Working Paper MODEL MIGRATION SCHEDULES: A SIMPLIFIED FORMULATION AND AN ALTERNATIVE PARAMETER ESTIMATION METHOD Luis J. Castro Andrei Rogers May 1981 WP-81-63 International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR MODEL MIGRATION SCHEDULES: A SIMPLIFIED FORMULATION AND AN ALTERNATIVE PARAMETER ESTIMATION METHOD Luis J. Castro Andrei Rogers May 1981 WP-81-63 Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria PREFACE Interest in human settlement systems and policies has been a central part of urban-related work at IIASA since its inception. From 1975 through 1978 this interest was manifested in the work of the Migration and Settlement Task, which was formally concluded in November 1978. Since then, attention has turned to dissemination of the Task's results and to the conclusion of its comparative study, which is carrying out a comparative quantitative assessment of recent migration patterns and spatial population dynamics in all of IIASA's 17 NMO countries. This paper is part of the Task's dissemination effort. It focuses on the mathematical description of a simplified model migration schedule and on an alternative parameter estimation method which promises to be useful in situations where access to large computers and packaged programs is limited. Reports summarizing previous work on migration and settlement at IIASA are listed at the back of this paper. They should be consulted for further details regarding the data base that underlies this study. Andrei Rogers Chairman Human Settlements and Services Area #### ACKNOWLEDGMENTS The authors are indebted to Warren Sanderson for his useful comments on an earlier draft and to Walter Kogler for his computer programming efforts. ## ABSTRACT This paper outlines a simplified model and a new numerical parameter estimation method that may enhance the application of model migration schedules in situations where access to large computers and packaged programs may be limited. # CONTENTS | INTRODUCTION | 3 | |---|----| | MODEL SCHEDULES AND THEIR SIMPLIFICATION | 1 | | SIMPLIFIED AND COMPLETE MODEL MIGRATION SCHEDULES: NONLINEAR PARAMETER ESTIMATION | 7 | | SIMPLIFIED AND COMPLETE MODEL MIGRATION SCHEDULES:
LINEAR PARAMETER ESTIMATION | 16 | | CONCLUSION | 21 | | REFERENCES | 28 | | RELATED PUBLICATIONS | 29 | MODEL MIGRATION SCHEDULES: A SIMPLIFIED FORMULATION AND AN ALTERNATIVE PARAMETER ESTIMATION METHOD #### INTRODUCTION The model migration schedules set out in Rogers and Castro (1981a, b) were fitted to observed data by means of a rather complex nonlinear procedure based on the Levenberg-Marguardt algorithm summarized in an appendix of that paper. To enhance the application of these schedules in situations where access to large computers and packaged programs may be limited, we propose in this paper a simplified model and a simplified estimation procedure. The simplification is carried out in two steps. First, the model itself is simplified by fixing its index of labor asymmetry σ_2 to a prespecified value and by adopting a standard schedule. Second, the parameter estimation process is simplified by replacing the nonlinear estimation algorithm with a linear one. The adequacy of each simplification is assessed in turn by a comparison of the results obtained with it against those found using the original unsimplified "complete" model. ## MODEL SCHEDULES AND THEIR SIMPLIFICATION The notion of simplified model schedules appears in the literature on model nuptiality schedules and is particularly well described in a recent paper by Rodriguez and Trussell (1980). We shall adopt and then adapt their strategy and for expositional convenience will use both their simplifying assumption and their standard nuptiality function. In a subsequent paper we shall introduce our own standard migration function. #### The Case of First Marriage Frequencies The selectivity of marriage with respect to age has been extensively studied by Coale and his associates since 1971. Coale (1971) found that age patterns of first marriage follow the same basic curve and differ significantly only in the location and scaling of the age at which marriages start to occur and the proportion of the cohort eventually marrying. In a paper one year later Coale and McNeil (1972) gave an analytic expression that satisfactorily fitted many first marriage frequency distributions. The function was called a double exponential density function and was defined as $$f(x) = \frac{\lambda}{\Gamma(\alpha/\lambda)} e^{-\alpha(x-\mu)} - e^{-\lambda(x-\mu)}$$ (1) where α , λ , and μ are the function's parameters and $\Gamma(\alpha/\lambda)$ is the gamma function value of the ratio α/λ . The assumption that the ratio α/λ was constant in different populations, allowed Coale and Trussell (1974) to formulate Equation (1) as a function of a standard schedule $f_{\epsilon}(x)$: $$f(x) = Kf_{S}(x)$$ (2) where $$f_{s}(x) = \frac{0.1946}{k} e^{-\frac{0.174}{k}(x-x_{o}-6.06k) - e}$$ x_O is the age at which a consequential number of marriages first occur, k is the number of years in the standard schedule into which one year of marriage in the observed