, with a Q1O of about 2;
light limitation is described using the double time-depth in-
tegral of DiToro et al., (1971) of Steele's (1962) equation;
(for a discussion of the implications of this formulation see
Kremer and Nixon, 1978). Mortality is described as a nonlinear,
concentration-dependent function of algae biomass, and is
directly coupled to remineralization, without any time lag or
further control. Mixing with a "deep layer"™ is described as the
exchange of a constant fraction of the upper layer's (10 m)
volume, where the P-PO, concentration of the deep layer equals
the 1initial (winter) concentration of the upper layer, and the
algae concentration is zero, that is to say, algae can only be
lost from the system. The rate of mixing is changed by a step
function, triggered by temperature, such that the 1initial high
(January) value is set to one tenth as soon as the surface tem-
perature reaches three times its starting value; mixing rate 1is
reset to the high value, as soon as the surface temperature

drops below the trigger-level. This extremely simplified varia-



tion of the mixing coefficient over the year comes close to the
patterns used by Lassen and Nielsen (1972), and is also fre-
quently used for the description of seasonal thermal stratifica-
tion in lakes.

The governing model equations are summarized in the Appendix.
This model requires only six parameters to be estimated, given
the initial conditions and the driving variables are "known™".
For each of these parameters or rate coefficients, a possible,
allowable range can be specified, depending on the available
knowledge. In the worst case, a mortality rate, for example, has
to be greater than zero and smaller than one. To circumvent the
problem of uncertain initial conditions, a set of likely values
(estimated from the available data) was taken and allowed to ad-
just by 1letting the model run for three years. This strategy
(using the results of the third year after arbitrarily specify-
ing the 1initial condition for year one instead of adding more
dimensions to the input-search-space) was followed with all the
models described below. The model is formulated in terms of
phosphorus, with constant stoichiometric conversions to carbon
and a time-variable carbon-chlorophyll ratio (compare Figure 5).
A discussion of the description of the major biological
processes can be found in Fedra 1979.

Testing hypothesis number one.

To test the hypothesis formulated in Model 1, the model was
incorporated into a Monte Carlo framework, which randomly sam-
pled a set of model parameters from the alloQable ranges (see
Table 1), run the model for a period of three years--to allow
the arbitrary initial values of the state variables to adjust--
and finally tested for violations of the constraint conditions.
This process was repeated for a sufficiently high number of tri-
als (in fact, more than 100,000 model runs were performed with
each of the models). Since 100,000 runs of even a comparatively
simple simulation model produces a large amount of almost in-



comprehensible information, several auxiliary programs for the
automatic analysis of the simulation results were used. Table 1
shows an example of the output of one of these analysis pro-
grams, which includes the parameter ranges sampled and the basic
statistics of the parameter ensemble used to generate the model
response shown in Figure T.
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Figure 7: Sample output from Model 1, showing an envelope for
the state variables phosphate and phytoplankton for a set of
runs which only violate the condition of two phytoplankton

peaks; histogram shows monthly sums (minimum, mean, maximum) of
primary production.



TABLE 1: Automatic Parameter Estimation Analysis Program

Parameter Statistics for MOD1.mc - output

run selection: violation of condition 3 only
31 runs evaluated Mean Minimum Maximum S.D. range sampled
Parameter values:
1 Michaelis const. 6.08 2.23 13.84 3.33 2.00 15.00
2 Phytoplankton mort, 0.36 0.25 0.50 0.07 0.05 0.50
3 Light optimum 410.10 301.51 497.40 63.15 300.00 500.00
4 Mixing coefficient 0.18 0.11 0.23 0.03 0.05 0.50
5 Maximum growth coeff. 1.03 0.70 1.42 0.18 0.50 2.50
6 Temperature trigger 3.24 2.56 3.85 0.29 2.00 4,00
Qutput-constraint variables: (all concentrations in mg m=3)
7 Chl. high 1-90 0. 0. 0. 0. (not violated)
8 Chl, summer peak 8.16 7.84 8.72 0.24
9 Chl. first 8.16 7.84 8.72 0.24
10 Chl. low between peaks 3.89 3.49 4,09 0.13
11 Day of first peak 189.81 188.00 191.00 0.83
12 Chl. second peak 0. 0. 0. 0.
13 Day of second peak 270. 270. 270. 0.
14 Chl. high after 270 0. 0. 0. 0. (not violated)
15 Chl. maximum 8.16 7.84 8.72 0.24
16 POy maximum 30.00 30.00 30.00 0.
17 POy minimum 15.47  12.86  16.87 1.07
18 POy low before day 90 29.92  29.67  29.99 0.092
19 POy low after day 270 27.84 27.56  28.36 0.18
20 POy average = 120-240, 19.02  17.27  19.93 0.73
21 Primary prod. g C m~™< 406.20 303.05 625.44 86.58

