A new extreme value copula and new families of univariate distributions based on Freund’s exponential model

Guzmics, S. & Pflug, G. ORCID: https://orcid.org/0000-0001-8215-3550 (2020). A new extreme value copula and new families of univariate distributions based on Freund’s exponential model. Dependence Modeling 8 (1) 330-360. 10.1515/demo-2020-0018.

[img]
Preview
Text
[23002298 - Dependence Modeling] A new extreme value copula and new families of univariate distributions based on Freund’s exponential model.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

The use of the exponential distribution and its multivariate generalizations is extremely popular in lifetime modeling. Freund's bivariate exponential model (1961) is based on the idea that the remaining lifetime of any entity in a bivariate system is shortened when the other entity defaults. Such a model can be quite useful for studying systemic risk, for instance in financial systems. Guzmics and Pflug (2019) revisited Freund's model, deriving the corresponding bivariate copula and examined some characteristics of it; furthermore, we opened the door for a multivariate setting. Now we present further investigations in the bivariate model: we compute the tail dependence coefficients, we examine the marginal and joint distributions of the componentwise maxima, which leads to an extreme value copula, which - to the best of our knowledge - has not been investigated in the literature yet. The original bivariate model of Freund has been extended to more variables by several authors. We also turn to the multivariate setting, and our focus is different from that of the previous generalizations, and therefore it is novel: examining the distribution of the sum and of the average of the lifetime variables (provided that the shock parameters are all the same) leads to new families of univariate distributions, which we call Exponential Gamma Mixture Type I and Type II (EGM) distributions. We present their basic properties, we provide asymptotics for them, and finally we also provide the limiting distribution for the EGM Type II distribution.

Item Type: Article
Research Programs: Risk & Resilience (RISK)
Depositing User: Luke Kirwan
Date Deposited: 14 Jan 2021 08:16
Last Modified: 27 Aug 2021 17:34
URI: http://pure.iiasa.ac.at/16995

Actions (login required)

View Item View Item

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313