population may be "packed," and K is the proportion of the cohort eventually marrying (i.e., a scaling parameter). This standard has a mean and variance of: $$\overline{x} = x_O + 11.36k \tag{4}$$ and $$s^2 = 43.34k^2$$ (5) respectively. Rodriguez and Trussell (1980) recently proposed a method to fit model nuptiality schedules to different types of data collected by the World Fertility Survey. They proposed a modification of the standard schedule defined in Coale and Trussell (1974), keeping the assumption that α/λ is a constant. The basic simplification adopted by Rodriguez and Trussell is the expression of the standard as a function of the mean \overline{x} and the standard deviation S. To do this they derive a new standard, with zero mean and unit variance, from Equation (3) by finding the values of x_O and k that generate the desired mean and variance. The resulting new standard density function is $$f_{S}(x) = \frac{1.2813}{S} e^{-\frac{1.145}{S}(x-\overline{x}+8.05S) - e}$$ The Case of Migration Empirical studies of age-specific migration schedules have shown that the age profiles exhibited by such data have a common shape. Starting with relatively high levels during the early adolescent ages, the migration rates decrease monotonically thereafter to a low point \mathbf{x}_{ℓ} , then increase until they reach a maximum high peak at age \mathbf{x}_{h} , and then decrease once again to the ages of retirement. Occasionally a "post-labor force" component appears, showing either a bell-shaped curve with a peak at age \mathbf{x}_{r} or an upward slope that increases monotonically to the last age included in the schedule, age w say. Decomposing the age profile into pre-labor force, labor force, and post-labor force components, we shall restrict our attention in this paper to those profiles that only have the first two components. However, our argument is equally valid for profiles showing a post-labor force component. In several recent papers we have shown that the observed profile of migration rates may be described by a function of the form: $$m(x) = m_1(x) + m_2(x) + c$$ (7) where $m_1(x) = a_1 e^{-\alpha} 1^x$ for the pre-labor force component $$m_2(x) = a_2 e^{-\alpha_2(x-\mu_2)-e^{-\lambda_2(x-\mu_2)}}$$ for the labor force component and c is the constant term that improves the fit when migration rates at older ages are relatively high. The area under the m(x) curve is called the gross migraproduction rate (GMR), which in this paper is always assumed to be equal to unity. An alternative way of expressing Equation (7) is as a weighted linear combination of the density functions representing the three components: $$m(x) = \phi_1 f_1(x) + \phi_2 f_2(x) + \phi_c(\frac{1}{w})$$ (8) where w is the last age included in the schedule, - φ_1 and φ_2 are the relative shares of the pre-labor force and labor force components, - $\phi_{_{\hbox{\scriptsize C}}}$ is the share of the constant term, and where $f_{_1}(x)$ and $f_{_2}(x)$ are the density functions ^{*}This assumes that the age profiles do not exhibit a postlabor force component. $$f_{1}(\mathbf{x}) = \alpha_{1} e \tag{9}$$ $$f_{2}(\mathbf{x}) = \frac{\lambda_{2}}{\Gamma(\alpha_{2}/\lambda_{2})} e^{-\alpha_{2}(\mathbf{x}-\mu_{2})-e^{-\lambda_{2}(\mathbf{x}-\mu_{2})}}$$ (10) Note that $\phi_1 + \phi_2 + \phi_C = 1$ by definition. Equations (7) through (10) imply that $$m_1(x) = \phi_1 f_1(x) \tag{11}$$ $$m_2(x) = \phi_2 f_2(x) \tag{12}$$ and $$c = \frac{\varphi_C}{w}$$ (13) The model expressed in (7) or in (8) may be called the "complete" model because it contains the parameters needed to describe the observed regularities in migration age profiles. The parameters, however, are not easily interpretable in terms of more familiar measures such as means or variances. In order to introduce such statistics into the discussion it is necessary to assume simplifications of the kind adopted in recent studies of model nuptiality schedules. Let $$\varphi_1 f_1(x) = \frac{\varphi_1}{\overline{x}_1} e^{-x/\overline{x}_1}$$ (14) where $\overline{x}_1 = 1/\alpha_1$ is the mean age of the pre-labor force component. In order to perform a similar transformation in Equation (12) we have to express, as in Coale and Trussell (1974), $f_2(x)$ as a function of a standard schedule $f_s(x)$: $$\varphi_2 f_2(\mathbf{x}) = \varphi_2 K f_s(\frac{\mathbf{x} - \mathbf{x}_0}{\mathbf{k}})$$ (15) where in our application - \mathbf{x}_{O} is the age at which a consequential number of migrations first occur in the labor force component - k denotes the number of years in the standard schedule into which the intensity of migration in one year in the observed population may be "packed" - K is the scaling parameter, which in our case is equal to unity since both $f_2(x)$ and $f_s(\frac{x-x_0}{k})$ are density functions. Alternatively, following the proposal of Rodriguez and Trussel (1980), we may formulate (15) as a function of the mean age of labor force migrants $\overline{\mathbf{x}}_2$ and the associated standard deviation S_2 : $$m_2(x) = \varphi_2 f_2(x) = \varphi_2 f_s(\frac{x - \overline{x}_2}{S_2})$$ (15') Thus, for example, if