Correlation matrix of Parameters

1 2 3 b 5
2 =0.2
3 0.1 -0.6
4 0.1 0.7 -0.5
5 0.5 0.6 ~-0.0 0.7
6 -0.2 0.5 -0.2 0.2 0.3



Summarizing, Model 1 could fulfill all of the constraint con-
ditions but one: it was not possible to reproduce two algae
peaks during the summer period (without violating several other

conditions). Figure 7 shows a sample output from Model 1.

Hypothesis number one consequently had to be rejected. To
build an improved hypothesis, the distributions and correlation
structure of parameters and output variables from those runs
violating only condition 3 (the two algae peaks) were analyzed.
The technical details of this kind of analysis are described
elsewhere (Fedra et al., 1980). However, the analysis indicates
that phytoplankton mortality is a critical process , and conse-
quently deserves refinement. This can be deduced from the signi-
ficant correlations between the mortality rate coefficient and
the other parameters as well as different output variables in

groups of simulations violating different constraint conditions.

Hypothesis No. 2: a four-compartment web.

As a slightly more realistic alternative to Model 1, a second
version was formulated which 1incorporates detritus and om-
nivorous zooplankton. The description of primary production as
well as the physical framework are essentially the same as in
the first version. Model two, however, splits the phytoplankton
mortality in a natural background- mortality, which is described
as concentration dependent, and losses due to grazing. Back-
ground mortality as well as zooplankton mortality now feed into
the detritus pool, which in turn feeds (temperature dependent)
back into the nutrient pool; detritus is also available for zoo-
plankton, for which, however, a certain preference for 1living
algae 1s assumed. Zooplankton respiration also feeds in the nu-
trient pool. Figure 6b shows the flowchart for this model.
Grazing was described based on a simple encounter theory. With
this inclusion of a herbivorous zooplankton compartment, a
choice had to be made on how to describe grazing. Numerous,

different, formulations abound in the literature, and to give
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one single example, Jdrgensen (1980, Table 3.9) lists 14 dif-
ferent formulations of zooplankton grazing rates. Given there is
no additional information available to support a decision on
which construct should be used, one can start with as simple an
assumption as possible, and subsequently test it. 1In this test,
the resulting model performance was not satisfactory either--for
low values of the grazing rate constant, the zooplankton did not
survive phytoplanktons lows in winter, and died away. For high
values of the feeding rate, in contrast, phytoplankton was re-
moved very quickly, as soon as it started to grow in the spring,
with a consequent collapse of the zooplankton population itself.
This however, does not rule out the possibility that features of
the model other than the formulation of grazing are responsible

for these failures, or at least contributes to them.

However, after "rejecting”" the encounter theory, description
of grazing was based on a saturation curve, similar to
Michaelis-Menten kinetics, using a temperature dependent maximum
feeding rate coefficient, with the same temperature dependency
as for respiration and remineralization. The governing equations
are given in the Appendix.

Again this version was subjected to the above described simu-
lation procedure, the resulting response was analyzed (see Table
2a). The introduction of a second trophic level in Model 2 now
allowed a reproduction of the well-known oscillatory behavior of
predator-prey systems, and thus fulfillment of condition 2, re-
quiring two phytoplankton peaks. However, this version was inca-
pable of producing enough algae carbon over the year, thus
violating condition 6 (see Table 2b). This is simply due to the
fact that only at comparatively low primary productivity levels
the system was stable enough to stay within the behavioral
bounds specified. The output or constraint variable yearly pri-
mary production showed a strong positive correlation with the
zooplankton grazing coefficient (parameter 6 in Tables 2) and
zooplankton respiration (parameter 7), which is a major source
of nutrient recycling. This directly points at the positive

feedback loop 1in these processes, and the resulting stability
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problems in this version of the model.

TABLE 2a: Automatic Parameter Estimation Analysis Program,

Parameter Statistics for MOD2.mc - output
run selection: 3123 runs numerically stable over 3 years of simulation
3123 runs evaluated Mean Minimum Maximum 35.D. range sampled

Parameter values:

1 Michaelis constant 9.17 6.00 11.99 1.72 6.00 12.00
2 Phytoplankton mort. 0.047 0. 0.10 0.025 0.00 0.10
3 Light optimum 386.07 300.05 499.84 57.03 300.00 500.00
4 Mixing coefficient 0.07 0.05 0.13 0.01 0.05 0.15

5 Max. growth coefficient 1.88 0.50 2.50 0.44 0.50 2.50

6 Zooplankton grazing 0.38 0.05 1.00 0.20 0.05 1.00
7 Zoopl. detritus uptk. 0.07 0. 0.15 0.04 0.00 0.15
8 Zoopl. respiration 0.06 0.01 0.15 0.04 0.01 0.15
9 Zoopl. mortality 0.27 0.05 0.50 0.13 0.05 0.50
10 Remineralization 0.14 0.05 0.25 0.06 0.05 0.25
11 Temperature trigger 2.95 2.50 3.50 0.29 2.50 3.50
12 Grazing half-sat. 13.02 0.55 20.00 4,98 0.50 20.00
Qutput-constraint variables: (all concentrations in mg m-3)

13 Chl. high day 1-90 7.73 0. 9.65 0.93

14 Chl. summer peak 7.33 3.36 10.08 1.16

15 Chl. first peak 7.10 0.94 10.08 1.34

16 Chl. low between peaks 5.29 0.03 9.52 1.62

17 Day of first peak 122.74 120,.00 250.00 10.58

18 Chl. second peak 5.59 0. 9.61 1.62

20 Chl. maximum 8.19 6.29 10.08 0.62

21 POy maximum 22.23 8.41  25.36 2.32

22 POy minimum 1.17 0.001 7.14 0.87

23 POy 1ow until day 90 3.26 0.66 24.36 1.74

24 PO, 10w after day 270 6.29 0.32 21.86 2.85

25 POy average  120-240 3.26 0.12  15.39 2.02

26 Primary production 240.92 41.51 Ku42.56 66 .92

27 Day of zoopl. peak 180.29 110.00 325.00 32.33

28 Zoopl. at algae peak 5.76 0. 19.89 4,43

29 Zoopl. peak value 9.29 0.006 21.37 4.04
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Figure 8: Sample output from Model 3, run violating only the
condition of yearly primary production above 300 g C m=2. Thick
line: phytoplankton (chlorophyll a in mg m‘3); broken line: her-
bivorous zooplankton (carbon in mg m=3); thin line: phosphate
(P-PO, in mg m~3); smooth curve: surface temperature (in degree
centigrade).
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TABLE 2b: Automatic Parameter Estimation Analysis Program,

Parameter Statistics for MOD2.mc - output
run selection: 43 runs violating condition 6 only (primary production)
43 runs evaluated Mean Minimum Maximum S.D. range sampled

Parameter values:

24 PO, low after day 270 22.19 20.06  25.11 12

1 Michaelis constant 9.88 5.06 14.88 3.17 5.00 15.00
2 Phytoplankton mort. 0.07 0.03 0.10 0.02 0.00 0.10
3 Light optimum 429 .54 317.58 499.78 52.08 300.00 500.00
4 Mixing coefficient 0.05 0.01 0.10 0.02 0.01 0.10
5 Max. growth coefficient 1.53 0.82 2.35 0.41 0.50 2.50
6 Zooplankton grazing 1.01 0.19 1.87 0.48 0.01 2.00
7 Zoopl. detritus uptk. 0.10 0.005 0.20 0.06 0.01 0.50
8 Zoopl. respiration 0.09 0.02 0.28 0.06 0.01 0.25
9 Zoopl. mortality 0.11 0.012 0.28 0.07 0.01 0.50
10 Remineralization 0.25 0.015 0.49 0.13 0.01 0.50
11 Temperature trigger 3.04 2.51 3.49 0.29 2.50 3.50
12 Grazing half-sat. 13.80 3.94 23.44 5.07 0.00 25.00
Output-constraint variables: (all concentrations in mg m=3)
13 Chl. high day 1-90 0.56 0.20 1.07 0.23
14 Chl. summer peak 7.60 5.86 9.05 0.69
15 Chl. first peak 7.60 5.86 9.05 0.69
16 Chl. low between peaks 1.35 0.06 3.91 1.00
17 Day of first peak 155.37 138.00 192.00 13.07
18 Chl. second peak 3.13 1.00 4.45 0.72
19 Day of second peak 270. 270. 270. 0.
20 Chl. maximum 7.60 5.79 9.05 0.69
21 POy maximum 25.76  2u.76  26.72 0.433
22 POy minimum 4.83 2.16  11.97 2.19
23 POy low until day 90 25.36 24,73  25.91 0.23
1
25 POy average  120-240 17.11 13.70  19.86 1.67