for expositional convenience we adopt the Coale-Trussell and Rodriguez-Trussell nuptiality standard profiles, then $$m_2(x) = \phi_2 f_2(x)$$ $$-\frac{0.288}{k}(x-x_0-6.06k)$$ $$= \phi_2 \frac{0.1946}{k} e$$ $$= \phi_2 \frac{0.1946}{k} e$$ (16) and $$m_2(x) = \phi_2 f_2(x)$$ $$= \phi_2 \frac{\frac{1.896}{S_2} (x - \overline{x}_2 + 0.805S_2)}{S_2} = \phi_2 \frac{\frac{1.2813}{S_2}}{S_2} e$$ become replacements for Equations (15) and (15), respectively. The substitution of (14) and (16) or (16') into Equation (8) allows us to have two simplified model migration schedules, each expressed as a function of more common statistics or measures, and each assuming that the ratio of $\sigma_2 = \lambda_2/\alpha_2$ remains constant and equal to 1.66 over all populations. Table 1 sets out the complete and the simplified models. # SIMPLIFIED AND COMPLETE MODEL MIGRATION SCHEDULES: NONLINEAR PARAMETER ESTIMATION In this section we test whether the simplified model is a good approximation of the complete model and therefore whether the assumption that the index of labor asymmetry $\sigma_2 = \lambda_2/\alpha_2 = 1.66$ is a reasonable one. To assess the consequences of the above assumption, we have chosen several outmigration flows that exhibit a wide range of variation of the labor asymmetry index. Table 2 sets out the parameter values for the complete model migration schedules of female flows from each of several regions (identified by numbers in parentheses) to the rest of Sweden, the rest of the United Kingdom, and the rest of Japan, respectively. This table shows, for example, that among the three countries represented, Japan's female outflow from Region 1 has the highest value of σ_2 = 10.39, whereas the corresponding highest value for Sweden is 4.95. The lowest values are also included in the same table, and they vary from a low of 1.26 for Japan to a high of 3.43 for Sweden. In the discussion that follows we shall call the simplified model expressed as a function of x_0 and k the Type A model and the one that is a function of \bar{x}_2 and S_2 the Type B model. To estimate the parameters of the simplified model we have used the same Levenberg-Marquardt nonlinear algorithm that we applied in our previous paper for obtaining parameter estimates in the complete model. (See Appendix A of Rogers and Castro, 1981a.) The parameters and the corresponding derived variables for both simplified models, are presented in Tables 3 and 4. Table 1 Complete and simplified model migration schedules. | Mode1 | Force | Pre-labor
force component | Labor | Labor force component | Constant | |-------------------------|-------|------------------------------|---------------------------------|---|--------------------------| | COMPLETE
m(x) | lí | -מן א
מ _ו פ | + | $a_{2}^{-\alpha_{2}(x-\mu_{2})-e}$ | ა
+ | | SIMPLIFIED TYPE A. m(x) | •11 | * ix
•
• | + | $\frac{-0.288}{k}(x-x_0-6.06k)$ | ⊕ ⁰ ≥ | | TYPE B. | •॥ | * x
 x
 x | $+ \phi_2 \frac{1.2813}{S_2} e$ | $\frac{-1.896}{5_2}(x-\bar{x}_2+0.805S_2) - e^{-\frac{5}{2}}(x-\bar{x}_2+0.805S_2)$ | • ⁰ ≯ | Parameters and variables defining the complete model migration schedule for three selected countries: Sweden, United Kingdom, and Japan. Table 2 | | (1) | . 41 | 00. | 7.878 | .01 | .06 | .04 | .77 | .07 | .78 | 0.00 | 3.25 | 7.47 | 9.65 | 86 | 2.76 | .29 | 0.91 | 0.38 | .37 | 7.65 | 5.23 | 2.11 | 0.02 | |-------------|-----|----------|-------|--------|-----|--------|------|---------|------|---------|------|----------|----------|-------|------|-------|-------|-------|--------|------|-------|------|------|------| | jappn | (5) | . 78 | .00 | 4.816 | .02 | .11 | 0.08 | .02 | 0.15 | .20 | 00.0 | 2.04 | 0.86 | 6.88 | .24 | 06.7 | .27 | .71 | 1.25 | .52 | 4.00 | 0.48 | 8.88 | 0.02 | | ดมักดูซ่อเพ | (3) | • 04 | 00. | 6.379 | .01 | .05 | • 05 | .32 | .13 | . 45 | 0.00 | 4.03 | 8.64 | 7.03 | .32 | 2.54 | .22 | .47 | 3.48 | 11 | 1,95 | 6.85 | 8.00 | 0.02 | | united k | (1) | <u>-</u> | 00. | 401.0 | .01 | .10 | 0.07 | .39 | 0.17 | °
€ | 0.00 | 3.47 | 3.03 | 6.31 | . 65 | 3.02 | .20 | .58 | 1.60 | .53 | 2.08 | 8.55 | 7.17 | 0.02 | | ۲ | (8) | Č. | .00 | 13.107 | .01 | .13 | ÷0. | . 62 | 14 | .71 | 00.0 | . 6. | 6.40 | 4.53 | 9.04 | .33 | .19 | .39 | .95 | 4.77 | 9.85 | 5.03 | .31 | 0.05 | | swede | (7) | ٠
دع | .00 | 8.809 | .02 | .10 | .08 | •
88 | .12 | 77. | 0.00 | .13 | 1.92 | 3.75 | 7.31 | .93 | .31 | . 80 | .43 | 5.61 | . 