26 Primary production 40.60 19.08 75.76 14.08

27 Day of zoopl. peak 165.63 145.00 220.00 16 .20

28 Zoopl. at algae peak 0.69 0. 3.48 0.92

29 Zoopl. peak value 14.33 7.66 18 .74 3.00



Hypotheis No.3: one more trophic level

Consequently, Model 2 was used as the basis for yet another
modification, namely the introduction of another trophic level
of carnivorous zooplankton, to explore its importance 1in con-
trolling the herbivores (Greve and Reiners, in press). A sample
output of this version 3 is shown in Figure 8, and the equations
are given in the Appendix. Another 5 additional parameters had
to be introduced for the additional detail in Model 3, 1leading
to further problems in the estimation and analysis. For exam-
ple, the proportion of runtime aborted runs (due to the viola-
tion of some runtime-checks on the state variables, confining
them within certain plausible ranges or numerical instabilities
in solving the system of differential equations) grew dramati-
cally to almost 99.9 % of the trial runs when sampling the broad

initial parameter intervals given in Table 3.

The second trophic level of carnivorous zooplankton feeds on
the herbivores 1in structurally the same way as the herbivores
feed on the phytoplankton; herbivores however, have the addi-
tional source of detritus available. Due to its higher complexi-
ty, Model 3 was able to generate a broad spectrum of behavioral
features (compare Table 3); it could not, however, fulfill all
of the test conditions imposed on its behavior at the same time.
Obviously, the simple inclusion of a structurally similar addi-
tional compartment did not resolve the basic problem; since the
process rates of both zooplankton compartments are only deter-
mined by external driving variables (temperature, food availa-
bility) but not by internal control mechanisms (e.g developmen-
tal stages, size- and age classes, etc.), the resulting zoo-
plankton response was not adequate over the whole range of driv-
ing conditions for a yearly cycle. The model does well for part
of the year, or part of the required behavioral features over a
full year; if however, the model behaves well during the produc-
tive season, zooplankton will starve and collapse during the
winter. Or, alternatively, if all plankton groups survive the
winter well, the onset of high primary productivity will quickly

lead to explosive growth and consequent collapse.
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Output constraint variables: (all concentrations in mg m-3,
production values in gC m=2)

chl high 1-90 4.049 0.058 9.492 2
chl summer peak 6.149 2.385 10.111 1
chl first peak 5.867 1.686 10.111 1
day of first peak 131.416 120.000 182.000 17
chl low between peaks y,227 0..539 8.306 1
chl second peak 4.675 0. 8.551 1
chl high after 270 4.678 1.039 9.112 1
chl maximum 6.423 2.385 10.111 1
pold maximum 23.616 6.541 27 .994 3
pold minimum 1.975 0.062 18 .797 2
pold4 low until 90 15.387 1.351 25.170 8
pod low after 270 6.457 0.531 23.395 5
zooplankton peak value 132.307 0.001 1259.682 229
carnivores peak value 402.631 8.680 1422.003 272
pold average 120-240 3.791 0.294 21.827 3
primary production 142.038 6.016 374.074 T4
pp January 0.207 0. 3.976 0
pp February 0.932 0. 12.258 1
pp March 5.218 0. 23.553 5
pp April 15.463 0. 38.713 8
pp May 19.989 0.239 46.851 10
pp June 26.289 1.038 76.145 15
pp July 23.977 0.842 71.133 14
pp August 20.277 0.698 63.635 12
pp September 18 .847 0.557 59.717 12
pp October 8.838 0.114 32.067 6
pp November 1.735 0.003 7.953 1
pp December 0.266 0. 3.600 0
secondary production 82.737 1.2814 571.125 91
tertiary production 3.745 0. 23.717 4
algae carbon end 11.608 0.001 241.564 32
algae carbon start 11.610 0.001 241.525 32
phosphate end 22 .584 4,600 26.336 3
phosphate start 22 .5814 4.600 26 .336 3
zooplankton end 8.470 0.002 221.002 23
zooplankton start 8.459 0.002 219.280 23
zoopl. 2 end 1.139 0. 41.086 3
zoopl. 2 start 1.140 0. 41.051 3
detritus end 32.840 1.217 473.174 60
detritus start 32.850 1.253 472.995 60
total P end 23.94 5.14 33.26 3
total P start 23.09 4.96 28 .68 3

Another possible explanation, although less appealing, might
be that some of the constraint conditions are just too narrow or
badly placed. For example, the lower bound for yearly primary
production set at 300 g C m=2 could seem unrealistically high.
Another comparable estimate, given in Pichot and Runfola (1975)
for the Southern Bight off the Belgian coast, is given with 17.5
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g N m-2, which amounts to less than half the estimate of Hag-
meier (BAH reports 1976-1969), when converted to carbon units.
Reducing the constraint of minimum yearly primary productioﬁ to,
say 100 g C m=2, would make the model "acceptable".

This points at one of the principal problems in environmental
systems modeling, namely the problem of interpretation of
"micro-scale" observations and experiments, eventually performed
in the laboratory, on a macro-scale compatible with the level of
aggregation and abstraction used in the system's conceptualiza-
tion. The problem is not a purely statistical one, which--in
principle--could be overcome by changes in the sampling and
measurement strategies, e.g. by larger sample sizes or increas-
ing the number of sampling units. More often than not, micro-
scale measurements and macro-scale concepts are also qualita-
tively different. Quite obviously, the definition of the con-
straint conditions can be critical, and thus indicates where
further effort in data analysis (or collection) would be
worthwhile.

Hypothesis No.4: more biological detail

Since zooplankton dynamics were found to play a critical role
in the system's dynamics, a more detailed and biologically
"realistic" representation of grazing and zooplankton population
dynamics was attempted. To test the importance of the (size- and
age-class dependent) internal control mechanisms in the zoo-
plankton compartment, Steele's (1974) model was incorporated
into the same Monte Carlo framework as the above models. Several
modifications had to be made, since the model describes the
pelagic system in terms of nitrogen and zooplankton numbers and
individual size. Also, the model which was originally developed
for the northern North Sea was designed for the stratified sum-
mer period only, and 1ignores the effects of temperature as a
controlling variable for the biological rate constants. The
model incorporates nutrients (nitrogen), phytoplankton, her-
bivorous zooplankton numbers, individual size, and eggs produced



- 29 -

(which translates into number of juveniles released through the
specification of an initial size). Egg production starts, as
soon as a certain individual size is reached. Zooplankton dynam-
ics are all related to individual size by a simple allometric
relation. The simplest possible version with only one zooplank-
ton age-group or cohort was used. The basic structure of the
model (and the philosophy behind it) are fully explained in
Steele (1974), and further extensions and application examples
are reported 1in Steele and Mullin (1977), Steele and Frost
(1977), and Frost (1980). Since the model is formulated in terms
of nitrogen, the respective nitrogen data set from the system
was used (Figure 9). To illustrate the general patterns, some
more comparable data sets from the North Sea are also included
in the graph.

To summarize, the model which was originally designed for the
period of summer stratification only, does well during this
period (Figure 10). When extending over a whole yearly cycle
however, it suffers from the same (generic ?7) shortcomings as
the other models discussed. Either the zooplankton population
collapsed over the winter, or explosive growth and consequent
collapse was observed during the summer. This 1is at least 1in
part, attributable to the fact that the model does not consider
temperature dependency of the biological processes (since it was
designed for the summer period in the northern part of the North
Sea only); also, phytoplankton production 1is described as a
function of nutrient concentrations only, and the model does not
include detritus. However, a more likely conclusion seems to be
that there are qualitative differences between summer and winter
periods in the dynamics of the planktonic systems. These might
involve more complex, adaptive <control mechanisms. One could
think of thresholds in environmental conditions, triggering dif-
ferent behavior, representing e.g. resting stages, or seasonal
changes in species composition. Also, time variable material in-
puts to the (almost estuarine) system could be necessary to
describe the full range of a yearly cycle of behavior more real-
istically. This would of course require yet another reformula-
tion of the models.



- 30 -

Figure 9: Comparable data sets from the North Sea: (a) and (d)
Nitrate and phosphate concentrations, center of northern North
Sea after Steele, 1974 (inner and outer left scale); (b) dis-
solved Nitrogen after Janssen and Meuris 1975, (right scale);
(c) phosphate after Steele, 1962, from Nihoul 1975 (outer left

scale); lower part: Selected Nitrate data from the BAH Reports,
compare Figs. 3 and 4.
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Figure 10: Model output from Steele's model: nutrients, phyto-
plankton, and zooplankton biomass (top); zooplankton numbers and
individual size (bottom).