58 | 6.07 | .87 | 0.03 | | | | ar(ob |) J [| กละ%๓ | _ | alpha1 | د م | 3 n m | Luha | 1 ambd2 | | ଜଣା ପତ୍ର | (0.0-14) | (15-6 | (65+ | elta1 | elta1 | eta12 | i gm a | | Sit U | shi | е | ð | NOTE: The numbers in the parentheses denote the regions exhibiting the lowest or highest values for σ_2 . SOURCE: Rogers and Castro (1981b) Table 3 Parameters and variables defining the simplified model migration schedule Type A for selected regions in Sweden, United Kingdom, and Japan. | | Swe | den | united k | ingdom | japa | a n | |----------------|--------|--------|----------|--------|--------|---------| | | (4) | (8) | (1) | (3) | (5) | (1) | | ymr(obs) | 0.838 | 1.237 | 1.107 | 1.040 | 0.783 | 1.413 | | gmr(mod) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | mae%m | 9.779 | 15.632 | 7.363 | 7.321 | 4.130 | 11.764 | | phi1 | 0.215 | 0.122 | 0.148 | 0.305 | 0.199 | 20.428 | | x 1 | 3.585 | 6.475 | 9.564 | 27.626 | 8.651 | 388.731 | | phi2 | 0.542 | 0.568 | 0.394 | 0.326 | 0.490 | 0.347 | | x 0 | 15.213 | 14.240 | 14.508 | 15.323 | 14.367 | 11.542 | | k | 1.052 | 0.849 | 0.981 | 0.938 | 1.212 | 1.059 | | С | 0.003 | 0.004 | 0.005 | 0.004 | 0.004 | -0.039 | | mean age | 28.643 | 29.759 | 33.628 | 34.012 | 32.035 | 32.077 | | %(0-14) | 21.483 | 16.076 | 13.947 | 18.695 | 20.811 | 18.987 | | % (15~64) | 70.120 | 73.332 | 66.138 | 66.997 | 67.049 | 69.964 | | %(65+) | 8.392 | 10.592 | 14.915 | 14.307 | 12.139 | 11.050 | | phi1/2 | 0.393 | 0.214 | 0.375 | 0.934 | 0.405 | 58.828 | | x low | 14.520 | 13.250 | 13.760 | 14.390 | 13.880 | 10.240 | | x high | 23.330 | 20.850 | 22.080 | 22.550 | 23.690 | 19.710 | | x shift | 8.810 | 7.600 | 8.320 | 8.160 | 9.810 | 9.470 | | č) | 33.280 | 32.250 | 31.480 | 29.800 | 34.790 | 30.860 | | b | 0.037 | 0.051 | 0.029 | 0.025 | 0.028 | 0.024 | NOTE: The numbers in the parentheses denote the regions exhibiting the lowest or highest values for σ_2 in the complete model. Table 4 Parameters and variables defining the simplified model migration schedule Type B for selected regions in Sweden, United Kingdom, and Japan. | | swed | en | united | kingdom | ja | nan | |------------------|--------|--------|--------|---------|--------|---------| | | (4) | (8) | (1) | (3) | (5) | (1) | | gmr(obs) | 0.838 | 1.237 | 1.197 | 1.040 | 0.783 | 1.413 | | ymr (mod) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | mae‰m | 9.777 | 15.529 | 7.353 | 7.320 | 4.131 | 11.796 | | phi1 | 0.215 | 0.122 | 0.148 | 0.304 | 0.199 | 50.204 | | x 1 | 3.587 | 6.475 | 9.579 | 27.604 | 8.650 | 619.517 | | pn i 2 | 0.541 | 0.567 | 0.394 | 0.326 | 0.490 | 0.346 | | x 2 | 27.158 | 23.882 | 25.648 | 25.976 | 28.130 | 23.538 | | ŝ | 6.922 | 5.587 | 6.454 | 6.174 | 7.977 | 6.960 | | С | 0.003 | 0.004 | 0.005 | 0.004 | 0.004 | -0.067 | | mean age | 28.643 | 29.759 | 33.628 | 34.012 | 32.035 | 31,962 | | %(0-14) | 21.483 | 16.076 | 18.949 | 18.695 | 20.811 | 19.031 | | %(15-64) | 70.119 | 73.332 | 66.135 | 66.997 | 67.051 | 70.123 | | %(ა5+) | 8.393 | 10.592 | 14.916 | 14.308 | 12.138 | 10.847 | | ph11/2 | 0.393 | 0.215 | 0.376 | 0.934 | 0.405 | 145.032 | | x low | 14.520 | 13.250 | 13.760 | 14.390 | 13.880 | 10.220 | | x high | 23.330 | 20.850 | 22.080 | 22.550 | 23.680 | 19.690 | | x shift | 8.810 | 7.600 | 8.320 | 8.160 | 9.800 | 9.470 | | ਰ | 33.280 | 32.250 | 31.480 | 29.800 | 34.780 | 30.840 | | b | 0.037 | 0.051 | 0.029 | 0.025 | 0.028 | 0.024 | NOTE: The numbers in the parentheses denote the regions exhibiting the lowest or highest values for σ_2 in the complete model. The two simplified models are equivalent, in the sense that given the parameters of one it is possible to estimate the parameters of the other by simple transformations of variables. Nevertheless we have estimated the parameters for each independently, thereby testing the sensitivity of the estimation procedure to two different model specifications. Tables 3 and 4 show that the parameters corresponding to the age profile with σ_2 = 10.39 are unrealistic, especially those for the pre-labor force component and the constant term. Region 3 of the United Kingdom also shows, in both models, a very high value for the mean age of the pre-labor force component. With the exception of these two schedules (schedules that correspond to high values of σ_2) the method yields reasonable parameter values. The problem of unrealistic values may be solved perhaps by first performing a cubic spline interpolation of the five-year age group data of the United Kingdom and Japan. The Swedish data, reported by single years of age, produce reasonable parameter values even with σ_2 indexes exceeding those observed in Region 3 of the United Kingdom. This suggests that some prior "smoothing" of the U.K. data might produce improved results. By comparing the parameters of the simplified models in Tables 2 and 3, it is possible to observe that the particular specification does not significantly alter the parameters common to the two formulations. In Sweden, for example, the ϕ_1 , ϕ_2 , and c values are almost identical for both specifications. Figures 1, 2, and 3 present the drawings of the observed data, the simplified models A and B, and the complete model migration schedules. It is interesting to observe that the simplified model age profiles of Region 3 in the U.K. and of Region 1 in Japan show a good fit to the observed data, even though the relevant parameter estimates are unrealistic. The reason for this may be that the algorithm searches for a set of parameters that produces the smallest deviation between the observed and the estimated schedules. Since the algorithm is constrained in its choice of the ratio $\sigma_2 = \lambda_2/\alpha_2$, it tries to compensate for this Figure 1 Observed data and complete and simplified model migration schedules: Females, Sweden, 1974. Figure 2 Observed data and complete and simplified model