Some of the models found in the 1literature, which describe
the pelagic food web of the North Sea (or parts of it), are
designed for certain periods of the yar only (e.g. Steele 1974;
Greve 1981). 1In case of Steele's model, it could be shown that
the model cannot be extended over a full yearly cycle or even a
sequence of several years without major modifications. As anoth-
er example, Greve's (1981) model--being rather sophisticated 1in
the description of species interactions in the higher trophic
levels--is designed for a short period of zooplankton develop-
ment only. Others, 1like the model of Radach and Maier-Reimer
(1977) are more theoretically oriented, and do not attempt to
describe yearly cycles of the natural systems at all. As was ar-
gued above, parts of the systems behavior can be reproduced re-
latively easily. The major problem was found to lie in the
reproduction of the full range of systems behavior over the
yearly cycle, that is over a wide range of the physical driving
conditions.

Quite obviously, none of the models discussed above 1is en-
tirely satisfactory in 1light of the constraint conditions de-
fined. The constraint conditions used, although seemingly 1li-
beral, are quite demanding when compared with many examples of
arbitrary judgement, so-called "satisfactory" or "reasonably
good"™ agreement between (some) output variables of a model and
the observations one can frequetnly find in the 1literature.
However, this paper does not attempt to propose an elaborated
dynamic model of the pelagic food web of the Southern North Sea,
but rather attempts to demonstrate (using the example of admit-
tedly quite simplistic models) a formal approach to model or hy-
pothesis testing.
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DISCUSSION:

The Generalizable Lesson

To build complex hypotheses, used to describe and explain the
structural and behavioral features of ecological systems, a for-
mal approach and rigorous testing procedures are required. As
has been demonstrated, parts of the observed behavior of a sys-
tem may easily be reproduced. This however, goes parallel with
unrealistic behavior in other parts of the system. A complex hy-
pothesis or model, however, can only be accepted as a valuable
working tool with explanatory value and predictive capabilities,
if it fulfills all the constraints one formulates as defining
the observed systems behavior. Violation of one single condition
necessitates the rejection of such a model, which should be just

one step in an iterative process of analysis (compare Figure 1).

The method requires the formal definition of an acceptable
model response a priori. In this definition, arbitrary classifi-
cations and subjective judgements cannot always be avoided.
Although being based on the available field data, the definition
has to be formulated on the model's level of abstraction. This
involves subjective interpretation of the raw data, and conse-
quently introduces some further uncertainty. This uncertainty is
a problem common to any modeling approach. However, this inevit-
able subjective element has to be made explicit, open to cri-
ticism, and ready for easy revision on the basis of further ex-
perience (compare Figure 1).

Any model response generated can be classified as either "ac-
ceptable” or "not acceptable”. The classification is discrete,
and once the constraint conditions are formulated, there 1is no
more ambiguity, no gradual or partial agreement or disagreement
between the model response and the observations, calling for ar-
bitrary judgements. How small would the sum of squared errors
have to be for a given state variable to make a model acceptable
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? Although a least square criterion may be helpful in finding a
"best" parameter set (according to that least square criterion
with its 1implicit bias and problems) for a given model struc-
ture, it does not allow one to conclude whether or not the model
structure is adequate. Subjective judgement a posteriori has to
be used. Examples abound where only partial agreement of model
output and observations are described as "acceptable or reason-
ably good fit", ignoring the fact that severe discrepancies
between parts of the model response (e.g. for some of the state
variables) and the observations exist. This is most obvious in
case of the introduction of unmeasured (and consequently uncon-
strained) state variables in a model--bacteria are an almost

classical example in water quality modeling.

One basic idea of the approach is to use the available infor-
mation according to 1its relevance to the models' (this is the
theory's) level of abstraction or aggregation. Assuming a given
model structure, this information 1is grouped into a set of
singular statements, the initial conditions, to be substituted
for the variables of the wuniversal statement (the theory or
model), and--since we are doing the analysis ex post--a set of
singular statements (the observations already available from the
system), describing the expected outcome of the simulation ex-
periment.

These constraint conditions, which generally will describe
allowable ranges, have to be understood as replacing the arbi-
trarily precise observations possible e.g. in classical mechan-
iecs. The formulation of these constraints provides a high degree
of flexibility. In addition to the direct utilization of indivi-
dual measurements (including the measurement or sampling error
to define a range), derived measures, relations, integrals,
averages etc. can be used (Fedra et al., 1981). Whatever can be
inferred from the observations, is a valid constraint on the al-
lowable model response. In addition, certain bounds, although
not observed in a specific case, are obvious, deducable from
some basic laws--mass and energy conservation, or more empirical
rules like maximum efficiencies or process rates.



Obviously, the description of the states of a system can be
accomplished much more easily on the appropriate level than the
description of process rates and controls (just think in terms
of phytoplankton biomass versus production rate). Consequently,
we turn the argument of the hypothesis testing process around:
instead of putting the "known" initial conditions (the rates,
among others) into the model structure and deriving the response
for comparison, we use the allowable response as a constraint to
identify possible initial conditions. This is to say, we map a
given region in the response-hyperspace of a model back into the

input-hyperspace.

The test is then as follows: whether or not this region 1in
the 1input space exists within the specified possible or plausi-
ble bounds. In addition, several other features of the in-
putspace can be used as a basis for either rejecting or corro-
borating a given hypothesis, for example, the uniqueness of the
inputspace region, whether it is closed or not, and its struc-
ture, which is determined by the interdependencies of the indi-
vidual 1input values. In addition, all these features, including
the relationship or correlation of input- and outputspace, allow
us to learn something of the way the proposed systems' structure
functions. The method facilitates an understanding of the sys-
tems Dbehavior at the appropriate level of abstraction, which is
the input and output of the model, and it also provides diagnos-
tic information for hypothesis generation.

Hypothesis generation, that is the conjecture of the 1initial
or an alternative hypothesis after the failure of a previous
one, is a crucial step: the hypotheses we are using in environ-
mental systems analysis are fairly complex, or rather composite,
that is to say, they are built from numerous individual con-
structs, each of them being a hypothesis in itself. Their com-
plex, dynamic and nonlinear interactions makes it difficult ¢to
relate a failure in the overall performance of the model to any
of the individual constructs wused. The kind of sensitivity



analysis provided by the method described above, although in-
volving all input values (or parameters) simultaneously, only
relates model performance to the inputs, and not to the struc-
tural features of the hypotheses per se. In principle, structure
and input values are inseparable in their effect on the model
response. Also, it is impossible to test any 1isolated process
descriptions versus observations -- as has been proposed by some
authors--as soon as feedbacks between the isolated process and
the remainder of the system exist. In complex environmental ex-

amples, this will almost always be the case.

If a given hypothesis does stand up to all the tests one can
design on the basis of the available data, that is to say the
hypothesis cannot (yet) be rejected, one can legitimately use it
as a working hypothesis. However, quite easily we can imagine a
situation where the uncertainty inherent in the behavior defini-
tion for a system is large enough to allow for more than one al-
ternative hypothesis, without the pessibility of discriminating
or ruling out any of them. Although the two ore more hypotheses
then do not differ significantly in their ©behavior 1in the
descriptive, empirical test case (that is why no discrimination
is possible, since the concept of significance here 1is related
to the -extent of the allowable behavior range, which in turn
depends on data uncertainty and systems variability), they might
well differ significantly when wused for further predictions,
i.e. extrapolations outside the empirical range used for tests
so far. Here the only possible approach would be to look for
predictions from the alternative versions that clearly (and sup-
posedly measurably) differ--and then perform the required obser-
vation or experiment in the field. The simulation of alternative
hypotheses could thus provide some guidelines for measurements
and field work as well, allowing for a more precise formulation
of questions to be addressed in the expensive field observa-
tions.



The approach described above, although largely based on trial
and error and the -extensive (ab)use of computers, can be ex-
ploited in more than one way. It can provide a rational and for-
mal framework for the analysis of complex systems, help in model
selection, be used for model calibration, and finally for the
probabilistic interpretation of model predictions (Fedra, in
press a). But above all, the approach emphasizes testability.
Any rigorous scientific approach to the study and analysis of
complex, hard to handle systems which are no 1longer easily
understandable and traceable, requires that all the individual
elements of the systems' conceptualization, all the assumptions

that are necessary, are made explicit - and thus testable.
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APPENDIX

model equations
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parameter numbers (pmeter(i)) correspond to the numbers used in

the Tables above.