migration schedules: Females, United Kingdom, 1970. Figure 3 Observed data and complete and simplified model migration schedules: Females, Japan, 1970. by changing the parameter values of the pre-labor force component and the constant term. The result therefore may be a "local" rather than a global optimum solution. # SIMPLIFIED AND COMPLETE MODEL MIGRATION SCHEDULES: LINEAR PARAMETER ESTIMATION This section sets out a linear algorithm that may be used to estimate the parameters of the simplified or the complete model migration schedule. The calculations are simple enough to be carried out with a small electronic pocket calculator, and we illustrate them using the schedules analyzed in the previous section. The input data are taken to be the model migration schedules presented in Table 2 and not the observed data. This eliminates the need for smoothing the observed data and allows us to compare the performance of the linear estimation method with that of the nonlinear one. ### Simplified Model To estimate the parameters of the simplified model using the linear approach, we adopt the Type B specification which expresses the model schedule as a function of weights, means, and the standard deviation of the labor force component. A limitation of the linear estimation method is that it is not possible to apply it directly to the Type A model; however, since both models are equivalent formulations, \mathbf{x}_{0} and \mathbf{k} can be derived from the estimated parameter values of the Type B model. To start the linear estimation procedure, set the parameter c equal to the average value of the fifteen oldest single-year age groups of the observed schedule m(x): $$c = \frac{1}{15} \sum_{x=w-14}^{w} m(x)$$ (17) Given values for c and the last age group w, $\phi_{\mathbf{C}}$ may be estimated with Equation (13): $$\phi_{\mathbf{C}} = \mathbf{C} \cdot \mathbf{w} \tag{18}$$ The labor force component is estimated by first computing the function $m_2(x)$ [Equation (12)] as: $$m_2(x) = m(x) - c$$ for $x_{\ell} + 1 \le x \le w - 15$ (19) where \mathbf{x}_{ℓ} is the observed (or assumed) low point. The weight ϕ_2 of the labor force component follows directly from $$\phi_2 = \sum_{\mathbf{x} = \mathbf{x}_{\varrho} + 1}^{\mathbf{w} - 15} m_2(\mathbf{x})$$ (20) and the mean age and standard deviation are defined as $$\bar{x}_2 = \frac{1}{\phi_2} \begin{bmatrix} w-15 \\ \Sigma \\ x=x_{\ell}+1 \end{bmatrix}$$ (21) and $$S_{2} = \begin{bmatrix} w-15 \\ \Sigma \\ \mathbf{x}=\mathbf{x}_{\ell}+1 \end{bmatrix}^{2} \frac{m_{2}(\mathbf{x})}{\phi_{2}}^{\frac{1}{2}}$$ $$(22)$$ respectively. The parameter values of the pre-labor force component are derived in a similar fashion. First, the weight ϕ_1 is found as a residual, $$\phi_1 = 1 - (\phi_c + \phi_2) \tag{23}$$ and the mean age \bar{x}_1 is defined as $$\bar{x}_1 = \frac{1}{\phi_1} \begin{bmatrix} x_{\ell} \\ \Sigma & x \cdot m(x) \\ x=0 \end{bmatrix}$$ (24) Table 5 presents a summary of the basic steps, and Table 6 gives the parameters obtained with the linear and the nonlinear estimation methods. The observed differences between the two approaches are minor. Surprisingly, the simple linear method occasionally yields more realistic results (for example, for the schedules exhibiting the highest σ_2 values in the United Kingdom and Japan), but it always tends to underestimate the location of $x_{\scriptscriptstyle 0}$, the low point. #### Complete Model The linear procedure for estimating the constant term and the pre-labor force component of the complete model is identical to that used for the simplified model. The labor force component, however, is estimated in a different way, in order to relax the assumption that σ_2 is a constant. Let $$\sigma_2 = \phi_{2b}/\phi_{2a} \tag{25}$$ where $$\varphi_2 = \varphi_{2a} + \varphi_{2b} \tag{26}$$ and $$\phi_{2a} = \sum_{\mathbf{x} = \mathbf{x}_0 + 1}^{\mathbf{x}_h} \mathbf{m}_2(\mathbf{x})$$ (27) where x_h is the high point. Compute $m_2(x)$ and ϕ_2 , using Equations (19) and (20), respectively. Then given σ_2 compute a_2 using the analytical expression of the migration rate at age x_h [Rogers and Castro (1981a, p. 48)]: $$m(x_n) = a_2 \left(\frac{1}{\sigma_2}\right)^{\frac{1}{\sigma_2}} e^{-\frac{1}{\sigma_2}}$$ (28) Table 5 Linear parameter estimation: simplified model. #### A. Constant term $$c = \frac{1}{15} \sum_{x=w-14}^{w} m(x)$$ $$\phi_{c} = c \cdot w$$ B. Labor-force component $$m_2(x) = m(x) - c$$ for $x_{\ell} + 1 \le x \le w - 15$ $$\phi_2 = \sum_{\mathbf{x} = \mathbf{x}_0 + 1} m_2(\mathbf{x})$$ $$\bar{x}_2 = \frac{1}{\varphi_2} \begin{bmatrix} w-15 \\ \Sigma \\ x=x_{\ell}+1 \end{bmatrix}$$ $$S_{2} = \begin{bmatrix} w-15 \\ \Sigma \\ x=x_{\ell}+1 \end{bmatrix} (x-\overline{x}_{2})^{2} \frac{m_{2}(x)}{\phi_{2}}^{2}$$ C. Pre-labor force component $$\phi_1 = 1 - (\phi_C + \phi_2)$$ $$\bar{x}_1 = \frac{1}{\phi_1} \begin{bmatrix} x_{\ell} \\ \Sigma \\ x=0 \end{bmatrix}$$ Parameters and variables defining the female simplified model migration schedule for selected regions in Sweden, United Kingdom, and Japan: Linear and nonlinear parameter estimation. Table 6 | | - | non.
linear | 1.413
11.796
50.204
50.204
619.517
6.960
31.962
31.962
110.847
1145.033
110.847
110.847
110.847 | 0.02 | |--------------|------------|----------------|--|--------------| | c | regio | linear | 11.709
0.036
0.036
0.036
0.036
10.833
17.915
12.915
12.850
13.501
12.915
12.850 | 0.02 | | едеј | 5 | non-
linear | 0.783
0.199
0.199
0.199
0.004
0.004
32.035
20.811
12.138
13.880
23.580 | 0.02 | | | region | linear | 0.783
0.980
7.720
0.142
7.527
7.527
7.527
7.749
7.749
13.240
23.040
9.800 | 0.03 | | ₽ 0 ₽ | m | non-
linear | 1.040
7.320
0.326
0.326
25.976
6.174
34.012
14.308
14.308
14.390
22.550 | 9.30
0.02 | | 1 n g | region | lingar | 1.040
8.781
0.119
11.118
0.119
0.051
34.337
16.089
14.043
12.130
22.730
12.130 | 0.02 | | 6
2 | _ | non-
linear | 1.100
7.358
0.143
9.5743
0.3944
18.9628
14.916
13.760
27.080
27.080 | 0.02 | | u n i t | region | linear | 1.197
6.574
6.574
0.113
9.0113
6.974
16.477
16.479
16.479
17.253
17.553
17.553
17.553
17.553
17.553 | 0.03 | | | <i>8</i> 9 | non-
linear | 1.227
1.000
15.629
0.122
0.567
23.832
5.587
0.004
73.332
10.592
113.250
7.600
7.600 | . 0 S | | C é | region | lingar | 1.237
0.435
12.361
0.119
7.630
7.0613
24.806
7.003
15.546
75.645
75.645
75.645
75.645
77.003
77.003
77.003
77.003
77.003
77.003 | 0.0
4.0.0 | | o
e
a | ব | non-
linear | 0.000
0.001
0.001
0.001
0.001
0.001
0.003
0.398
0.398
0.398
0.398
0.398 | .03
.03 | | ın | region | lingar | | 7 P | | | | | <pre>gar(obs) gar(obs) assetm phr1 x1 pric c assem a</pre> | ଦ ଦ | whence $$a_2 = m(x_h) / \left[(1/\sigma_2)^{1/\sigma_2} e^{-1/\sigma_2} \right]$$ (29) Given a_2 , σ_2 , and ϕ_2 , estimate λ_2 by recalling Equations (10) and (12) and noting that a_2 may be expressed as $$a_2 = \phi_2 \frac{\lambda_2}{\Gamma(\alpha_2/\lambda_2)} \tag{30}$$ Solving for λ_2 , and substituting $\sigma_2 = \lambda_2/\alpha_2$ into the expression, gives $$\lambda_2 = \left[a_2 \Gamma(1/\sigma_2) \right] / \phi_2 \tag{31}$$ Finally, recalling the definition of σ_2 yields α_2 : $$\alpha_2 = \lambda_2 / \sigma_2 \tag{32}$$ Table 7 outlines a summary of the basic steps of the linear parameter estimation method for the complete model. Table 8 presents both the linear and the nonlinear parameter estimations of the complete model for purposes of comparison. The differences between the two sets of estimated parameters are remarkably small. The linear and nonlinear estimation methods also may be compared by examining the model age profiles that they generate. Figures 4 through 6 present these profiles, demonstrating that in most cases the linear estimation method gives a very adequate approximation to the complete model migration schedule that is defined by the nonlinearly estimated parameter values. #### CONCLUSION The aim of this paper has been to introduce (1) a model migration schedule expressed in terms of familiar statistical measures such as means and variances, and (2) a simple linear Table 7 Linear parameter estimation: complete model. ### A. Constant term $$c = \frac{1}{15} \sum_{x=w-14}^{w} m(x)$$ $$\phi_{C} = c \cdot w$$ B. Labor force component $$m_{2}(x) = m(x) - c$$ for $x_{\ell}+1 \le x \le w-15$ $$\phi_{2} = \sum_{\mathbf{x}=\mathbf{x}_{\ell}+1}^{w-15} m_{2}(x)$$ $$\phi_{2a} = \sum_{\mathbf{x}=\mathbf{x}_{\ell}+1}^{\mathbf{x}_{h}} m_{2}(\mathbf{x})$$ $$\varphi_{2b} = \varphi_2 - \varphi_{2a}$$ $$\sigma_2 = \phi_{2b}/\phi_{2a}$$ $$a_{2} = m(x_{h}) / \left[(1/\sigma_{2})^{1/\sigma_{2}} e^{-1/\sigma_{2}} \right]$$ $$\lambda_{2} = \left[a_{2} \Gamma(1/\sigma_{2}) \right] / \phi_{2}$$ $$\alpha_{2} = \lambda_{2} / \sigma_{2}$$ C. Pre-labor force component $$\bar{\mathbf{x}}_{1} = 1 - (\phi_{\mathbf{c}} + \phi_{2})$$ $$\bar{\mathbf{x}}_{1} = \frac{1}{\phi_{1}} \begin{bmatrix} \mathbf{x}_{\ell} \\ \Sigma \\ \mathbf{x} = 0 \end{bmatrix} \times \mathbf{m}(\mathbf{x})$$ Table 8 Parameters and variables defining the female complete model migration schedule for selected regions in Sweden, United Kingdom, and Japan: Linear and nonlinear estimates. | | 3 | swed | e u | | uni | ted A | (i ng | cl o m | japan | | | | | | |------------|--------|----------------|--------|----------------|--------|----------------|--------------|----------------|--------|----------------|--------|----------------|--|--| | | region | 1 4 | regio | n 3 | region | ո 1 | regio | n 3 | region | n 5 | region | n 1 | | | | | linear | non-