The equations are given in FORTRAN code.
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variable names and meanings:

alg
ass
chl
death
depth
dgraz
dmix
Dt *
eps
fotop
gmax
graz
growth
plim
pod
rad
radlim
rem
remo
resp
sink
temp
tfact
vmix
xmix
zgraz
zloss
zmort
Z0
z02
zresp
z2mort

algae biomass,
zooplankton assimilation

chlorophyll

a, mg m~3

expressed in nutrient units

mortality/mineralization of phytoplankton
depth of productive layer in meters
zooplankton grazing (detritus)

detritus exchange with deep water

time derivatives
extinction coefficient in m=1

photoperiod in fraction of a day (24 hrs)
maximum growth rate of algae

zooplankton grazing (phytoplankton)
actual growth rate of algae

nutrient limitation factor

limiting nutrient (phosphorus)

radiation in cal cm~
light limitation factor
mineralization of detritus

phytoplankton removal by zooplankton (not assimilated)

zooplankton

respiration

algae losses due to sinking/mixing

water temperature in

temperature

factor

Centigrade

nutrient exchange with deep water
ratio of volume exchanged

carnivorous
zooplankton
zooplankton
omnivorous

carnivorous
carnivorous
carnivorous

zooplankton

grazing (zooplankton)

losses due to mixing

mortality

zooplankton
zooplankton
zooplankton
zooplankton

respiration
mortality
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c
¢ food-chain simulation model:
¢ two compartment versions 1:
¢ for parameter ranges compare Table 1
c
¢ primary production:
c
¢ self shading:
c
chl = .64 * (U0.* alg)** 4
eps = .04 + .054 ¥ chl ** 67 + .009%chl
zk = eps * depth
c
¢ light limitation:
c
ratio = 0.9 * rad / pmeter(3)
X1 = ratio * exp(-zk)
c
parti = exp( -x1)
part2 = exp( -ratio)
part3 = (partl - part2) / zk
c
radlim = part3 * fotop * 2.7
c
¢ nutrient limitation:
c
plim = pold/(pold + pmeter(1))
c
¢ temperature dependent max. growth rate:
c
gmax = pmeter(5) ¥ exp(.065%¥temp)
c
growth = alg * gmax ¥ radlim ¥ plim
sink = alg ¥ xmix
death = alg *¥1.,25 ¥pmeter(2)
c
Dtalg = growth -sink -death
c
¢ nutrients:
c
vmix = (podO-pold) * xmix
c
Dtpod = -growth + death + vmix
c
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c
c MOD2 : four compartment web
¢ for parameter ranges compare Table 2
c
¢ herbivorous grazing:
c
c temperature factor:
tfact = exp(-2.3 * abs(temp-16.5)/15.)
c
c saturation and threshold:
fph = max(0.,(alg-alg0)/(alg+pmeter(12)))
rate = pmeter(6) ¥ fph ¥ tfact
c
graz = alg ¥ zo ¥ rate
c
c algae loss due to sinking/mixing:
sink = alg * xmix
c
¢ detritus remineralization:
rem = det * pmeter(10) ¥* exp(.065*temp)
c
¢ zooplankton detritus uptake
dgraz = det ¥ zo ¥ pmeter(T7)
c
¢ zooplankton respiration
resp = zo ¥ pmeter(8) ¥ exp(.06*temp)
c
¢ zooplankton mortality
zmort = zo¥**1.,2 * pmeter(9)
c
¢ losses from upper layer due to mixing
zloss = zo ¥ xmix
c
¢ detritus exchange witn deep water
dmix = (detlow~det) * xmix
c
Dtalg = growth - death - graz - sink
Dtpold4 = - growth + rem + resp + vmix
Dtzo = graz + dgraz - resp - zmort - zloss
Dtdet = death + zmort - dgraz + dmix - rem
c
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c

c

MOD3: five compartment foodweb
for parameter ranges compare Table 3

herbivorous grazing
graz = (alg/(alg+pmeter(15))) * pmeter(6) * tfact * zo

assimilation
ass = min(graz,zo)

phytoplankton removal
remo = graz - ass

detritus uptake
dgraz = (det/(det+pmeter(16))) * zo * pmeter(7)

respiration, mortality and losses due to mixing
resp = zo * pmeter(8) * tfact

zmort = zo*¥1.,2 * pmeter(9)
zloss = zo * xmix/4.
carnivorous grazing, mortality and respiration
zgraz = (zo/(zo+pmeter(17))) * zo2 ¥* pmeter(12) *tfact
z2mort = zo2%¥*1.2 * pmeter(13)
zresp = zo2 * pmeter(14) * tfact
algae
Dtalg = growth -death -graz -aloss
nutrients (phosphorus)
Dtpod = -growth +rem +resp +zresp +vmix
omnivorous zooplankton
Dtzo = ass +dgraz ~zgraz -resp -zmort -zloss
carnivorous zooplankton
Dtzo2 = zgraz -zresp -z2mort
organic detritus
Dtdet = death +remo +zmort2 +zmort -dgraz +dmix -rem
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