linear | | | | gmr(ubs) | U.J~3 | 0.338 | 1.237 | 1.237 | 1.197 | 1.197 | 1.040 | 1.040 | 0.783 | 0.783 | 1.414 | 1.414 | | | | gmr(mod) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.498 | 1.000 | | | | mae%m | 5.233 | 3.509 | 8.542 | 13.167 | 5.774 | 9.194 | 6.308 | 6.379 | 6.162 | 4.816 | 6.713 | 7.878 | | | | ā l | 0.025 | 0.025 | 0.016 | 0.019 | 0.013 | 0.015 | 0.011 | 0.012 | 0.019 | 0.022 | 0.010 | 0.012 | | | | alphu1 | 0.139 | 0.104 | 0.131 | 0.128 | 0.111 | 0.100 | 0.090 | 0.062 | 0.133 | 0.113 | 0.111 | 0.069 | | | | a 2 | 0.034 | Ე.ᲘᲒᲔ | 0.084 | 0.094 | 0.078 | 0.076 | 0.056 | 0.054 | 0.075 | 0.083 | 0.048 | 0.042 | | | | 01 U C | 17.653 | 19.882 | 17.263 | 17.620 | 19.398 | 20.392 | 18.799 | 19.324 | 21.746 | 23.021 | 13.970 | 14.772 | | | | alpha2 | 0.175 | 2.129 | 0.125 | 0.143 | 0.154 | 0.171 | 0.112 | 0.131 | 0.136 | 0.159 | 0.084 | 0.075 | | | | Lambdl | 0.375 | 0.442 | 0.515 | 0.711 | 0.293 | 0.284 | 0.414 | 0.456 | 0.227 | 0.200 | 0.467 | 0.781 | | | | C | 0.003 | 0.003 | 0.003 | 0.003 | 0.005 | 0.005 | 0.005 | 0.005 | 0.004 | 0.005 | 0.005 | 0.004 | | | | wear ade | 23.346 | 29.139 | 29.961 | | | 33.477 | | 34.032 | 33.093 | 32.047 | 33.720 | 33. 258 | | | | 2(0-14) | 19.614 | 21.929 | 14.536 | | | 19.033 | | | | 20.365 | 17.591 | 17.478 | | | | 7. (15-64) | 72.693 | 70.757 | 76.124 | | 63.400 | | 69.606 | | 69.372 | | 68.665 | 69.659 | | | | λ(S5+) | 7.693 | 7.314 | 9.341 | 9.044 | | 14.651 | | | 12.506 | 12.247 | | 12.864 | | | | delta1c | 10.131 | 0.932 | 4.933 | 5.838 | 2.430 | 3.023 | 2.122 | 2.544 | 4.405 | 4.907 | 2.117 | 2.767 | | | | delta12 | 0.309 | 0.312 | 0.136 | 0.198 | 0.162 | 0.201 | 0.192 | 0.225 | 0.252 | 0.271 | 0.201 | 0.294 | | | | petal2 | 1.111 | 0.309 | 1.047 | 0.390 | 0.721 | 0.584 | 0.304 | 0.477 | 0.977 | 0.710 | 1.329 | 0.917 | | | | sigma2 | 5.366 | 3.434 | 4.911 | 4.953 | 1.900 | 1.661 | 3.698 | 3.485 | 1.668 | 1.255 | 5.583 | 10.389 | | | | x low | 14.730 | 15.610 | 14.010 | 14.770 | | 13.530 | 14.160 | 15.110 | | 13.520 | | 12.370 | | | | x high | 22.510 | 22.580 | 19.320 | 19.350 | | 22.080 | 21.870 | | 23.900 | 24.000 | | | | | | x shift | 7.730 | 5.970 | 5.310 | 5.080 | 8.350 | 8.550 | 7.710 | 6.850 | 10.480 | 10.480 | 7.490 | 5.280 | | | | a
, | 30.003 | 27.874 | 31.213 | | 29.949 | 27.173 | 32.606 | 23.067 | | 28,385 | 35.190 | 32.117 | | | | b | 0.040 | 0.038 | 0.043 | 0.052 | 0.031 | 0.027 | 0.028 | 0.026 | 0.028 | 0.025 | 0.027 | 0.025 | | | Region 4 Figure 4 Linear estimation of the complete and simplified model migration schedules compared with the nonlinear estimation of the complete model: Females, Sweden, 1970. # Region 1 Figure 5 Linear estimation of the complete and simplified model migration schedules compared with the nonlinear estimation of the complete model: Females, United Kingdom, 1970. Figure 6 Linear estimation of the complete and simplified model migration schedules compared with the nonlinear estimation of the complete model: Females, Japan, 1970. parameter estimation method that may be used in situations where access to large computers and packaged programs is limited. The notion of simplified model schedules has been successfully applied in the construction of nuptiality schedules, and some of the same simplifications seem to be applicable in the case of migration. The results obtained by the simplified model are satisfactory when contrasted with those found using the original "complete" model of previous research (Rogers and Castro, 1981b). And it seems likely that the performance of the simplified model may be further improved by choosing a standard migration function that implies a more appropriate value for the labor asymmetry index σ_2 . Moreover, the linear estimation method is simple enough to be implemented with small electronic pocket calculators; access to large computer facilities with their complex packaged nonlinear parameter estimation algorithms becomes unnecessary. Finally, it appears that a promising direction for future research lies in the application of the simplified model to the analysis of family dependency relationships in migration patterns. In Castro and Rogers (1979), for example, we have shown that the age distribution of migrants $n(\mathbf{x})$ exhibits the same fundamental regularities found in observed age-specific migration rate schedules and that the complete model yields an adequate mathematical representation of such regularities. It is not surprising, therefore, that the simplified model, defined in this paper, also may be fitted to such observed migration age profiles. In such instances, the ratio ϕ_1/ϕ_2 of the estimated parameters defines the number of dependents per labor force migrant, and this quantity, in turn, may be a close approximation of the average family size among migrants. This aspect of the model will be explored in a forthcoming paper. #### REFERENCES - Castro, L.J. and A. Rogers (1979) Migration Age Patterns: Measurement and Analysis. WP-79-16. Laxenburg, Austria: International Institute for Applied Systems Analysis. - Coale, A. (1971) Age-patterns of marriage. *Population Studies* 25:193-214. - Coale, A. and D.R. McNeil (1972) The distribution by age at first marriage in a female cohort. Journal of the American Statistical Association 67:743-749. - Coale, A. and J. Trussell (1974) Model fertility schedules: variations in the age structure of childbearing in human populations. *Population Index* 40(2):185-206. - Rodriguez, G. and J. Trussell (1980) Maximum likelihood estimation of the parameters of Coale's model nuptiality schedule from survey data. World Fertility Survey, Technical Bulletins 7 Tech. 1261, Voorburg, Netherlands: International Statistical Institute. - Rogers, A. and L.J. Castro (1981a) Model Schedules in Multistate Demographic Analysis: The Case of Migration. WP-81-22. Laxenburg, Austria: International Institute for Applied Systems Analysis. - Rogers, A. and L.J. Castro (1981b) 638 Model Migration Schedules: A Technical Appendix. WP-81-23. Laxenburg, Austria: International Institute for Applied Systems Analysis. # RELATED PUBLICATIONS OF THE MIGRATION AND SETTLEMENT TASK #### THEORY AND MODELS - 1. Andrei Rogers, Migration and Settlement: Selected Essays. RR-78-6. Reprinted from a special issue of Environment and Planning A. - 2. Andrei Rogers and Frans Willekens, Migration and Settlement: Measurement and Analysis. RR-78-13. - 3. Frans Willekens and Andrei Rogers, Spatial Population Analysis: Methods and Computer Programs. RR-78-18. - 4. Andrei Rogers, Migration Patterns and Population Redistribution. RR-80-7. Reprinted from Regional Science and Urban Economics. - 5. Andrei Rogers, Essays in Multistate Demography. RR-80-10. Reprinted from a special issue of Environment and Planning A. - 6. Nathan Keyfitz, Multidimensionality in Population Analysis. RR-80-33. Reprinted from Sociological Methodology 1380. #### NATIONAL CASE STUDIES - Philip Rees, Migration and Settlement: 1. United Kingdom. RR-79-3. - 2. Kalevi Rikkinen, Migration and Settlement: 2. Finland. RR-79-9. - 3. Ake Andersson and Ingvar Holmberg, Migration and Settlement: 3. Sweden. RR-80-5 - 4. Gerhard Mohs, Migration and Settlement: 4. German Democratic Republic. RR-80-6. - 5. Paul Drewe, Migration and Settlement: 5. Netherlands. RR-80-13. - 6. Marc Termote, Migration and Settlement: 6. Canada. RR-80-29. - 7. Klára Bies and Kálmán Tekse, Migration and Settlement: 7. Hungary. RR-80-34. - 8. Svetlana Soboleva, Migration and Settlement: 8. Soviet Union. RR-80-36. - 9. Reinhold Koch and Hans-Peter Gatzweiler, Migration and Settlement: 9. Federal Republic of Germany. RR-80-37. - 10. Michael Sauberer, Migration and Settlement: 10. Austria. Forthcoming. - 11. Kazimierz Dziewoński and Piotr Korcelli, Migration and Settlement: 11. Poland. Forthcoming. - 12. Dimiter Philipov, Migration and Settlement: 12. Bulgaria. Forthcoming. - 13. Jacques Ledent, Migration and Settlement: 13. France. Forthcoming. - 14. Karel Kühnl, Migration and Settlement: 14. Czechoslovakia. Forthcoming. - 15. Zenji Nanjo, Tatsuhiko Kawashima, and Toshio Kuroda, Migration and Settlement: 15. Japan. Forthcoming. - 16. William Frey and Larry Long, Migration and Settlement: 16. United States. Forthcoming. - 17. Agostino LaBella, Migration and Settlement: 17. Italy. Forthcoming.